American Mineralogist, Volume 104, pages 929–935, 2019

Influence of aluminum on the elasticity of majorite-pyrope garnets

ZHAODONG LIU^{1,2,*,†}, STEEVE GRÉAUX³, NAO CAI⁴, NICKI SIERSCH¹, TIZIANA BOFFA BALLARAN¹, TETSUO IRIFUNE³, AND DAN J. FROST¹

¹Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
²State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
³Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan. Orcid 0000-0002-4897-3317
⁴Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, U.S.A.

ABSTRACT

The effect of aluminum (Al) on the elasticity of majorite-pyrope garnets was investigated by means of ultrasonic interferometry measurements on well-fabricated polycrystalline specimens. Both velocities and elastic moduli increase almost linearly with increasing Al content within analytical uncertainty. No significant variation of the velocities and elastic moduli is observed across the tetragonal-to-cubic phase transition at majorite with the pyrope content up to 26 mol% along the majorite-pyrope system. The elasticity variation of majorite-pyrope garnets is largely dominated by the Al content, while the phase transition as a result of cation ordering/disordering of Mg and Si via substitution of Al on octahedral sites cannot significantly affect elastic properties. Seismic velocity variations of a garnet-bearing mantle transition zone are therefore dominated by garnet composition (e.g., Al, Fe, Ca, and Na) rather than the tetragonal-to-cubic phase transition because of cation ordering/disordering.

Keywords: Aluminum, garnet, phase transition, velocity, elastic modulus, mantle transition zone; Physics and Chemistry of Earth's Deep Mantle and Core