Constraints on deep, CO₂-rich degassing at arc volcanoes from solubility experiments on hydrous basaltic andesite of Pavlof Volcano, Alaska Peninsula, at 300 to 1200 MPa

MARGARET T. MANGAN¹, THOMAS W. SISSON^{1,*}, W. BEN HANKINS¹, NOBUMICHI SHIMIZU², AND TORSTEN VENNEMANN³

¹U.S. Geological Survey, 345 Middlefield Road, Mail Stop 310, Menlo Park, California 94025, U.S.A.
²Woods Hole Oceanographic Institution, Mail Stop 23, 266 Woods Hole Road, Woods Hole, Massachusetts 02543-1050, U.S.A.
³University of Lausanne, Institute of Earth Surface Dynamics, CH-1015 Lausanne, Switzerland

Abstract

The solubility of CO₂ in hydrous basaltic andesite was examined in f_{O_2} -controlled experiments at a temperature of 1125 °C and pressures between 310–1200 MPa. Concentrations of dissolved H₂O and CO₂ in experimental glasses were determined by ion microprobe calibrated on a subset of run glasses analyzed by high-temperature vacuum manometry. Assuming that the solubility of H₂O in mafic melt is relatively well known, estimates of $X_{H_2O}^{fluid}$ and $P_{H_2O}^{fluid}$ in the saturating fluid were modeled, and by difference, values for $X_{CO_2}^{fluid}$ and $P_{CO_2}^{fluid}$ were obtained ($X_{CO_2} \sim 0.5-0.9$); f_{CO_2} could be then calculated from the fluid composition, temperature, and pressure.

Dissolved H₂O over a range of 2.3–5.5 wt% had no unequivocal influence on the dissolution of CO₂ at the pressures and fluid compositions examined. For these H₂O concentrations, dissolved CO₂ increases with f_{CO_2} following an empirical power-law relation: dissolved CO₂ (ppmw) = 14.9⁺⁴.5[f_{CO_2} (MPa)]^{0.7±0.03}. The highest-pressure results plot farthest from this equation but are within its 1 standard-error uncertainty envelope.

We compare our experimental data with three recent CO_2 -H₂O solubility models: Papale et al. (2006); Iacono-Marziano et al. (2012); and Ghiorso and Gualda (2015). The Papale et al. (2006) and Iacono-Marizano et al. (2012) models give similar results, both over-predicting the solubility of CO_2 in a melt of the Pavlof basaltic andesite composition across the f_{CO_2} range, whereas the Ghiorso and Gualda (2015) model under-predicts CO_2 solubility. All three solubility models would indicate a strong enhancement of CO_2 solubility with increasing dissolved H₂O not apparent in our results. We also examine our results in the context of previous high-pressure CO_2 solubility experiments on basaltic melts. Dissolved CO_2 correlates positively with mole fraction (Na+K+Ca)/Al across a compositional spectrum of trachybasalt-alkali basalt-tholeiite-icelandite-basaltic andesite. Shortcomings of current solubility models for a widespread arc magma type indicate that our understanding of degassing in the deep crust and uppermost mantle remains semi-quantitative. Experimental studies systematically varying concentrations of melt components (Mg, Ca, Na, K, Al, Si) may be necessary to identify solubility reactions, quantify their equilibrium constants, and thereby build an accurate and generally applicable solubility model.

Keywords: Experimental petrology, magmatic CO₂, volcanic degassing, volatile solubility