Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis

BERNARDO CESARE,^{1,*} GIUSEPPE CRUCIANI,² AND UMBERTO RUSSO³

FIGURE 2. (a) Photomicrograph of a typical xenolith of El Joyazo, made of biotite (Bt), plagioclase (Pl) sillimanite (Sil) and garnet (Grt). (Plane-polarized light, width of view = 18 mm). (b) Photomicrograph of an inclusion-rich crystal of biotite. Inclusions consist primarily of rhyolitic glass (m), graphite (g), and sillimanite (s). (Plane-polarized light, width of view = $150 \mu m$).

			•		
HO20		HO30)	HO50)
ld	H ₂ O	ld	H ₂ O	ld	H ₂ O
HO20-3-1	2.61	HO30-2-1	2.54	HO50-4-1	2.24
HO20-3-2	2.59	HO30-2-2	2.70	HO50-4-2	2.42
HO20-3-3	2.53	HO30-2-3	2.61	HO50-4-3	2.36
HO20-3-4	2.31	HO30-2-4	2.55	HO50-4-4	2.51
HO20-3-5	2.61	HO30-2-5	2.41	HO50-4-5	2.66
HO20-3-6	2.53	HO30-2-6	2.45	HO50-4-6	2.65
HO20-3-7	2.42	HO30-2-7	2.60	HO50-4-7	2.59
HO20-3-8	2.68	HO30-3-1	2.51	HO50-4-8	2.50
HO20-3-9	2.54	HO30-3-2	2.34	HO50-3-1	2.69
HO20-3-1	2.56	HO30-3-3	2.49	HO50-3-2	2.80
HO20-3-2	2.70	HO30-3-4	2.47	HO50-3-3	3.31
HO20-3-3	2.75			HO50-3-4	3.34
HO20-3-4	2.86			HO50-3-5	3.22
HO20-3-5	2.48			HO50-3-6	3.19
HO20-3-6	2.28			HO50-3-7	3.07
HO20-3-10	* 3.64			HO50-4-9	2.51
				HO50-4-10	2.53
				HO50-4-11	2.61
				HO50-4-12	2.41

 TABLE 2.
 H₂O concentrations (in wt%) recalculated from SIMS measurement of hydrogen

Notes: Reported are all spot analyses from each sample.

* This value has not been considered for the calculation of average in Table 3 (see text for details).

FIGURE 3. SIMS H_2O contents vs. C-H-N elemental analyzer data. Solid line defines 1/1 correlation. Dashed lines contour $\pm 5\%$ discrepancy.

			⊢e ²⁺					Fe ³⁺		
χ^2	δ (mm/s)	∆ <i>E</i> ₀ (mm/s)	Г (mm/s)	A (%)	A_/A_	δ (mm/s)	∆ <i>E</i> ₀ (mm/s)	Г (mm/s)	A (%)	A_/A ₊
HO30 b 1.580	1.123(3) 1.02(1) 1.081(4)	2.58(2) 2.28(2) 1.93(5)	0.26(2) 0.30(5) 0.40(3)	21(7) 36(9) 27(9)	0.97(4) 0.94(2) 1.00(2)	0.57(1) 0.41(1)	0.62(3) 1.41(4)	0.36(3) 0.30(5)	10(2) 6(2)	1* 1*
HO30 c 3.819	1.118(3) 1.086(5)	2.48(1) 2.12(2)	0.31(1) 0.43(1)	34(4) 53(5)	0.98(9) 1.02(7)	0.57(1) 0.44(2)	0.63(2) 1.37(2)	0.32(2) 0.24(3)	9(1) 5(1)	1* 1*
HO50 b 0.793	1.254(5) 1.108(4) 1.090(9)	2.57(2) 2.28(3) 1.92(5)	0.26(2) 0.30(6) 0.40(4)	28(8) 34(2) 29(8)	0.98(8) 0.97(7) 1.10(9)	0.55(2) 0.40(2)	0.55(5) 1.34(6)	0.27(5) 0.24(8)	5(1) 4(1)	1* 1*
HO50 c 1.510	1.125(3) 1.107(6)	2.49(1) 2.10(1)	0.31(2) 0.44(2)	41(5) 52(6)	1.05(7) 0.97(6)	0.56(1) 0.42(2)	0.56(5) 1.31(5)	0.22(5) 0.20(6)	4(1) 3(1)	1* 1*
* Value constrair	ned during the	e fitting proced	dure.							

TABLE 6. Mössbauer effecter parameters for samples HO30 and HO50 obtained by Lorentzian line profiles according to models b and c

 TABLE 7.
 Mössbauer parameters for samples HO30 and HO50 obtained by quadrupole splitting distribution method according to models d and e

							F	-e ²⁺										Fe ³⁺				
	χ^2	Г (mm/s)	δ ₀ (mm/s)	δ ₁ (mm/s)	A_/A ₊	ΔE_{Q} (mm/s)	σ (%)	P / (m	∆ <i>E</i> ₀ nm/s)	σ	P (%)	$\Delta E_{\rm Q}$ (mm/s	σ ;)	P (%)	δ ₀ (mm/s)	δ ₁ (mm/s	ΔE_{Q} (mm/s)	σ	P (%)	ΔE_{Q} (mm/s)	σ	P (%)
HO30 d	0.400	0.099	1.014	0.400	0.93	2.423	0.241	48 1	.99	0.34	32				0.564 0.418	0* 0*	0.602	0.31 0.42	9 10	0.814	0.099	1.014
HO30 e	0.483	0.106	0.995	0.0483	0.95	2.543	0.16	24 2	.245	0.13	28	1.94	0.28	32	0.566 0.390	0* 0*	0.579 1.43	0.28 0.31	8 8	1.133	0.106	0.995
HO50 d	0.649	0.109	1.019	0.0375	0.97	2.465	0.214	53 2.	.020	0.30	34				0.568	0*	0.644	0.30	9	1.508	0.59	4
HO50 e	0.590	0.115	1.019	0.0402	0.97	2.577	0.13	26 2.	.299	0.14	22	2.053	8 0.13	40	0.540 0.413	0* 0*	0.530 1.346	0.17	5			
* Value o	constra	ined du	rina the	e fittina r	roced	Jre.																

 TABLE 9. Crystal data, refinement details, and unit-cell parameter for the studied biotites

Samples	Dimensions (mm)	N _{obs}	R _{obs}	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (°)	V(ų)	_
HO20	$0.07 \times 0.05 \times 0.02$	503	5.2	5.336(1)	9.248(1)	10.179(1)	100.11(1)	494.5(1)	
HO30	$0.09 \times 0.06 \times 0.03$	580	5.2	5.337(1)	9.248(1)	10.171(1)	100.09(1)	494.3(1)	
HO50	$0.12 \times 0.10 \times 0.03$	645	3.7	5.345(1)	9.258(1)	10.198(1)	100.15(1)	496.7(1)	
Note: R.	$=\Sigma (E - E)/\Sigma E \times 1$	00 with $[F > 4$	1sia(<i>F</i>)] Estim	ated standard c	leviations are na	arentheses			

Тав	LE 10. Fin	al atomic fracti	onal coordin	ates, and equ	ivalent isotrop	ic (Ų) and ani	sotropic (Å) th	ermal displa	cement facto	rs
Ator	n <i>x/a</i>	y/b	z/c	U_{eq}	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
					HO2	0				
K T	0.0 0.5748 (2	0.0) 0.1668 (1)	0.0 0.2246 (1)	0.0315 (6) 0.0118 (2)	0.0234 (10) 0.0069 (4)	0.0313 (12) 0.0123 (5)	0.0409 (12) 0.0162 (4)	0.0 0.0001 (4)	0.0087 (9) 0.0023 (3)	0.0 0.0002 (3)
M1 M2	0.0 0.0	0.5 0.8365 (4)	0.5 0.5 0.1676 (3)	0.0117 (3) 0.0128 (2) 0.0234 (7)	0.0112 (6) 0.0081 (4) 0.0157 (12)	0.0082 (6) 0.0131 (5)	0.0167 (6) 0.0171 (4) 0.0267 (13)	0.0	0.0053 (5) 0.0023 (3)	0.0
02 03	0.5146 (8) 0.2299 (3)) 0.0) 0.1685 (3)	0.1687 (4) 0.3923 (3)	0.0234 (7) 0.0242 (10) 0.0184 (6)	0.0279 (20) 0.0181 (13)	0.0139 (18) 0.0203 (14)	0.0290 (20) 0.0163 (11)	0.0 0.0014 (11)	-0.0001 (17) 0.0022 (10)	0.0 0.0002 (10)
04 H	0.1343 (7 0.178 (1) 0.0 3) 0.0	0.3993 (4) 0.314 (4)	0.0179 (9) 0.0300	0.0217 (18)	0.0181 (18)	0.0140 (16)	0.0	0.0034 (14)	0.0
	HO30									
K T M1 01 02 03 04 H	0.0 0.5745 (2 0.0 0.8247 (5 0.5152 (7 0.6312 (5 0.1334 (7 0.123 (1	0.0 0.1671 (1) 0.5 0.8368 (4) 0.2298 (3) 0.0 0.1678 (3) 0.0 0.0	0.0 0.2242 (1) 0.5 0.5 0.1675 (2) 0.1691 (4) 0.3923 (2) 0.3992 (3) 0.307 (3)	$\begin{array}{cccc} 0.0305 & (5) \\ 0.0123 & (2) \\ 0.0123 & (3) \\ 0.0135 & (2) \\ 0.0231 & (6) \\ 0.0244 & (9) \\ 0.0179 & (5) \\ 0.0202 & (8) \\ 0.0300 \end{array}$	0.0254 (9) 0.0095 (3) 0.0138 (5) 0.0097 (4) 0.0180 (11) 0.0294 (19) 0.0184 (10) 0.0264 (17)	$\begin{array}{cccc} 0.0299 & (10) \\ 0.0125 & (4) \\ 0.0082 & (5) \\ 0.0138 & (4) \\ 0.0281 & (13) \\ 0.0171 & (16) \\ 0.0188 & (10) \\ 0.0196 & (15) \end{array}$	0.0376 (10) 0.0150 (4) 0.0155 (5) 0.0170 (4) 0.0238 (11) 0.0243 (17) 0.0161 (10) 0.0157 (15)	0.0 0.0010 (4) 0.0 -0.0030 (11) 0.0 0.0016 (10) 0.0	0.0091 (8) 0.0028 (3) 0.0040 (4) 0.0025 (3) 0.0050 (10) -0.0023 (15) 0.0021 (8) 0.0070 (13)	0.0 -0.0006 (3) 0.0 -0.0080 (10) 0.0 0.0005 (10) 0.0
					HO5	0				
K T M1 M2 O1 O2 O3 O4 H	0.0 0.5748 (1 0.0 0.8254 (4 0.5174 (5 0.6318 (4 0.1304 (5 0.117 (2)	0.0 0.1672 (1) 0.5 0.8370 (1) 0.2304 (2) 0.0 0.1693 (2) 0.0 j) 0.0	0.0 0.2251 (1) 0.5 0.5 0.1685 (2) 0.3918 (2) 0.3918 (3) 0.303 (5)	0.0329 (6) 0.0102 (2) 0.0097 (3) 0.0112 (3) 0.0208 (5) 0.0202 (6) 0.0162 (4) 0.0192 (6) 0.0300	$\begin{array}{l} 0.0314 & (9) \\ 0.0104 & (4) \\ 0.0087 & (5) \\ 0.0073 & (4) \\ 0.0181 & (10) \\ 0.0285 & (15) \\ 0.0184 & (10) \\ 0.0185 & (14) \end{array}$	$\begin{array}{cccc} 0.0306 & (10) \\ 0.0088 & (4) \\ 0.0065 & (5) \\ 0.0129 & (4) \\ 0.0255 & (11) \\ 0.0127 & (13) \\ 0.0180 & (9) \\ 0.0243 & (14) \end{array}$	0.0368 (11) 0.0114 (4) 0.0147 (6) 0.0134 (4) 0.0196 (10) 0.0177 (14) 0.0117 (9) 0.0143 (14)	0.0 0.0002 (3) 0.0 -0.0041 (9) 0.0 -0.0014 (7) 0.0	0.0060 (7) 0.0018 (3) 0.0039 (4) 0.0015 (3) 0.0053 (8) -0.0003 (12) 0.0015 (8) 0.0017 (11)	0.0 -0.0004 (3) 0.0 -0.0068 (8) 0.0 -0.0003 (7) 0.0

Notes: The anisotropic displacement factor takes the form: $-2 \pi^2 [h^2 a^{*2} U_{11} + k^2 b^{*2} U_{22} + ... + 2 h k a^* b^* U_{12}]$. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. Estimated standard deviations in parentheses refer to the last digit.

TABLE 11. Selected bond distances (Å) for biotites of this study	

Sample	HO20	HO30	HO50						
Tetrahedral layer									
T-01	1.654(8)	1.650(4)	1.655(2)						
T-O1'	1.659(8)	1.658(4)	1.656(2)						
T-O2	1.656(4)	1.656(2)	1.655(1)						
T-O3	1.680(5)	1.683(3)	1.674(2)						
	1.663	1.662	1.660						
	Octah	edral layer							
M1-O4 (×2)	2.039(7)	2.044(4)	2.061(3)						
M1-O3 (×4)	2.093(5)	2.090(3)	2.108(2)						
	2.075	2.074	2.092						
M2-O4 (×2)	2.027(5)	2.023(4)	2.019(2)						
M2-O3 (×2)	2.082(5)	2.079(3)	2.081(2)						
M2-O3' (×2)	2.090(5)	2.097(3)	2.097(2)						
	2.066	2.066	2.065						
	Int	erlaver							
K-O1 (×4)	2.973(8)	2.975(4)	2.990(2)						
K-O1' (×4)	3.338(8)	3.334(4)	3.340(2)						
K-O2 (×2)	2.972(11)	2.977(6)	2.996(3)						
K-O2' (×2)	3.350(11)	3.348(6)	3.355(3)						
<k-o<sub>inner></k-o<sub>	2.973	2.976	2.992						
<k-o<sub>outer></k-o<sub>	3.342	3.339	3.345						
	3.157	3.157	3.168						

Sample	HO20	HO30	HO50								
	Whole layer										
β _{ideal} (°)	100.06	100.07	100.06								
Intralayer shift	-0.3349 <i>a</i>	-0.3339 <i>a</i>	-0.3362 <i>a</i>								
Δ _{тм} (Å)	0.559	0.557	0.542								
	Tetraheo	dral sheet									
Volume⊤ (Å3)	2.358	2.354	2.347								
BLD _T (%)	0.533	0.643	0.416								
t _τ (Å)	2.248	2.246	2.235								
α (°)	8.06	7.94	7.72								
$\Delta z(Å)$	0.011	0.016	0.020								
	Octaheo	dral sheet									
Volume _{M1} (Å ³)	11.666	11.659	11.948								
BLD _{M1} (%)	1.161	0.991	1.002								
ELD _{M1} (%)	5.600	5.603	5.707								
Volume _{M2} (Å ³)	11.535	11.537	11.539								
BLD _{M2} (%)	1.280	1.390	1.510								
ELD _{M2} (%)	5.429	5.445	5.196								
Shift _{M2} (Å)	0.029	0.032	0.034								
04-04 (Å)	2.699	2.694	2.682								
t _{M(O3-O4)} (Å)	2.112	2.111	2.123								
t _{M(O3)} (Å)	2.159	2.157	2.172								
t _{M(O4)} (Å)	2.018	2.020	2.027								
	Inte	rlayer									
Volume _{K-inner} (Å ³)	35.012	35.103	35.694								
Δ _{κ-0} (Å)	0.369	0.363	0.353								
t _{int} (Å)	3.366	3.365	3.396								
t _{ĸ-04} (Å)	4.001	3.997	4.006								

 TABLE 12. Selected geometrical parameters calculated from structure analysis results

TABLE 13. Octahedral cation distribution from least-square minimization

	Octa	hedral sites								
Sample:	ample: Octahedral cation distribution									
HO20 M1:	M1:(Mg _{0.272} Fe ²⁺ _{0.477} Fe ³⁺ _{0.215} Mn _{0.003} □ _{0.034})									
M2:	M2:(Mg _{0.235} Fe ²⁺ _{0.424} Al _{0.208} Ti _{0.132} Cr _{0.001})									
HO30 M1:	.(Mg _{0.239} Fe ²⁺ _{0.456} F	e ³⁺ _{0.247} Mn _{0.004} □ _{0.054})								
M2:	.(Mg _{0.245} Fe ²⁺ _{0.420} A	$I_{0.197}$ Ti _{0.136} Cr _{0.002})								
HO50 M1:	(Mg _{0.329} Fe ²⁺ _{0.551} F	e ³⁺ _{0.107} Mn _{0.003} ∐ _{0.017})								
M2:	(IVIG _{0.205} Fe ⁶ ,413 F	e 0.023 Al0.213 H0.143 Cr0	.002)							
Sample:	HO20	HO30	HO50							
	M1 o	octahedron								
M1 e ⁻ _{x-ref}	19.69	19.84	20.23							
M1 e⁻ _{calc}	21.32	21.25	21.14							
<m1-o>_{X-ref} (Å)</m1-o>	2.075	2.074	2.092							
<m1-o>_{calc} (A)</m1-o>	2.086	2.085	2.090							
	M2 o	octahedron								
M2 e ⁻ x-ref	19.71	19.70	19.39							
M2 e ⁻ calc	19.48	19.45	19.77							
<m2-o>_{X-ref} (Å)</m2-o>	2.066	2.066	2.065							
<m2-o>_{calc} (Å)</m2-o>	2.061	2.062	2.060							
Σe^{-} (M1 + 2M2) X-ref	59.11	59.24	59.02							
$\Sigma e_{(M1 + 2M2) EPMA}$	60.28	60.15	60.69							
	Inte	rlaver site								
K e ⁻ _{x-ref}	17.01	17.37	16.90							
K e⁻ _{EPMA}	16.34	16.44	17.05							
	Tetra	hedral site								
<t-o>_{X-ref} (Å)</t-o>	1.663	1.663	1.660							
<Т-О> _{ЕРМА} (Å)	1.661	1.661	1.661							

Notes: Observed and calculated octahedral and tetrahedral mean distances. Observed and calculated mean atomic numbers of octahedral and interlayer sites. e⁻ = mean atomic number. Octahedral cation distribution was calculated by the minimization procedure. Subscripts "X-ref", "EPMA", and "calc" refer to values as obtained from structure refinement, chemical analysis and minimization procedure, respectively. Ideal values for ^[VI]M-O average bond distances (where ^[VI]M = Mg, Fe²⁺, Fe³⁺, Al, Mn, Cr, Ti, □). <Si-O>_{ideal} = 1.618 Å and <^[VI]Al-O>_{ideal}=1.748 Å.

Notes: β_{deal} = ideal monoclinic angle = cos^-1(-a/3c); intralayer shift = ccos $\beta/a; \Delta_{T_{M}}$ = dimensional misfit = $2\sqrt{3}$ -CO- $_{basal}$ - $3\sqrt{2}$ (
-M1-O>+ 2-M2-O>)/3; α = tetrahedral in-001-plane rotation angle = I 120° –
-Ob- $_{D_{0}}$ -Ob- $_{D_{2}}$ /2 where
-Ob- $_{D_{0}}$ -Ob- $_{D_{0}}$ is the mean angle between basal edges of neighboring tetrahedra in the ring; Δz = basal corrugation = ($z_{O2} - z_{O1}$)/2 isinb; BLD = bond length distortion = 100/n * Σ_{I} I(M-O)/-<M-O>//<M-O>; ELD = edge length distortion = 100/n * Σ_{I} I(O-O)/-<M-O>//<M-O>; Shift_{M2} = off-center shift of the M2 cation defined as the distance between the refined position of cation and the geometrical center of M2 (coordinates: x/a = 0.0, y/b = 0.8333, z/c=0.5); Δ_{K-O} = (<K-O_inner> – <K-O_outer>); tr_= tetrahedral sheet thickness calculated from the z coordinates of basal and apical O atoms; t_M(O3-O4), t_M(O3), t_M(O4) = otahedral sheet thickness calculated from the z coordinates of O3, and of only oxygens bonded to hydrogens (O4); t_{int} = interlayer sheet thickness from the z coordinates of basal O atoms; t_KO4 distance along c*.

FIGURE 7. OH vs. Ti diagram. Symbols as in Figure 6. Solid line = model $Ti(OH)_{-2}$ exchange as in the Ti-oxy substitution.

FIGURE 9. NH_4 vs. K diagram for the studied biotites. Alignment of data parallel to the 1:1 line supports the occurrence of the $(NH_4)(K,Na)_{-1}$ exchange.

FIGURE 12. Plot of the bond-length distortion parameter (BLD) of the M2 octahedral site vs. ^{VI}Ti content. The dotted line represents the equation (BLD_{M2}) = $0.43(8) + {}^{[VI]}Ti \times 3.8(3) (N_{obs} = 24, R^2 = 0.78)$ obtained by regression on data from Cruciani and Zanazzi (1994).