Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite

ANTON SHATSKIY^{1,2,*}, IVAN V. PODBORODNIKOV^{1,2}, ANTON V. AREFIEV^{1,2}, KONSTANTIN D. LITASOV^{1,2}, ARTEM D. CHANYSHEV^{1,2}, IGOR S. SHARYGIN¹, NIKOLAI S. KARMANOV¹, AND EIJI OHTANI^{1,3}

¹V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Novosibirsk 630090, Russia ²Novosibirsk State University, Novosibirsk 630090, Russia

³Department of Earth and Planetary Material Science, Tohoku University, Sendai 980-8578, Japan

ABSTRACT

The reaction between clinopyroxene and Mg-carbonate is supposed to define the solidus of carbonated lherzolite at pressures exceeding 5 GPa. To investigate the effect of alkalis on this reaction, subsolidus and melting phase relations in the following systems have been examined at 6 GPa: CaMgSi₂O₆+2MgCO₃ (Di+2MgS); CaMgSi₂O₆+NaAlSi₂O₆+2MgCO₃ (Di+Jd+2MgS); $CaMgSi_2O_6+Na_2Mg(CO_3)_2$ (Di+Na₂Mg); and $CaMgSi_2O_6+K_2Mg(CO_3)_2$ (Di+K₂Mg). The Di+2Mgs system begins to melt at 1400 °C via the approximate reaction CaMgSi₂O₆ (clinopyroxene) + 2MgCO₃ $(magnesite) = CaMg(CO_3)_2$ (liquid) + Mg₂Si₂O₆ (orthopyroxene), which leads to an essentially carbonate liquid (L) with composition $Ca_{0.56}Mg_{0.44}CO_3 + 3.5 \text{ mol}\% SiO_2$. The initial melting of the Di+Jd+2Mgs system occurs at 1350 °C via the reaction $2CaMgSi_2O_6$ (clinopyroxene) + $2NaAlSi_2O_6$ (clinopyroxene) $+8MgCO_3$ (magnesite) $=Mg_3Al_2Si_3O_{12}$ (garnet) $+5MgSiO_3$ (clinopyroxene) $+2CaMg(CO_3)_2$ (liquid) + Na₂CO₃ (liquid) + 3CO₂ (liquid and/or fluid), which yields the carbonate liquid with approximate composition of $10Na_2CO_3 \cdot 90Ca_0 \cdot Mg_0 \cdot CO_3 + 2 \mod \%$ SiO₂. The systems Di+Na₂Mg and Di+K₂Mg start to melt at 1100 and 1050 °C, respectively, via the reaction CaMgSi₂O₆ (clinopyroxene) + 2(Na or K)₂Mg(CO₃)₂ (solid) = Mg₂Si₂O₆ (orthopyroxene) + (Na or K)₄CaMg(CO₃)₄ (liquid). The resulting melts have the alkali-rich carbonate compositions $Na_2Ca_{0.4}Mg_{0.6}(CO_3)_2 + 0.4 \text{ mol}\% \text{ SiO}_2$ and 43 $K_2CO_3 \cdot 57Ca_0 + Mg_0 + CO_3 + 0.6 \text{ mol}\%$ SiO₂. These melts do not undergo significant changes as temperature rises to 1400 °C, retaining their calcium number and a high Na₂O, K₂O, and low SiO₂. We suggest that the clinopyroxene-Mg-carbonate reaction controlling the solidus of carbonated lherzolite is very sensitive to the carbonate composition and shifts from 1400 to 1050 °C at 6 GPa, which yields K-rich carbonate melt if the subsolidus assemblage contains the $K_2Mg(CO_3)_2$ compound. Such a decrease in solidus temperature has been previously observed in the K-rich carbonated lherzolite system. Although a presence of eitelite. Na₂Mg(CO_3)₂, has a similar effect, this mineral cannot be considered as a potential host of Na in carbonated lherzolite, because the whole Na added into the system dissolves as jadeite component in clinopyroxene if bulk Al/Na \geq 1. The presence of jadeite component in clinopyroxene has little impact on the temperature of the solidus reaction decreasing it to 1350 °C at 6 GPa.

Keywords: Carbonatite, eitelite, K₂Mg(CO₃)₂, partial melting, carbonated peridotite, Earth's mantle, high-pressure experiment