²²²Rn and ²²⁰Rn emanations from powdered samples of samarskite as a function of annealing temperature

DARIUSZ MALCZEWSKI^{1,*} AND MARIA DZIUROWICZ¹

¹Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland

ABSTRACT

Emanation coefficients for radon (²²²Rn) and thoron (²²⁰Rn) were measured from fully metamict samarskite collected from Centennial Cone after 1 h and 24 h annealing in argon from 473 to 1373 K. For the 1 h annealing run, ²²²Rn emanation coefficients ranged from 5×10^{-6} to 2.1×10^{-5} %, while ²²⁰Rn coefficients varied from 6.3×10^{-3} to 2×10^{-2} %. For the 24 h annealing run, ²²²Rn coefficients ranged from 5.8×10^{-6} to 2.3×10^{-5} %, while ²²⁰Rn coefficients varied from 4.1×10^{-3} to 1.5×10^{-2} %. The ²²²Rn and ²²⁰Rn emanation coefficients vs. annealing temperature data can be described by an exponentially decreasing sinusoidal function. Both ²²²Rn and ²²⁰Rn emanation coefficient values after annealing considerably exceeded those measured from an unheated powder reference sample and from the original samarskite sample.

Keywords: Samarskite, radon emanations, thoron emanations, recrystallization, Centennial Cone, ²²²Rn, ²²⁰Rn