SPECIAL COLLECTION: APATITE: A COMMON MINERAL, UNCOMMONLY VERSATILE

Co-variability of S⁶⁺, S⁴⁺, and S²⁻ in apatite as a function of oxidation state: Implications for a new oxybarometer

BRIAN A. KONECKE^{1,*}, ADRIAN FIEGE^{1,2}, ADAM C. SIMON¹, FLEURICE PARAT³, AND ANDRÉ STECHERN⁴

¹Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. ²Department of Earth and Planetary Sciences American Museum of Natural History, New York, New York 10024-5192, U.S.A. ³Géosciences Montpellier, Université Montpellier, Place E. Bataillon, 34095 Montpellier, France ⁴Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, D-30167, Hannover, Germany

ABSTRACT

In this study, we use micro-X-ray absorption near-edge structures (μ -XANES) spectroscopy at the S *K*-edge to investigate the oxidation state of S in natural magmatic-hydrothermal apatite (Durango, Mexico, and Mina Carmen, Chile) and experimental apatites crystallized from volatile-saturated lamproitic melts at 1000 °C and 300 MPa over a broad range of oxygen fugacities [(log(f_{02}) = FMQ, FMQ+1.2, FMQ+3; FMQ = fayalite-magnetite-quartz solid buffer]. The data are used to test the hypothesis that S oxidation states other than S⁶⁺ may substitute into the apatite structure. Peak energies corresponding to sulfate S⁶⁺ (~2482 eV), sulfite S⁴⁺ (~2478 eV), and sulfide S²⁻ (~2470 eV) were observed in apatite, and the integrated areas of the different sulfur peaks correspond to changes in f_{02} and bulk S content. Here, multiple tests confirmed that the S oxidation state in apatite remains constant when exposed to the synchrotron beam, at least for up to 1 h exposure (i.e., no irradiation damages). To our knowledge, this observation makes apatite the first mineral to incorporate reduced (S²⁻), intermediate (S⁴⁺), and oxidized (S⁶⁺) S in variable proportions as a function of the prevailing f_{02} of the system.

Apatites crystallized under oxidizing conditions (FMQ+1.2 and FMQ+3), where the S⁶⁺/S_{Total} peak area ratio in the coexisting glass (i.e., quenched melt) is ~1, are dominated by S⁶⁺ with a small contribution of S⁴⁺, whereas apatites crystallizing at reduced conditions (FMQ) contain predominantly S²⁻, lesser amounts of S⁶⁺, and possibly traces of S⁴⁺. A sulfur oxidation state vs. S concentration analytical line transect across hydrothermally altered apatite from the Mina Carmen iron oxide-apatite (IOA) deposit (Chile) demonstrates that apatite can become enriched in S⁴⁺ relative to S⁶⁺, indicating metasomatic overprinting via a SO₂-bearing fluid or vapor phase. This XANES study demonstrates that as the f_{O_2} increases from FQM to FMQ+1.2 to FMQ+3 the oxidation state of S in igneous apatite changes from S²⁻ dominant to S⁶⁺ > S⁴⁺ to S⁶⁺ >> S⁴⁺. Furthermore, these results suggest that spectroscopic studies of igneous apatite have potential to trace the oxidation state of S in magmas. The presence of three S oxidations states in apatite may in part explain the non-Henrian partitioning of S between apatite and melt. Our study reveals the potential to use the S signature of apatite to elucidate both oxygen and sulfur fugacity in magmatic and hydrothermal systems.

Keywords: Apatite, sulfur oxidation state, XANES, oxybarometer, apatite crystallization experiments