1 Revision 1

2 Word Count: 6715 (excluding references)

3	Structures and transport properties of supercritical SiO ₂ –H ₂ O and NaAlSi ₃ O ₈ –H ₂ O
4	fluids
5	Yicheng Sun ^{1,2} , Xiandong Liu ^{1*} , and Xiancai Lu ¹
6	¹ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and
7	Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
8	² Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of
9	Oceanography, Hohai University, Nanjing, Jiangsu 210024, China.
10	*Corresponding author: Xiandong Liu (xiandongliu@nju.edu.cn)
11	

12

13

Abstract

Speciation and transport properties of supercritical fluids is critical for understanding their 14 behaviour in the Earth's interior. Here, we report a systematic first principles molecular dynamics 15 simulation study of the structure, speciation, self-diffusivity (D) and viscosity (η) of SiO₂ melt, 16 NaAlSi₃O₈ melt, SiO₂-H₂O and NaAlSi₃O₈-H₂O fluids at 2000 - 3500 K with 0 - 70 wt% H₂O. 17 Our calculations show that as the water content increases, the proportion of Q^0 species (Q^n 18 species, where n is the number of bridging oxygens in an individual Si/Al-O polyhedra) 19 increases while Q^4 decreases. The proportions of Q^1 , Q^2 and Q^3 species first increase and then 20 decrease with increasing water content. The diffusivity sequence for the supercritical SiO₂-H₂O 21 fluids is $D_{\rm H} > D_{\rm O} > D_{\rm Si}$, and for the supercritical NaAlSi₃O₈–H₂O fluids, on the whole, is $D_{\rm Na} \approx$ 22 $D_{\rm H} > D_{\rm O} > D_{\rm Al} \approx D_{\rm Si}$. The viscosities of the two systems decrease drastically at the beginning of 23 the increase in water content, and then decrease slowly. We demonstrate that the exponential 24 decrease in the viscosity of polymerized silicate melt with increasing water content is due to a 25 sharp decrease in the proportion of Q⁴ species and increase in Si–O–H. The typical structural 26 feature of supercritical fluid is that it contains a large amount of easy-to-flow partially 27 polymerized or depolymerized silicate units bonded to hydrogen, which leads to a low viscosity 28 while being enriched in silicate. This feature provides supercritical fluids the potential to 29 transport elements that are hard to migrate in aqueous fluids or hydrous silicate melts, such as 30 31 high field strength elements.

32

Keywords: supercritical fluid, SiO₂-H₂O, NaAlSi₃O₈-H₂O, first-principles, speciation,

33 transport properties

34

35

INTRODUCTION

Silicate melts and aqueous fluids inside the Earth play an important role in magmatism and 36 mineralization processes. Previous studies have shown that with increasing temperature and 37 pressure, the solubility of silicate in aqueous fluids increases, and the solubility of water in 38 silicate melts also increases (Audétat and Keppler, 2005; Dolejs and Manning, 2010; Newton 39 and Manning, 2008). When hydrous silicate melts are completely miscible with aqueous fluids, 40 the phase boundary between the two liquids no longer exists and a single phase is formed (Shen 41 and Keppler, 1997; Wang et al., 2021), i.e. supercritical geofluid, or supercritical fluid 42 43 (Hermann et al., 2013; Manning, 2004; Manning, 2018; Ni et al., 2017; Shen and Keppler, 1997). Hydrous silicate melts can transport a large number of elements (Xiong et al., 2009) but 44 may not be able to migrate over long distances due to their high viscosity. Although aqueous 45 fluids have high mobility due to their low viscosity, they are generally considered to be too dilute 46 resulting in a limited capacity to transport solutes (Spandler et al., 2007). Supercritical fluids not 47 only have compositions and structures close to those of hydrous silicate melts but also have high 48 diffusivity and low viscosity similar to aqueous fluids. Therefore, supercritical fluids have a 49 great ability to transport elements, and thus they are thought to be a high-quality agent for mass 50 51 transfer (especially for incompatible elements) in subduction zones (Chen et al., 2021; Chen et al., 2018; Ni et al., 2017; Thomas et al., 2019). 52

Complete miscibility between some hydrous silicate melts and aqueous fluids has been observed experimentally, and the location of the second critical endpoint has been determined for some systems. For example, the second critical endpoint of the SiO_2-H_2O system was found to be ~1353 K and 0.93 – 0.97 GPa (Hunt and Manning, 2012; Kennedy et al., 1962). Complete miscibility between hydrous silicate melt and aqueous fluid in the NaAlSi₃O₈-H₂O system has

been observed too, and it was found that the critical temperature decreasing with pressure, from 58 1262 K at 1.06 GPa to 896 K at 1.65 GPa (Shen and Keppler, 1997). After that, the second 59 critical endpoint in the NaAlSi₃O₈–H₂O system was found to occur at 973 K and 1.5 GPa 60 (Stalder et al., 2000). Recently, Makhluf et al. (2020) experimentally determined that the second 61 critical endpoint of the NaAlSi₃O₈-H₂O system is at 932 K and 1.63 GPa. In addition, the second 62 critical endpoints in the KAlSi₃O₈-H₂O, SrAl₂Si₂O₈-H₂O, peridotite-H₂O and basalt-H₂O 63 systems were also determined (Mibe et al., 2008; Mibe et al., 2004; Mibe et al., 2007; Mibe et 64 al., 2011). However, many basic properties are still lacking, such as microscopic structure, 65 speciation, diffusivity, viscosity, etc. (Ni et al., 2017). To our knowledge, in terms of Si 66 speciation, a very limited number of supercritical systems were studied (Mibe et al., 2008; 67 Mysen, 2010; Mysen et al., 2013), and a systematic understanding is still lacking. For example, 68 although most of Si was observed to be in the form of dimer in supercritical KAlSi₃O₈-H₂O fluid 69 with a water content of 60 wt% (Mibe et al., 2008), how the speciation changes with water 70 content remains unclear. In addition, some studies focused on the systems that are close to but 71 still below the pressure-temperature conditions of supercritical fluids (e.g., Steele-MacInnis and 72 Schmidt, 2014; Zotov and Keppler, 2002). In terms of viscosity, interestingly, it was found that 73 with the increase of water content, the viscosity of albite $-H_2O$ system decreases exponentially 74 within the first 20 wt% H₂O but after the supercritical albite–H₂O fluid is formed, the viscosity 75 decays almost linearly to the viscosity of pure water (Audétat and Keppler, 2004). The 76 mechanism for this behaviour still needs more understanding. At present, it is still challenging 77 for experiments to accurately determine the microstructure of supercritical fluids (Mibe et al., 78 2008) and the viscosity at high pressure and temperature (Sun et al., 2018). The lack of 79 quantitative studies makes it impossible to establish the relationship between the microscopic 80

properties and its macroscopic behaviors or to draw a picture of the evolution of supercritical
fluids in geological processes.

Molecular modeling is an effective method to study the properties of silicate-H₂O systems 83 over a broad range of temperatures and pressures. But previous theoretical studies mainly 84 focused on (hydrous) silicate melts and aqueous fluids (e.g., de Koker et al., 2013; Dingwell et 85 al., 1998; Dingwell et al., 1996; Dufils et al., 2020; Ghosh and Karki, 2011; Gillan et al., 2016; 86 Karki et al., 2018; Karki and Stixrude, 2010; Manning, 2018; Romano et al., 2001; Sun et al., 87 2020; Yang et al., 2017). So far, only one work using first-principles method to study 88 89 supercritical SiO₂-H₂O fluid with 23.1 wt% H₂O has been reported (Spiekermann et al., 2016). Therefore, microscopic structure, speciation and transport properties of supercritical silicate-90 91 H₂O system are urgently needed for understanding the geological roles of supercritical fluids in the Earth's interior. 92

Here, we use first principles molecular dynamics method to study the structure, speciation, self-diffusivity and viscosity of SiO_2-H_2O and $NaAlSi_3O_8-H_2O$ systems at 2000 – 3500 K. The evolution of these properties with increasing water content have been obtained. The transfer mechanism of H in supercritical fluids is discussed. We uncover the mechanism of the decrease in the viscosity of polymerized silicate melt with increasing water content and further discuss the effect of supercritical fluids on element migration.

- 99
- 100

COMPUTATIONAL METHODS

First principles molecular dynamics (FPMD) simulations of SiO_2-H_2O and $NaAlSi_3O_8-H_2O$ systems (H₂O concentration in the range of 0 wt% – 70 wt%) were performed in the DFT code VASP (Kresse and Furthmuller, 1996a; Kresse and Furthmuller, 1996b; Kresse and Hafner, 1993;

Kresse and Hafner, 1994). The Perdew-Burke-Ernzerhof (PBE) functional (Perdew et al., 1996) 104 was used with Grimme–D3 (i.e., PBE–D3) dispersion correction (Grimme et al., 2010). Many 105 density functional approximations (such as PBE) do not describe long-ranged electron 106 correlation effects well. The DFT-D3 scheme is the most commonly used method, which 107 reproduces the inter- and intramolecular dispersion interactions reasonably (Caldeweyher et al., 108 2019; Grimme et al., 2010; Grimme et al., 2011). Since the systems in our study contain water, 109 the use of PBE–D3 method is a better choice (Li et al., 2022). A plane wave cut-off of $500 \sim 520$ 110 eV and gamma point Brillouin zone sampling were used. The convergence of k-point mesh and 111 cutoff energy were tested and found to converge the total energy to within 1 meV/atom and 3 112 meV/atom, respectively. The electronic self-consistency convergence criterion for the total 113 energy was set to 10^{-5} eV. Our simulations were performed in the *NVT* ensemble with a time 114 step of 0.5 (1.0) fs for hydrous (anhydrous) liquid. Our research focuses on the properties of 115 supercritical fluids. For comparison, we also investigated the systems with low water content. 116 The SiO₂-H₂O systems and NaAlSi₃O₈-H₂O systems contain 180-210 atoms (Table 1) and 172-117 316 atoms (Table 2), respectively, depending on the water content. Each SiO₂-H₂O system was 118 119 first melted and equilibrated at 6000 K and then cooled to 3500 K, 3000 K and 2600 K. Each NaAlSi₃O₈-H₂O system was melted and cooled to 3000 K, 2500 K and 2000 K adopting the 120 same strategy. The run durations for reaching thermal equilibrium varied from $10 \sim 20$ ps. 121 122 Following this, we finally performed 100-ps simulations except for the NaAlSi₃O₈-H₂O system with 60 wt% H_2O , which was ran for 50 ps. 123

For each model, we first calculated the pressure of the models under four different volumes to obtain the pressure–volume curves. Then, the volume corresponding to approximately $1 \sim 4$ GPa was obtained for the simulation (Table 1 and Table 2). This puts the temperature-pressure

conditions simulated in this study above the critical curves of the SiO_2-H_2O and $NaAlSi_3O_8-$ H₂O systems (Figure S1 in Supporting Information). The pressure correction for Pulay stress is included based on the method of de Koker et al. (2008). The absolute value of the Pulay correction was less than 0.2 GPa for all models. The pressure correction for PBE under binding was not applied due to lack of experimental data in the hydrous system.

The self-diffusion coefficient was calculated with the Einstein relation (Allen and Tildesley, 132 1989). The shear viscosity was derived from the stress autocorrelation function (ACF) over time 133 according to the Green-Kubo relation (Allen and Tildesley, 1989). Three off-diagonal 134 components of the stress tensor are used to calculate the shear viscosity. The pairwise radial 135 distribution function (RDF) was used to analyze the structures. The cutoff radius used in the 136 analysis of species is defined as the position of the first minimum in RDF. The cutoff radius is 137 uniquely determined at each state point. The stress ACF and RDF in this study can be found in 138 Figures S8, S9, S15 and S16 in Supporting Information. 139

- 140
- 141

RESULTS

142 Speciation and Structure

Qn Speciation. In silicate fluids, both pressure (Wang et al., 2014) and network modifiers can break the bridging oxygen (BO) bonds (Si/Al–O–Si/Al), resulting in a varying distribution of Q^n species. A Q^4 species is a Si/Al–O polyhedra with 4 BOs, and a Q^0 species is a Si/Al–O polyhedra with 0 BO (i.e., it is not attached to any other polyhedra). In most cases, Q^n notation is generally used in structures with 4 coordinated Si/Al. When the pressure increases, Si/Al can be 5-coordinate and 6-coordinate. In this case, n will be greater than 4, and Q^5 or even Q^6 will appear in the structure (Bajgain et al., 2019). In addition to pressure and network modifiers,

water can also break the Si/Al–O–Si/Al network by reacting with BO, thereby converting higher 150 O^n species to lower O^n species. O^n species provides information about local network structure in 151 silicate fluids. As shown in Figure 1, we calculated the Qⁿ species for the SiO₂-H₂O systems at 152 2600 K, 3000 K and 3500 K, and for the NaAlSi₃O₈-H₂O systems at 2000 K, 2500 K and 3000 153 K. Our $O^0 \sim O^4$ species generally agree with those obtained in the first-principles study by 154 Spiekermann et al. (2016) for SiO₂-H₂O system with 23.1 wt% H₂O at 3000 K (Figure 1b). In 155 addition to $Q^0 \sim Q^4$ species, there was also a small amount of Q^5 species present in the systems. 156 On the whole, the SiO₂-H₂O and NaAlSi₃O₈-H₂O systems show the similar distribution of Q^n 157 species. The proportion of Q^0 increases with increasing water content while Q^4 decreases. The 158 proportions of Q^2 and Q^3 first increase and then decrease with increasing water content. 159 Although we only observed that the proportion of Q^1 increases first and then decreases when the 160 water content exceeds 60 wt% at 3000 K in the SiO₂-H₂O systems (Figure 1b), it can be inferred 161 that Q¹ will also decrease at higher water content at 2600 K and 3500 K in the SiO₂-H₂O 162 systems. This Q1 behaviour can also be inferred to occur in the NaAlSi₃O₈-H₂O systems. The 163 maximum values for the proportions of Q^3 and Q^2 in the two systems at 3000 K occur at the 164 positions where the water content is 20 wt% and 40 wt%, respectively. For example, in the 165 NaAlSi₃O₈-H₂O systems at 3000 K, Q³ initially increases to 37.4% as H₂O increases to 20 wt% 166 and then decreases to 6.9% as H₂O increases to 60 wt%. O² increases to 34.4% as H₂O increases 167 to 40 wt% and then decreases. These maximum values also have the same positions in the SiO₂-168 H₂O systems at 2600 K and 3500 K and in the NaAlSi₃O₈-H₂O systems at 2000 K. But these 169 positions are slightly different in the NaAlSi₃O₈-H₂O systems at 2500 K, and the maximum 170 values for Q^3 and Q^2 occur at the positions where the water content is 10 wt% and 30 wt%, 171 respectively. This is actually due to the water content interval that we adopted. We speculate that 172

the true maximum values for Q³ and Q² in the SiO₂–H₂O and the NaAlSi₃O₈–H₂O systems occur in the range of 10–20 wt% H₂O and 30–40 wt% H₂O, respectively. The maximum value for the proportion of Q¹ probably occurs in the range of 60–70 wt% H₂O. Experimental studies on quenched hydrous [Na₂Si₄O₉–Na₂(NaAl)₄O₉] system by Mysen (2007) also found that the Q³abundance passes through a maximum in the 7 – 10 wt % H₂O with Al/(Al+Si) = 0.25 (Figure 178 1f).

179

180 **Oxygen Speciation and Polymerization.** As the only anion in the SiO₂-H₂O systems and the NaAlSi₃O₈-H₂O systems, oxygen mainly exists in the form of bridging oxygen (BO, i.e. an 181 182 oxygen atom is bonded to more than one network former), nonbridging oxygen (NBO, i.e. an oxygen atom is only bonded to one network former), free oxygen (an oxygen atom is not bonded 183 to network former or H, marked as FO), molecular H_2O (H_2O_m), free hydroxyls (OH), and H_3O 184 185 (an oxygen atom is bonded to three hydrogen atoms). Both the SiO_2 melt and $NaAlSi_3O_8$ melt are fully polymerized melts, and the NBO/T (T = Si, Al) of the SiO₂-H₂O and NaAlSi₃O₈-H₂O 186 systems can increase from 0 (fully polymerized) to 4 (fully depolymerized) as the water content 187 increases. We analysed in detail the oxygen species in the two systems (Figure 2) at different 188 temperatures with increasing water content. At 3000 K, in the SiO₂-H₂O systems, BO decreases 189 190 from 99.5% to 3.6% as the water content increases from 0 wt% to 70 wt% (Figure 2a). NBO 191 initially increases to 51.3% as the water content increases to 40 wt% and then decreases to 32.2%as the water content increases to 70 wt%. The other oxygen species (FO, OH, H_3O and H_2O_m) 192 increase to 64.2% as the water content increases to 70 wt%. The distributions of the oxygen 193 species at 2600 K and 3500 K are basically the same as those at 3000 K in the SiO_2-H_2O 194 systems. These features are also found in the NaAlSi₃O₈-H₂O systems (Figure 2c). The initial 195

increase in the ratio of NBO is due to the reaction between water and BO. As more water is added, not only is more FO produced, but also the NBO ratio is correspondingly reduced. NBO/T increases almost linearly from 0.01 to 3.27 as water content increases from 0.0 wt% to 70 wt%, in the SiO₂–H₂O systems (Figure 2b). Similarly, NBO/T increases linearly from 0.09 to 2.95 as water content increases from 0.0 wt% to 60 wt%, in the NaAlSi₃O₈–H₂O systems (Figure 201 2d).

202

203 **Hydrogen Speciation.** Hydrogen atoms in the SiO₂–H₂O systems and the NaAlSi₃O₈–H₂O systems mainly exist in the form of H_2O_m and Si–O–H (one H atom is bonded to the nonbridging 204 oxygen, marked as NBO-H). In the two systems, both H_2O_m and NBO-H species show linear 205 changes with increasing water content at all temperatures (Figure 3). The proportion of H_2O_m 206 species gradually increases from 6.2% to 59.4% as water content increases from 10 wt% to 70 207 wt%, in the SiO₂-H₂O systems at 3000 K. Correspondingly, the proportion of NBO-H species 208 gradually decreases from 79.7% to 28.8%. In the NaAlSi₃O₈-H₂O systems at 3000 K, the 209 proportion of H_2O_m species increases from 6.9% to 51.4% as water content increases from 10 wt% 210 to 60 wt%, and the proportion of NBO-H species decreases from 66.5% to 34.5%. Interestingly, 211 in general, both H_2O_m and NBO-H species have a negative dependence on temperature. This is 212 due to the presence of a small number of hydrogen species that have a positive dependence on 213 temperature in the systems (Figures S2 and S3 in Supporting Information), including free protons 214 (H), OH, bridging –O–H–O– (HO₂), H₃O, NBO–H₂ (two hydrogen atoms are bonded to the 215 nonbridging oxygen) and BO-H (one H atom is bonded to the bridging oxygen). Some of these 216 species are very unstable, such as H, OH and HO₂, and in most cases they exist for less than 10 217

fs (Figures S4 in Supporting Information). Since the time step used for the calculation is 0.5 fs,
they can be identified during the transfer of H.

220

221 **Transport Properties**

Diffusivities. The calculated self-diffusivities for all elements in the SiO₂-H₂O systems and 222 223 the NaAlSi₃O₈-H₂O systems at different temperatures are shown in Figure 4 and Figure 5, respectively (the corresponding MSD can be found in Figures S5 and S6 in Supporting 224 225 Information). In the SiO₂–H₂O systems at 2600 K, D_{Si} increases by two orders of magnitude as 226 the water content increases from 10 wt% to 50 wt%. $D_{\rm O}$ and $D_{\rm H}$ increase by more than one order of magnitude. As the temperature increases to 3500 K, the increases in D_{Si} , D_O and D_H decrease 227 with water content. This indicates that a higher temperature can weaken the enhancing effect of 228 229 water on diffusivities of ions. In addition, the rate of increase in the diffusivities gradually 230 decreases with increasing water content. The diffusivity sequence for the SiO_2 -H₂O systems is $D_{\rm H} > D_{\rm O} > D_{\rm Si}$. At 2600 K and 10 wt% H₂O, $D_{\rm H}$ is 33 times and 9 times higher than $D_{\rm Si}$ and $D_{\rm O}$, 231 respectively. At 3500 K and 10 wt% H₂O, D_H is 9 times and 5 times larger than D_{Si} and D_O, 232 233 respectively. This shows that a higher temperature reduces the gap between $D_{\rm H}$ and $D_{\rm Si}$ or $D_{\rm O}$. 234 These phenomena are also observed in the NaAlSi₃O₈-H₂O systems. At 2000 K, D_{Na} , D_O and D_H 235 increase by 3.4, 49.3 and 11.3 times, respectively, as the water content increases from 10 wt% to 236 50 wt%. At the same temperature, as the water content increases from 20 wt% to 50 wt%, D_{AI} 237 and $D_{\rm Si}$ increase by 3.7 and 23.0 times, respectively. When the temperature rises to 3000 K, the increase in the diffusivities for all ions decreases with water content. 238

239

240	Viscosities. The calculated viscosities for the SiO_2-H_2O and $NaAlSi_3O_8-H_2O$ systems are
241	shown in Figure 6. Our results are consistent with the FPMD results of hydrous (with 8.25 wt%
242	H ₂ O) SiO ₂ liquid obtained by Karki and Stixrude (2010) and the FPMD results for the
243	NaAlSi ₃ O ₈ melt from Bajgain and Mookherjee (2020). We compared the viscosity of the
244	NaAlSi ₃ O ₈ -H ₂ O systems with an experimental model derived from the fitting of experimental
245	data at $873 \sim 1473$ K (Audétat and Keppler, 2004). We found that the model of Audétat and
246	Keppler (2004) can basically reproduce our viscosities at temperatures of up to 2500 K (Fig. 6b).
247	And with increasing water content, characteristics of viscosity change obtained by Audétat and
248	Keppler (2004) at 1073.15 K is in good agreement with our results (Figures S7 in Supporting
249	Information). In the SiO ₂ -H ₂ O systems, the viscosity decreases by nearly 2 orders of magnitude
250	as the water content increases from 10 wt% to 30 wt% at 2600 K (Figure 6a). At the same
251	temperature, as the water content increases from 30 wt% to 50 wt%, the viscosity only decreases
252	by a factor of 2. At 3000 K, the viscosity decreases exponentially in the first 40 wt% H_2O , and
253	thereafter the change is roughly linear. A higher temperature weakens this sharp change in
254	viscosity. At 3500 K, the viscosity basically decreases exponentially in the first 40 wt% H_2O , but
255	the magnitude of the decrease is lower than that at lower temperatures. At a water content > 30
256	wt%, the viscosities of the SiO ₂ -H ₂ O systems at the three temperatures are very similar (inset of
257	Figure 6a). When the water content exceeds 30 wt%, the viscosity approaches $0.0002 \sim 0.0008$
258	Pa·s, that is even lower than the viscosity of liquid water (0.00089 Pa·s) under ambient pressure
259	and temperature (Harris and Woolf, 2004). These changes in viscosity also occur in the
260	NaAlSi ₃ O ₈ -H ₂ O systems. For example, at 3000 K, the viscosity decreases by a factor of 27 as
261	the water content increases from 0 wt% to 30 wt%, while it only decreases by a factor of 3 from
262	30 wt% to 60 wt%. Similar to the SiO ₂ -H ₂ O system, the viscosities of the NaAlSi ₃ O ₈ -H ₂ O

systems at the three temperatures are very similar for water contents > 40 wt% (inset of Figure
6b).

- 265
- 266

DISCUSSION

267 Structures of Supercritical Fluids

A typical feature of supercritical fluids is that they are not only richer in silicates than 268 aqueous fluids, but also maintain a low viscosity. This is mainly due to the structures of 269 supercritical fluids. According to previous studies on the phase diagrams of the SiO₂-H₂O and 270 NaAlSi₃O₈–H₂O systems (Hunt and Manning, 2012; Kennedy et al., 1962; Makhluf et al., 2020; 271 Newton and Manning, 2008), the SiO₂-H₂O and NaAlSi₃O₈-H₂O systems with a water content 272 of more than 30 wt% and 20 wt%, respectively, in this study can be regarded as supercritical 273 fluids. In the supercritical SiO₂-H₂O and NaAlSi₃O₈-H₂O fluids, the proportion of Qⁿ species 274 depends on the water content. When the water content is relatively low (< 50 wt%), some Q⁴ still 275 exists in the supercritical fluids. As the water content continues to increase, Q⁴ decreases until it 276 disappears completely. Corresponding to it is the continuous increase of Q^0 (Figure 1). This is 277 because the increase in water content promotes the depolymerization of silicate, causing a 278 transition from higher Qⁿ species to lower Qⁿ species. Steele-MacInnis and Schmidt (2014) used 279 Raman spectroscopy to study the silicate speciation in H₂O-Na₂O-SiO₂ fluids up to 873 K and 2 280 GPa. They found that as the SiO₂ concentration increases to 40 mol[%], the proportion of Q⁰ 281 species decreases, and the proportions of Q^1 and Q^2 increase and then decrease. In their study, 282 the maximum values for the proportions of Q^1 and Q^2 occur in the range of 7–15 mol% SiO₂ and 283 20-30 mol% SiO₂, respectively (Figure S10 in Supporting Information). This is consistent with 284 the results of our calculation. We speculate that the maximum values for the proportions of Q^1 , 285

 $Q^2,$ and Q^3 occur in the range of 60–70 wt% H_2O, 30–40 wt% H_2O and 10–20 wt% H_2O, 286 respectively. Experimental studies on quenched (from 1673.15 K at 1.5 GPa) hydrous Na-287 aluminosilicate melts also found that the Q^3 -abundance passes through a maximum in the 7 – 10 288 wt % H₂O with Al/(Al + Si) = 0.05 - 0.25 (Figure 1f), and the position of the maximum value 289 has a positive correlation with Al/(Al + Si) (Mysen, 2007). In addition, we find that the effect of 290 temperature on the NBO/T and average n of Qⁿ for supercritical fluids is weak (Figure 2 and 291 Figure S11 in Supporting Information). Hydrogen atoms mainly exist in the form of molecular 292 293 water and NBO-H, and both of them have a negative dependence on temperature (Figure 3). The addition of water not only depolymerizes the SiO₂ and NaAlSi₃O₈ melts, but also converts BO 294 into NBO-H. Yuan et al. (2020) studied the effect of water on the depolymerized Mg₂SiO₄ melt 295 and found that with the increase of water content, the ratio of NBO-H increased linearly though 296 NBO/T did not change much. Based on the results of this study and previous results (Mibe et al., 297 2008; Steele-MacInnis and Schmidt, 2014; Yuan et al., 2020), we believe that the presence of a 298 large number of partially polymerized silicate units bonded to hydrogen is an important 299 structural feature of supercritical fluids formed from the polymerized silicate melts (Figure 7). It 300 can be speculated that the structural feature of supercritical fluids formed from depolymerized 301 silicate melts is that they contain a large number of depolymerized silicate units bonded to 302 hydrogen. Water will also bring about different changes in the viscosity of polymerized and 303 304 depolymerized silicate melts, which we will discuss below.

305

306 Self-diffusion of Hydrogen in Supercritical Fluids

In supercritical fluids, the transfer mechanism of H is different under different water content.
When the water content is relatively low (< 40 wt%), the transfer of H occurs mainly through the

309	exchange of H between NBO and NBO-H: NBO-H NBO \rightarrow NBO NBO-H. This is the
310	same as the transfer mechanism of H in hydrous silicate melt (Karki and Stixrude, 2010). When
311	the water content is relatively high (> 60 wt%), the main transfer mechanism of H occurs not
312	only between NBO and NBO-H, but also between NBO and H_2O_m and between different H_2O_m .
313	In this case, a typical transfer of H is carried out like this: NBO–H $H_2O_m H_2O_m NBO–H$
314	\rightarrow NBO H ₃ O H ₂ O _m NBO-H \rightarrow NBO H ₂ O _m H ₃ O NBO-H \rightarrow NBO
315	$H_2O_m \dots H_2O_m \dots NBO-H_2$. The free protons, free hydroxyls, H_3O , NBO-H ₂ , and BO-H can all
316	play a role in the transfer of H, so we can also observe a small number of these hydrogen species
317	in the supercritical fluids (Figures S2 and S3 in Supporting Information). The diffusivity
318	sequence for the supercritical SiO ₂ -H ₂ O fluids is $D_{\rm H} > D_{\rm O} > D_{\rm Si}$, and for the supercritical
319	NaAlSi ₃ O ₈ -H ₂ O fluids, on the whole, is $D_{\text{Na}} \approx D_{\text{H}} > D_{\text{O}} > D_{\text{Al}} \approx D_{\text{Si}}$. Previous studies have found
320	that in the hydrous (4.2 wt% H ₂ O) NaAlSi ₂ O ₆ melt under low pressure (< 5 GPa), $D_{\rm H} < D_{\rm Na}$
321	(Bajgain et al., 2019). This is consistent with our results. When the water content is low (e.g., <
322	20 wt% H ₂ O, depending on composition and <i>P</i> - <i>T</i> conditions), $D_{\rm H} < D_{\rm Na}$. With the increase of
323	water content, $D_{\rm H}$ will increase and approach or even exceed $D_{\rm Na}$. This is because H mainly
324	exists in the form of H_2O_m and NBO-H (Figure 3), and the self-diffusivity of NBO-H species is
325	affected by Si and O. Therefore, as the water content increases, the proportion of NBO-H
326	species decreases and the proportion of H_2O_m increases, leading to an increase in D_H that
327	approaches or even exceeds D_{Na} at higher water content.

328

329 Viscosities

330 The viscosities of the silicate- H_2O systems are closely related to their structures. From the 331 abovementioned results for the structure and transport properties, we can clearly observe the

evolution of these properties for the silicate-H₂O systems as the water content increases. For the 332 fully polymerized silicate melts, both silica and albite melts react with water and rapidly 333 decompose: Si–O–Si + H₂O \rightarrow 2Si–OH. The bridging oxygen in the silicate melt is transformed 334 into nonbridging oxygen (Figure 2). As the water content increases, the higher Q^n species 335 transition to the lower Qⁿ species during dissolution: $Q^4 \rightarrow Q^3 \rightarrow Q^2 \rightarrow Q^1 \rightarrow Q^0$ (Figure 1). 336 This process results in a decrease in viscosity and an increase in diffusivity. In the SiO₂-H₂O 337 systems, the viscosity decreases drastically in the first 30 wt% H₂O at 2600 K, and thereafter, the 338 change is slow. At 3000 K and 3500 K, a sharp drop in the viscosity occurs roughly in the first 339 40 wt% H₂O. This corresponds to the sharp drop in the proportion of O^4 species in the first 30 ~ 340 40 wt% H₂O. As the water content increases to 30 wt% (2600 K), 40 wt% (3000 K) and 40 wt% 341 (3500 K), the proportion of Q^4 species decreases to 8.0%, 3.2%, and 3.9%, respectively. This has 342 also been observed in the NaAlSi₃O₈-H₂O systems. The viscosity in the NaAlSi₃O₈-H₂O 343 systems decreases drastically in the first 40 wt% H₂O, and thereafter the change is slow (inset of 344 Figure 6b). When the water content increases to 40 wt%, the proportion of Q^4 species at 2000 K, 345 2500 K and 3000 K decreases to 8.1%, 4.9% and 5.9%, respectively. At low water content, H₂O_m 346 dissolves into the melts to form Si-OH and gradually breaks the network structure of the 347 polymerized silicate melts until Q⁴ is almost exhausted. This leads to a sharp drop in the 348 viscosity. As the water content further increases, the silicate solute continues to depolymerize, 349 that is, $Q^3 \rightarrow Q^2 \rightarrow Q^1 \rightarrow Q^0$, while the viscosity of the silicate-H₂O systems decreases slowly. 350 Due to the continuous increase in molecular water in the systems, the viscosity tends to get close 351 to the viscosity of water. The decomposition of the Q^4 species means that the three-dimensional 352 353 network structure of the polymerized silicate melts is destroyed, creating easy-to-flow partially polymerized silicate units (Bockris et al., 1955; Steele-MacInnis and Schmidt, 2014). Yuan et al. 354

(2020) found that both the ratio of NBO–H and the self-diffusion coefficient increased linearly as 355 the water content increased from 0.0 wt% to 26.7 wt%. From the Evring relation (Evring, 1982), 356 it can be speculated that the viscosity will also decrease linearly. This shows that a correlation 357 exists between NBO-H and self-diffusion coefficient/viscosity, that is linear at least for the water 358 content < 30 wt%. Why does the viscosity decrease exponentially in the SiO₂-H₂O and the 359 NaAlSi₃O₈–H₂O systems? The same phenomenon was observed in the experimental study of the 360 NaAlSi₃O₈–H₂O systems (Figure 6b) by Audétat and Keppler (2004). Here we can conclude that 361 362 the reason is that the water not only generates a large amount of NBO-H, but also converts higher Oⁿ species to lower Oⁿ species, i.e. breaking the network structure in the polymerized 363 silicate melts. Therefore, in the SiO₂-H₂O and NaAlSi₃O₈-H₂O systems, the superposition of 364 these two effects leads to a sharp decrease in viscosity when Q⁴ species decreases sharply. 365

- 366
- 367

IMPLICATIONS

The structures and transport properties of supercritical fluids are key to understanding the 368 role they play in mineralization processes at subduction zones. The speciation and transport 369 properties of the SiO₂-H₂O and NaAlSi₃O₈-H₂O systems can reflect the characteristics of the 370 silicate $-H_2O$ system with NBO/T < 1 such as basaltic and picritic melts. Our results show that in 371 supercritical fluids with high water content (> $60 \text{ wt}\% \text{ H}_2\text{O}$), network-forming elements mainly 372 exists in the form of Q^0 , Q^1 and Q^2 species. While in the supercritical fluids with low water 373 content (< 40 wt% H₂O), network-forming elements are mainly distributed in the forms of Q^1 , Q^2 374 and Q³ species (Figure 1). If the supercritical fluids are formed from depolymerized silicate 375 melts, their structures are dominated by Q^0 . Such Q^n distribution keeps the supercritical fluid rich 376 377 in silicate and at the same time makes the fluid have partially polymerized structures and thus

low viscosity and high diffusivity. Therefore, supercritical fluids can transport elements that are 378 379 hard to migrate in aqueous fluids (such as high field strength elements). The transport of dissolved species in supercritical fluids is determined by the transport properties and the 380 solubility of the species involved. Audétat and Keppler (2004) found that the viscosities of 381 382 supercritical fluids with different compositions at similar temperature and pressure are very close when measuring the viscosities of albite-H₂O systems, leucite-H₂O systems and pectolite-H₂O 383 systems. Our results also show that when the water content exceeds 20 wt%, the viscosities of 384 385 the SiO₂-H₂O systems at 3000 K are very similar to those of the NaAlSi₃O₈-H₂O systems at the same temperature (Figure S12 in Supporting Information). Although the pressures of the two 386 systems are not exactly the same, a pressure difference of less than 1 GPa has a weak effect on 387 the viscosity under high temperature conditions (Bajgain and Mookherjee, 2020; Karki et al., 388 2011). Therefore, the viscosity of supercritical fluids with different compositions at the same 389 temperature and pressure may be similar. If this is the case, the element transport ability of 390 supercritical fluids in the Earth's interior may depend more on the solubility of that element. This 391 392 problem still needs more research (especially supercritical fluids with different compositions) to confirm. 393

The next question to be solved is how do supercritical fluids transport elements that are hard to migrate in aqueous fluids? Our research indicate that the supercritical fluids have such potential, but the complexations of these elements in the supercritical fluids remain unclear. The self-diffusion coefficients of elements in the SiO_2 -H₂O and the NaAlSi₃O₈-H₂O systems are given in this work. Combining these data with future self-diffusion data at low temperatures obtained through experiments or simulations, a diffusion model for supercritical fluids can be

400	established. According to this model, we can infer the migration rate of supercritical fluid to
401	various elements under different conditions.
402	
403	ACKNOWLEDGMENTS AND FUNDING
404	This work was supported by the National Key R&D Program of China (No.
405	2018YFA0702700), the National Natural Science Foundation of China (Nos. 42003048,
406	41872041). We are grateful to the High-Performance Computing Center (HPCC) of Nanjing
407	University for performing the simulations in this paper using its blade cluster system.
408	
409	REFERENCES CITED
410 411	Allen, M.P., and Tildesley, D.J. (1989) Computer simulation of liquids. 385 p. Oxford University Press, New York.
412 413	Audétat, A., and Keppler, H. (2004) Viscosity of fluids in subduction zones. Science, 303(5657), 513-516.
414 415	— (2005) Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 232(3), 393-402.
416 417	Bajgain, S.K., and Mookherjee, M. (2020) Structure and properties of albite melt at high pressures. Acs Earth and Space Chemistry, 4(1), 1-13.
418 419 420	Bajgain, S.K., Peng, Y., Mookherjee, M., Jing, Z.C., and Solomon, M. (2019) Properties of Hydrous Aluminosilicate Melts at High Pressures. Acs Earth and Space Chemistry, 3(3), 390-402.
421 422	Bockris, J.O., Mackenzie, J.D., and Kitchener, J.A. (1955) Viscous flow in silica and binary liquid silicates. Transactions of the Faraday Society, 51(12), 1734-1748.
423 424 425	Caldeweyher, E., Ehlert, S., Hansen, A., Neugebauer, H., Spicher, S., Bannwarth, C., and Grimme, S. (2019) A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical Physics, 150(15), 154122.
426 427 428	Chen, W., Xiong, X.L., and Takahashi, E. (2021) Zircon solubility in solute-rich supercritical fluids and Zr transfer from slab to wedge in the deep subduction process. Journal of Geophysical Research: Solid Earth, 126(9), e2021JB021970.

429 430	Chen, W., Xiong, X.L., Wang, J.T., Xue, S., Li, L., Liu, X.C., Ding, X., and Song, M.S. (2018) TiO ₂ solubility and Nb and Ta partitioning in rutile-silica-rich supercritical fluid systems:						
431	Implications for subduction zone processes. Journal of Geophysical Research: Solid						
432	Earth, 123(6), 4765-4782.						
122							
433	de Koker, N., Karki, B.B., and Stixrude, L. (2013) Thermodynamics of the MgO-SiO ₂ liquid						
434	system in Earth's lowermost mantle from first principles. Earth and Planetary Science						
435	Letters, 361, 58-63.						
436	de Koker, N.P., Stixrude, L., and Karki, B.B. (2008) Thermodynamics, structure, dynamics, and						
437	freezing of Mg ₂ SiO ₄ liquid at high pressure. Geochimica et Cosmochimica Acta, 72(5),						
438	1427-1441.						
130	Dingwell D.B. Hess K.U. and Romano C. (1998) Viscosity data for hydrous peraluminous						
440	granitic melts: Comparison with a metaluminous model American Mineralogist 83(3-4)						
770 771	$236_{-}230$						
171							
442	Dingwell, D.B., Romano, C., and Hess, K.U. (1996) The effect of water on the viscosity of a						
443	haplogranitic melt under P-T-X conditions relevant to silicic volcanism. Contributions to						
444	Mineralogy and Petrology, 124(1), 19-28.						
445	Doleis, D., and Manning, C.E. (2010) Thermodynamic model for mineral solubility in aqueous						
446	fluids: theory, calibration and application to model fluid-flow systems. Geofluids, 10(1-						
447	2), 20-40.						
118	Dufils T. Sator N. and Guillot B. (2020) A comprehensive molecular dynamics simulation						
440 110	study of hydrous magmatic liquids. Chemical Geology 533, 119300						
779	study of hydrous magmatic inquids. Chemical Geology, 555, 117500.						
450	Eyring, H. (1982) Statistical mechanics and dynamics. Wiley, New York.						
451	Flyvbjerg, H., and Petersen, H.G. (1989) Error-estimates on averages of correlated data. Journal						
452	of Chemical Physics, 91(1), 461-466.						
152	Chosh D.B. and Karki B.B. (2011) Diffusion and viscosity of Ma-SiO. liquid at high pressure						
433	from first principles simulations. Geochimica et Cosmochimica Acta 75(16) 4591 4600						
434	from first-principles simulations. Geochimica et Cosmochimica Acta, 75(10), 4591-4000.						
455	Gillan, M.J., Alfe, D., and Michaelides, A. (2016) Perspective: How good is DFT for water?						
456	Journal of Chemical Physics, 144(13).						
457	Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010) A consistent and accurate ab initio						
458	parametrization of density functional dispersion correction (DFT-D) for the 94 elements						
459	H-Pu. Journal of Chemical Physics, 132(15).						
460	Grimme S. Ehrlich S. and Goerigk I. (2011) Effect of the damning function in dispersion						
461	corrected density functional theory. Journal of Computational Chemistry 32(7) 1456-						
462	1465.						

463 464 465	Harris, K.R., and Woolf, L.A. (2004) Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. Journal of Chemical and Engineering Data, 49(4), 1064-1069.
466 467	Hermann, J., Zheng, YF., and Rubatto, D. (2013) Deep fluids in subducted continental crust. Elements, 9(4), 281-287.
468 469 470	Hunt, J.D., and Manning, C.E. (2012) A thermodynamic model for the system SiO ₂ -H ₂ O near the upper critical end point based on quartz solubility experiments at 500-1100 °C and 5-20 kbar. Geochimica et Cosmochimica Acta, 86, 196-213.
471 472 473	Karki, B.B., Bohara, B., and Stixrude, L. (2011) First-principles study of diffusion and viscosity of anorthite (CaAl ₂ Si ₂ O ₈) liquid at high pressure. American Mineralogist, 96(5-6), 744-751.
474 475 476	Karki, B.B., Ghosh, D.B., and Bajgain, S.K. (2018) Simulation of silicate melts under pressure.In Y. Kono, and C. Sanloup, Eds. Magmas Under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts, p. 419-453. Elsevier.
477 478	Karki, B.B., and Stixrude, L.P. (2010) First-principles study of enhancement of transport properties of silica melt by water. Physical Review Letters, 104(21).
479 480	Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.C. (1962) The upper three-phase region in the system SiO ₂ -H ₂ O. American Journal of Science, 260(7), 501-521.
481 482 483	Kobsch, A., and Caracas, R. (2020) The critical point and the supercritical state of alkali feldspars: Implications for the behavior of the crust during impacts. Journal of Geophysical Research: Planets, 125(9), e2020JE006412.
484 485 486	Kresse, G., and Furthmuller, J. (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50.
487 488	— (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186.
489 490	Kresse, G., and Hafner, J. (1993) Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561.
491 492	— (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous- semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269.
493 494	Li, Y., Pan, H., Liu, Q., Ming, X., and Li, Z. (2022) Ab initio mechanism revealing for tricalcium silicate dissolution. Nature Communications, 13(1), 1253.
495 496	Makhluf, A.R., Newton, R.C., and Manning, C.E. (2020) Experimental investigation of phase relations in the system NaAlSi ₃ O ₈ -H ₂ O at high temperatures and pressures: liquidus

497 498	relations, liquid-vapor mixing, and critical phenomena at deep crust-upper mantle conditions. Contributions to Mineralogy and Petrology, 175(8).				
499 500	Manning, C.E. (2004) The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223(1-2), 1-16.				
501 502	— (2018) Fluids of the lower crust: Deep is different. Annual Review of Earth and Planetary Sciences, 46, 67-97.				
503 504 505	Mibe, K., Chou, I.M., and Bassett, W.A. (2008) In situ Raman spectroscopic investigation of the structure of subduction-zone fluids. Journal of Geophysical Research: Solid Earth, 113(B4).				
506 507 508 509	Mibe, K., Kanzaki, M., Kawamoto, T., Matsukage, K.N., Fei, Y.W., and Ono, S. (2004) Determination of the second critical end point in silicate-H ₂ O systems using high- pressure and high-temperature X-ray radiography. Geochimica et Cosmochimica Acta, 68(24), 5189-5195.				
510 511	— (2007) Second critical endpoint in the peridotite-H ₂ O system. Journal of Geophysical Research: Solid Earth, 112(B3), 8.				
512 513 514	Mibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y.W., and Ono, S. (2011) Slab melting versus slab dehydration in subduction-zone magmatism. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8177-8182.				
515 516	Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.				
517 518 519	Mysen, B. (2010) Structure of H ₂ O-saturated peralkaline aluminosilicate melt and coexisting aluminosilicate-saturated aqueous fluid determined in-situ to 800 °C and 800 MPa. Geochimica et Cosmochimica Acta, 74(14), 4123-4139.				
520 521 522	Mysen, B.O. (2007) The solution behavior of H ₂ O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochimica et Cosmochimica Acta, 71(7), 1820-1834.				
523 524 525 526	Mysen, B.O., Mibe, K., Chou, I.M., and Bassett, W.A. (2013) Structure and equilibria among silicate species in aqueous fluids in the upper mantle: Experimental SiO2-H ₂ O and MgO-SiO ₂ -H ₂ O data recorded in situ to 900 °C and 5.4 GPa. Journal of Geophysical Research: Solid Earth, 118(12), 6076-6085.				
527 528 529	Newton, R.C., and Manning, C.E. (2008) Thermodynamics of SiO ₂ -H ₂ O fluid near the upper critical end point from quartz solubility measurements at 10 kbar. Earth and Planetary Science Letters, 274(1-2), 241-249.				
530 531 532	Ni, H.W., Zhang, L., Xiong, X.L., Mao, Z., and Wang, J.Y. (2017) Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167, 62-71.				

533 534	Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868.					
535 536 537	Romano, C., Poe, B., Mincione, V., Hess, K.U., and Dingwell, D.B. (2001) The viscosities of dry and hydrous XAlSi ₃ O ₈ (X = Li, Na, K, Ca _{0.5} , Mg _{0.5}) melts. Chemical Geology, 174(1- 3), 115-132.					
538 539	Shen, A.H., and Keppler, H. (1997) Direct observation of complete miscibility in the albite–H ₂ O system. Nature, 385(6618), 710-712.					
540 541 542	Spandler, C., Mavrogenes, J., and Hermann, J. (2007) Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chemical Geology, 239(3-4), 228-249.					
543 544 545	Spiekermann, G., Wilke, M., and Jahn, S. (2016) Structural and dynamical properties of supercritical H ₂ O-SiO ₂ fluids studied by ab initio molecular dynamics. Chemical Geology, 426, 85-94.					
546 547 548	Stalder, R., Ulmer, P., Thompson, A.B., and Gunther, D. (2000) Experimental approach to constrain second critical end points in fluid/silicate systems: Near-solidus fluids and melts in the system albite-H ₂ O. American Mineralogist, 85(1), 68-77.					
549 550 551	Steele-MacInnis, M., and Schmidt, C. (2014) Silicate speciation in H ₂ O-Na ₂ O-SiO ₂ fluids from 3 to 40 mol% SiO ₂ , to 600 °C and 2 GPa. Geochimica et Cosmochimica Acta, 136, 126-141.					
552 553 554	Sun, Y., Zhou, H., Liu, X., Yin, K., and Lu, X. (2020) Physical state of an early magma ocean constrained by the thermodynamics and viscosity of iron silicate liquid. Earth and Planetary Science Letters, 551, 116556.					
555 556 557	Sun, Y., Zhou, H., Yin, K., Zhao, M., Xu, S., and Lu, X. (2018) Transport properties of Fe ₂ SiO ₄ melt at high pressure from classical molecular dynamics: Implications for the lifetime of the magma ocean. Journal of Geophysical Research: Solid Earth, 123(5), 3667-3679.					
558 559	Thomas, R., Davidson, P., and Appel, K. (2019) The enhanced element enrichment in the supercritical states of granite-pegmatite systems. Acta Geochimica, 38(3), 335-349.					
560 561 562	Wang, Q.X., Zhou, D.Y., Li, W.C., and Ni, H.W. (2021) Spinodal decomposition of supercritical fluid forms melt network in a silicate-H2O system. Geochemical Perspectives Letters, 18, 22-26.					
563 564 565	Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L., and Sutton, S.R. (2014) Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5(1), 3241.					
566 567	Xiong, X.L., Keppler, H., Audetat, A., Gudfinnsson, G., Sun, W.D., Song, M.S., Xiao, W.S., and Yuan, L. (2009) Experimental constraints on rutile saturation during partial melting of					

568 569	metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 94(8-9), 1175-1186.
570 571	Yang, F., Hess, K.U., Unruh, T., Mamontov, E., Dingwell, D.B., and Meyer, A. (2017) Intrinsic proton dynamics in hydrous silicate melts as seen by quasielastic neutron scattering at
572	elevated temperature and pressure. Chemical Geology, 461, 152-159.
573	Yuan, L., Steinle-Neumann, G., and Suzuki, A. (2020) Structure and density of H2O-rich
574 575	Mg ₂ SiO ₄ melts at high pressure from ab initio simulations. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB020365.
576	Zotov, N., and Keppler, H. (2002) Silica speciation in aqueous fluids at high pressures and high
577	temperatures. Chemical Geology, 184(1-2), 71-82.
578	
519	
580	FIGURE CAPTIONS
581	Figure 1. Fraction of Q ⁿ species in the SiO ₂ -H ₂ O systems and the NaAlSi ₃ O ₈ -H ₂ O systems at
582	different temperatures as a function of water content. The green curves represent the average n
583	for Q^n species, and the values correspond to the right y-axis in green. The filled triangles in (b)
584	are the calculated Q^0 , Q^1 , Q^2 , Q^3 and Q^4 species (legend in the same color) in the SiO ₂ -H ₂ O
585	system with 23.1 wt% H ₂ O at 3000 K (Spiekermann et al., 2016), and the average n for Q ⁿ is

shown by green filled diamond. The dashed curves in (**f**) represent the experimental Q^1 , Q^2 , Q^3

and Q⁴ species in the hydrous [Na₂Si₄O₉–Na₂(NaAl)₄O₉] system with Al/(Al+Si) = 0.25 (Mysen,

588 2007). The filled triangles in (f) are the FPMD results of anhydrous (2.28 GPa) and hydrous (4.2

589 wt% H₂O, 2.03 GPa) NaAlSi₂O₆ melt at 3000 K (Bajgain et al., 2019).

590

Figure 2. Oxygen speciation and (oxygen species)/T with increasing water content. (a) Oxygen speciation in the SiO₂–H₂O systems at 2600 K (blue symbols), 3000 K (red symbols) and 3500 K (green symbols). The squares, diamonds and circles represent bridging oxygen (BO), nonbridging oxygen (NBO) and other oxygen species (FO, OH, H₃O, and H₂O_m), respectively.

(b) NBO/T in the SiO₂-H₂O systems. (c) Oxygen speciation in the NaAlSi₃O₈-H₂O systems at 595 2000 K (vellow symbols), 2500 K (blue symbols) and 3000 K (red symbols). (d) NBO/T in the 596 NaAlSi₃O₈-H₂O systems. The curves in (a) and (c) show the connecting lines for the 3000 K 597 data in the corresponding systems. The lines in (b) and (d) show linear fits to the data at all 598 temperatures. The open symbols in (a) and (b) are the FPMD results of the SiO_2-H_2O system 599 with 23.1 wt% H₂O at 3000 K (Spiekermann et al., 2016). The larger open symbols in (c) and (d) 600 are the FPMD results of the NaAlSi₃O₈ melt from Bajgain and Mookherjee (2020) at 2500 K 601 602 (2.78 GPa) and 3000 K (3.31 GPa). The smaller open symbols in (c) and (d) are the FPMD results of anhydrous and hydrous (4.2 wt% H₂O) NaAlSi₂O₆ melt at 2500 K (3.21 GPa, 2.72 GPa) 603 and 3000 K (2.28 GPa, 2.03 GPa) obtained by Bajgain et al. (2019). 604

605

Figure 3. Speciation of hydrogen in the (a) SiO_2-H_2O and (b) NaAlSi₃O₈-H₂O systems. The abundance of H_2O_m species = the number of H_2O_m species divided by the total number of all types of hydrogen species.

609

Figure 4. Water content and temperature dependence of the self-diffusion coefficients for Si, O and H in the SiO₂–H₂O systems. The FPMD results for hydrous (with 8.25 wt% H₂O) SiO₂ liquid (Karki and Stixrude, 2010) at 2500 K (~ 0 GPa), 3000 K (~ 4.08 GPa) and 3500 K (~ 0.61 GPa) are included for comparison.

614

Figure 5. Water content, and temperature dependence of the self-diffusion coefficients (*D*) for Na, Al, Si, O and H in the NaAlSi₃O₈–H₂O systems. The FPMD results of the NaAlSi₃O₈ melt

from Bajgain and Mookherjee (2020) at 2500 K (2.78 GPa) and 3000 K (3.31 GPa) and that from Kobsch and Caracas (2020) at 3000 K (\sim 4.8 GPa) are included for comparison.

619

Figure 6. Viscosities of the SiO₂-H₂O and NaAlSi₃O₈-H₂O systems. The error bars indicate the 620 mean absolute error. (a) The viscosities of the SiO_2-H_2O systems as a function of water content. 621 The calculated viscosities (n) of the SiO₂-H₂O systems in this study at 2600 K (blue filled 622 squares), 3000 K (red filled squares) and 3500 K (green filled squares) are shown. The FPMD 623 results for hydrous (with 8.25 wt% H₂O) SiO₂ liquid (Karki and Stixrude, 2010) at 3000 K (~ 624 625 4.08 GPa) and 3500 K (~ 0.61 GPa) are included for comparison. (b) The viscosities of the NaAlSi₃O₈-H₂O systems as a function of water content. The calculated viscosities of the 626 NaAlSi₃O₈-H₂O systems in this study at 2000 K (yellow filled circles), 2500 K (blue filled 627 circles) and 3000 K (red filled circles) are shown. The FPMD results for the NaAlSi₃O₈ melt 628 (Bajgain and Mookherjee, 2020) at 2500 K (2.78 GPa) and 3000 K (3.31 GPa) are included for 629 comparison. The black dashed line and the blue dashed line show the results obtained from the 630 experimental model of Audétat and Keppler (2004) at 2000 K and 2500 K, respectively. The 631 insets show our viscosity data plotted with a linear y-axis. The corresponding stress ACF can be 632 found in Figures S8 and S9 in Supporting Information. 633

634

Figure 7. Snapshot of the SiO₂–H₂O (left, 2600 K) and NaAlSi₃O₈–H₂O (right, 2000 K) systems with 50 wt% H₂O displayed by the 3D visualization program VESTA (Momma and Izumi, 2011). In addition to monomers, supercritical fluids contain various partially polymerized silicate units, including dimers, trimers and more polymerized species such as pentamers.

639

640

TABLES

641 **Table 1**. The calculated pressures of SiO_2 -H₂O systems. The error bars are calculated using the

642

method of Flyvbjerg and Petersen (1989).

$II \cap (wt0/)$	System	Number	Pressure (GPa)		
$H_2O(W170)$		of atoms	2600 K	3000 K	3500 K
0.00	60 SiO ₂	180		3.14 ± 0.13	
10.17	45 SiO ₂ + 17 H ₂ O	186	3.25 ± 0.09	3.47 ± 0.09	3.65 ± 0.06
19.99	36 SiO ₂ + 30 H ₂ O	198	3.49 ± 0.07	3.62 ± 0.08	4.07 ± 0.06
30.22	27 SiO ₂ + 39 H ₂ O	198	3.25 ± 0.05	3.55 ± 0.05	4.03 ± 0.05
40.16	21 SiO ₂ +47 H ₂ O	204	3.24 ± 0.05	3.57 ± 0.06	4.02 ± 0.04
49.99	15 SiO ₂ + 50 H ₂ O	195	3.24 ± 0.04	3.64 ± 0.05	4.12 ± 0.04
59.17	12 SiO ₂ + 58 H ₂ O	210		3.57 ± 0.04	
70.94	7 SiO ₂ + 57 H ₂ O	192		3.66 ± 0.04	

643

644 **Table 2**. The calculated pressures for the NaAlSi₃O₈–H₂O systems.

H ₂ O	System	Number		Pressure (GPa)	
(wt%)	System	of atoms	2000 K	2500 K	3000 K
0.00	16 NaAlSi ₃ O ₈	208			3.03 ± 0.09
10.27	$12 \text{ NaAlSi}_3\text{O}_8 + 20 \text{ H}_2\text{O}$	216	1.92 ± 0.07	2.57 ± 0.09	3.06 ± 0.07
20.49	$8 NaAlSi_3O_8 + 30 H_2O$	194	2.09 ± 0.07	2.50 ± 0.07	3.01 ± 0.05
30.04	$8 \text{ NaAlSi}_{3}\text{O}_{8} + 50 \text{ H}_{2}\text{O}$	254	1.94 ± 0.06	2.47 ± 0.06	3.03 ± 0.05
40.72	$4 \text{ NaAlSi}_{3}\text{O}_{8} + 40 \text{ H}_{2}\text{O}$	172	2.03 ± 0.06	2.52 ± 0.05	3.07 ± 0.05
50.75	$4 \text{ NaAlSi}_{3}\text{O}_{8} + 60 \text{ H}_{2}\text{O}$	232	1.88 ± 0.04	2.41 ± 0.04	2.92 ± 0.04
60.18	$4 \text{ NaAlSi}_{3}\text{O}_{8} + 88 \text{ H}_{2}\text{O}$	316			2.86 ± 0.04

645

646

FIGURES

Figure 1

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8724. http://www.minsocam.org/ **Figure 4** _____ 100 100 -**(a) (b)** (c) 10 $m^{2/s}$) $D_{\rm Si} (10^{-9} {\rm m}^2/{\rm s})$ m^2/s) 0 - (10^{-9}) 10^{-9} 10 2600 K (This study) \smile D_0 Η 3000 K (This study) \Box 3500 K (This study) 0.1 2500 K, Karki & Stixrude (2010) 3000 K, Karki & Stixrude (2010) 0 3500 K, Karki & Stixrude (2010) \diamond 0.01 0.1 $+\tau\tau$ 10 20 30 40 50 60 70 10 20 30 50 70 10 20 30 40 60 wt% H₂O wt% H₂O Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

