LETTER

Structuration under pressure: Spatial separation of inserted water during pressure-induced hydration in mesolite

YONGHWI KIM^{1,†,‡}, JINHYUK CHOI^{1,†}, THOMAS VOGT², AND YONGJAE LEE^{1,3,*}

¹Department of Earth System Sciences, Yonsei University, Seoul, 03722, Korea ²NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A. ³Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

ABSTRACT

In situ high-pressure single-crystal X-ray diffraction studies of mesolite, an aluminosilicate composed of stacks of Na⁺-containing natrolite and Ca²⁺-containing scolecite layers in the ratio of 1:2, showed two discrete steps of pressure-induced hydration (PIH): first H₂O molecules are inserted into the natrolite layers between ~0.5 and ~1.5 GPa and subsequently into the scolecite layers. During the PIH in the natrolite layers, the coordination environment of Na⁺ changes from six to seven, the same as that of Ca²⁺ in the scolecite layers. While the natrolite layers behave as in the mineral natrolite, the scolecite layers show a different behavior from the mineral scolecite by adopting the super-hydrated natrolite-type structure at higher pressure, as a larger distortion is not favorable in the 1:2 layered framework. This spatial separation of inserted H₂O during PIH and the growing structural similarity of the two layers result in a weakening of $k \neq 3n$ reflections maintaining the 1:2 layer configuration. Our study of this unique behavior of mesolite provides a simple model of structuration under pressure, and the implications of our experimental findings are discussed.

Keywords: Mesolite, structuration, high-pressure, pressure-induced hydration, natrolite, scolecite; Microporous Materials: Crystal-chemistry, Properties, and Utilizations