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Appendix 1: Methods 
 
Error calculation 
 In order to estimate the analytical uncertainty associated with manual tracing of 
crystals and subsequent image processing, we performed several experiments.  Firstly, 
duplicate tracings by different observers were analyzed using the same images (slab + 
thin section) from 1 sample to generate raw grain size data (Tables A1, A2).  Second, 
multiple acquisitions of data (5x) from the same tracing of a sample were conducted in 
ImageJTM to estimate the error caused by changing the threshold parameter of the 
analyzed image (Tables A1, A2).  Thresholding is the means by which the image analysis 
program separates or segments particles from the background.  Individual pixels in a 
grayscaled image are marked as “object” pixels if their value is greater than some 
threshold value (provided an object is brighter than the background) and as “background” 
pixels otherwise.  By incrementally changing the threshold value by steps of 5 up to +/- 
10 around a default value in ImageJTM (210 on a 0 to 255 scale), the olivine crystal 
pixilation could be slightly enhanced or dilated, thereby changing the size and/or number 
of olivine crystals measured by ImageJTM.  Thirdly, normalization factors (eq.A1) were 
varied (Ai

N) to assess variance due to necessity of rounding this value to the closest 
integer.  Total analytical error in particle areas and frequencies are the summation of 
uncertainties due to tracing, thresholding, and normalization (σ2

a = σ2
th + σ2

tr + σ2
N), and 

is found to be less than the variance due to sampling, such that σ2
a < σ2

s (e.g., Fig.5a; 5b).       
 
Stereological corrections 

Data generated from a two dimensional surface do not necessarily reflect the true 
sizes of the crystals in three dimensions.  To account for these complications, we use a 
three-step data organization and correction process involving: a) defining  characteristic 
shapes from raw 2D intersection data, using CSDSliceTM (Morgan and Jerram, 2006) to 
obtain best-approximations of 3D ellipse axial ratios; b) organizing crystals in bins (e.g., 
log0.5, log2) by area and number, and; c) inserting binned data into CSDCorrectionsTM 1.3 
(Higgins, 2000) to mitigate the cut-section and intersection-probability effect (sensu 
Higgins, 2006) and then calculate 3D olivine crystal populations by applying correction 
factors for known properties (i.e. crystal shape, modal %, rock fabric,).  The result is a 
dataset that comprises scale-normalized, scale-truncated, binned, and stereologically-
corrected olivine crystal populations.  Variations of the correction factors for crystal 
shape, modal %, rock fabric, and bin sizes create datasets shown by the shaded region in 
Figure 8a, and are within analytical error of sample CK05.   
 
 Shape assessment. To accurately convert data from 2D intersections into 3D 
volumetric estimates, it is necessary to assume something about the nature of crystal 
shapes (Higgins, 2006).  To determine the best shape approximation, we described data 
from slabs and thin sections using common shape parameters: edge ‘roughness’ (P/A), 
circularity (4π*area/(P2)), angularity (P/(P of equivalent area circle)), and oblateness (1 – 
major axis / minor axis) (Fig. 7).  The smallest size fraction from each scale of 
observation are not included in this analysis, due to the effect of pixilation on these shape 
parameters: for thin sections, ol > 0.04 mm; for slabs, ol > 0.1 mm.  These truncated 
datasets indicate that the vast majority of olivine crystals are circular to prolate ellipsoidal 
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in shape, do not have irregular or concave edges, and have aspect ratios between 1.5:1 
and 1:1 (Fig. 7).  Olivine crystals show variability in circularity with respect to size: 
olivine crystal data collected at the thin section scale (0.01 – 10 mm in diameter) show 
distinctly more crystals with angular and less circular geometries than crystal data 
collected at the slab scale (0.8– 10 mm) (Fig. 7b).  Image processing resolution (11.93 
pixels/mm) may have a pronounced effect on circularity values, captured in part by the 
‘clustering’ of circularity vs. size data for the smallest olivine crystals (Fig. 7b).  
However, 2D intersections may not give an accurate representation of the true crystal 
aspect ratios (3D); better approximations can be obtained using the CSDSliceTM database 
developed by Morgan and Jerram (2006).  In Morgan and Jerram’s database, a minimum 
of 10,000 slices are taken through poly-disperse (sensu Higgins, 2000), randomly-
oriented model populations created from over 700 crystal shapes; these data are compiled 
in a database for comparison with 2D intersection data obtained in real rocks.  This 
comparison showed the best-fit, 3D, long : int : short aspect ratios to be ~1.5:1:1 for data 
collected at the thin section scale, and 1:1:1 for random samples of 4000 crystals from 
normalized and truncated olivine crystal populations (Tables A1, A2; Table 1).  We 
further test the raw data for the effect of crystal size on the best-estimate for true crystal 
aspect ratio (Fig. 7d): though slightly variable, best-approximations of true 3D aspect 
ratios for all size bins do not exceed 1.5:1:1.  Correlation coefficients (R2) of best-fit 
approximations for 3D aspect ratios are very low (<0.8), and thus these 3D aspect ratios 
are not considered representative (Tables A1, A2; Table 3; Fig.6d). However, combined 
with observations of olivine crystal morphologies, these results suggest that, although no 
single shape is representative of olivine crystal morphologies, smaller olivines are less 
circular and can have more irregular external morphologies, and most olivine crystals 
have an equant geometry.  For our stereological conversions, therefore, we elect to use 
the best-approximation long : int : short ratio of 1:1:1.   

Applications of spherical conversion coefficients to non-spherical particles always 
results in over-estimation of the number of ‘small’ particles and under-estimation of 
‘large’ particles.  However, using spherical geometry assumptions instead of assuming 
various object shapes with unequal axes lengths also restricts possible errors of 
estimating 3D populations from 2D surfaces (Sahagian and Proussevitch, 1998).   
 
 Binning.  Olivine crystal size data are sorted into two bin types by diameter: log2 
(corresponding to integer φ values), and log0.5 (corresponding to typical diamond sieve 
sizes), each capturing the entire observed population of olivine crystals (0.03 – 12 mm or 
-3 to +5φ).  This allows us to examine normalized, truncated olivine crystal size data in a 
classic histogram format (Figs. 6a,b), to perform stereological conversions of 2D (area) 
data to 3D (volume) (Table 2), and to subsequently examine the effect of bin size on 
representations of olivine crystal size data (Fig.8a).   
 
 Section-effect corrections.  To account for the intersection-probability and cut-
section effects, we stereologically convert binned, 2D crystal data (maximum diameter of 
enclosing ellipse) into 3D using a shape assumption in CSDCorrectionsTM.  We assume 
all olivine crystals are equant and approximately spherical in three dimensions with 3D 
aspect ratios of 1:1:1, and apply the following correction to the logarithmically-binned 
major axes of olivine crystals: 
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where nV(LX-Y) is the number of crystals per unit volume for a given length scale, nA(lX-Y) 
is the number of crystals per unit area for a given length scale, and D is the minimum 
diameter of the spheres in a given size interval.  This correction is only applied to bins 
with diameter > 0.03 mm; for the few crystals smaller than this size, observed crystal 
outlines are likely projections of the whole crystal outline, as these diameters are thinner 
than a typical thin-section.  Using the number densities of crystals per unit volume 
obtained by stereological correction above [ )(
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where the population density N (LX-Y) is the number density of crystals per unit volume in 
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account the cut-section effect, we use the variation of the Saltikov method (Saltikov, 
1967) in CSDCorrectionsTM 1.3 for unfolding a population of intersection lengths into 
their true lengths by using a function of the intersection lengths (after Higgins, 2000; 
Higgins, 2006; Sahagian and Proussevitch, 1998).  Further corrections involving 
volumetric phase abundance (based on modal area %), crystal roundness, and 
measurement style (major enclosing ellipse) are employed in CSDCorrectionsTM 1.3 to 
generate cumulative crystal size distributions.   
 The resulting logarithmically-binned and stereologically-corrected data described 
above are used to construct several types of CSD's of olivine in coherent kimberlite.  The 
majority of CSD’s published in petrology literature use ‘classic’ semi-logarithmic ‘CSD 
diagrams’, in which population density is defined by size intervals.  We plot the CSDs 
from the five samples of coherent kimberlite in a semi-logarithmic classic CSD to allow 
for comparison with other crystal populations from igneous rocks (Fig. 8a), and bi-
logarithmic ln N vs. ln size (Fig. 8b) to assess an appropriate model distribution.   

Population verification 

 To verify our calculation of the 3-D CSD from 2-D data, we use two independent 
measures of the modal abundance (as %) of olivine crystals: (1) point-counting in thin 
sections and (2) integration of the crystal volumes resulting from our CSD calculations.  
By comparing these two data types with the initial measured area of crystals (e.g., Table 
1), we can verify if the scale integration and CSD corrections applied to our initial data 
set are in compliance with the measurements initially made by the image analysis 
program (i.e., area %).  Point-counting is based on the understanding that the fraction of 
random or equally spaced points that lie on a phase, Pp is also equal to the volumetric 
fraction of the phase, VV, and thus represents a stereologically exact ‘global parameter’ 
(Higgins, 2006).  One thousand evenly-spaced points on two thin sections were point-
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counted, and the resulting data are shown in Table A3.  The volumetric proportion of 
olivine, VV, is calculated by integration of the volume of all the crystals in all bin sizes of 
our olivine CSD using the following:  
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where σ is the ratio of the crystal volume (assumed spheres) to that of a cube of side L.  
Higher order moments need to use shape factors (σ) to account for departures of the 
crystal shapes from a cube (Higgins, 2006).  As our data are modeled as spheres with 
diameters equivalent to the area measured, we use ! /6 for σ.  The relative volumetric 
proportions of olivine (Vx-y) of different size bins are similar to the relative area % 
obtained by normalizing initial observations made in thin sections and slabs to the slab 
scale (Table A3).  These results are also similar to the data obtained by point-counting 
from a thin section taken from the same slab (Table A3), suggesting that observations of 
modal abundance made at the thin section scale approximate larger scales of observation.    

Goodness-of-fit tests: 

 To evaluate the hypothesis that each CSD fits a power-law distribution model, we 
first identify the best-fit power law equation and subsequently evaluate how well binned 
data from each sample population correspond to the model equations.  This evaluation is 
accomplished by calculating a weighted least-squares fit to the sample data and root 
mean standard error (RMSE) for best-fit lines to the data (Davis, 1986).   
 Data are first plotted as log N vs. log L, where Ni is the population density in the 
ith bin size, and L is the diameter (mm) of the maximum axis.  These linear trends are 
fitted using a weighted, linear least squares fit on data with the following modification of 
equation (1) to find the slope (D) and intercept (λ) of a straight line: 
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Errors on each log x, log y data point range from 0.17 to 0.29.  We compute slopes (D) 
+/-10, and intercepts (λ) +/-10, and plot the covariance ellipse at the 95% confidence 
level (Figure 8c).  This shows the range of model slopes and intercepts (D,λ) that are 
fully consistent (at 95% confidence) with the data and their uncertainty.  The variance on 
the model parameters for samples within a single dyke (e.g., σ2

CK4,5p) are smaller than 
variance between dykes (σ2

pCK1,2,3; pCK4,5).  The variance in parameters for all samples 
(σ2

sp) is greater than the variance attributed to analytical methods (σ2
ap), such that σ2

ap < 
σ2

sp.   

 We also computed the root mean standard error (RMSE) as a measure of the 
differences (i.e. residuals) between values expected by the best-fit power-law models and 
values observed from the olivine crystal populations. The RMSE is a good measure of 
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accuracy, as it measures the variability expected in the means of samples by repeated 
random collection from the same population: 
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where n is the number of bins, MD and Mλ the expected model parameter values, and Oλ 
and OD the observed parameter values from the iterations.  RMSE error estimates for 
power-law fits to the CSDs are shown in Table 3.  An RMSE close to zero means the 
model is a good predictor of the observed data; RMSE for all 5 samples in this study 
range from 0.16 to 0.31, which accords well with the estimated average uncertainties (σtr 
+ σthn) on each data point (0.17-0.29).    


