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Abstract 29 

 30 

 Impact events modify and leave behind a complex history of rock metamorphism on 31 

terrestrial planets. Evidence for an impact event may be recorded in physical changes to minerals, 32 

such as mineral deformation and formation of high-P/T polymorphs, but also in the form of 33 

chemical fingerprints, such as enhanced elemental diffusion and isotopic mixing. Here we 34 

explore laboratory shock-induced physical and chemical changes to zircon and feldspar, the 35 

former of which is of interest because its trace elements abundances and isotope ratios are used 36 

extensively in geochemistry and geochronology. To this end, a granular mixture of Bishop Tuff 37 

sanidine and Kuehl Lake zircon, both with well-characterized Pb isotope compositions, was 38 

prepared and then shocked via a flat plate accelerator. The peak pressure of the experiment, as 39 

calculated by the impedance matching method, would be ~24 GPa although a broader range of 40 

P-T conditions is anticipated due to starting sample porosity. Unshocked and shocked materials 41 

were characterized via Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction 42 

(EBSD), and Raman spectroscopy. These methods show that the starting zircon material had 43 

abundant metamict regions, and the conversion of the feldspar to glass in the post-shock material. 44 

Analyses of the shocked product also yielded multiple occurrences of the high pressure ZrSiO4 45 

polymorph reidite, with some domains up to 300 μm across. The possibility of U-Pb system 46 

disturbance was evaluated via Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry 47 

(LA-ICP-MS) and Secondary Ion Mass Spectrometry (SIMS). The isotopic data reveal that 48 

disturbance of the U-Pb geochronometer in the reidite was minimal (<2% for the main U-Pb 49 

geochronometers). To better constrain the P-T conditions during the shock experiment, we 50 

complement impedance matching pressure calculations with iSALE2D impact simulations. The 51 
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simulated results yield a range of P-T conditions experienced during the experiment and show 52 

that much of the sample may have reached >30 GPa, which is consistent with formation of 53 

reidite. In the recovered shocked material, we identified lamellae of reidite, some of which 54 

interlock with zircon lamellae. Reidite {112} twins were identified, which we interpret to have 55 

formed to reduce stress between the crystal structure of the host zircon and reidite. These two 56 

findings support the interpretation that shear transformation enabled the transition of zircon to 57 

reidite. The size and presence of reidite found here indicate that this phase is probably common 58 

in impact-shocked crustal rocks that experienced ~25 to ~35 GPa, especially when the target 59 

material has porosity. Additionally, shock loading of the zircon and transformation to reidite at 60 

these pressures in porous materials is unlikely to significantly disturb the U-Pb system in zircon 61 

and that the reidite inherits the primary U and Pb elemental and isotopic ratios from the zircon. 62 

 63 

Keywords: impact, flat-plate shock experiments, zircon, reidite, sanidine, U-Pb dating 64 

 65 

Introduction 66 

 67 

Impact craters are common features of terrestrial planets and moons and are even more 68 

common than just observation indicates. Craters may be overprinted by later impacts or 69 

destroyed by geodynamic/hydrologic activity on bodies like Earth. Thus, in addition to searching 70 

for geomorphic evidence of past impact craters, these challenges have led researchers to explore 71 

in detail the chemical and mineralogical record of material affected by impact processing. To 72 

confirm an impact crater origin, detection of shock metamorphosed material at the impact site or 73 

in related ejecta, or the detection of meteoritic material is usually required (French and Koeberl, 74 
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2010). Minerals from impacted terrains may show chemical or structural changes due to shock, 75 

where information preserved in these features can be used to study the details of the 76 

hypervelocity event. The microstructures detected in shocked zircon at the Vredefort Dome, for 77 

example, help to understand the shock loading experienced during this impact (e.g. Moser et al., 78 

2011; Erickson et al., 2013). Preserved mineralogic characteristics include shock metamorphism-79 

induced structural changes, such as transition of zircon to the high-pressure polymorph reidite 80 

(Glass and Liu, 2001), or chemical changes such as increased element mobility (e.g. Reddy et al., 81 

2016) that could disturb a sample’s U-Pb isotope system.  82 

 83 

Reidite, a high-pressure polymorph of zircon, is ~10% denser than zircon (Kusaba et al., 84 

1986) with a scheelite-type structure (Liu, 1979) and has been identified at terrestrial impact 85 

structures and ejecta deposits. For example, it was identified in an Eocene impact ejecta layer 86 

considered likely to have been sourced from the Chesapeake Bay impact structure (Glass and Liu 87 

2001; Glass et al., 2002; Wittmann et al., 2006) A ZrSiO4 grain found in the ejecta was about 88 

90% reidite and 10% relict zircon (Cavosie et al., 2021). Reidite has also been identified at the 89 

Ries impact structure (Gucsik et al., 2004a; Erickson et al., 2017), the Xiuyan impact structure 90 

(Chen et al., 2013), the Rock Elm impact structure (Cavosie et al., 2015), the Woodleigh impact 91 

structure (Cox et al., 2018), and within the Stac Fada Member, helping to confirm an impact 92 

origin for the deposit (Reddy et al., 2015). The phase has even been discovered in a lunar 93 

meteorite (Xing et al., 2020). Reidite has been produced in the laboratory via both static loading 94 

(Reid and Ringwood, 1969) and shock loading experiments (Kusaba et al., 1986, Leroux et al., 95 

1999) but at different pressures for each kind of experiment. The exact mineral transformation 96 

mechanism relevant for zircon and reidite is further explored in the discussion. The first 97 
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hydrostatic experiments determined that zircon is fully converted to a scheelite-type phase (i.e. 98 

reidite) around 900 ℃ (1173 K) and 12 GPa (Reid and Ringwood 1969). Experiments done with 99 

a diamond anvil cell (DAC) apparatus produced reidite at 19.7 GPa (Westenren et al., 2004) or 100 

~23 GPa (Knittle and Williams, 1993), whereas thermodynamic calculations predict the 101 

transition lies between ~8 and 12 GPa (Akaogi et al., 2018). Ono et al. (2004) produced reidite at 102 

8.7 ± 1 GPa and 927 ℃ (1200 K) using a multi-anvil press. However, shock-loading experiments 103 

have not produced reidite below ~30 GPa (Kusaba et al., 1985). Leroux et al. (1999) studied 104 

zircon experimentally shocked to peak pressures of 20, 40 and 60 GPa. Their 20 GPa experiment 105 

showed only deformation effects, their 40 GPa experiment showed partial conversion to reidite, 106 

and at 60 GPa full conversion to reidite was detected. They also identify twins with (112) habit 107 

plane for the reidite material in their 40 and 60 GPa experiments. Reversion of reidite to zircon at 108 

1 atm was shown to occur after samples reached 1200 ℃ (1473 K) with a heating rate of 109 

40 ℃/min (Kusaba et al., 1985).  110 

 111 

Physical changes of shocked zircon (e.g., phase transitions and twinning) can be 112 

accompanied by chemical disturbances. Uranium or Pb mobility due to impact processes 113 

(whatever the physical mechanism) could alter the apparent U-Pb crystallization age of a mineral. 114 

Some zircons taken from the Vredefort dome, for example, appear to have lost Pb and these 115 

grains have possibly experienced shock-related age resetting (Wielicki and Harrison, 2015; 116 

Moser et al., 2011; Cavosie et al., 2016). Vredefort material containing zircon from around 25 117 

km from the center of the dome was not reset in age, whereas zircon from within 15 km dome 118 

center did have its age disrupted, with some of this driven by Pb diffusion along impact 119 

generated defects (Moser et al., 2011). The extent of Pb loss experienced in Vredefort zircons is 120 
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related to their shock morphology (Moser, 1997; Moser et al. 2011). Likewise, zircons derived 121 

from ejecta related to the Chicxulub impact event have shock features and isotopic resetting 122 

(Krogh et al., 1993) and plot on a mixing line between the time of the impact and the age of the 123 

basement rocks (Krogh et al., 1993). Krogh et al. (1993) also found that the degree of isotopic 124 

resetting in the zircons was related to their shock morphology, with the more shocked material 125 

plotting closer to the time of the impact event. More recently the U-Pb systematics of shocked 126 

zircons in Chicxulub’s peak ring have been characterized by Rasmussen et al. (2019). While the 127 

zircons preserved U-Pb ages from Paleozoic all the way to the time of the impact, highly 128 

metamict regions in their fractured zircons preserved an age identical, within uncertainty, to the 129 

time of the Chicxulub impact itself.  For Chicxulub zircons, the effective shock pressure 130 

experienced by zircons has been correlated to the density of their mineral hosts. Mineral hosts 131 

with densities with <3 g/cm3 such as quartz or feldspar could amplify the shock pressure of 17.5 132 

GPa experienced by a zircon to ~24 GPa (Wittmann et al., 2021). 133 

 134 

Knowledge of the characteristics of impact shocked material will enable a better 135 

understanding of impact ages, and the changing impact flux through the evolution of the Solar 136 

System (e.g. Moser et al., 2019). This is particularly significant for extraterrestrial materials of 137 

which there are limited samples, and which often lack petrologic context. For example, partial Pb 138 

loss and variability, possibly induced by impacts, may contribute to the age spectrum of lunar 139 

zircons (Crow et al., 2017; Thiessen et al., 2018). Some lunar zircons, due to impact-related 140 

deformation, may have experienced Pb-loss or resetting of the U-Pb system associated with an 141 

impact-related thermal pulse (Pidgeon et al., 2007; Nemchin et al., 2009; Bellucci et al., 2016).  142 

The range in U-Pb ages for lunar zircons has been used to infer an impact event at ~4.2 Ga 143 
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(Zhang et al., 2012; Thiessen et al., 2018) and clustering of the lunar zircon 207Pb/206Pb ages at 144 

other specific dates before 4.0 Ga has suggested the possibility of other large impacts at various 145 

points in the evolution of the Moon (Hopkins and Mojzsis, 2015; Crow et al., 2017; Trail et al., 146 

2020). Therefore, to extract accurate information out of U-Pb ages from ancient extraterrestrial 147 

zircons, a robust understanding of how shock affects Pb isotope mobility in zircon is 148 

fundamental. Here, we report the results of a mixture of sanidine and zircon —each with distinct 149 

Pb isotopic compositions— experimentally shocked via flat-plate accelerator. We identify the 150 

high-pressure polymorph of zircon, reidite in our post-shock material and analyze it from 151 

chemical and structural perspectives. For U-Pb geochronometers in reidite, we find larger 152 

variations in the measurements but limited difference when compared to the unshocked intact 153 

zircon. The average SIMS measurements of the U-Pb and Pb-Pb are consistently lower than for 154 

the zircon but never by more than 2% from that of the U-Pb systematics of the host zircon. 155 

Statistical tests indicate there is no evidence that the ages and U-Pb and Pb-Pb ratios are drawn 156 

from different distributions. Additionally, no contribution of Pb from the feldspar to the reidite 157 

grain is found. 158 

 159 

Materials and methods 160 

Starting materials 161 

 162 

A syenitic rock was sourced from near Kuehl Lake (KL), Ontario, Canada with large 163 

zircons up to ~1 cm measured along the c-axis. One of these zircon grains was extracted for use 164 

in the shock experiment. The KL region is the source of the well-known 91500 zircon standard 165 

that been extensively characterized for trace element contents and isotope ratios (Wiedenbeck et 166 
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al., 1995). We refer to the zircon material used in this experiment as KL zircon, denoting its 167 

provenance. We also obtained LV51 sanidine (KAlSi3O8) from the Bishop Tuff (BT) to be 168 

shocked along with the zircon material. This material has been well characterized with Pb 169 

isotopic analyses yielding a mean 207Pb/206Pb of 0.81813±1.2×10-5 (the LV51 material used here 170 

is from the same hand sample as Simon et al., 2007). The Bishop Tuff is ca. 767 ka as obtained 171 

by zircon U-Pb geochronology and consistent with Ar-Ar dates from sanidine (Mark et al., 2017, 172 

Crowley et al., 2007). Both materials were individually crushed in a mortar and pestle and sieved 173 

to grain sizes between 125 to 250 μm using a mesh net sieve. The experiment used a mixture of 174 

97 wt% sanidine, and 3 wt% zircon or approximately 0.155 g sanidine, and 0.005 g zircon.  175 

 176 

Flat-plate impact experiment and P-T modeling 177 

 178 

The mixed material was shocked at NASA Johnson Space Center (JSC) using the flat 179 

plate accelerator in the Experimental Impact Laboratory. A stainless-steel target assembly was 180 

produced with a sample well with a 1 cm diameter and 0.7 mm depth. The densities and amount 181 

of zircon and sanidine materials used and the volume of the sample well imply the pre-impact 182 

experiment porosity was ~70%, similar to estimates for the upper layer of lunar regolith (~83%; 183 

Hapke and Sato, 2016). The flyer plate was ~20 mm in diameter, ~2 mm thick and made of 184 

stainless steel. The blast chamber holding the sample target of the flat plate accelerator was 185 

evacuated to 143 mTorr. The target pressure for the shock-loading experiment was 25 GPa. 186 

Based on the final measured velocity of the flyer plate (1.132 km/s) and impedance matching 187 

calculations (Gibbons and Ahrens, 1971; Gibbons, 1974), the peak sample pressure would have 188 

been ~23.5 GPa, if the sample did not have high porosity. Post-experiment grain fragments were 189 
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mounted in epoxy, which was polished with sandpaper, 1 μm alumina, and finished with a 50 nm 190 

colloidal silica dispersion. 191 

 192 

The peak pressure experienced during a flat-plate accelerator experiment can be 193 

calculated using the impedance matching method if the Hugoniot of the flyer plate is known 194 

(Gibbons, 1974) but there are two limitations. First, it does not account for the target material 195 

being porous. Second, it does not provide information on the temperatures the sample 196 

experienced. Porous (granular) samples shocked via flat-plate accelerator typically see shock 197 

related deformation features and melting at lower pressures (as calculated by the impedance 198 

matching method) than fully crystalline materials. This was characterized by a campaign that 199 

shocked both crystalline lunar basalt discs (Schaal and Hörz, 1977) and granular lunar basalt 200 

sieved to different grain sizes (Schaal et al., 1979). Therefore, we also modeled the experiment 201 

computationally using iSALE2D to elucidate the P-T conditions that the sample experienced. 202 

The iSALE2D software package (Wünnemann et al., 2006) based on the SALE hydrocode 203 

(Amsden et al., 1980) was used to simulate the conditions of the impact shock flat-plate 204 

accelerator experiment. Measuring P-T conditions in the simulation was done by using tracer 205 

particles which can record P-T and other variables for each timestep with one timestep being 206 

equal to 0.1 µs in this simulation. Additional information on the methods and parameters used to 207 

generate the simulation are available in the supplemental online material (SOM). We compare 208 

computational P-T results from the simulation with our post-shock experiment mineralogy. Some 209 

amplification of the effective shock pressure experienced by the zircon is expected since the 210 

zircon material is being hosted in a lower-density feldspar (Wittmann et al., 2021). 211 

 212 
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Analytical strategy 213 

 214 

 Pre- and post-shock material was analyzed via SEM, EBSD, Transmission EBSD, Raman 215 

spectroscopy, LA-ICP-MS, and SIMS. These techniques were used to characterize crystallinity 216 

and structure and to investigate the material for chemical (e.g. Pb isotopic) changes between the 217 

unshocked and post-shock material. Details on the methods and parameters for each type of 218 

analyses conducted can be found in the SOM. For averaged datasets, errors are reported as 2 219 

times the propagated standard error (s.e.) of the average. If only one datapoint was analyzed for a 220 

particular dataset, then as 2 times the s.e. of that individual distribution. Uranium-Pb concordia 221 

diagrams were generated with the Isoplot® software package (Ludwig, 2003).  222 

 223 

Results 224 

SEM observations  225 

 226 

Backscattered electron (BSE) images of the shocked product show evidence for melting of 227 

the feldspar, and fusion with zircon to a more cohesive material (Figure 1) than the granular pre-228 

shock material. To make referencing our experimental products easier, we refer to the ZrSiO4 229 

pictured at the large upper right backscatter bright region in Figure 1a as grain A, the lower left 230 

backscatter bright region in Figure 1b as grain B, and the grain pictured in Figure 1c as grain C. 231 

Inspection of these SEM images shows other modifications from the experiment that occurred; 232 

fused zircon-sanidine regions of the sample, for instance, contain a darker region (seen in Figure 233 

1a) that appears to be enriched in Si. Other SEM images including unshocked sanidine and 234 

unshocked zircon can be found in the SOM. Certain BSE bright points can be seen in the 235 
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shocked zircon product (see Figure 1b). These were identified as U-Th oxides and can be found 236 

in unshocked starting materials as well, so they represent a phase that survived the shock 237 

experiment. A close-up of this U-Th material located on shocked ZrSiO4 identified as grain B is 238 

presented in the SOM with an energy dispersive X-ray spectroscopy (EDS) chemical analysis.  239 

 240 

Raman spectroscopy 241 

 242 

Raman spectroscopy enables phase identification and broad characterization of damage to 243 

crystal structures. The Raman analysis on unshocked sanidine spectrum shows Raman bands at 244 

480 cm-1 or 515 cm-1 (Figure 2a bottom spectrum). Feldspars can be distinguished by a strong 245 

band from 500 to 515 cm-1 with the position varying systematically depending on feldspar 246 

composition (Mernagh, 1991). A 514 cm-1 position is a good indication of sanidine. Post-impact 247 

“sanidine” shows a smooth spectrum indicating that the crystal structure was amorphized into 248 

diapletic glass (Ostertag, 1983; Figure 2a top spectrum). Since this material is derived from the 249 

LV51 sanidine but the Raman analyses indicates that post-experiment it does not possess a 250 

sanidine crystal structure, it is hereafter referred as shocked KAlSi3O8. In Figure 2b the bottom 251 

spectrum (black line) from the pre-shock intact zircon shows prominent zircon bands. Major 252 

bands at 439 cm -1, 974 cm-1, 1008 cm-1, which are related to the stretching and vibrational 253 

modes of SiO4 in zircon, are present (Gucsik et al., 2004b) Additionally there are bands for this 254 

spectrum near 356 cm -1, 225 cm -1, and 202 cm -1 which are related to lattice modes of zircon 255 

(Gucsik, 2007). The top spectrum in Figure 2b (green line) was collected from grain A. This 256 

material shows bands that distinguish it as reidite. The bands at 298 cm-1, 327 cm-1, 407 cm-1 are 257 

consistent with lattice vibrational modes of ZrSiO4 but with a scheelite-type structure. 258 
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Additionally, an identifiable band near 847 cm-1 is related to a strain mode of reidite (Gucsik, 259 

2007).  260 

 261 

A Raman spectral map (Figure 3) of a sectioned half of the unshocked starting zircon grain 262 

suggests portions of this grain are metamict. This is probably due to radiation damage 263 

accumulated from high U-Th oxide material.  Distinct regions on the unshocked zircon can be 264 

identified: intact zircon material (blue, Figure 3); partially metamict material reflecting a 265 

mixture of a glassy phase and a zircon phase (green, Figure 3); and amorphous ZrSiO4 glass 266 

containing no indication of zircon structure (red, Figure 3). Additionally, the peak near 1008 cm-267 

1 (i.e. the B1g, ν3(SiO4) band) was fitted for the spectra from the intact zircon and more metamict 268 

ZrSiO4 phase in Figure 3C to get FWHM values. Intact zircon material had a FWHM of 7.8 ± 269 

0.2 cm-1 while the metamict material had a 15.4 ± 1.8 cm-1. This increased value demonstrates 270 

the broadening of the Raman spectral band in more metamict ZrSiO4 material.  271 

 272 

Reidite and zircon EBSD investigations 273 

 274 

Microstructural EBSD analysis of grain A (the bright phase in the upper right side of 275 

Figure 1a) reveals that it is composed almost entirely of reidite (Figure 4). Two sets of {112} 276 

twinning planes disoriented 70° from <110> can be observed in this image. The {112} twins 277 

have been previously characterized in experimentally shock-produced reidite by transmission 278 

electron microscopy (TEM) (Leroux et al., 1999). The EBSD analyses of other experimentally 279 

shocked grains show variable mixtures of zircon and reidite such as the intergrown lamellae of 280 

zircon and reidite identified in Figure 5. A lift-out of the grain in Figure 5 was taken by focused 281 
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ion beam (FIB) and the FIB section was analyzed via transmission Kikuchi diffraction (TKD) 282 

(Figure 6). The interlocking lamellae of zircon and reidite, and {112} twin planes within the 283 

reidite are consistent with results from Leroux et al. (1999).  284 

 285 

U-Pb geochronology 286 

 287 

Uranium-lead isotopic analyses were conducted on a portion of the unshocked starting 288 

zircon grain and on a portion of the post-shock experiment shocked reidite material first via LA-289 

ICP-MS, which suggested little variation between the unshocked zircon and the post-shock 290 

reidite, and then via SIMS. The average 207Pb/206Pb age of 16 LA-ICP-MS spots laid out in a 291 

vertical transverse across the unshocked starting zircon is 1067 ± 8.7 Ma (2 s.e.) with a ratio of 292 

7.50×10-2 ± 5.2×10-3 (2 s.e.). Only one laser analysis was placed on large reidite grain to 293 

conserve as much of the grain for future study and SIMS analyses. The LA-ICP-MS spot on the 294 

reidite sample yields a 207Pb/206Pb age of 1082 ± 42 Ma and ratio of 7.55×10-2 ± 1.6×10-3. The Pb 295 

ratios, ages and Pb/U ratios for the unshocked zircon material and the post-shock reidite grain 296 

from both SIMS and LA-ICP-MS analyses are listed in Table 1. 297 

 298 

Guided by the Raman map, the SIMS analyses of unshocked zircon were targeted on 299 

either intact zircon regions, or fully metamict ZrSiO4 regions. The average isotope ratios of the 300 

unshocked intact zircon (n=10) yield 207Pb/235U =1.84 ± 4.1×10-2 (2 s.e.) (1061 ± 15 Ma), 301 

206Pb/238U = 1.8×10-1 ± 2.7×10-3 (1069 ± 14 Ma) and 207Pb/206Pb = 7.42×10-2 ± 1.2×10-3 (1046 ± 302 

33 Ma). Spots acquired on metamict regions (n=6) yield 207Pb/235U = 1.81 ± 4.5×10-2 (1047 ± 16 303 

Ma), 206Pb/238U of 1.76×10-1 ± 7.9×10-3 (1043 ± 21 Ma), and 207Pb/206Pb = 7.5×10-2 ± 3.7×10-4 304 
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(1055±21 Ma). Since the average isotopic ratios for intact zircon and the starting metamict 305 

regions overlap within 2 s.e. for the corresponding measurement averages, this is evidence that 306 

the metamict regions had similar U-Pb and Pb-Pb ratios to the intact zircon regions. This is 307 

important since we do not have a direct way of detecting if the post-shock experiment reidite was 308 

derived from a non-metamict zircon region or metamict ZrSiO4 region. The s.d. for the metamict 309 

ZrSiO4 region is higher than for the intact zircon regions indicating higher variability of U/Pb 310 

content in this region. 311 

 312 

The SIMS analyses of the reidite spots (n=10) have 207Pb/235U = 1.81 ± 5.4×10-2 (1050 ± 313 

20 Ma), 206Pb/238U = 1.79×10-1 ± 4.9×10-3 (1061 ± 16 Ma), and radiogenic 207Pb/206Pb = 7.4×10-2 314 

± 1.8×10-3 (1028 ± 50 Ma). These U-Pb and Pb-Pb average ratios for reidite all overlap within 2 315 

s.e. for the intact zircon regions and the metamict ZrSiO4 regions in the starting material. The 316 

reidite is slightly lower in U content (62 ppm) than the unshocked intact zircon (101 ppm) but 317 

this could be attributed to variations in U abundance in the ZrSiO4 starting material. The 318 

concordia age for the SIMS analyses of the unshocked intact zircon is 1063±6.3 Ma (Figure 7a). 319 

The SIMS analyses from the unshocked metamict ZrSiO4 are discordant (Figure 7b) and the 320 

concordia age for the reidite analyses from SIMS is 1053±20 Ma (Figure 7c). The concordia plot 321 

for reidite measurements (Figure 7c) shows larger error ellipses when compared with those from 322 

the unshocked intact zircon (Figure 7a). These are compared together in the same panel (Figure 323 

7d) where it appears that the reidite measurements could have a slight tendency towards lower 324 

206Pb/238U and 207Pb/235U values than the measurements from the intact zircon although statistical 325 

tests indicated this unlikely to be significant. The precise locations for the SIMS and LA-ICP-326 

MS analyses on the reidite grain (grain A) and their 207Pb/206Pb and 206Pb/238U ages are shown in 327 
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Figure 8. These ages vary from a low 936±96 Ma to a high of 1199±53 Ma. Ages from both 328 

ends of these ranges can be found at adjacent spots. 329 

 330 

Pb isotope measurements of feldspar 331 

 332 

Turning our attention to Pb contamination and feldspar, Table 2 presents LA-ICP-MS and 333 

SIMS data for the unshocked sanidine (multi-collector LA-ICP-MS; Simon et al., 2007), 334 

compared to our data from the shocked KAlSi3O8. The shocked KAlSi3O8 analyzed by SIMS 335 

yields 207Pb/206Pb = 8.18×10-1 ± 6.4×10-3 (2 s.e.) whereas the unshocked sanidine from Simon et 336 

al. (2007) has a 207Pb/206Pb = 0.81813± 1.2×10-5. The 208Pb/206Pb of the shocked material is 337 

2.035 ± 4.88×10-2 while the unshocked sanidine (Simon et al., 2007) yields a 208Pb/206Pb ratio of 338 

2.0303 ± 2.5×10-5. Ratios of radiogenic Pb compared to 204Pb as analyzed by SIMS for 339 

unshocked intact zircon, metamict ZrSiO4, post-experiment reidite, and shocked KAlSi3O8 are 340 

presented in Table 3. Common Pb results for shocked KAlSi3O8 are based on four SIMS 341 

analyses show average Pb-Pb ratios of 206Pb/204Pb = 1.9×101 ± 3.2×10-1, 207Pb/204Pb = 1.5×101 ± 342 

2.6×10-1, 208Pb/204Pb of 3.8×101 ± 6.4×10-1 and  207Pb/206Pb = 8.18×10-1 ± 6.4×10-3 and a 343 

208Pb/206Pb = 2.035 ± 4.9×10-2. The 208Pb/206Pb and 207Pb/206Pb ratios from the Simon et al. 344 

(2007) analyses are indistinguishable from the same ratios derived for shocked KAlSi3O8 from 345 

SIMS. So, the Pb ratios between the unshocked sanidine and the shocked KAlSi3O8 were not 346 

changed by the shock experiment within the precision of our analyses.  347 

 348 

Shock experiment simulation by iSALE2D modeling 349 

 350 
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We present three still-frame illustrations for pressure from an iSALE2D simulation of the 351 

experiment with conditions and dimensions of the target modeled after those used in the flat-352 

plate experiment (Figure 9a). A temperature version of Figure 9a and animations of Figure 9b 353 

and Figure 9c are in the SOM. The average of highest pressures reached for all the tracers in the 354 

simulation was 34 GPa while the average of the highest tracer temperatures reached in the 355 

simulation was ~1000 ℃. The simulation shows pressure waves passing through that start at 356 

each end of the sample well and approach the center for a few timesteps. They appear around 357 

t=1.0 µs and have left the sample well by ~t=1.6 µs. The peak value that the P-T tracers 358 

experienced in the simulation is plotted in Figure 10 where they are shown with x-y coordinates 359 

equivalent to their location at simulation start. 360 

 361 

Discussion 362 

Zircon to reidite transformation mechanism  363 

 364 

The transformation mechanism of zircon to reidite is not fully understood, yet this is 365 

needed to provide clear constraints on the P-T conditions experienced from the shock event 366 

(Timms et al., 2017). The related microstructures allow insight into the transformation 367 

mechanisms, but there has been debate on whether this transformation occurs via a displacive (i.e. 368 

martensitic), or reconstructive method, or instead is a two-step process involving both types of 369 

mechanisms (e.g. Stangarone et al., 2019). In a displacive transformation, the phase transition 370 

occurs as a result of distorting the symmetry of the crystal structure. As a subset of displacive 371 

transformations, a martensitic (shear-dominated) displacive transformation has been proposed as 372 

mechanism for forming reidite (Leroux et al., 1999). For a reconstructive transition, the phases 373 
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are not necessarily related by symmetry, as energy is also used for breaking or forming chemical 374 

bonds when transitioning to the new structure. The reconstructive hypothesis for formation of 375 

reidite is favored in Marqués et al. (2008). Since the transformation mechanism could also be a 376 

multi-step process, this could entail a transition to an intermediary phase via a displacive 377 

mechanism, and then completion of the transition to reidite reconstructively (Stangarone et al., 378 

2019). During shock-loading the transition from zircon to reidite happens very quickly (<1 μs) 379 

(Kusaba et al., 1986) so a displacive mechanism may be a more favorable hypothesis than one 380 

that happens reconstructively. The crystallinity of the zircon structure before shock is another 381 

variable in the transformation of zircon to reidite. Erickson et al. (2017) investigated several 382 

zircon-bearing clasts from the Ries impact structure and found that both lamellar reidite and 383 

granular reidite were generated by this impact event. These two types suggest that multiple 384 

transformation pathways from zircon to reidite exist with displacive mechanisms being likely for 385 

lamellar impact generated reidite and a reconstructive transformation likely for granular reidite. 386 

One interesting sample is grain C which is composed of interlocking reidite and zircon lamellae 387 

(Figure 5).  388 

 389 

We interpret our reidite as generated by a displacive mechanism operating on a mostly 390 

crystalline zircon domain. Evidence supporting a displacive transformation to reidite are the 391 

{112} twins, which likely formed as transformation twins minimizing the strain energy between 392 

the reidite and host zircon crystal structures. Although given the metamict regions found in the 393 

starting material, the two-step process of transition could also be favored here (cf. Stangarone et 394 

al. 2019). Reidite places a constraint on the temperature of the experiment. Immediately post 395 

shock, the temperature in the region of the reidite probably did not exceed 1200 ℃ (1473 K) for 396 
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an appreciable length of time since reidite at that temperature (although at 1 atm) would have 397 

transitioned back to zircon (Kusaba et al., 1985). Intergrowths of reidite, like seen for grain C, 398 

have been identified in natural material from Ries crater that have experienced certain levels of 399 

shock (Wittman et al., 2006).  400 

 401 

The iSALE2D simulation shows pressure waves carrying a pressure greater than 35 GPa 402 

(Figure 9b) that briefly transect the sample, which could be interpreted as excess pressure due to 403 

pore collapse because of the granular nature of sample. This could lead to localized regions of 404 

higher pressure and temperatures responsible for reidite in our post-shock material. The 405 

presented data suggests that many regions reached peak pressures surpassing 30 GPa and that 406 

while some regions of the sample experienced temperatures beyond 1200 ℃, much of the sample 407 

saw peak temperatures between 800 and 1200 ℃ which is below the 1 atm reidite to zircon 408 

reversion temperature. Therefore, the simulations are consistent with the presence of the reidite 409 

observed in the post-shock experiment mineralogy. 410 

 411 

Limited remobilization of Pb in the zircon and reidite 412 

 413 

While the SIMS concordia age for the shocked reidite is 1053 ± 20 Ma and the 414 

unshocked intact zircon concordia age is 1063 ± 6.3 Ma, these values are not significantly 415 

different enough to indicate that the mineral transformation mechanism imparted a difference on 416 

the isotopic ages. Additionally, the similarity of the Pb isotopic data between the zircon and the 417 

reidite suggests that the shock loading process did not significantly alter the Pb content. However, 418 

it should be noted that the matrix effects between SIMS analyses of reidite and geochronology 419 
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zircon standards are unknown. Reidite is 10% denser than zircon but the similarity of the results 420 

between the two phases suggests that any matrix effects on the SIMS analyses between analyses 421 

of the two minerals are insignificant. Measurements of Pb-Pb isotope ratios are unlikely to be 422 

affected by matrix effects during SIMS analysis due to the small relative mass differences among 423 

the isotopes, leading to the nearly universal use of uncorrected measured 207Pb/206Pb for age 424 

calculation (e.g., Sequeira et al., 2020). Increased s.e. and sample s.d. on the reidite U-Pb and Pb-425 

Pb age and ratio measurements compared to the intact zircon indicate only limited mobilization 426 

of Pb. The increased scatter on the reidite data could be due to the fact that the reidite domain has 427 

lower U content than the intact zircon. When SIMS data is averaged and the Pb-Pb ratios and U-428 

Pb ages compared between the reidite and intact zircon, the reidite Pb-Pb ratio averages are 429 

consistently lower than the same average from the intact zircon. The same is also true when the 430 

reidite U-Pb ages are compared to the same average ages of the intact zircon measurements. 431 

Even so, for the both the Pb-Pb ratios and the U-Pb ages, the average values in the reidite are not 432 

younger or less than the same average value in intact zircon by more than 2%. Regardless of 433 

matrix effects, the similarity of our 207Pb/206Pb ages between zircon and reidite suggest that 434 

potential remobilization of Pb by the shock experiment or mineral transformation mechanism 435 

was limited at best and that there was no detectable 207Pb or 206Pb input from the feldspar. 436 

Therefore, our results support the conclusions from Deutsch and Schärer (1990) that at moderate 437 

levels, shock alone is not responsible for Pb mobilization within zircon grains from impact 438 

craters. If this is the case, then the U-Pb system may still generally preserve the original 439 

crystallization age after a moderate shock event unless significant post-shock heating occurs.  440 

 441 
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The possibility of Pb remobilization was further analyzed using statistical methods. 442 

While 10 datapoints from the unshocked intact zircon and 10 datapoints from the post-shock 443 

experiment reidite is a limited sampling to build a graphical normality test, a Shapiro-Wilkes test 444 

returned p>0.05 for the 207Pb/206Pb, 207Pb/235U, 206Pb/238U ages and ratios for both the unshocked 445 

intact zircon and the post-shock reidite, indicating that the datasets could be normally distributed. 446 

The 207Pb/206Pb, 207Pb/235U, 206Pb/238U ages and ratios between the unshocked intact zircon and 447 

post-shock reidite were also compared with a student’s t-test, assuming unequal variance, which 448 

returned p>0.05 for all age and ratios. These results indicate that the levels of detected variability 449 

in the U-Pb content and ages of the reidite from the unshocked intact zircon are unlikely to be 450 

significant. This is also evidence that the transformation to reidite does not have significant 451 

effects on U-Pb content of the grain, supportive of a displacive mineral transformation 452 

mechanism in this experiment. The matching 208Pb/206Pb and 207Pb/206Pb ratios between the 453 

unshocked sanidine and the post-shock experiment sanidine suggest that the geochronology was 454 

not disturbed for this material either. 455 

 456 

Implications 457 

  458 

Results from our LA-ICP-MS and SIMS analyses indicate that the shock-loading 459 

experiment had only a limited effect on the age retention of any of the U-Pb geochronometers. 460 

When average SIMS analyses of the reidite are compared with average analyses of the intact 461 

zircon, while consistently lower, they differ by <2% for the main Pb-Pb and U-Pb ratios and ages. 462 

Therefore, our results support the conclusions of Deutsch and Schärer (1990) wherein they 463 

experimentally shocked zircon and determined that shock alone could not disturb the U-Pb 464 
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system. Our analysis implies that the zircon to reidite transition may not notably affect the U-Pb 465 

ratios and that the use of reidite to date pre-impact terrain could be possible. Restated, 466 

geochronology conducted on reidite does not date the impact event.    467 

 468 

The microstructural EBSD data provides good evidence of {112} twinning planes in the 469 

recovered reidite which is an additional confirmation of the Leroux et al., (1999) results. Our 470 

iSALE2D simulations suggest that many tracers experienced peak pressures >30 GPa yet that for 471 

many tracers, peak temperatures were around 800-1200 ℃, consistent with the presence of 472 

reidite in our post-shock material. The match between our simulation and our post-experiment 473 

mineralogy indicates that hydrocode simulations (like iSALE) are useful for calculating 474 

temperatures experienced in flat-plate accelerator experiments along with providing insight into 475 

the experienced pressure when granular or porous material is being shocked.  476 

 477 

Thanks and acknowledgements 478 

 479 

We are grateful to Jacobs, the JETS contract, NASA ARES, University of Houston and 480 

University of Alabama. This project was partially supported by the Earth’s First Origins NASA 481 

grant 80NSSC19M0069, 80NSSC22K0107, and NASA Planetary Science funding, NASA Solar 482 

System Workings grant 80NSSC20K1039, and by NSF EAR-2102143. Many thanks are due to 483 

Roland Montes and Frank Cardenas for assistance with the mechanics and gunning of the shot 484 

and Mark Cintala for input on gunning the shot. This project benefitted from fruitful discussions 485 

with Fred Hörz. Thanks are due to Zia Rahman for FIB liftout of material for transmission-486 

Kikuchi-diffraction EBSD at NASA JSC. The assistance of Loan Le with spot Raman analyses 487 



22 
 

was beneficial. The assistance of Minako Righter with LA-ICP-MS at the University of Houston 488 

was valuable. Grain sorting and grain mounting was done by Martha Miller at the University of 489 

Rochester and this project greatly benefitted from these efforts. We appreciate Rich Martens 490 

sample preparation assistance at the University of Alabama. Thanks for laboratory assistance are 491 

due to Nicole Haney, Rick Roland, Kathleen Vander Kaaden at Johnson Space Center and Wriju 492 

Chowdhury at the University of Rochester. We are grateful to Jay Thomas for assistance with 493 

additional Raman analyses during revisions at Syracuse University. For the impact simulations 494 

using the iSALE2D software, we gratefully acknowledge the developers of iSALE-2D, including 495 

Gareth Collins, Kai Wünnemann, Dirk Elbeshausen, Tom Davison, Boris Ivanov and Jay Melosh. 496 

The ion microprobe laboratory at UCLA is partially funded by a grant from NSF-EAR's 497 

Instrumentation and Facilities Program (1734856). 498 

 499 

References 500 

Akaogi, M., Hashimoto, S., and Kojitani, H. (2018). Thermodynamic properties of ZrSiO4 zircon 501 
and reidite and of cotunnite-type ZrO2 with application to high-pressure high-temperature phase 502 
relations in ZrSiO4. Physics of the Earth and Planetary Interiors, 281, 1-7. 503 

Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., (1980) Extraterrestrial Cause for the 504 
Cretaceous-Tertiary Extinction. Science, 208(4448), 1095-1108 505 
 506 
Amsden, A., Ruppel, H., and Hirt, C. (1980). SALE: A simplified ALE computer program for 507 
fluid flow at all speeds. Los Alamos National Laboratories Report, LA-8095:101p. Los Alamos, 508 
New Mexico: LANL 509 
 510 
Bellucci, J.J., Nemchin, A.A., Whitehouse, M.J., Humayun, M., Hewins, R., Zanda, B. (2015) 511 
Pb-isotopic evidence for an early, enriched crust on Mars, Earth and Planetary Science Letters 512 
410, 34-41. 513 

Bellucci, J., Whitehouse, M., Nemchin, A., Snape, J., Pidgeon, R., Grange, M., Reddy, S.M. and 514 
Timms, N. (2016). A scanning ion imaging investigation into the micron-scale U-Pb systematics 515 
in a complex lunar zircon. Chemical Geology, 438, 112–122. 516 

Cavosie, A.J., Biren, M.B., Hodges, K.V. Wartho J., Horton J.W. Jr., and Koeberl C. (2021) 517 
Dendritic reidite from the Chesapeake Bay impact horizon, Ocean Drilling Program Site 1073 518 
(offshore northeastern USA): A fingerprint of distal ejecta?: Geology, v. 49, p. 201–205 519 



23 
 

Cavosie, A. J., Erickson, T. M., and Timms, N. E. (2015). Nanoscale records of ancient shock 520 
deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology, 521 
43(4), 315–318.  522 

Cavosie, A. J., Erickson, T. M., Timms, N. E., Reddy, S.M., Talavera, C., Montalvo, S.D., 523 
Pincus, M.R., Gibbon, R.J., and Moser, D. (2016) A terrestrial perspective on using ex situ 524 
shocked zircons to date lunar impacts. Geology, 43(11), 999–1002.  525 

Chen, M., Yin, F., Li, X., Xie, X., Xiao, W., and Tan, D. (2013). Natural occurrence of reidite in 526 
the Xiuyan crater of China. Meteoritics and Planetary Science, 48(5), 796–805. 527 

Collins, G. S., Melosh, H. J., and Ivanov, B. A. (2004). Modeling damage and deformation in 528 
impact simulations. Meteoritics and Planetary Science, 39, 217-231. 529 

Cox, M. A., Cavosie, A. J., Bland, P. A., Miljković, K., and Wingate, M. T. (2018). 530 
Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh 531 
impact structure, Australia. Geology, 46(11), 983-986. 532 

Crow, C. A., Mckeegan, K. D., and Moser, D. E. (2017). Coordinated U–Pb geochronology, 533 
trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons. 534 
Geochimica et Cosmochimica Acta, 202, 264–284. 535 

Crow, C. A., Moser, D. E. and Mckeegan, K. D. (2019). Shock metamorphic history of >4Ga 536 
Apollo 14 and 15 zircons. Meteoritics and Planetary Science, 54(1), 181–201. 537 

Crowley, J.L., Schoene, B., and Bowring, S.A. (2007). U-Pb dating of zircon in the Bishop Tuff 538 
at the millennial scale. Geology 35(12), 1123-1126 539 

Deutsch, A., and Schärer, U. (1990). Isotope systematics and shock-wave metamorphism: I. U-540 
Pb in zircon, titanite and monazite, shocked experimentally up to 59 GPa. Geochimica et 541 
Cosmochimica Acta, 54(12), 3427-3434. 542 

Erickson, T. M., Cavosie, A. J., Moser, D. E., Barker, I. R., and Radovan, H. A. (2013). 543 
Correlating planar microstructures in shocked zircon from the Vredefort Dome at multiple 544 
scales: Crystallographic modeling, external and internal imaging, and EBSD structural analysis. 545 
American Mineralogist, 98(1), 53–65. 546 

Erickson, T. M., Pearce, M. A., Reddy, S. M., Timms, N. E., Cavosie, A. J., Bourdet, J., Rickard, 547 
W.D.A., and Nemchin, A. A. (2017). Microstructural constraints on the mechanisms of the 548 
transformation to reidite in naturally shocked zircon. Contributions to Mineralogy and Petrology, 549 
172(6). 550 

Gibbons, R.V., and Ahrens, T.J. (1971). Shock Metamorphism of Silicate Glasses. Journal of 551 
Geophysical Research, 76 (23), 5489-5498 552 

Gibbons, R.V., (1974) Experimental Effects of Shock Pressure on Materials of Geological and 553 
Geophysical Interest, Ph.D. Thesis, California Institute of Technology 554 



24 
 

Glass, B., and Liu, S. (2001). Discovery of high-pressure ZrSiO4 polymorph in naturally 555 
occurring shock-metamorphosed zircons. Geology, 29(4), 371. 556 

Glass, B. P., Liu, S., and Leavens, P. B. (2002). Reidite: An impact-produced high-pressure 557 
polymorph of zircon found in marine sediments. American Mineralogist, 87(4), 562–565. 558 

Gleason, G., Sunny, S., Sadeh, S., Yu, H., and Malik, A. (2020) Eulerian Modeling of Plasma-559 
Pressure Driven Laser Impact Weld Processes. 48th SME North American Manufacturing 560 
Research Conference, NAMRC 48 (Cancelled due to COVID-19), Procedia Manufacturing, 48, 561 
204-214  562 

Gucsik, A., Koeberl, C., Brandstätter, F., Reimold, W. U., and Libowitzky, E. (2002). 563 
Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock-564 
metamorphosed zircon. Earth and Planetary Science Letters, 202(2), 495–509. 565 

Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E., and Reimold, W. U. (2004a). 566 
Cathodoluminescence, Electron Microscopy, and Raman Spectroscopy of Experimentally Shock 567 
Metamorphosed Zircon Crystals and Naturally Shocked Zircon from the Ries Impact Crater. 568 
Cratering in Marine Environments and on Ice Impact Studies, 281-322. 569 

Gucsik, A., Zhang, M., Koeberl, C., Salje, E. K., Redfern, S. A., and Pruneda, J. M. (2004b). 570 
Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures. Mineralogical 571 
Magazine, 68(5), 801-811. 572 

Gucsik, A. (2007) Micro-Raman Spectroscopy of Reidite as an Impact-Induced High Pressure 573 
Polymorph of Zircon: Experimental Investigation and Attempt to Application, Acta 574 
Mineralogica-Petrographica, 47, 17-24 575 

Grieve, R.A.F., Langenhorst, F., and Stoffler, D. (1996). Shock metamorphism of quartz in 576 
nature and experiment: II. Significance in geoscience. Meteoritics and Planetary Science, 31, 6-577 
35 578 

Hapke, B., and Sato, H. (2016). The porosity of the upper lunar regolith. Icarus, 273, 75-83 579 

Hildebrand A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Carmago Z., A., Jacobsen, S.B., 580 
and Boynton W.V. (1991) Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact 581 
crater on the Yucatán Peninsula, Mexico Geology, 19 (9), 867–871. 582 

Hopkins, M.D. and Mojzsis, S.J. (2015) A protracted timeline for lunar bombardment from 583 
mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. 584 
Contributions to Mineralogy and Petrology, 169(30), 1-18. 585 
 586 
Hopkins, M.D., Mojzsis, S.J., Bottke, W.F., and Abramov O. (2015) Micrometer-scale U–Pb age 587 
domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. 588 
Icarus, 245, 367-378 589 

Humayun, M., Nemchin, A., Zanda, B., Hewins, R. H., Grange, M., Kennedy, A., Lorand, J.-P., 590 
Göpel, C., Fieni, C., Pont, S., and Deldicque, D. (2013). Origin and age of the earliest Martian 591 
crust from meteorite NWA 7533. Nature, 503(7477), 513-516. 592 



25 
 

 593 
Ivanov, B. A., Deniem, D., and Neukum, G. (1997). Implementation of dynamic strength models 594 
into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International 595 
Journal of Impact Engineering, 20, 411-430. 596 
 597 
Ireland, T.R., and Wlotzka, F., (1992) The oldest zircons in the solar system. Earth and Planetary 598 
Science Letters, 109(1-2), 1-10. 599 
 600 
Kieffer, S.W., (1971), Shock Metamorphism of the Coconino Sandstone at Meteor Crater, 601 
Arizona. Journal of Geophysical Research 76(23), 5449-5473. 602 

Knittle, E., Williams, Q., (1993). High-pressure Raman spectroscopy of ZrSiO4: Observation of 603 
the zircon to scheelite transition at 300 K. American Mineralogist, 78, 245-252. 604 

Krogh, T. E., Kamo, S. L., Sharpton, V. L., Marin, L. E., and Hildebrands, A. R. (1993). U–Pb 605 
ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature, 606 
366(6457), 731–734. 607 

Kusaba, K., Syono, Y., Kikuchi, M., and Fukuoka, K. (1985). Shock behavior of zircon: phase 608 
transition to scheelite structure and decomposition. Earth and Planetary Science Letters, 72(4), 609 
433–439. 610 

Kusaba, K., Yagi, T., Kikuchi, M., and Syono, Y. (1986). Structural considerations on the 611 
mechanism of the shock-induced zircon-scheelite transition in ZrSiO4. Journal of Physics and 612 
Chemistry of Solids, 47(7), 675–679 613 

Leroux, H., Reimold, W., Koeberl, C., Hornemann, U., and Doukhan, J. (1999). Experimental 614 
shock deformation in zircon: A transmission electron microscopic study. Earth and Planetary 615 
Science Letters, 169(3-4), 291-301.  616 

Leroux H., Jacob D., Marinova, M., Hewins, R.H., Zanda, B., Pont, S., Lorand, JP., and 617 
Humayun M. (2016) Exsolution and shock microstructures of igneous pyroxene clasts in the 618 
Northwest Africa 7533 Martian meteorite Meteoritics and Planetary Science, 51(5), 932–945 619 

Liu, L.-G. (1979). High-pressure phase transformations in baddeleyite and zircon, with 620 
geophysical implications. Earth and Planetary Science Letters, 44(3), 390–396 621 

Liu, Y., Ma, C., Beckett, J. R., Chen, Y., and Guan, Y. (2016). Rare-earth-element minerals in 622 
martian breccia meteorites NWA 7034 and 7533: Implications for fluid–rock interaction in the 623 
martian crust. Earth and Planetary Science Letters, 451, 251-262. 624 

Ludwig, K.R. ,(2003) Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley 625 
Geochronology Center Special Publication. 626 

Malavergne, V., Guyot, F., Benzerara, K., Martinez, I. (2001) Description of new shock-induced 627 
phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics and Planetary 628 
Science, 36, 1297-1305 629 
 630 



26 
 

Mark, D. F., Renne, P. R., Dymock, R. C., Smith, V. C., Simon, J. I., Morgan, L. E., Staff, R.A., 631 
Ellis, B.S. and Pearce, N. J. (2017). High-precision 40Ar/39Ar dating of pleistocene tuffs and 632 
temporal anchoring of the Matuyama-Brunhes boundary. Quaternary Geochronology, 39, 1–23.  633 
 634 
Marqués, M., Contreras-García, J., Flórez, M., and Recio, J. (2008). On the mechanism of the 635 
zircon-reidite pressure induced transformation. Journal of Physics and Chemistry of Solids, 69(9), 636 
2277–2280. 637 

Melosh, H. J., Ryan, E. V., and Asphaug, E. (1992). Dynamic fragmentation in impacts: 638 
Hydrocode simulation of laboratory impacts. Journal of Geophysical. Research, 97(E9), 14735-639 
14759 640 

Mernagh, T.P. (1991) Use of the laser Raman microprobe for discrimination amongst feldspar 641 
minerals. Journal of Raman Spectroscopy, 22, 453-457 642 

Moser, D. E. (1997). Dating the shock wave and thermal imprint of the giant Vredefort impact, 643 
South Africa. Geology, 25(1), 7. 644 

Moser, D. E., Cupelli, C. L., Barker, I. R., Flowers, R. M., Bowman, J. R., Wooden, J., and Hart, 645 
J. (2011). New zircon shock phenomena and their use for dating and reconstruction of large 646 
impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U–Pb and (U–647 
Th)/He analysis of the Vredefort dome Special Issue. Canadian Journal of Earth Sciences, 48(2), 648 
117–139.  649 

Moser, D. E., Chamberlain, K. R., Tait, K. T., Schmitt, A. K., Darling, J. R., Barker, I. R., and 650 
Hyde, B. C. (2013). Solving the Martian meteorite age conundrum using micro-baddeleyite and 651 
launch-generated zircon. Nature, 499(7459), 454–457. 652 

Moser, D.E., Arcuri, G. A., Reinhard, D. A., White, L. F., Darling, J. R., Barker, I. R.,  Larson, D. 653 
J., Irving, A. J., McCubbin, F. M., Tait, K. T., Roszjar, J., Wittmann, A. and Davis C. (2019) 654 
Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for 655 
habitability. Nature Geoscience, 12, 522–527 656 

Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C. (2009). Timing of 657 
crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 658 
2(2), 133–136. 659 

Ono, S., Funakoshi, K., Nakajima, Y., Tange, Y., and Katsura, T. (2004). Phase transition of 660 
zircon at high P-T conditions. Contributions to Mineralogy and Petrology, 147(4), 505–509.  661 

Ostertag, R. (1983). Shock experiments on feldspar crystals. Journal of Geophysical Research, 662 
88(S01). 663 

Pidgeon, R., Nemchin, A., Bronswijk, W. V., Geisler, T., Meyer, C., Compston, W., and 664 
Williams, I. (2007). Complex history of a zircon aggregate from lunar breccia 73235. 665 
Geochimica Et Cosmochimica Acta, 71(5), 1370–1381.  666 



27 
 

Rasmussen, C., Stockli D.F., Ross, C.H., Pickersgill, A., Gulick S.P., Schmieder M., Christeson 667 
G.L.,aWittmann A., Kring D.A., Morgan J.V., and the IODP-ICDP Expedition 364 Science Party 668 
(2019). U-Pb memory behavior in Chicxulub's peak ring — Applying U-Pb depth profiling to 669 
shocked zircon. Chemical Geology, 525, 356-367. 670 

Reid, A.F., and Ringwood, A.E. (1969). Newly observed high pressure transformations in Mn3O4, 671 
CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205–208  672 

Reddy, S., Timms, N.E., Trimby, P., Kinny, P.D., Buchan, C., Blake, K. (2006). Crystal-plastic 673 
deformation of zircon: A defect in the assumption of chemical robustness. Geology, 34 (4), 257–674 
260. 675 

Reddy, S., Johnson, T., Fischer, S., Rickard, W., and Taylor, R. (2015). Precambrian reidite 676 
discovered in shocked zircon from the Stac Fada impactite, Scotland. Geology, 43(10), 899–902. 677 

Reddy, S. M., Riessen, A. V., Saxey, D. W., Johnson, T. E., Rickard, W. D., Fougerouse, D., 678 
Fischer, S., Prosa, T.J., Rice, K.P., Reinhard, D.A., Chen, Y., and Olson, D. (2016). Mechanisms 679 
of deformation-induced trace element migration in zircon resolved by atom probe and correlative 680 
microscopy. Geochimica Et Cosmochimica Acta, 195, 158-170. 681 

Roszjar, J., Whitehouse, M., Srinivasan, G., Mezger, K., Scherer, E., Orman, J. V., and Bischoff, 682 
A. (2016). Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. 683 
Earth and Planetary Science Letters, 452, 216-226. 684 

Sañudo-Wilhelmy, S. A., & Flegal, A. R. (1994). Temporal variations in lead concentrations and 685 
isotopic composition in the Southern California Bight. Geochimica et Cosmochimica Acta, 686 
58(15), 3315-3320. 687 
 688 
Schaal R. B. and Horz F. (1977) Shock metamorphism of lunar and terrestrial basalts. 689 
Proceedings of the 8th Lunar Science Conference, 1697-1729 690 
 691 
Schaal, R.B., Hörz, F., Thompson, T.D., and Bauer, J.F. (1979) Shock Metamorphism of 692 
Granulated Lunar Basalt. Proceedings of the 10th Lunar and Planetary Science Conference., 693 
2547-2571. 694 
 695 
Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J.,  696 
Christeson, G.L., Claeys, P., Cockell, C.S., and others. (2010) The Chicxulub Asteroid Impact 697 
and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 327, 1214-1219 698 

Sequeira, N., Mahato, S., Rahl, J.M., Sarkar, S., and Bhattacharya, A., (2020) The Anatomy and 699 
Origin of a Synconvergent Grenvillian-Age Metamorphic Core Complex, Chottanagpur Gneiss 700 
Complex, Eastern India, Lithosphere (1): 8833404. 701 

Simon, J. I., Reid, M.R. (2005). The pace of rhyolite differentiation and storage in an 702 
‘archetypical’ silicic magma system, Long Valley, California. Earth and Planetary Science 703 
Letters 235, 123-140. 704 



28 
 

Simon, J. I., Reid, M.R., and Young, E.D. (2007). Lead isotopes by LA-MC-ICPMS: Tracking 705 
the emergence of mantle signatures in an evolving silicic magma system. Geochimica Et 706 
Cosmochimica Acta,71(8), 2014-2035 707 

Smit, J., and Hertogen, J. (1980) An extraterrestrial event at the Cretaceous–Tertiary boundary. 708 
Nature (London), 285(5762), 198-200 709 

Stangarone, C., Angel, R. J., Prencipe, M., Mihailova, B., and Alvaro, M. (2019). New insights 710 
into the zircon-reidite phase transition. American Mineralogist, 104(6), 830–837. 711 

Taylor, D. J., Mckeegan, K. D., and Harrison, T. M. (2009). Lu–Hf zircon evidence for rapid 712 
lunar differentiation. Earth and Planetary Science Letters, 279(3-4), 157–164 713 
 714 
Timms, N. E., Kinny, P. D., and Reddy, S. M. (2006). Enhanced diffusion of Uranium and 715 
Thorium linked to crystal plasticity in zircon. Geochemical Transactions, 7(1). 716 
 717 
Timms, N.E., Erickson, T. M., Pearce, M.A., Cavosie, A.J., Schmieder, M., Tohver, E., Reddy, 718 
S.M., Zanetti, M.R., Nemchin, A.A., and Wittmann, A. (2017a) A pressure-temperature phase 719 
diagram for zircon at extreme conditions. Earth-Science Reviews 165, 185-202. 720 

Timms, N.E., Erickson, T.M., Zanetti M.R., Pearce M.A., Cayron C., Cavosie, A.J., Reddy, S.M., 721 
Wittmann A., and Carpenter P.K. (2017b) Cubic zirconia in >2370 °C impact melt records 722 
Earth's hottest crust. Earth and Planetary Science Letters, 477, 52-58 723 

Trail, D., Barboni, M. and McKeegan, K.D. (2020) Evidence for diverse lunar melt compositions 724 
and mixing of the pre-3.9 Ga crust from zircon chemistry. Geochimica et Cosmochimica Acta 725 
284, 173-195. 726 

Westrenen, W. V., Frank, M. R., Hanchar, J. M., Fei, Y., Finch, R. J., and Zha, C. (2004). In situ 727 
determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the 728 
zircon-reidite phase transition. American Mineralogist, 89(1), 197-203. 729 

White, L., Darling, J., Moser, D., Cayron, C., Barker, I., Dunlop, J., and Tait, K. (2018). 730 
Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary 731 
crusts. Geology, 46(8), 719–722. 732 

Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., 733 
Roddick, J.C., and Spiegel, W., (1995) Three Natural Zircon Standards For U‐Th‐Pb, Lu‐Hf, 734 
Trace Element And REE Analyses. Geostandards Newsletter, 19(1), 1-23 735 
 736 
Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, 737 
A., Morishita, Y., Nasdala, L., Fiebig, J., and others (2004). Further Characterisation of the 738 
91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1), 9–39. 739 

Wielicki, M.M., and Harrison, T.M., (2015) Zircon formation in impact melts: Complications for 740 
deciphering planetary impact histories. The Geological Society of America Special Paper 518, 741 
127-134 742 



29 
 

Wittmann, A., Cavosie, A.J., Timms, N.E., Ferrière, L., Rae, A., Rasmussen, C., Ross, C., 743 
Stockli, D., Schmieder, M., Kring, D.A., Zhao, J., and others (2021) Shock impedance amplified 744 
impact deformation of zircon in granitic rocks from the Chicxulub impact crater, Earth and 745 
Planetary Science Letters, 575, 1-13 746 
 747 
Wittmann, A., Kenkmann, T., Schmitt, R. T., and Stöffler, D. (2006). Shock-metamorphosed 748 
zircon in terrestrial impact craters. Meteoritics and Planetary Science, 41(3), 433–454.  749 
 750 
Wünnemann, K., Collins, G., and Melosh, H. (2006). A strain-based porosity model for use in 751 
hydrocode simulations of impacts and implications for transient crater growth in porous targets. 752 
Icarus, 180, 514—527 753 
 754 
Xing, W., Lin, Y., Zhang, C., Zhang, M., Hu, S., Hofmann, B. A., Sekine, T., Xiao, L., and Gu, 755 
L., (2020) Discovery of Reidite in the Lunar Meteorite Sayh al Uhaymir 169, Geophysical 756 
Research Letters, 47(21), 1-8 757 
 758 
Zhang, M., Salje, E. K. H., Farnan, I., Graeme-Barber, A., Daniel, P., Ewing, R. C., Clark, A.M., 759 
and Leroux, H. (2000). Metamictization of zircon: Raman spectroscopic study. Journal of 760 
Physics: Condensed Matter, 12(8), 1915–1925. 761 

Tables 762 

Table 1 763 

 n 
 

207 

Pb 
/235

U 
 

207Pb 
/235U 
2 s.e. 

206Pb/ 
238U 
 

206Pb/ 
238U 
2 s.e. 

207Pb/ 
206Pb 
 

207Pb/ 
206Pb 
2 s.e. 

207Pb/ 
206Pb 
Age 
(Ma) 
±2 s.e. 

207Pb/ 
235U 
Age 
(Ma) 
±2 s.e. 

206Pb/ 
238U 
Age 
(Ma) 
±2 s.e.  

U 
ppm  
±2 
s.e. 

Th 
ppm 
±2 s.e. 

LA-ICP-
MS 

            

Unshocked             
 Zircon- 
Vertical 
Traverse 
Average 

16 1.84   1.37 
×10-1 

1.78 
×10-1 

9.6 
×10-3 

7.50 
×10-2 

5.2 
×10-3 

1067 ±  
8.7Ma 

1060±  
3.1 Ma 

1057.4  
±  
3.3 Ma 

183 
±0.9 

54 
±0.23 

Shocked             
 Reidite 1 1.86 5.5 

×10-2 
1.78 
×10-1 

4.1 
×10-3 

7.55 
×10-2 
 

1.6 
×10-3 

1082 ±  
42 Ma 

1065.3  
±  
19.5 Ma 

1058.0  
±  
22.6 Ma 

146 
±2.2 

47 
±0.63 

SIMS             
Unshocked             
Intact 
zircon 

10 1.84 4.1 
×10-2 

1.8 
×10-1 

2.7 
×10-3 

7.42 
×10-2 

1.2 
×10-3 

1046 
±33  

1061 
±15 

1069 
±14 

101 
±6.6 

29 
±0.70 

Metamict  
ZrSiO4 

6 1.81 4.5 
×10-2 
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×10-1 
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×10-3 

7.5 
×10-2 

7.6 
×10-4 

1055 
±21 

1047 
±16 

1043 
±21 

2202 
±199 

629 
±33 

Shocked             
Reidite 10 1.81 5.4× 1.79  2.9 7.4 1.8 1028 1050 1061 62 20 
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10-2 ×10-1 ×10-3 ×10-2  
 

×10-3 ±50 ±20 ±16 ±5 ±0.51 
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206Pb 
2 s.e. 

208Pb/ 
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208Pb/ 
206Pb 
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Unshocked      

Sanidine - 
Average from 
the LV51 multi-
collector dataset 
from Simon et 
al. (2007) 

11 8.18126×10-1 
 

1.2×10-5 
 

2.03031 
 

2.5×10-5 
 

Shocked      
Sanidine - 
LA-ICP-MS 
spots 

8 8.10×10-1 
 

2.8×10-2 
 

2.046 
 

3.5×10-2 
 

Sanidine - SIMS 
analyses 

4 8.18×10-1 6.4×10-3 2.035 4.9×10-2 
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 n 206Pb/ 
204Pb 
 

206Pb/ 
204Pb 
2 s.e. 

207Pb/ 
204Pb 
 

207Pb/ 
204Pb 
2 s.e. 

208Pb/ 
204Pb 
 

208Pb/ 
204Pb 
2 s.e. 

SIMS   

Unshocked        
Intact 
zircon 

10 7.95×103 3.73
×103 

6.01
×102 

2.73
×102 

7.20
×102 

3.42
×102 

Metamict  
ZrSiO4 

8 5.19×104 1.77
×104 

3.89
×103 

1.32
×103 

3.16
×103 

1.02
×103 

Shocked        
Reidite 10 2.42×103 5.57

×102 
1.95
×102 

4.54
×101 

2.62
×102 

6.17
×101 

Sanidine  4 1.9×101 3.2×
10-1 

1.5×
101 

2.6×
10-1 

3.8×
101 

6.4×
10-1 

Figures 778 

Figure 1: 779 
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  780 

Figure 1, (a) BSE image of experimentally shocked zircon and sanidine with the large 781 

backscatter bright grain in the upper right referred to as grain A. This grain is mostly reidite as 782 
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identified by EBSD and Raman analyses. (b) Experimentally shocked ZrSiO4 referred to as grain 783 

B that is mostly amorphous. Multiple Raman spectra from this grain are presented in the Figure 784 

S13 in the SOM to confirm its general lack of structure. (c) Experimentally shocked material 785 

(grain C). This grain showed evidence of both reidite and zircon lamellae being present. A FIB 786 

liftout was taken from grain C for later analysis which is why a section of the grain is carved out.  787 
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 806 

Figure 2, (a) Raman spectra of unshocked sanidine and the formerly sanidine material which has 807 

become diaplectic KAlSi3O8 glass after the shock experiment. 3b) ZrSiO4 Raman spectra from 808 

intact zircon material set aside before the shock experiment, and post-shock experiment material 809 
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found to be reidite. This material was determined to be primarily reidite by EBSD and the bands 810 

present in the Raman spectrum help confirm this result. 811 
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Figure 3: 838 

 839 
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Figure 3. (a) An optical image with overlayed Raman map analyzed for a portion of the 840 

unshocked zircon grain with (b) BSE SEM image of the region and (c) the Raman map itself. 841 

Three regions are apparent from the Raman map. The map was generated via the WITec Basic 842 

Analysis feature which compares collected spectra to example spectra and assigns a fit score for 843 

each. In (d) individual spectra collected from these regions are shown to 1200 cm-1 while in (e) 844 

they are plotted to 4200 cm-1. Then (f) shows the reference spectra matched to for generating the 845 

map. 846 
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Figure 4: 869 

 870 
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Figure 4. EBSD inverse pole figure color (z direction) maps of the material identified as grain A. 871 

This grain is a ~300 μm grain that is almost entirely composed of reidite. The boxes in (a) and 872 

(b) indicate particular regions of the grain that are shown in more detail in (c) and (d) 873 

respectively with (d) showing small amount of zircon on the northeast side of the grain. Pole 874 

figures for the EBSD map are (e) for reidite and (f) for zircon. 875 
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Figure 5: 899 

900 
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Figure 5. EBSD maps and pole figures of shocked zircon-reidite material (grain C). (a) Inverse 901 

pole figure (z direction) exhibiting a reidite domain about 50 to 100 μm. (b) Unlike the other 902 

reidite domain (i.e., grain A from Figure 4a), this one has several small lamellae of zircon 903 

running through it. (c) Close-up view of the grain with material indexed as reidite via EBSD. (d) 904 

The same region but showing the material indexed as zircon. Due to the intriguing nature of the 905 

intergrown reidite and zircon lamellae, this sample was targeted for FIB liftout of a section 906 

marked by the white box in (c) and (d). (e) Pole figures for reidite and (f) for zircon. 907 
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Figure 6: 929 

 930 

Figure 6. Transmission-EBSD figures on the FIB segment lifted out from the shocked product 931 

referred to as grain C. (a) Shows an inverse pole figure (z direction) map of material which 932 

indexed as reidite with major twins marked. 7(b) Material which indexed as zircon. (c) The pole 933 

figures for reidite and 7(d) for zircon. 934 
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Figure 7: 939 

 940 

Figure 7.  U-Pb concordia plots showing the 206Pb/238U and 207Pb/235U analyses from SIMS. The 941 

average age of the reidite is about 10 Ma younger than that of the unshocked intact zircon, but 942 

the two ages are overlapping within uncertainty. The slight difference in average age could be 943 

related to variations in the U content of the starting grain causing variations in Pb content 944 

between the unshocked zircon and the post-experiment reidite. The data from the reidite also 945 

tends to have larger uncertainty ellipses that the analyses from the unshocked intact zircon 946 

material. (a) SIMS analyses from unshocked zircon that still had intact crystal structure. This 947 
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was done by targeting these analyses on the crystalline zircon regions identified by the Raman 948 

mapping analysis shown in Figure 3b. (b) SIMS analyses on the unshocked fully metamict 949 

ZrSiO4 material. These spot analyses were targeted using the spectral Raman map in Figure 3 950 

like before. (c) SIMS analyses of the post shock experiment reidite grain in Figure 1 and named 951 

as grain A. (d) The SIMS analyses of the reidite (red dotted ellipses) and unshocked intact zircon 952 

(black solid ellipses) shown together.  953 
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Figure 8: 971 

 972 

Figure 8.  BSE image of post shock experiment reidite (grain A) and sanidine region. Spots are 973 

labeled with their 207Pb/206Pb and 206Pb/238U ages as measured by SIMS. One spot was analyzed 974 

by LA-ICP-MS rather than SIMS.  975 
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Figure 9a: 980 
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Figure 9b: 992 
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Figure 9c: 1004 

 1005 

 1006 

 1007 

Figure 9 (a) The iSALE2D setup and simulation of the experiment with the sample material in 1008 

the simulation just below the target, at the x axis center. The sample well is shown in the inset, 1009 

populated with material at the start of the simulation. (b) A close-up view on the simulated 1010 

sample well showing pressure at t=1.0 µs. (c) The same view but for temperature at t=1.0 µs. 1011 
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Figure 10: 1017 

 1018 

Figure 10. Plotted tracers representing peak P or T experienced at any point in the simulation. 1019 

Histograms values are grouped into 1 GPa intervals for pressure and 100 ℃ intervals for 1020 

temperature.  1021 
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