1	Revision 1
2	High-temperature phase relations of hydrous aluminosilicates at 22 GPa in the AlOOH-AlSiO ₃ OH
3	system
4	Goru Takaichi ^{1*} , Masayuki Nishi ^{1,2*} , Youmo Zhou ^{1,3} , Shinichi Machida ⁴ , Ginga Kitahara ⁵ , Akira
5	Yoshiasa ⁵ , and Tetsuo Irifune ^{1,6}
6	
7	¹ Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
8	² Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka,
9	Osaka 560-0043, Japan
10	³ Department of Earth and Planetary Science, Graduate School of Science, Kyusyu University, Fukuoka,
11	Fukuoka 819-0395, Japan
12	⁴ CROSS, Neutron Science and Technology Center, Ibaraki 319-1106, Japan
13	⁵ Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
14	⁶ Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
15	*Corresponding authors
16	Goru Takaichi,
17	E-mail: takaichi@sci.ehime-u.ac.jp
18	Masayuki Nishi,
19	E-mail: nishimasa@ess.sci.osaka-u.ac.jp
20	

21

ABSTRACT

22	The stabilities of the minerals that can hold water are important for understanding the water behavior in
23	the Earth's deep interior. Recent experimental studies have shown that the incorporation of aluminum
24	enhances the thermal stabilities of hydrous minerals significantly. In this study, the phase relations of
25	hydrous aluminosilicates in the AlOOH-AlSiO ₃ OH system were investigated at 22 GPa and 1400-2275
26	K using a multi-anvil apparatus. Based on the X-ray diffraction measurements and composition analysis
27	of the recovered samples, we found that the AlSiO ₄ H phase Egg forms a solid solution with δ -AlOOH
28	above 1500 K. Additionally, at temperatures above 1800 K, two unknown hydrous aluminosilicates with
29	compositions Al _{2.03} Si _{0.97} O ₆ H _{2.03} and Al _{2.11} Si _{0.88} O ₆ H _{2.11} appeared, depending on the bulk composition of
30	the starting materials. Both the phases can host large amount of water at least up to 2275 K, exceeding the
31	typical mantle geotherm. The extreme thermal stability of hydrous aluminosilicates suggests that deep-
32	subducted crustal rocks could be a possible reservoir of water in the mantle transition zone and the
33	uppermost lower mantle.

35

INTRODUCTION

36	Recent experimental studies have suggested that mantle materials can hold an amount of water exceeding
37	that stored in the ocean (e.g., Fu et al. 2019; Inoue et al. 1995; Litasov et al. 2003). However, the actual
38	storage capacity and the detailed distribution of water remain unclear. The mantle transition zone can be
39	a major water reservoir because ringwoodite and wadsleyite, the dominant minerals, can retain water up
40	to 2-3 wt% in their crystal structures (e.g., Inoue et al. 1995; Kohlstedt et al. 1996). The discovery of
41	hydrous ringwoodite in diamond implies that the transition zone is wet, at least locally (Pearson et al.
42	2014). In contrast, water solubility in the lower-mantle minerals, such as bridgmanite and magnesiowüstite,
43	is considerably low (e.g., Liu et al., 2021; Fu et al., 2019; N. Bolfan-Casanova, et al., 2002). Because of
44	the contrast in water capacity, the mantle convection to the lower mantle across the transition zone causes
45	a release of water, resulting in dehydration melting, producing seismic low-velocity anomalies (e.g., Liu
46	et al. 2018; Nakajima et al. 2019; Schmandt et al. 2014). Thus, the stabilities of the minerals that can hold
47	water, are important for understanding the water behavior in the Earth's deep interior.
48	The storage capacity of water in the cold plate subducted into the mantle is much larger than that
49	of the surrounding mantle because dense hydrous magnesium silicates (DHMSs) can be stabilized there
50	(e.g., Nishi et al. 2014; Ohtani et al. 2014). Although these hydrous minerals may deliver water to the
51	mantle, most of the hydrous minerals are stable only in extremely cold regions in the subducted plate.
52	Furthermore, recent experimental studies have showed that the incorporation of aluminum enhances the

53	thermal stabilities of DHMSs significantly (e.g., Panero and Caracas 2017; Xu et al. 2021). For instance,
54	the aluminum endmember of Al ₂ SiO ₆ H ₂ phase D can endure without dehydration within mafic rocks at
55	temperatures at least up to 2000 °C at 26 GPa, suggesting the potential of hydrous phase as the host for
56	water under the typical mantle geotherm (Pamato et al. 2015). This finding suggests that the water released
57	from DHMSs in ultramafic rocks could be re-trapped in aluminous hydrous minerals in the Al-rich mafic
58	crustal section in the deep mantle.
59	Many high-pressure hydrous phases have been found in the Al ₂ O ₃ -SiO ₂ -H ₂ O ternary system.
60	Among them, δ -AlOOH (Suzuki et al. 2000), phase Egg (Eggleton et al. 1978), and aluminous phase D
61	(Pamato et al. 2015) are stable under the pressure and temperature conditions corresponding to the mantle
62	transition zone and the uppermost lower mantle (Abe et al. 2018; Fukuyama et al. 2017). These phases
63	are the key minerals for understanding the Earth's deep water cycle because they have been found as
64	inclusions in superdeep diamonds (Kaminsky 2017; Wirth et al. 2007). In this study, we investigated the
65	high temperature stability of hydrous aluminosilicates at 22 GPa using a multi-anvil apparatus. We found
66	that new hydrous aluminosilicates are stabilized at extreme high temperatures exceeding the typical mantle
67	geotherm.

68

69

METHODS

70	The high-pressure and high-temperature experiments were conducted using a 2000-ton Kawai-type multi-
71	anvil apparatus (Orange 2000) at the Geodynamics Research Center, Ehime University. The pressure and
72	temperature conditions were 22 GPa and 1400–2275 K. Under these conditions, δ -AlOOH, phase Egg,
73	and aluminous phase D are stable, according to the previous studies (Fukuyama et al. 2017; Pamato et al.
74	2015).
75	Chemical compositions of the starting materials (Table 1) vary within the AlOOH-AlSiO ₃ OH
76	binary system. We prepared the starting materials by mixing SiO ₂ quartz (Sigma-Aldrich Japan CO., LTD.),
77	Al ₂ O ₃ corundum (KANTO CHEMICAL CO., INC.), Al(OH) ₃ gibbsite (FUJIFILM WAKO PURE
78	CHEMICAL CO., LTD.), and AlOOH boehmite (TAIMEI CHEMICALS CO., LTD.). For simplicity, we
79	use the Al/(Al+Si) ratios to name the distinct starting materials. For examples, Al0.5 refers to AlSiO ₃ OH,
80	and Al0.67 refers to Al ₂ SiO ₆ H ₂ .
81	Tungsten carbide cubes with the truncated edge length of 4 mm were used as the second-stage
82	anvils. The sample assembly was composed of a semi-sintered Co-doped MgO pressure medium, MgO
83	spacers, a LaCrO3 heater, and two platinum sample capsules. The temperature was monitored using a
84	W3%Re-W25%Re thermocouple. Details of the pressure calibration can be found in the supplementary
85	materials of a previous report (Zhou et al. 2018). In each run, the samples were first pressurized at room
86	temperature, and subsequently heated to the desired temperatures at a heating rate of ~100 K/min. The

87	heating retention time was 5-180 min. The samples were quenched to the room temperature and were
88	recovered after decompression. The experimental conditions and results are summarized in Table 1.
89	The recovered samples were mounted in epoxy resin and were polished with diamond paste. A
90	micro-area X-ray diffractometer (Rigaku MicroMax-007HF) and micro-Raman spectrometer (Jasco NRS-
91	5100gr) were used for phase identification. CuK α radiation with a rotating anode was used at 40 kV and
92	30 mA. A field-emission electron microscope (FESEM, JEOL JSM7000F) equipped with an energy-
93	dispersive X-ray spectrometer (EDS, Oxford Instruments X-Max ^N) was used to observe the sample
94	textures and determine the chemical compositions of the observed phases. The chemical analyses were
95	performed on at least ten different grains for the same phase. The standard materials of quantification were
96	forsterite for Si and corundum for Al. Table 2 shows the chemical compositions of the measured phases.
97	The weight of H ₂ O contained in the hydrous phases was roughly estimated from the weight loss
98	in the EDS analysis total, based on the same procedure as that specified by Nishi et al. (2014). The ideal
99	weight defect of a hydrous mineral in the EDS analysis is expressed by the proportion of the atomic weight
100	of H ₂ O in the overall atomic weight of the hydrous mineral. Therefore, the total weight of a hydrous
101	mineral equals 100% minus the relative weight of H2O. For example, the ideal total weight of aluminous
102	phase D (Al ₂ SiO ₆ H ₂) is ~90 wt%.
103	

104

RESURTS AND DISCUSSION

105 Formation of δ-AlOOH–phase Egg solid solutions

- 106 At relatively low temperatures of 1400 K and 1475 K, the back-scattered electron images and the
- 107 compositional analyses of the recovered samples show the presence of δ -AlOOH and phase Egg in the

108 bulk compositions of Al0.67–0.73 (Figure 1a; Table 1). This phase assemblage is confirmed by the

109 corresponding XRD patterns (Figure 2a) and is consistent with the results reported by Abe et al. (2018).

110 Phase Egg obtained in these runs has the stoichiometric end-member composition AlSiO₃OH, while δ -

111 AlOOH contains some amounts of Si (Table 2).

112 The same phase assemblage was obtained from A10.67-0.68 at higher temperatures of 1675 K and 113 1800 K. However, the Al content in the phase Egg increases from Al/(Al+Si) = 0.5 for AlSiO₃OH, which 114 suggests the formation of solid solutions between δ -AlOOH and phase Egg. Notably, the solid–solution 115 reactions occur on phase Egg at temperatures above ~ 1500 K, while they are initiated on δ -AlOOH at 116 lower temperatures. Additionally, we found that the Si-bearing δ -AlOOH survives up to 1800 K, which exceeds the dehydration temperature of δ -AlOOH, ~1473 K, determined by Yoshino et al. (2019). 117 118 Therefore, Si substitution in δ -AlOOH that occurred in this study may increase the dehydration 119 temperature.

To obtain the structural information of the Al-rich phase Egg, we attempted to synthesize a singlephase product of Al-rich phase Egg with a chemical composition of Al_{1.18}Si_{0.82}O₄H_{1.18} at 2000 K (Figure

122	1b and Table 2). Although all the XRD peaks of this Al-rich phase Egg are indexed by the crystal structure
123	of phase Egg (Figure 2b), some changes in the unit cell parameters owing to the Al-rich composition are
124	recognized. The obtained unit cell parameters are $a = 7.207(2)$ Å, $b = 4.321(1)$ Å, $c = 7.017(2)$ Å, beta =
125	98.194(9)°, and V = 216.3(2) Å ³ , and they are slightly different from those of the endmember phase Egg
126	$(a = 7.14409(2) \text{ Å}, b = 4.33462(1) \text{ Å}, c = 6.95255(2) \text{ Å}, beta = 98.396(1)^{\circ}, and V = 212.99(1) \text{ Å}^{3})$ (Schmidt
127	et al. 1998), as shown in Figure S1. Increases in the a/b axial ratio and cell volume as a function of Al
128	content were observed in phase Egg, which is explained by the fact that Al has a slightly larger ionic radius
129	than Si. The increase in cell volume from the Al + H substitution for Si sites was observed in stishovite
130	by Smith et al. (2015).
131	
132	Occurrence of unknown hydrous phases at higher temperatures
133	In the sample Al0.68 obtained at 1800 K, we observed not only the assemblage of δ -AlOOH and phase
134	Egg at the low-temperature (LT) part (far from the thermocouple) of the capsule, but also a different phase
135	assemblage at the high-temperature (HT) part (close to the thermocouple) of the capsule (Figure 1c). This
136	phase segregation is caused by the thermal gradient. The temperature difference may reach 125 K because
137	the compositions of δ -AlOOH and phase Egg in the LT part are similar to those observed at 1675 K (Table

- 138 1). This different phase assemblage contains Al-rich phase Egg with a chemical composition of
- 139 Al1.15Si0.85O4H1.15 (Al0.58) and an Al-richer unknown phase with a chemical composition of

140	Al _{2.07} Si _{0.93} O ₆ H _{2.07} (Al _{0.67} ; hereafter referred to as unknown phase I) (Figure 1d and Table 2). The XRD
141	peaks of unknown phase I cannot be indexed to phase Egg or the other hydrous aluminosilicates, such as
142	aluminous phase D (Pamato et al. 2015) and topaz OH-II (Kanzaki, 2010). Furthermore, at the same
143	temperature of 1800 K, we obtained another unknown hydrous phase (hereafter referred to as unknown
144	phase II) in the sample Al0.71, and this phase shows a slightly higher Al/(A+Si) ratio (0.70) (Table 2), in
145	comparison to unknown phase I.
146	In the experiments performed at temperatures of 1900–2275 K, the Al-rich phase Egg, unknown
147	phase I, and unknown phase II were repeatedly synthesized from the starting materials with different
148	Al/(Al+Si) ratios (Table 1). The products depend strongly on the bulk compositions of the starting
149	materials. The chemical composition of Al-rich phase Egg changed, while the chemical compositions of
150	both the unknown phases did not change drastically with temperature (Table 2), suggesting that the two
151	unknown phases are the chemically invariable intermediate phases in the AlOOH-AlSiO ₃ OH binary
152	system. Unknown phase I and II show the Al/(Al+Si) ratios of ~0.67 and ~0.71, respectively. When the
153	Al/(Al+Si) ratio is above ~0.71, in addition to the formation of unknown phase II, the additional Al
154	component transformed into corundum and fluid (Table 1).
155	Although the XRD patterns of the Al-rich phase Egg, unknown phase I, and unknown phase II
156	appear similar (Figure 2b-d), it is difficult to clarify their crystal structures at this moment. The <i>d</i> -values
157	and intensities of peaks of the two unknown phases are presented in Table S1. Indeed, it is not certain

158	whether the three phases have the same crystal structure or whether the two unknown phases have the
159	same crystal structure, given the similar chemical compositions. However, as shown in Figure 1d and
160	Figure 3, unknown phase I can coexist with Al-rich phase Egg and unknown phase II. Therefore, these
161	three phases should have different crystal structures. Figure S3 shows the Raman spectra of the unknown
162	phases and the broad peak at 2000–3700 cm ⁻¹ , which indicates a typical OH stretching mode.
163	
164	Substitution mechanisms for Al-rich phase Egg and the two unknown phases
165	Figure 4 summarizes the total weights of the hydrous phases obtained in our experiments as a
166	function of the Al/(Al+Si) ratio. These total weights are obviously less than 100% owing to the weight
167	loss of H2O in the EDS analyses. In Figure 4, we also show the ideal weight totals of SiO2 stishovite,
168	AlSiO ₃ OH phase Egg, Al ₂ SiO ₆ H ₂ aluminous phase D, and δ -AlOOH for reference. Based on the
169	relationships between the chemical compositions of these phases, it is intuitive that the substitution
170	mechanism in the AlOOH-AlSiO ₃ OH binary system is $Al^{3+} + H^+ = Si^{4+}$. This mechanism defines the same
171	atomic number of Al and H in the chemical formulas of the hydrous phases. Therefore, the weight totals
172	of these phases change linearly with the Al/(Al+Si) ratio. In comparison with the ideal cases, the weight
173	totals of the hydrous phases obtained in our experiments also change linearly with the Al/(Al+Si) ratio,
174	and the slope is close to that in the ideal cases that is strongly supportive of the substitution mechanism of
175	$Al^{3+} + H^+ = Si^{4+}$ for the formation of Al-rich phase Egg and the two unknown phases. The accordance 10

between our data and the ideal cases suggests that the water contents of hydrous minerals can be estimated
with appropriate accuracy based on the weight loss of water in the chemical analysis.

178

179 Phase relations of the AlOOH-AlSiO₃OH binary system at 22 GPa

180 Figure 5 shows the phase relations of the AlOOH-AlSiO₃OH binary system at 22 GPa that are 181 determined based on our experimental results (Table 1 and Table 2). At temperatures below 1800 K, phase 182 Egg and δ -AlOOH form solid solutions, and these two phases coexist. This two-phase coexistence was 183 reported in the previous studies (Fukuyama et al. 2017; Sano et al. 2004), while the previous studies did 184 not observe the occurrence of Al-rich phase Egg owing to the lower experimental temperatures. Above 185 1800 K, phase Egg is still stable, and the solubility of AlOOH components further increases with 186 temperature, while δ -AlOOH disappears. Instead, two unknown phases can be formed, and they have 187 considerably similar Al/(Al+Si) ratios that are much higher than that of the Al-rich phase Egg. With 188 temperature change, the chemical composition of Al-rich phase Egg changed, while those of both the 189 unknown phases did not change drastically. Therefore, they are expected to be the chemically invariable 190 intermediate phases in the binary system, and they result from the isothermal reactions between phase Egg 191 and δ -AlOOH at temperatures above 1800 K. Relative to unknown phase I, unknown phase II is slightly 192 richer in Al. For further Al-rich chemical compositions relative to that of unknown phase II, in addition to 193 the formation of unknown phase II, the additional components transform into corundum and fluid.

194	Fukuyama et al. (2017) reported that phase Egg decomposes into aluminous phase D, corundum, and
195	stishovite at 22 GPa and 1773 K. In contrast, our experimental results show that phase Egg can survive at
196	22 GPa up to 2000 K and contain more Al than AlSiO ₃ OH at such high temperatures. The previous study
197	might have misidentified the Al-rich phase Egg as aluminous phase D because of the similarities between
198	these two phases in the Raman spectra (Figure S2) and chemical compositions. Our results are comparable
199	to those of the previous studies (Abe et al. 2018; Pamato et al. 2015) that suggest that phase Egg is stable
200	at the uppermost lower mantle. In addition, we found two unknown hydrous phases that are not identical
201	to aluminous phase D, although the chemical compositions are considerably similar. Further experimental
202	studies covering a much wider pressure and temperature range are required to understand the phase
203	relations of the Al ₂ O ₃ -SiO ₂ -H ₂ O system.
204	
205	IMPLICATIONS
206	From our results and those of the earlier studies (Abe et al. 2018; Liu et al. 2019; Ono, 1999), it
207	is confirmed that phase Egg and δ -AlOOH are stable in the hydrated sediment and basalt rocks under the
208	pressures of the mantle transition zone and the top of the lower mantle. However, the hydroxides that
209	appear in the sediment rocks in the upper mantle, such as AlOOH diaspore and FeOOH goethite, are
210	improbable candidates for transporting the surface water to the deep mantle because they generally
211	breakdown in the early stage of subduction (Yoshino et al., 2019). Therefore, the phase Egg found in the

212	ultradeep diamond might suggest that the sediment captures the water released from the underlying
213	ultramafic rocks after the deep plate subduction to the mantle transition zone or the lower mantle (Nishi
214	et al. 2019; Pamato et al. 2015). Such rehydration may occur in the lower mantle rather than the mantle
215	transition zone where the ringwoodite in ultramafic rocks can host a large amount of water in the mantle
216	transition zone. The rehydration may also be caused by the other minerals in the subducted crustal rocks,
217	such as stishovite and CaPv, which are able to retain water at high pressures as well (Lin et al., 2020;
218	<u>Németh</u> et al. 2017).
219	Considering the thermal stability of hydrous aluminosilicates under pressures of the bottom of
220	the mantle transition zone, the hydrated sediments retain water even after the plate stagnation at a depth
221	of ~660 km. The temperature increase during the stagnation may change the composition and the structure
222	of hydrous phases, as shown in this study. When the hydrated sediments move outside the stability field
223	of the hydrous aluminosilicates through the mantle convection, the released water may cause dehydration
224	melting and produce seismic low-velocity anomalies (e.g., Liu et al. 2018; Nakajima et al. 2019; Schmandt
225	et al. 2014). However, their phase relations at around the mantle transition zone and the uppermost of the
226	lower mantle have not been fully understood yet. Further studies based on the precise experimental studies
227	on the multicomponent system (including Mg and Fe) would provide a better understanding of the water
228	behavior in the deep mantle.
229	

230

ACKNOWLEDGMENTS

231	The authors declare no competing financial interests. We thank Prof. A. Suzuki and Prof. T. Inoue for the
232	constructive discussion and comments. This work was supported by MEXT/JSPS KAKENHI (grant
233	number 19H01994 to M.N. and grant number JP15H05829 to M.N. and T.I.)
234	
235	REFERENCES
236	Abe, R., Shibazaki, Y., Ozawa, S., Ohira, I., Tobe, H., and Suzuki, A. (2018) In situ X-ray diffraction
237	studies of hydrous aluminosilicate at high pressure and temperature. Journal of Mineralogical and
238	Petrological Sciences, 113, 106–111. https://doi.org/10.2465/jmps.170714
239	Bolfan-Casanova, N., Mackwell, S., Keppler, H., McCammon, C., & Rubie, D. C. (2002). Pressure
240	dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water
241	in the Earth's lower mantle. Geophysical Research Letters, 29(10), 89-1.
242	https://doi.org/10.1029/2001GL014457
243	Eggleton, R.A., Boland, J.N., and Ringwood, A.E. (1978) High pressure synthesis of a new aluminium
244	silicate: Al ₅ Si ₅ O ₁₇ (OH). Geochemical Journal, 12, 191–194.
245	https://doi.org/10.2343/geochemj.12.191
246	Fu, S., Yang, J., Karato, S.I., Vasiliev, A., Presniakov, M.Y., Gavrilliuk, A.G., Ivanova, A.G., Hauri, E.H.,
247	Okuchi, T., Purevjav, N., and Lin, J.F. (2019) Water Concentration in Single-Crystal (Al,Fe)-
248	Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the
249	Topmost Lower Mantle. Geophysical Research Letters, 46, 10346-10357.
250	https://doi.org/10.1029/2019GL084630
251	Fukuyama, K., Ohtani, E., Shibazaki, Y., Kagi, H., and Suzuki, A. (2017) Stability field of phase Egg,
252	AlSiO ₃ OH at high pressure and high temperature: possible water reservoir in mantle transition
253	zone. Journal of Mineralogical and Petrological Sciences, 112, 31-35.
254	https://doi.org/10.2465/jmps.160719e
255	Inoue, T., Yurimoto, H., and Kudoh, Y. (1995) Hydrous modified spinel, Mg _{1.75} SiH _{0.5} O ₄ : A new water
256	reservoir in the mantle transition region. Geophysical Research Letters, 22, 117-120.
257	https://doi.org/10.1029/94GL02965
258	Kaminsky, F.V. (2017) Mafic lower-mantle mineral association. Springer Geology, p. 161-203.

259 https://doi.org/10.1007/978-3-319-55684-0 5

- Kanzaki, M. (2010) Crystal structure of a new high-pressure polymorph of topaz-OH. American
 Mineralogist, 95, 1349–1352. https://doi.org/10.2138/am.2010.3555
- 262 Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996) Solubility of water in the α , β and γ phases of 263 (Mg,Fe)₂SiO₄. Contributions to Mineralogy and Petrology, 123, 345–357. 264 https://doi.org/10.1007/s004100050161
- Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo, T., and Kondo, T. (2003) Water solubility in
 Mg-perovskites and water storage capacity in the lower mantle. Earth and Planetary Science
 Letters, 211, 189–203. https://doi.org/10.1016/S0012-821X(03)00200-0
- Liu, Z., Park, J., and Karato, S.-i. (2018) Seismic evidence for water transport out of the mantle transition
 zone beneath the European Alps. Earth and Planetary Science Letters, 482, 93–104.
 https://doi.org/10.1016/j.epsl.2017.10.054
- Liu, Z., Fei, H., Chen, L., McCammon, C., Wang, L., Liu, R., ... & Katsura, T. (2021). Bridgmanite is
 nearly dry at the top of the lower mantle. Earth and Planetary Science Letters, 570, 117088.
 https://doi.org/10.1016/j.epsl.2021.117088
- Liu, X., Matsukage, K.N., Nishihara, Y., Suzuki, T., and Takahashi, E. (2019) Stability of the hydrous
 phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust. American
 Mineralogist, 104, 64–72. https://doi.org/10.2138/am-2019-6559
- Lin, Y., Hu, Q., Meng, Y., Walter, M., & Mao, H. K. (2020) Evidence for the stability of ultrahydrous
 stishovite in Earth's lower mantle. Proceedings of the National Academy of Sciences, 117(1), 184189. https://doi.org/10.1073/pnas.1914295117
- Nakajima, A., Sakamaki, T., Kawazoe, T., and Suzuki, A. (2019) Hydrous magnesium-rich magma genesis
 at the top of the lower mantle. Scientific Reports, 9(1), 7420. https://doi.org/10.1038/s41598-01943949-2
- Németh, P., Leinenweber, K., Ohfuji, H., Groy, T., Domanik, K.J., Kovács, I.J., Kovács, J.S., Buseck, P.R.
 (2017) Water-bearing, high-pressure Ca-silicates. Earth and Planetary Science Letters, 469, 148155. http://doi.org/10.2138/am-2022-8009
- Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014) Stability of
 hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience,
 7, 224–227. https://doi.org/10.1038/ngeo2074
- Nishi, M., Tsuchiya, J., Kuwayama, Y., Arimoto, T., Tange, Y., Higo, Y., Hatakeyama, T., and Irifune, T.
 (2019) Solid Solution and Compression Behavior of Hydroxides in the Lower Mantle. Journal of
 Geophysical Research: Solid Earth, 124, 10231–10239. https://doi.org/10.1029/2019JB018146
- Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T., and Hirao, N. (2014) Stability of hydrous phase H
 MgSiO4H2 under lower mantle conditions. Geophysical Research Letters, 41, 8283–8287.

294 https://doi.org/10.1002/2014GL061690

- Ono, S. (1999) High temperature stability limit of phase egg, AlSiO3(OH). Contributions to Mineralogy
 and Petrology, 137, 83–89. https://doi.org/10.1007/s004100050583
- Pamato, M.G., Myhill, R., Boffa Ballaran, T., Frost, D.J., Heidelbach, F., and Miyajima, N. (2015) Lower mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature
 Geoscience, 8, 75–79. https://doi.org/10.1038/ngeo2306
- Panero, W.R., and Caracas, R. (2017) Stability of phase H in the MgSiO₄H₂-AlOOH-SiO₂ system. Earth
 and Planetary Science Letters, 463, 171–177. https://doi.org/10.1016/J.EPSL.2017.01.033
- Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather,
 K., Silversmit, G., Schmitz, S., Vekemans, B., and Vincze, L. (2014) Hydrous mantle transition
 zone indicated by ringwoodite included within diamond. Nature, 507, 221–224.
 https://doi.org/10.1038/nature13080
- Sano, A., Ohtani, E., Kubo, T., and Funakoshi, K.-i. (2004) In situ X-ray observation of decomposition of
 hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide d-AlOOH at high pressure
 and temperature. Journal of Physics and Chemistry of Solids, 65, 1547–1554.
 https://doi.org/10.1016/j.jpcs.2003.12.015
- Schmandt, B., Jacobsen, S.D., Becker, T.W., Liu, Z., and Dueker, K.G. (2014) Dehydration melting at the
 top of the lower mantle. Science, 344, 1265–1268. https://doi.org/10.1126/science.1253358
- Schmidt, M.W., Finger, L.W., Angel, R.J., and Dinnebier, R.E. (1998) Synthesis, crystal structure, and
 phase relations of AlSiO3OH, a high-pressure hydrous phase. American Mineralogist, 83, 881–
 888. https://doi.org/10.2138/am-1998-7-820
- Smith, J.R., Swope, R.J., and Pawley A.R. (1995) H in rutile-type compounds: II. Crystal chemistry of Alsubstitution in H-bearing stishovite. American mineralogist, 80, 454-456.
 https://doi.org/10.2138/am-1995-5-605
- Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase δ-Al00H synthesized at 21 GPa and
 1000 °C. Physics and Chemistry of Minerals, 27, 689–693.
 https://doi.org/10.1007/s002690000120
- Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., and Kaminsky, F. (2007) Inclusions of nanocrystalline
 hydrous aluminium silicate "Phase Egg" in superdeep diamonds from Juina (Mato Grosso State,
 Brazil). Earth and Planetary Science Letters, 259, 384–399.
 https://doi.org/10.1016/j.epsl.2007.04.041
- Xu, C., Inoue, T., Kakizawa, S., Noda, M., and Gao, J. (2021) Effect of Al on the stability of dense hydrous
 magnesium silicate phases to the uppermost lower mantle: implications for water transportation
 into the deep mantle. Physics and Chemistry of Minerals, 48. https://doi.org/10.1007/s00269-021 01156-4

- Yoshino, T., Baker, E., & Duffey, K. (2019). Fate of water in subducted hydrous sediments deduced from
 stability fields of FeOOH and AlOOH up to 20 GPa. Physics of the Earth and Planetary Interiors,
 294, 106295. https://doi.org/10.1016/j.pepi.2019.106295
- 332 Zhou, Y., Irifune, T., Ohfuji, H., and Kuribayashi, T. (2018) New High-Pressure Forms of Al₂SiO₅.
- 333 Geophysical Research Letters, 45, 8167–8172. https://doi.org/10.1029/2018GL078960

334	LIST OF FIGURE CAPTIONS
335	Figure 1. Back-scattered electron images showing the textures of the recovered samples. (a) Recovered
336	sample from 1400 K (Al0.68, OS3663). (b) Recovered sample from 2000 K (Al0.60, OS3558). A single
337	phase of Al-rich phase Egg with a composition of Al _{1.18} Si _{0.82} O ₄ H _{1.18} was obtained. (c) Recovered sample
338	from 1800 K (Al0.68, OS3668). Discontinuous change in the phase assemblage due to thermal gradient
339	was observed. (d) Large magnification of the higher temperature side (HT) of (c). Abbreviations: Egg,
340	Phase Egg; δ , δ -AlOOH; PhI, unknown phase I; PhII unknown phase II.
341 342	
343	Figure 2. Selected XRD patterns of the run products. (a) Coexistence of the phase Egg and δ -AlOOH
344	(Al0.68, OS3663). (b) Al-rich phase Egg (Al0.60, OS3558). (c) Unknown phase I (Al0.67, OS3582). (d)
345	Unknown phase II (Al0.71, OS3582).
346	
347	Figure 3. BSE image and elemental mapping images for Al and Si of the recovered sample from 2000 K
348	(OS3558). Coexistence of PhI and PhII is observed.
349	
350	Figure 4. Weight deficit attributed to the amount of H ₂ O in the analyzed total of the recovered minerals
351	as a function of the Al number. Gray symbols show the ideal values calculated based on the stoichiometric
352	composition of the hydrous minerals.
353	

354	Figure 5. Phase relations in the AlSiO ₃ OH-AlOOH system at 22 GPa. The blue squares represent the
355	compositions of phase egg and coexisting δ -AlOOH. The orange circles represent the compositions of
356	phase egg and coexisting unknown phase I. The green rhombuses represent the compositions of unknown
357	phase I and coexisting unknown phase II. The red and blue triangles represent the composition of single
358	phase of unknown phase I and unknown phase II, respectively. We assumed 1750 K and 1850 K
359	corresponding to the low-temperature regions of OS3668 and OS3676, respectively. The phase relations
360	in the Al numbers above 0.73 and the temperatures above 2000 K are unknown due to the lack of data on
361	the coexisting relationship of the phases. Abbreviations: Egg, phase Egg; δ , δ -AlOOH; Al-Egg, Al-rich
362	phase Egg; PhI, unknown phase I; PhII, unknown phase II; Cor, corundum; F, fluid.
262	

TABLES

_	Run No.	Temperature (K)	Duration (min)	Starting material(a)	Phase assemblages(b)
_	OS3663	1400	180	$Al_{2.03}Si_{0.97}O_6H_{2.03}(0.68)$	Egg (0.50), δ (0.90), St ^c
				$Al_{2.12}Si_{0.88}O_{6}H_{2.12}(0.71)$	Egg (0.50), δ (0.91)
	OD1906	1475	120	$Al_{2.00}Si_{1.00}O_6H_{2.00}\left(0.67\right)$	Egg (0.50), δ (0.93)
	OD1899	1675	90	$Al_{2.00}Si_{1.00}O_6H_{2.00}\left(0.67\right)$	Al-Egg (0.55), δ (0.88)
	OS3668	1800	30	$Al_{2.03}Si_{0.97}O_6H_{2.03}$ (0.68)	HT: Al-Egg (0.58), PhI (0.69)
					LT: Al-Egg (0.55), δ (0.87)
				$Al_{2.12}Si_{0.88}O_6H_{2.12}(0.71)$	PhII (0.70)
	OS3676	1900	30	$Al_{1.97}Si_{1.03}O_{6}H_{1.97}$ (0.66)	HT: PhI (0.65)
					LT: Al-Egg (0.59), PhI (0.67)
				$Al_{2.25}Si_{0.75}O_{6}H_{2.25}(0.75)$	PhII (0.74), Cor ^c , Fluid ^c , PhII (0.71) ^c
	OS3558	2000	20	$Al_{2.09}Si_{0.91}O_6H_{2.09}(0.70)$	PhI (0.67), PhII (0.71)
				$Al_{1.20}Si_{0.80}O_4H_{1.20}\left(0.60\right)$	Egg (0.59)
	OS3582	2000	5	$Al_{2.00}Si_{1.00}O_6H_{2.00}$ (0.67)	PhI (0.68)
				$Al_{2.14}Si_{0.86}O_6H_{2.14}(0.71)$	PhII (0.71)
	OS3683	2000	20	$Al_{1.89}Si_{1.11}O_6H_{1.89}(0.63)$	Egg (0.60), PhI (0.68)
				$Al_{1.09}Si_{0.91}O_6H_{1.09}(0.55)$	Egg (0.54)
	OD1893	2275	15	$Al_{2.00}Si_{1.00}O_6H_{2.00}\left(0.67\right)$	PhI (0.67)
				$Al_{1.85}Si_{0.71}O_6H_{3.62}(0.72)$	PhII (0.71), Fluid ^c

365 Table 1. Experimental conditions and run products

366 ^{a,b,c} indicate Al/(Al+Si) ratio of starting composition, Al/(Al+Si) ratio of the recovered phases and trace

367 amount. Abbreviations: Egg, phase Egg; δ, δ-AlOOH; Cor, corundum; PhI, unknown phase I; PhII,

368 unknown phase II; HT, high-temperature region; LT, low-temperature region.

369 Table 2. Chemical compositions of run products

Run No.	Temperature (K)	Starting material	Products	Al ₂ O ₃ (wt%)	SiO ₂ (wt%)	Total (wt%)
OS3663	1400	Al _{2.03} Si _{0.97} O ₆ H _{2.03}	Egg	42.0 (36)	51.4 (38)	93.4 (16)
			δ	75.7 (44)	9.20 (48)	85.0 (20)
		$Al_{2.12}Si_{0.88}O_6H_{2.12}$	Egg	42.6 (13)	51.2 (14)	93.8 (12)
			δ	75.2 (31)	8.31 (25)	83.6 (17)
OD1906	1475	$Al_{2.00}Si_{1.00}O_6H_{2.00}$	Egg	42.8 (4)	50.8 (6)	93.5 (6)
			δ	77.7 (10)	6.4 (11)	83.7 (10)
OD1899	1675	$Al_{2.00}Si_{1.00}O_6H_{2.00}$	Egg	45.4 (6)	45.1 (8)	90.5 (10)
			δ	71.0 (6)	11.7 (4)	83.1 (17)
OS3668	1800	$Al_{2.03}Si_{0.97}O_6H_{2.03}$	Egg (LT)	46.8 (9)	43.2 (8)	90.0 (6)
			δ(LT)	70.3 (13)	13.2 (9)	83.4 (9)
			Egg (HT)	47.5 (7)	41.2 (7)	88.6 (13)
			PhI (HT)	56.3 (9)	30.7 (11)	87.0 (13)
		Al _{2.12} Si _{0.88} O ₆ H _{2.12}	PhII	57.0 (8)	29.3 (6)	86.3 (14)
OS3676	1900	$Al_{1.97}Si_{1.03}O_6H_{1.97}$	PhI (HT)	51.5 (6)	33.1 (5)	84.5 (9)
			Egg (LT)	46.7 (3)	37.5 (3)	84.2 (6)
			PhI (LT)	53.0 (5)	30.9 (4)	84.0 (7)
		$Al_{2.25}Si_{0.75}O_6H_{2.25}$	PhII	58.7 (12)	24.4 (8)	84.0 (14)
OS3558	2000	$Al_{1.20}Si_{0.80}O_4H_{1.20}$	Egg	48.0 (5)	39.5 (4)	87.6 (7)
		$Al_{2.09}Si_{0.91}O_6H_{2.09}$	PhI	56.3 (6)	32.8 (2)	89.1 (6)
			PhII	59.0 (5)	28.5 (3)	87.5 (3)
OS3582	2000	$Al_{2.00}Si_{1.00}O_6H_{2.00}$	PhI	56.7 (5)	32.0 (3)	88.7 (7)
		$Al_{2.14}Si_{0.86}O_6H_{2.14}$	PhII	58.5 (10)	28.9 (9)	87.4 (15)
OS3683	2000	$Al_{1.89}Si_{1.11}O_6H_{1.89}$	Egg	50.1 (5)	37.1 (6)	87.3 (7)
			PhI	54.5 (3)	30.5 (6)	85.4 (5)
		$Al_{1.09}Si_{0.91}O_6H_{1.09}$	Egg	44.2 (5)	44.2 (5)	88.4 (9)
OD1893	2275	$Al_{2.00}Si_{1.00}O_6H_{2.00}$	PhI	56.5(4)	33.2(6)	89.7(9)
		Al _{1.85} Si _{0.71} O ₆ H _{3.62}	PhII	57.5(6)	27.7(2)	85.3(7)

370 Abbreviations: Egg, phase Egg; δ , δ -AlOOH; PhI, unknown phase I; PhII, unknown phase II.

FIGURES

373

372

Figure 1. Back-scattered electron images showing the textures of the recovered samples. (a) Recovered
sample from 1400 K (Al0.68, OS3663). (b) Recovered sample from 2000 K (Al0.60, OS3558). A single
phase of Al-rich phase Egg with a composition of Al_{1.18}Si_{0.82}O₄H_{1.18} was obtained. (c) Recovered sample
from 1800 K (Al0.68, OS3668). Discontinuous change in the phase assemblage due to thermal gradient
was observed. (d) Large magnification of the higher temperature side (HT) of (c). Abbreviations: Egg,
phase Egg; δ, δ-AlOOH; PhI, unknown phase I; PhII unknown phase II.

380

381

Figure 2. Selected XRD patterns of the run products. (a) Coexistence of the phase Egg and δ-AlOOH
(Al0.68, OS3663). (b) Al-rich phase Egg (Al0.60, OS3558). (c) Unknow phase I (Al0.67, OS3582). (d)
Unknown phase II (Al0.71, OS3582).

385

387

- **Figure 3.** BSE image and elemental mapping images for Al and Si of the recovered sample from 2000 K
- 389 (OS3558). Coexistence of PhI and PhII is observed.

Figure 4. Weight deficit attributed to the amount of H₂O in the analyzed total of the recovered minerals as a function of the Al number. Gray symbols show the ideal values calculated based on the stoichiometric composition of the hydrous minerals. Gray dash line shows the ideal substitution of $Al^{3+} + H^+ \leftrightarrow Si^{4+}$.

396

399 Figure 5. Phase relations in the AlSiO₃OH-AlOOH system at 22 GPa. The blue squares represent the 400 compositions of phase Egg and coexisting δ -AlOOH. The orange circles represent the compositions of 401 phase Egg and coexisting unknown phase I. The green rhombuses represent the compositions of unknown 402 phase I and coexisting unknown phase II. The red and blue triangles represent the composition of single 403 phase of unknown phase I and unknown phase II, respectively. We assumed 1750 K and 1850 K 404 corresponding to the low-temperature regions of OS3668 and OS3676, respectively. The phase relations 405 in the Al numbers above 0.73 and the temperatures above 2000 K are unknown due to the lack of data on 406 the coexisting relationship of the phases. Abbreviations: Egg, phase Egg; δ , δ -AlOOH; Al-Egg, Al-rich 407 phase Egg; PhI, unknown phase I; PhII, unknown phase II; Cor, corundum; F, fluid.