Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K₂Mg(CO₃)₂-Na₂Mg(CO₃)₂ join

ANASTASIA GOLUBKOVA^{1,*}, MARCO MERLINI² AND MAX W. SCHMIDT¹

¹Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland ²Dipartimento di Scienze della Terra, Università degli Studi di Milano, 20133 Milano, Italy

ABSTRACT

Although alkali-alkali earth carbonates have not been reported from mantle-derived xenoliths, these carbonates may have a substantial role in mantle metasomatic processes through lowering melting temperatures. On the Na₂Mg(CO₃)₂–K₂Mg(CO₃)₂ join only the Na-end-member eitelite ($R\overline{3}$ space group), was reported in nature. The K-end-member $(R\overline{3}m)$ readily hydrates even at low temperatures, therefore, only baylissite, $K_2Mg(CO_3)_2 \cdot 4H_2O_3$, has been observed. Because of the role of (K,Na)Mgdouble carbonates in mantle metasomatism, we performed high P-T experiments on K₂Mg(CO₃)₂, $(K_{1,1}Na_{0,9})_2Mg(CO_3)_2$, and $Na_2Mg(CO_3)_2$. Structure refinements were done upon compression of single crystals from 0 to 9 GPa at ambient temperature employing synchrotron radiation. Fitting the compression data to the second-order Birch-Murnaghan EoS resulted in $V_0 = 396.2(4), 381.2(5), and$ 347.1(3) Å³ and $K_0 = 57.0(10)$, 54.9(13), and 68.6(13) GPa for K₂Mg(CO₃)₂, (K₁Na_{0.9})₂Mg(CO₃)₂, and $Na_2Mg(CO_3)_2$, respectively. These compressibilities are lower than those of magnesite and dolomite. The KMg-double carbonate transforms into a monoclinic polymorph at 8.05 GPa; the high-P phase is 1% denser than the low-P polymorph. The NaMg-double carbonate has a phase transition at ~ 14 GPa, but poor recrystallization has prevented structure refinement. The parameters for a V-T EoS were collected at 25–600 °C and ambient pressure and are $\alpha_0 = 14.31(5) \times 10^{-5} \text{ K}^{-1}$ and $16.73(11) \times 10^{-5} \text{ K}^{-1}$ for $K_2Mg(CO_3)_2$ and $Na_2Mg(CO_3)_2$, respectively. Moreover, fitting revealed an anisotropy of thermal expansion along the a- and c-axis: $\alpha_0(a) = 2.84(6) \times 10^{-5}$ and $4.78(5) \times 10^{-5}$ K⁻¹ and $\alpha_0(c) = 10.47(11)$ $\times 10^{-5}$ and 8.72(5) $\times 10^{-5}$ K⁻¹ for K₂Mg(CO₃)₂ and Na₂Mg(CO₃)₂, respectively.

Keywords: Alkali-alkali earth double carbonates, synchrotron, high pressure, phase transition