Appendix B: How to use the plagioclase-liquid hygrometer/thermometer

The plagioclase-liquid hygrometer/thermometer model is available as a Visual Basic program that runs on Excel 2004. It can be downloaded from the Data Repository. For readers who would like to create their own spreadsheet of this plagioclase-liquid program, a brief outline of how to perform the calculation is provided below.

Calculation of wt $\% \mathrm{H}_{2} \mathrm{O}$

Step 1. Begin with the model regression equation (Eq. 25), which has four terms:

$$
\begin{equation*}
w t \% H_{2} O=m^{\prime} x+a^{\prime \prime}+\frac{b^{\prime \prime}}{T}+\sum d_{i}^{\prime \prime} X_{i} \tag{25}
\end{equation*}
$$

Step 2. The first term requires calculation of x, which is defined by Equation 22:

$$
\begin{equation*}
x=\left[\frac{\Delta H^{o}(T)}{R T}-\frac{\Delta S^{o}(T)}{R}+\frac{\int_{1}^{P} \Delta V_{T}^{o}(P) d P}{R T}+\ln K^{*}\right] \tag{22}
\end{equation*}
$$

Step 2a. To calculate $\Delta H^{\circ}(\mathrm{T})$ for the reaction, use Equation 3b:

$$
\begin{equation*}
\Delta H^{\circ}(\mathrm{T})=\Delta H_{\text {fusion }}^{A n}(\mathrm{~T})-\Delta H_{\text {fusion }}^{A b}(\mathrm{~T}) \tag{3b}
\end{equation*}
$$

and Equation 8 for An (anorthite) and Ab (albite), respectively, using the data in Table 1:

$$
\begin{equation*}
\Delta H_{f u s}\left(T_{m}\right)+\Delta H_{f u s}\left(T_{m}\right)+\int_{T m}{ }^{\mathrm{T}}\left[\mathrm{C}^{l i q}{ }_{p}(T)-\mathrm{C}^{x t l}{ }_{p}(T)\right] d T . \tag{8}
\end{equation*}
$$

Step 2b. To calculate $\Delta S^{\circ}(\mathrm{T})$ for the reaction, use Equation 4:

$$
\begin{equation*}
\Delta S^{\circ}(T)=\Delta S_{f u s}^{A n}(T)-\Delta S_{f u s}^{A b}(T) \tag{4}
\end{equation*}
$$

and Equation 9 for An (anorthite) and Ab (albite), respectively, using the data in Table 1:

$$
\begin{equation*}
\Delta S_{f u s}(T)=\Delta S_{f u s}\left(T_{m}\right)+\int_{T_{m}}^{T}\left(\frac{C_{p}^{l i q}(T)-C_{p}^{x l l}(T)}{T}\right) d T \tag{9}
\end{equation*}
$$

Step 2c. To calculate $\int_{1 b a r}^{P} \Delta V_{T}^{o}(P) d P$, use Equation 13 and the data in Table 1:

$$
\begin{array}{r}
\int_{1 \text { bar }}^{P} \Delta V_{T}^{o}(P) d P=\left[V_{T, 1 \text { bar }}^{\text {liquid } A n}-V_{T, \text { bar }}^{\text {crysal } A n}-V_{T, 1 \text { bar }}^{\text {liquid } A b}+V_{T, 1 \text { bar }}^{\text {crstal } A b}\right](P-1) \\
+ \tag{13}\\
+\frac{1}{2}\left[\left(\frac{\partial V}{\partial P}\right)_{T}^{\text {liq An }}-\left(\frac{\partial V}{\partial P}\right)_{T}^{\text {crystal An }}-\left(\frac{\partial V}{\partial P}\right)_{T}^{\text {liq Ab }}+\left(\frac{\partial V}{\partial P}\right)_{T}^{\text {crystal Ab }}\right]\left(P^{2}-1\right)
\end{array}
$$

Step 2d. To calculate $\ln K^{*}$, use Equation 19:

Calculate the first term in Equation 19 with Equations 16a and 16b:

$$
\begin{align*}
& X_{\text {CaAl }_{2} S_{2} \mathrm{O}_{8}}^{\text {ideal liquid }}=64.0\left(X_{\mathrm{CaO}}^{\text {liq }}\right)\left(X_{\mathrm{Al}_{2} \mathrm{O}_{3}}^{\text {liq }}\right)\left(X_{\mathrm{SiO}_{2}}^{\text {liq }}\right)^{2} \tag{16a}\\
& X_{\mathrm{NaAlS}^{2} O_{8}}^{\text {ideal liquid }}=18.963\left(X_{\mathrm{Na}_{2} O}^{\text {liq }}\right)^{0.5}\left(X_{A l_{2} O_{3}}^{\text {liq }}\right)^{0.5}\left(X_{S_{i O_{2}}}^{\text {liq }}\right)^{3} . \tag{16b}
\end{align*}
$$

Calculate the second term in Equation 19, use the THERMOCALC program of Holland et al. (1998). It can be downloaded (http://www.earthsci.unimelb.edu.au/tpg/thermocalc/). In this program, input the $\mathrm{wt} \%$ oxide composition of plagioclase; the output is the activity of the two components, $a^{\text {crystal }}{ }_{\mathrm{NaAlSi3} \mathrm{O}}$ and $a^{\text {crystal }}{ }_{\text {CaAl2Si2O8 }}$.

Step 2e. Add the four terms calculated in Steps 2a-2d, and then multiply their sum by the fitted coefficient $m^{\prime}(=1.91)$ in Table 2. This is the first term in Equation 25.

Step 3. Take the value in Step 2e and add the coefficient $a^{\prime \prime}(=13.53)$ in Table 2.
Step 4. Take the value in Step 3 and add coefficient $b^{\prime \prime}$ (=2.95) (Table 2) divided by temperature (in degrees Kelvin).

Step 5. Convert the anhydrous liquid composition from wt $\%$ oxide $\left(\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}\right.$, $\mathrm{FeO}^{\mathrm{T}}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$) into mole fractions. Then calculate the final term in Equation 25 with the fitted terms from Table 2:

$$
\Sigma d_{i}^{\prime \prime} X_{i}=-9.82 X_{\mathrm{SiO} 2}+24.49 X_{\mathrm{Al2O} 3}-5.87 X_{\mathrm{FeOT}}-15.56 X_{\mathrm{MgO}}+17.10 X_{\mathrm{CaO}}
$$

Add this value to the value calculated in Step 4. This is the calculated value for $\mathrm{wt} \%$ $\mathrm{H}_{2} \mathrm{O}$.

Calculation of Temperature:

To calculate temperature using this model, simply adjust the input temperature [in calculations in Steps 2a, 2b, 2c, and 2d (THERMOCALC part) and Step 4] until the calculated wt $\% \mathrm{H}_{2} \mathrm{O}$ value matches the known value.

