A multi-method characterization of natural terrestrial birnessites

FLORENCE T. LING^{1,2,*}, JEFFREY E. POST³, PETER J. HEANEY¹, CARA M. SANTELLI^{4,†}, EUGENE S. ILTON⁵, WILLIAM D. BURGOS⁶, AND ARTHUR W. ROSE¹

¹Department of Geosciences, Penn State University, University Park, Pennsylvania 16802, U.S.A.
²Department of Biology, Environmental Science Program, La Salle University, Philadelphia, Pennsylvania 19141, U.S.A.
³Department of Mineral Sciences, NHB 119, Smithsonian Institute, Washington, DC 20013-7012, U.S.A.
⁴Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
⁵Pacific Northwest Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, U.S.A.
⁶Department of Civil and Environmental Engineering, Penn State University, University Park, Pennsylvania 16802, U.S.A.

ABSTRACT

With a focus on a large set of natural birnessites collected from terrestrial, freshwater systems, we applied and compared the capabilities of X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to characterize crystal structure and chemistry. Using XRD, we successfully identified 3 of the 11 natural birnessite samples as hexagonal ranciéite-like phases, but the remaining samples yielded less interpretable "3-line" diffraction patterns with broad, asymmetrical peaks at *d*-spacings of ~7.2, ~2.4, and ~1.4 Å. EXAFS analysis suggested that many of these samples had characteristics of both triclinic and hexagonal birnessite. However, application of EXAFS to the ranciéite-like phases yielded unreasonably high concentrations of triclinic birnessite as an intergrowth, calling into question the use of synthetic hexagonal H-birnessite as an appropriate standard in the linear combination fitting of EXAFS data for natural birnessites. FTIR spectroscopy of the "3-line" birnessite samples successfully distinguished triclinic and hexagonal constituents, and analyses of peak positions suggested that natural birnessites occur as a full spectrum of triclinic and hexagonal intergrowths. XPS analysis of these samples revealed that higher Mn³⁺ concentrations relative to Mn²⁺ and Mn⁴⁺ are correlated to increased proportions of triclinic birnessite.

Keywords: Manganese oxide, birnessite, FTIR, EXAFS, XPS, XRD