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Abstract
We provide a further algebraic proof that the lines of entrapment conditions for inclusions calculated 

with the formula of Guiraud and Powell (2006) are not thermodynamic isomekes and therefore do not 
represent exactly lines of possible entrapment conditions.
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Introduction
Zhong et al. (2020) argue that the solution for entrapment 

conditions of inclusions presented by Guiraud and Powell (2006) 
is as equally valid as that proposed by Angel et al. (2017). In 
addition they propose a third calculation route based on the 
logarithmic definition of strain and a change in reference con-
ditions. For the example that Zhong et al. (2020) show in their 
Figure 1, all three methods yield calculated entrapment pressures 
at metamorphic temperatures that differ by a small amount that 
is larger than numerical rounding error in the calculations. How-
ever, if the three solutions yield three different sets of entrapment 
pressures for a given temperature and the same input parameters, 
then the three different results cannot all be simultaneously 
thermodynamically correct. The essential question is therefore: 
which one is thermodynamically correct?

The thermodynamic concept behind the determination of 
conditions of entrapment of inclusions within host minerals is 
the isomeke (Rosenfeld and Chase 1961; Adams et al. 1975). 
The isomeke is a thermodynamically defined line along which 
the fractional volume changes of two phases (host and inclusion) 
remain equal but non-zero. Therefore, if two P-T points, a and 
b, lie on the same isomeke of the host h and inclusion i their 
volumes at these two points are related exactly by:
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The consequence, for host-inclusion calculations, is that an 
inclusion that perfectly fits the hole it occupies in a host crystal at 
the time of entrapment will continue to do so at all P-T conditions 
along the isomeke line through entrapment conditions, without 
developing additional stresses, regardless of the slope of the 
isomeke. The inclusion pressure therefore remains equal to the 
external pressure along this entrapment isomeke (e.g., Angel et al. 
2015). And inclusions trapped at different points along the same 
host-inclusion isomeke will exhibit the same residual pressure 
as one another when examined at room conditions (or any other 

P-T point away from the entrapment isomeke). The consequence 
is that unique entrapment conditions cannot be inferred from the 
measurement of the residual pressure in an inclusion alone under 
the assumption that the phases are isotropic; only the entrapment 
isomeke (a line in P-T space) can be inferred.

Therefore, one can determine which model or models for 
inclusion entrapment pressures are valid by testing whether or not 
they predict entrapment conditions that all lie on a single isomeke 
from a single value of Pinc. We first apply this condition to the 
equation of Guiraud and Powell (2006) to prove that it does not 
represent an isomeke. Then we confirm the algebraic analysis 
by simply calculating from the individual EoS of the phases 
the ratios in Equation 1 along the predicted line of entrapment.

Algebraic proof
The equation given by Guiraud and Powell (2006) that relates 

the Ptrap and Ttrap to Pinc at room temperature when the host pres-
sure is zero (and vice versa), is:
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We now multiply the first term on the right by the ratio of 
volumes of the inclusion at one point on the isomeke at room 
temperature
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and the second by the same volume ratio (also of unity) for the 
host. Then the Guiraud and Powell (2006) Equation 2 becomes:
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[A]     =          [B]               [C]        –      [D]                [E]  (3)

The second line in Equation 3 is just labels that we have as-
signed to the corresponding terms in the full equation to make 
the following explanation clearer. The condition that Pfoot,Tend 
and Ptrap,Ttrap both lie on the same isomeke is, from Equation 1, 
the condition [B] = [D]. 

If we have measured Pinc at room temperature and we know Gh, 
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we can solve Equation 3 for Ptrap = Pfoot and Ttrap = Tend to define 
one point on the entrapment isomeke, at Pfoot,Tend. At these condi-
tions, Equation 3 is algebraically identical to the solution given 
in Angel et al. (2017), and the terms [A], [C], and [E] are now 
fixed. With these terms fixed as defining one point on the entrap-
ment isomeke, there are no other solutions to Equation 3 unless 
[B] ≠ [D], which implies a violation of the isomeke condition of 
Equation 1 which in turn shows that Guiraud and Powell (2006) 
equation cannot represent an isomeke. The same conclusion can be 
reached another way: if [B] = [D] then we can write Equation 3 as 
[A] = [B]([C] – [E]). Since[A], [C], and [E] are fixed, this tells us 
there is only one value of [B] that simultaneously satisfies both 
the isomeke condition and the Guiraud and Powell (2006) equa-
tion; again a demonstration that the Guiraud and Powell (2006) 
equation cannot represent an isomeke.

Figure 1c of Zhong et al. (2020) shows as an example the cal-
culated entrapment conditions for a quartz inclusion in almandine 
garnet with a residual inclusion pressure of 0.6 GPa when the host 
garnet is at room conditions. Table 1a shows entrapment pressures 
calculated with the Guiraud and Powell (2006) and Angel et al. 
(2017) models, at room T and 750 °C. The table shows that the 
fractional volume changes of the host and inclusion change along 
the entrapment line calculated with the Guiraud and Powell (2006) 
model, confirming that it is not an isomeke. The differences are 
larger when the contrast between the bulk moduli of the host and 
inclusion is smaller, for example for zircon in pyrope (Table 1b). 
While the differences in these two examples may not be geologi-
cally significant, the errors for other host-inclusion pairs cannot 
be predicted without explicit calculation.

The proof can also be performed with the same conclusion but 
with more complex working for P-T points other than Pfoot,Tend. 
This shows that we previously erred in stating that the relaxation 
has to be calculated isothermally; this should have been obvious 
from the fact that the solution of Pinc was presented in Angel et al. 
(2017) in terms of force balance at the final conditions. Therefore, 
we agree with Zhong et al. (2020) that this is not the cause of the 
difference between the Guiraud and Powell (2006) and Angel et 
al. (2017) solutions that they show in their Figure 1. However, we 
also want to note that, contrary to the statements in Zhong et al. 
(2020), there is no restriction in this analysis or that of Angel et al. 
(2017) to the final conditions being at room conditions.

Conclusion
We have proved that the lines of entrapment conditions 

calculated by the method of Guiraud and Powell (2006) are not 
thermodynamically correct because they are not exactly isomekes. 
The source of this difference was shown in Equations A6 and A9 
of Angel et al. (2017) and is the factor that we here call
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the fractional volume change of the two phases along the entrap-
ment isomeke. When this factor is close to unity, the solution 
of Guiraud and Powell (2006) is a close approximation to the 
thermodynamically correct solution. The same is true for the 
logarithmic basis proposed as an alternative by Zhong et al. 
(2020). Factors that further reduce the accuracy of the Guiraud 
and Powell (2006) approximation include hosts with small shear 

moduli (Eq. 2) and systems that have a high contrast in values of 
the pressure derivatives of their bulk moduli (i.e., K′) leading to 
strongly curved isomekes, such as often occur in mixed-phase 
inclusions (e.g., Musiyachenko et al. 2020). Furthermore, the 
differences in the calculated entrapment conditions between the 
approach of Guiraud and Powell (2006) and the thermodynamic 
isomekes are further magnified when unique entrapment condi-
tions are being inferred from the anisotropy of strains of the 
trapped inclusions (e.g., Alvaro et al. 2020). On the other hand, the 
approach of Angel et al. (2017) is thermodynamically correct for 
all cases because it calculates points on the entrapment isomeke 
from Pfoot,Tend by explicitly enforcing the isomeke condition. We 
therefore recommend that all host-inclusion calculations are based 
on the thermodynamically correct basis of the isomeke, regardless 
of the value of the final Ptrap.
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Table 1a. Quartz in garnet for Pinc = 0.6 GPa at 25 °C
Ttrap  Ptrap (exact) Ptrap (G&P) V/Vfoot (exact) V/Vfoot (G&P)
(°C) (GPa) (GPa) host = [D] inc = [B] host = [D] inc = [B]
25 1.048 1.050a 1.00000 1.00000 1.00000 1.00000
750 1.871 1.876 1.01175 1.01175 1.01173 1.01168

Table 1b. Zircon in Garnet for Pinc = 0.25 GPa at 25 °C
Ttrap  Ptrap (exact) Ptrap (G&P) V/Vfoot (exact) V/Vfoot (G&P)
(°C) (GPa) (GPa) host = [D] inc = [B] host = [D] inc = [B]
25 –1.751 –1.753a 1.00000 1.00000 1.00000 1.00000
800 4.778 4.801 0.98122 0.98122 0.98108 0.98112
Notes: All calculations performed with EosFit7c (Angel et al. 2014). All of the EoS 
used in these examples can be downloaded as .eos files from www.rossangel.net.
a The values of Ptrap at 25 °C are Pfoot, and differ from the exact solution because 
they do not include the non-linearity of the P-V relationship in the host and 
inclusion (Angel et al. 2017).


