Systematics of H₂ and H₂O evolved from chlorites during oxidative dehydrogenation

Małgorzata Lempart^{1,*,†}, Arkadiusz Derkowski^{1,*}, Tomasz Strączek², and Czesław Kapusta²

¹Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Krakow, Senacka St. No. 1, PL-31002 Krakow, Poland ²AGH University of Science and Technology, Faculty of Physics and Applied Computer Sciences, Al. Mickiewicza St. No. 30, PL-30059, Krakow, Poland

ABSTRACT

Thermally induced dehydroxylation and oxidative dehydrogenation drive the thermal decomposition of all Fe²⁺-containing phyllosilicates. Whereas the former produces H₂O gas, the latter results in H₂ evolution. Six chlorites representing the Mg-Fe²⁺ series from clinochlore to chamosite and biotite (as an analog of the 2:1 layer in chlorite) were investigated using thermogravimetry coupled to quadrupole mass spectrometry (TG-MS). A fast-ramp heating protocol was applied to identify if and how hydrogen gas was released from the crystal structure and whether it was quantitatively related to structural Fe²⁺ content. Dehydroxylation and oxidative dehydrogenation were tested under inert and oxidizing conditions.

 H_2 liberation confirmed the H_2 gas production by oxidative dehydrogenation, as shown by an evolution of the m/z = 2 signal for chamosites, Fe-rich clinochlores, and biotite heated under nitrogen gas atmosphere. Along with H_2 evolution, H_2O (m/z = 18) was released, suggesting that dehydroxylation is a trigger for dehydrogenation. The higher the Fe²⁺ content in the studied chlorites, the more intense the H_2 evolution, thus the higher the H_2/H_2O ratios. The products of ramp-heating to 1000 °C resulted in varying amounts of newly formed Fe³⁺ (from 7 to 22%), however, biotite that converted into oxybiotite underwent almost complete oxidation, indicating a stronger tendency of 2:1 layer to dehydrogenation. The observed concurrent, but independent mechanisms of H_2 and H_2O evolution produced a feasible model of the thermal decomposition of chlorites.

Despite O_2 availability under oxidizing condition, the Fe^{2+} oxidation was not driven by attaching oxygen anions to the phyllosilicate structure, but also by dehydrogenation. Hydrogen was not detected using MS for any tested sample heated in synthetic air because any H_2 if released was instantaneously combined with external O_2 , which resulted in an excess H_2O MS signal not matched by mass loss on the TG profiles of chamosite and biotite. Without coupling of the evolved gas analysis with TG, the excess H_2O produced by dehydrogenation in the O_2 -bearing carrier gas would result in misleading interpretations of dehydroxylation.

Methodological and geological implications of the TG-MS experiments are discussed. The oxidation of Fe^{2+} in all Fe^{2+} -containing phyllosilicates proceeds with simultaneous H_2 gas release that is not dependent on oxygen fugacity nor temperature during the mineral formation. Therefore, the correlation between Fe^{3+}/Fe^{2+} and remaining hydrogen in the structure must be considered during modeling the conditions that involve chlorite as geothermobarometer. H_2 release during heating is proposed as an indicator of oxidative dehydrogenation of Fe^{2+} -bearing minerals on Mars.

Keywords: Chlorite, hydrogen, evolved gas analysis, dehydrogenation, dehydroxylation, oxidation