1	Revision 2
2	
3	A COMPARATIVE STUDY OF TWO PHASE EQUILIBRIA MODELING TOOLS:
4	MORB EQUILIBRIUM STATES AT VARIABLE PRESSURE AND H ₂ O
5	CONCENTRATIONS
6	
7	Word count: 9504
8	
9	David Hernández-Uribe ^{1*} , Frank J. Spera ² , Wendy A. Bohrson ³ , Jussi S. Heinonen ⁴
10	¹ Department of Earth and Environmental Sciences, University of Michigan, MI, USA
11	² Department of Earth Science and Earth Research Institute, University of California, Santa
12	Barbara, CA, USA
13	³ Department of Geology and Geological Engineering, Colorado School of Mines, CO, USA
14	4 Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
15	
16	*corresponding author: dav.hernandez.uribe@gmail.com
17	
18	ABSTRACT
19	Phase equilibria modeling is a powerful petrological tool to address both forward and inverse
20	geological problems over a broad range of crustal and upper mantle conditions of pressure (P),
21	temperature (<i>T</i>), composition (<i>X</i>) and redox (f_{O2}). The development of thermodynamic databases,
22	relatively realistic activity–composition $(a-X)$ relations for solids, melts and fluids, pressure-
23	volume-temperature (PVT) equations of state (EOS), and efficient numerical algorithms

24 represent an inflection point in our ability to understand the nexus between tectonics and 25 petrogenesis. While developed—and typically applied in isolation—by either metamorphic or 26 igneous petrologists, some of the published thermodynamic models have overlapping P-T-X27 calibration ranges, which enables comparisons of model outcomes for similar conditions within 28 the range of applicability. In this paper, we systematically compare the results of two such 29 models that are routinely used for calculating phase equilibria in melt-bearing systems: rhyolite-30 MELTS (Ghiorso et al., 2012; Ghiorso and Gualda, 2015) and the metabasite set of Green et al. 31 (2016) using the thermodynamic database ds62 (Holland and Powell, 2011) (hereafter denoted as 32 "HPx-mb16"). We selected a N-MORB composition and modeled closed system equilibrium 33 phase relations as a function of temperature at 0.25 GPa and 1 GPa for N-MORB with 0.5 wt% 34 and 4 wt% H₂O. Our results show that phase relations exhibit some key differences that, in some 35 instances, impact geological inferences. For example, clinopyroxene and plagioclase stabilities 36 are expanded to higher temperatures in HPx-mb16 compared to predictions from rhyolite-37 MELTS. Orthopyroxene and olivine are stable in greater proportions and at wider temperature 38 ranges in rhyolite-MELTS compared to HPx-mb16. Importantly, HPx-mb16 predicts amphibole 39 in all runs presented here, whereas amphibole is only predicted at high-P-high-H₂O (1 GPa and 40 $4 \text{ wt\% H}_2\text{O}$ in rhyolite-MELTS, and in lesser amounts. Garnet stability is systematically 41 expanded at higher temperatures and the proportion is greater in rhyolite-MELTS. In addition to 42 phase assemblage differences, phase compositions may differ. For example, plagioclase anorthite 43 content is systematically higher in HPx-mb16 (for the same set of conditions) whereas garnet 44 Mg# is higher in rhyolite-MELTS. Calculated amphibole compositions are substantially different 45 between the two models as well. Liquid compositions also show important differences. High-T46 liquids are generally similar in SiO_2 contents but diverge at lower temperatures; in these cases,

47	HPx-mb16 liquids are SiO ₂ -depleted compared to those produced by rhyolite-MELTS. Liquids
48	are also systematically and substantially more mafic in HPx-mb16, and alumina and the alkali
49	concentrations are relatively different and show different trends as a function of temperature at
50	constant pressure. Overall, liquid compositions show the greatest differences near the solidus.
51	Differences in modal abundances of phases and liquid compositions influence liquid trace-
52	element signatures, and these differences can affect geological interpretations. Finally, a
53	comparison between melting experiments of basaltic bulk composition and both thermodynamic
54	models shows that rhyolite-MELTS better reproduces the higher temperature experiments,
55	whereas HPx-mb16 better reproduces the lower temperature experiments. We discuss these and
56	other similarities and differences in order to highlight the strengths and limitations of each
57	model, and to recognize that modeling results have important implications for interpretations of
58	geologic processes. We recognize that our results are informed by a small subset of calculations
59	over a limited range of conditions—our results encourage further comparisons over a wider
60	range of conditions and compositions.
61	
62	Key words: phase equilibria modeling, computational petrology, rhyolite-MELTS, Theriak-
63	Domino, thermodynamics
64	
65	INTRODUCTION
66	The use of thermodynamics to comprehensively model multiphase and multicomponent igneous and
67	metamorphic systems is one of the most important developments in the Earth Sciences of the past
68	several decades (Ghiorso and Sack, 1995; Powell et al., 1998). Phase equilibria modeling can predict
69	equilibrium phase relationships over a wide range of pressure and temperature conditions $(P-T)$ for a

70	variety of bulk compositions at various redox conditions (Powell et al., 1998, 2005; Powell and Holland,
71	2008; Gaulda et al., 2012). While there are inherent limitations associated with the use of any phase
72	equilibrium model—including the neglect of reaction kinetics, solid and liquid state diffusion, spatial P-
73	T gradients, and uncertainties associated with thermodynamic properties of relevant substances-their
74	utility to reproduce first-order observations of key Earth processes is evident (see, e.g., seminal work of
75	Bowen, 1928, 1945; Thompson, 1967; Carmichael et al., 1974). Successes include phase equilibria
76	modeling that has described magmatic systems and metamorphism in a host of environments including
77	volcanic arcs, subduction zones, orogenic terranes, and large igneous provinces (e.g. Kerrick and
78	Connolly, 2001; White and Powell, 2002; Johnson et al., 2008; Fowler and Spera, 2010; Bohrson et al.,
79	2014; Yakymchuck and Brown, 2014; García-Arias and Stevens, 2017; Palin et al., 2017; Hernández-
80	Uribe and Palin, 2019; Heinonen et al., 2019; among many others).
81	Crystallization and partial melting are crucial for understanding heat advection and matter
82	exchange between the mantle and the crust as the formation, extraction, ascent and crystallization of
83	magma is a primary mechanism that leads to differentiation on Earth and other planerary bodies
84	(England and Thompson, 1986; Brown, 2007). Accurate phase equilibria predictions (of liquid-bearing
85	systems) are thus key components of the earth scientist's toolbox to understand crucial geological
86	processes. Multiphase and multicomponent thermodynamic modeling of partially or totally molten
87	systems has been possible since the 1980's and the pioneering efforts have been greatly extended and
88	improved over the past thirty years (Berman, 1988; Essene, 1989; Holland and Powell, 1998, 2011;
89	Ghiorso and Sack, 1995; Ghiorso, 2004). Standard state thermodynamic data, volatile species pressure-
90	volume-temperature (PVT) data, and activity-composition (a-X) relations for crystalline and liquid
91	solutions (collectively referred hereafter as "the thermodynamic model") commonly used in igneous
92	petrology include those in the MELTS package (rhyolite-MELTS, pMELTS, and pHMELTS

93	calibrations; Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998; Ghiorso et al., 2002; Asimow et al.,
94	2004; Gualda et al., 2012; Ghiorso and Gualda, 2015). The thermodynamic model commonly used in
95	metamorphic petrology is mostly based on the work of Powell and Holland (1988) and Holland and
96	Powell (1998, 2011), although there are other examples (cf., Lanari and Duesterhoeft, 2018). For
97	metamorphic systems, modeling of granitic liquid compositions is possible with the White et al. (2014)
98	silicate liquid <i>a</i> – <i>X</i> relations based on previous liquid relations (Holland and Powell, 1998, 2001; White
99	et al., 2001, 2007), whereas basaltic melting can be modeled with the <i>a</i> –X relations of Jennings and
100	Holland (2015) and Green et al. (2016). Updated <i>a</i> – <i>X</i> relations that allow modeling of melt-bearing
101	equilibria in ultramafic-to-felsic metamorphic systems were recently published by Holland et al. (2018)
102	and Tomlinson and Holland (2021). We emphasize that although different thermodynamic models are
103	preferred by igneous and metamorphic petrologists, the models have overlapping calibration ranges and
104	are used for exactly the same purpose-modeling phase equilibria and compositions in liquid-bearing
105	silicate systems. At equilibrium closed-system conditions, partial melting of a metabasic lithology and
106	crystallization of a basaltic liquid exhibit identical phase relations at a given $P-T$ state point.
107	Despite the common use of phase equilibria modeling in petrology, to the best of our
108	knowledge, there have not been systematic studies to examine differences among
109	thermodynamic models where calibrations overlap. While the study of Jennings and Holland
110	(2015) and Holland et al. (2018) do compare their $a-X$ relations to results from pMELTS, the
111	focus of those papers was not a systematic comparison of the predicted equilibria. Existing
112	comparative studies in metamorphic petrology explore the differences of the various Holland and
113	Powell thermodynamic databases (e.g. Korhonen et al., 2014; Guevara and Caddick, 2016; Pan
114	et al., 2020; Starr et al., 2020), and compare model predictions with experiments and natural
115	samples (e.g. White et al., 2011; Forshaw et al., 2019; Santos et al., 2019; García-Arias, 2020;

116	Bartoli and Carvalho, 2021; Gervais and Trapy, 2021). The MELTS package collection has also
117	been compared to results of other thermobarometic methods on natural samples (e.g., Pamukcu
118	et al., 2015), experimental studies not included in the model calibrations (e.g., Hirschmann et al.,
119	1998; Neave et al., 2019; Pichavant et al., 2019), and between different MELTS calibrations
120	(e.g., Balta and McSween, 2013).
121	In this study, we take a combined approach. We systematically compare phase equilibria
122	calcualted with rhyolite-MELTS (Ghiorso et al., 2012; Ghiorso and Gualda, 2015) and the
123	"metabasite set" of Green et al. (2016) ("HPx-mb16", calculated using Theriak-Domino; de
124	Capitani and Brown, 1987; de Capitani and Petrakakis, 2010) for the equilibrium states of a mid-
125	ocean ridge basalt (MORB) at different $P-T$ conditions and different initial H ₂ O contents from
126	near-liquidus to solidus temperatures along the fayalite-magnetite-quartz (FMQ) oxygen buffer.
127	These two thermodynamic approaches (i.e., rhyolite MELTS and HPx-mb16) are the most
128	commonly used by igneous and metamorphic petrologists, respectively, to describe liquid-
129	bearing mafic systems. We also evaluate how closely the calculated MORB phase equilibria
130	between rhyolite-MELTS and HPx-mb16 compare with independent relevant experiments (i.e.,
131	not used in the calibration). We discuss the implications of our results within the framework of
132	trace-element modeling and examine the geologic implications of the differences in model
133	outcomes. By comparing the effects of pressure and H ₂ O concentration on the phase equilibria
134	during equilibrium melting and crystallization of a MORB using two extant thermodynamic
135	models, we provide our perspective on model uncertainty associated with the choice of
136	modeling. The critical insight of our work is to recognize the strengths of the thermodynamic
137	models, to highlight similarities and differences in order to illustrate how the choice of
138	thermodynamic models can lead to different geologic interpretations.

139

140

THERMODYNAMIC MODELS

141 Phase equilibria modeling relies on standard state thermodynamic data. EOS's and a-X relations 142 for solid and liquid solutions. A thermodynamic database includes standard state properties for 143 all phases, the form and numerical values defining PVT, and isobaric heat capacity expressions 144 for all phases (Berman, 1988; Essene, 1989; Holland and Powell, 1998, 2011; Ghiorso and Sack, 145 1995; Ghiorso, 2004). These parameters are obtained from experimental, calorimetric and other 146 studies (e.g., spectroscopy), and some are statistically treated to obtain the best-fit value for a 147 desired parameter from multiple experiments (e.g., least-squares regressions used by Holland and 148 Powell databases). In order to be "internally consistent", all thermodynamic parameters must be 149 compatible with thermodynamic definitions and identities, adhere to a set of reference values. 150 consider simultaneously all the experimental data, and reproduce primary data within their 151 uncertainties (Lanari and Duesterhoeft, 2018, and references therein). The rhyolite-MELTS 152 thermodynamic database is based on Berman (1988) with modifications (see Ghiorso and Sack, 153 1995; Asimow and Ghiorso, 1998; Gualda et al., 2012; Ghiorso and Gualda, 2015 for details). 154 The thermodynamic data used in HPx-mb16 utilizes version 6.2 of Holland and Powell (2011). 155 Some important differences between these thermodynamic data include—but are not limited 156 to—how the equations of state of the solid phases are calculated (i.e. using the Tait equation of 157 state in Holland and Powell (2011) vs. the EOS modified from Berman (1988) in the MELTS 158 package) and the isobaric 1-bar heat capacity dependance on temperature (i.e., the Robie et al. 159 (1978) equation in Holland and Powell (2011) vs. the high-T form used in the Berman and 160 Brown (1985) equation for the MELTS package). Furthermore, the PVT properties of fluid 161 utilized in the MELTS package are calculated using the model of Ghiorso and Gualda (2015),

whereas in Holland and Powell (2011) the equation of state of Pitzer and Sterner (1995) is used.
For a comprehensive review of all the parameters used in these two thermodynamic models, the
reader is referred to the original references.

165 In addition to standard state thermodynamic properties for pure phases, one must also 166 treat the non-ideal properties of crystalline, liquid amd gaseous solutions. The excess Gibbs 167 energies of multicomponent solutions are handled using a-X relations that relate Gibbs excess 168 energies as a function of pressure, temperature, and solution composition to activity coefficients. 169 The solid solution models describe the thermodynamics of mixing between end-members of the 170 muticomponent solution and reflect the elemental substitutions that take place in crystalline 171 solids including ordering and exsolution. The *a*-*X* relations for solid-solution phases commonly 172 contain end-member proportions, crystallographic site fractions, mixing parameters (also known 173 as the Margules parameter), ideal parameters, and thermodynamic adjustments (Lanari and 174 Duesterhoeft, 2018, and references therein). Mixing relationships can be ideal, symmetrical, or asymmetrical, depending on the behavior of the Margules parameter pair. The excess Gibbs 175 176 energy is normally a function of temperature and pressure. We discuss the a-X relations (and the 177 elements considered) that were used in this work in the next section and other details are given in 178 the Supplementary Table S1.

One approach to calculate phase equilibria is by solving simultaneous non-linear equations to build up an array of points and lines that make up the phase diagram by using Schreinemakers' analysis (e.g., THERMOCALC; Powell et al., 1998), whereas another approach is Gibbs free energy minimization to determine the most stable phase assemblage at specific state points. This second approach is used in the MELTS package (Ghiorso and Sack, 1995; Asimow

184	and Ghiorso, 1998; Gualda et al., 2012; Ghiorso and Gualda, 2015) and in Theriak-Domino and
185	Perple_X (Connolly, 2005; de Capitani and Petrakakis, 2010).
186	
187	PETROLOGICAL MODELING
188	Modeling setups
189	Phase equilibria calculations for this study were performed using rhyolite-MELTS and Theriak-
190	Domino in the Na ₂ O–CaO–K ₂ O–FeO–MgO–Al ₂ O ₃ –SiO ₂ –H ₂ O–TiO ₂ –O ₂ (NCKFMASHTO)
191	system. This system was chosen because the HPx-mb16 model was calibrated in this 10-
192	component system (Green et al., 2016), which is also appropriate for rhyolite-MELTS.
193	For the rhyolite-MELTS runs, we used the internally consistent thermodynamic database
194	of Berman (1988) with some modifications (Gualda et al., 2012; Ghiorso and Gualda, 2015) and
195	the <i>a</i> – <i>X</i> relations for solid-solution phases included in the rhyolite-MELTS calibration
196	(Supplementary Table S1), i.e., silicate liquid (Ghiorso and Sack, 1995); pyroxene (Sack and
197	Ghiorso, 1994); orthopyroxene, biotite, olivine (Sack and Ghiorso, 1989); amphibole (Ghiorso et
198	al., 1995); garnet (Berman, 1990; Berman and Koziol, 1991); feldspar (Elkins and Grove, 1990);
199	spinel (Sack and Ghiorso 1991a, b); and rhombohedral oxide (Ghiorso, 1990; Ghiorso and Sack,
200	1991; Ghiorso and Evans, 2008). Note that, despite its name, rhyolite-MELTS is meant for
201	modeling mafic systems and the prefix "rhyolite" only refers to the latest calibration that is more
202	suitable also for felsic systems than the preceding MELTS versions (Gualda et al., 2012;
203	http://melts.ofm-research.org).
204	For the Theriak-Domino runs, we utilized the Theriak-Domino version from D. K.
205	Tinkham (https://dtinkham.net/peq.html), the internally consistent thermodynamic database ds62
206	(Holland and Powell, 2011), and the "metabasite set" of <i>a</i> – <i>X</i> relations for solution phases

207	(Supplementary Table S1) from Green et al. (2016); these include: liquid, augite and
208	clinoamphibole (Green et al., 2016); garnet, biotite, chloritoid, muscovite-paragonite, and
209	chlorite (White et al., 2014); epidote (Holland and Powell, 2011); plagioclase (Holland and
210	Powell, 2003); magnetite-spinel (White et al., 2002); and ilmenite-hematite (White et al., 2000).
211	Pure phases include albite, quartz, rutile, and titanite.
212	In all comparative calculations in this study, we computed equilibrium state points only;
213	fractionation was not used except as a preliminary step in rhyolite-MELTS to determine the
214	appropriate version of rhyolite-MELTS. Hence our calculations apply equally to equilibrium
215	crystallization and equilibrium partial melting as these processes are thermodynamically
216	identical.
217	The wide $P-T-X$ ranges of the modeling software enable near-infinite possibilities for
218	model comparison. Here, we focus on a detailed comparison of one of the most widely used
219	average compositions in petrological modeling, that of the mean N-MORB from Gale et al.
220	(2013) (Table 1). Modeling intermediate and/or felsic systems is outside of the scope of this
221	study. To explore the effects of H_2O in our calculation, we utilized two initial H_2O -contents: 0.5
222	wt% and 4 wt% to account for relatively dry and wet conditions. The oxygen chemical potential
223	was controlled by imposing the FMQ buffer in all calculations.
224	Calculations were carried out at 0.25 GPa and 1 GPa, which approximate upper and
225	lower crustal conditions, and were calculated isobarically over the temperature interval between
226	600 °C to the liquidus temperature (calculated by rhyolite-MELTS) in discrete steps. In rhyolite-
227	MELTS, the FMQ buffer is not maintained below the solidus, and thus, results below such
228	conditions are not discussed in this study.
229	

230 Comparison methodology

231	We performed a comparison using four sets of conditions. These include: (1) a low- P -low-H ₂ O
232	run (i.e., at 0.25 GPa and 0.5 wt% H ₂ O), (2) a low- <i>P</i> -high-H ₂ O run (i.e., at 0.25 GPa and 4 wt%
233	H ₂ O), (3) a high- <i>P</i> -low-H ₂ O run (i.e., at 1 GPa and 0.5 wt% H ₂ O), and (4) a high- <i>P</i> -low-H ₂ O
234	run (i.e., at 1 GPa and 4 wt% H ₂ O). All calculations were carried out at discrete temperatures
235	spanning the solidus to liquidus (or near-liquidus) temperatures along the selected pressures. As
236	noted earlier, the equilibrium (closed system) states computed apply to both crystallization and
237	melting, because at equilibrium, the liquid-solid-fluid relationships are the same for closed-
238	system melting or crystallization. Thus, we emphasize that although the calculations (and Figs. 1,
239	2, and 4–7) proceed up temperature from near-soliuds toward near-liquidus (i.e., equilibrium
240	partial melting), the calculations are equally applicable to down-temperature equilibrium
241	crystallization since there is no fractionation of solids from liquid.
242	Because there are several versions of rhyolite-MELTS, we followed the decision tree on
243	the rhyolite-MELTS website (http://melts.ofm-research.org/LIQUIDS-decision-tree.html) in
244	order to choose the appropriate version for each calculation. All the rhyolite-MELTS runs were
245	calculated with the version v1.2.0 with the exception of the low- P -high-H ₂ O run (i.e. at 0.25
246	GPa and 4 wt% H ₂ O), where v1.1.0 was used.
247	Phase modal proportions are shown using mode boxes, which include the calculated
248	normalized mass proportions (wt%) of all predicted phases at each calculated state point (Figs. 1
249	and 2; mineral proportions in vol% are also shown in Supplementary Figures S1-S2). When
250	more than one phase of the same solid solution were stable at a single state point (e.g., two
251	clinopyroxenes predicted by rhyolite-MELTS), the phase masses were combined for simplicity.
252	Calculated modal proportions are given in Table 2 every 100 °C from 900 (or 800 °C) to 1100

°C. The detailed description of the calculated phase equilibria evolution for the four scenarios is
given in Appendix 1.

255	Liquid compositions are reported from the liquidus (calculated with rhyolite-MELTS) or
256	near liquidus (HPx-mb16) to the solidus (Figs. 3–7). Given that the rhyolite-MELTS liquid $a-X$
257	model, in contrast to the Green et al. (2016) liquid $a-X$ model, considers both FeO and Fe ₂ O ₃ ,
258	the Fe content of the calculated compositions was recalculated to FeO ^t allowing for direct
259	comparison. Liquid compositions are given in Tables S2 and S3 every 100 °C from 900 (or 800
260	°C) to 1100 °C. Compositions are reported in the table only when liquid is stable in both
261	rhyolite-MELTS and HPx-mb16 models at the same $P-T$ conditions. The full liquid
262	compositional evolution is described in Appendix 1.
263	In addition to providing a first-order comparison of the phase relations and liquid
264	compositions, we also compare compositions of clinopyroxene, feldspar, orthopyroxene,
265	amphibole and garnet, which are the most abundant minerals. A detailed description of the phase
266	compositions at each state point can be found in the Appendix 1 and in Supplementary Figures
267	S3–S6. Only the most significant mineral-compositional differences and characteristics are
268	presented and discussed in the sections below.
269	
270	Models caveats

271 Both of the thermodynamic models used here (i.e., rhyolite-MELTS and HPx-b16) have

significant caveats, limitations, and uncertainties, mainly related to the thermodynamic data and

273 the a-X models. A detailed discussion is beyond the scope of this paper; the reader is referred to

the original works and developers' websites to find important information related to the models

275 (rhyolite-MELTS, http://melts.ofm-research.org; HPx-mb16, https://hpxeosandthermocalc.org).

276	Below, we only outline the calibration ranges where the thermodynamic models should yield
277	reliable results and some important caveats pertinent to our comparison work.
278	Rhyolite-MELTS is recommended for modeling relatively dry mafic and hydrous silicic
279	systems at < 2 GPa. Phase equilibria calculations via rhyolite-MELTS are not recommended at
280	conditions close to the solidus (and subsolidus) and/or for intermediate and calc-alkaline systems
281	with modally significant amphibole, muscovite, and biotite (http://melts.ofm-research.org;
282	Gualda et al., 2012). Rhyolite-MELTS calculations are further recommended for volcanic
283	systems where the melt fraction is > 50 wt% (Gualda et al., 2012).
284	Calculations with the HPx-mb16 model are recommended for modeling partial melting of
285	hydrous metabasites at < 1.3 GPa. Reliable phase equilibria can be calculated at subsolidus and
286	suprasolidus conditions up to ~1050 °C (Green et al., 2016; Palin et al., 2016); yet, modeling
287	phase equilibria near- or at the liquidus is not recommended as the liquid $a-X$ model accounts for
288	neither Fe ₂ O ₃ and TiO ₂ .
289	
290	MODEL COMPARISON
291	Differences in the calculated phase proportions
292	Overall, rhyolite-MELTS calculates more liquid at higher temperatures (closer to the liquidus)
293	but less liquid at lower temperatures (closer to the solidus) compared to HPx-mb16 (Figs. 1 and
294	2). For example, in the low- P -low-H ₂ O run at 1100 °C, rhyolite-MELTS predicts ~33 wt%
295	liquid, whereas HPx-mb16 predicts ~50 wt% liquid (~36 vol% and ~53 vol%, respectively; Figs.
296	1a and c; Fig. S1a and c; Table 2). The position of the solidi vary depending on pressure between
297	the two models as well. In the low- P runs, the solidus is located at higher temperature (e.g., ~850
298	°C vs ~730 °C in the high-H ₂ O run; Figs. 1b and d) whereas in the high- <i>P</i> run, it is located at

lower temperature (e.g., ~760 °C vs ~890 °C in the low-H₂O run; Figs. 2a and c) in rhyolite-

300 MELTS compared to HPx-mb16. In all the calculations, a higher H₂O content decreases the

301 solidus temperature (Figs. 1 and 2).

302 Clinopyroxene and plagioclase stabilities are expanded to higher temperatures in HPx-303 mb16 regardless of the conditions (Figs. 1 and 2). At temperatures closer to the solidus, rhyolite-304 MELTS predicts higher amounts of these phases, and the specific temperatures where rhyolite-305 MELTS predicts more of these phases depend on the specific run (Figs. 1 and 2; Table 2). For 306 example, in the low-P-high-H₂O run at 900 °C, rhyolite-MELTS predicts ~32 wt% of 307 clinopyroxene and ~ 27 wt% of plagioclase (~ 24 vol% and ~ 26 vol%, respectively), whereas 308 HPx-mb16 predicts ~21 wt% clinopyroxene and ~22 wt% plagioclase (~16 vol% and ~21 vol%, 309 respectively) (Figs. 1b and d; Fig. S1b and d; Table 2). Plagioclase proportion is systematically 310 higher in rhyolite-MELTS at any given temperature in the low-P runs. For example, at 830 °C in 311 the low-P-high-H₂O run, rhyolite-MELTS calculates ~46 wt% of plagioclase whereas HPx-312 mb16 predicts ~25 wt% (~43 vol% and ~25 vol%, respectively; Figs, 1b and d; Fig. S1b and d). 313 By contrast, in the high-P runs, plagioclase systematics are different; in the low-H₂O run 314 rhyolite-MELTS calculates less amount of plagioclase comapred to HPx-mb16, whereas in high-315 H₂O run, only HPx-mb16 predicts plagioclase (Fig. 2; Table 2). 316 Orthopyroxene and olivine proportions are systematically higher in the rhyolite-MELTS 317 low-P runs compared to HPx-mb16 low-P runs (Fig. 1); olivine stability is typically expanded to 318 higher temperatures in rhyolite-MELTS compared to HPx-mb16. In the low-P-low-H₂O run, 319 olivine is not stable in rhyolite-MELTS but predicted in a small temperature window in the HPx-320 mb16 calculation (Fig. 1). By contrast, in the high-P runs, orthopyroxene and olivine are not 321 stable except orthopyroxene only in the low-H₂O HPx-mb16 run.

322	A crucial systematic difference at all $P-T-H_2O$ conditions is the stability of amphibole.
323	HPx-mb16 predicts amphibole in all runs; the amount of amphibole increases with increasing
324	pressure and H ₂ O (Figs. 1c, 1d, 2c, and 2d; Table 2). By contrast, in the rhyolite-MELTS
325	calculations, amphibole is only predicted in the high-P-high-H ₂ O run (Fig. 2b). The amount of
326	amphibole, and its temperature-interval of stability, are not comparable with HPx-mb16 (Figs.
327	2b–d). For example, in the high- P –high-H ₂ O run at 700 °C, rhyolite-MELTS predicts ~2 wt% of
328	amphibole compared to ~63 wt% in HPx-mb16 (~1 vol% and ~57 vol%, respectively; Figs. 2b
329	and d; Fig. S2b and d). At 600 °C in the same run, the modal difference remains considerable:
330	rhyolite-MELTS predicts ~22 wt% of amphibole whereas in HPx-mb16 modal amphibole is ~66
331	wt% (~20 vol% and ~61 vol%, respectively; Figs. 2b and d; Fig. S2b and d).
332	Garnet is only stable in the high-P runs in both models. Its stability is systematically
333	expanded to higher temperature and the proportion is greater in rhyolite-MELTS compare to
334	HPx-mb16 (Fig. 2). For instance, in the high-P-low-H ₂ O run at 800 °C, rhyolite-MELTS
335	predicts ~32 wt% of garnet whereas HPx-mb16 predicts ~15 wt% (~27 vol% and ~12 vol%,
336	respectively; Figs. 2a and c; Fig. S2a and c; Table 2). Unexpectedly, higher H ₂ O increases the
337	proportion of garnet in rhyolite-MELTS (Figs. 2a and b). On the other hand, follows the opposite
338	trend relative to H ₂ O (Figs. 2c and d), i.e., a higher H ₂ O ihibits garnet stabilizatin.
339	Other minor phases such as quartz and Fe-Ti oxides also show differences between the
340	models (Figs. 1 and 2). Quartz is predicted at relatively similar temperatures (± 50 °C) but is
341	systematically higher in proportion in rhyolite-MELTS in the low-H ₂ O runs but lower in the
342	high-H ₂ O runs (Figs. 1 and 2). By contrast, proportions of Fe-Ti oxides are relatively similar (± 2
343	wt%), although the predicted phase is always different in the low-P runs: rhyolite-MELTS

344	predicts a spinel group phase (ulvospinel-magnetite) whereas HPx-mb16 predicts rutile that is
345	replaced by ilmenite at lower temperature (Figs. 1 and 2).
346	The models predict H_2O -saturation conditions at different $P-T$ conditions (Figs. 1 and 2).
347	In the low-P-low-H ₂ O run, H ₂ O-saturated conditions are only attained in rhyolite-MELTS (Fig.
348	1a). By contrast, in the low-P-high-H ₂ O run, all calculations reach H ₂ O-saturated conditions,
349	although H ₂ O as a phase occurs at higher temperatures and in lower proportion in HPx-mb16
350	(Figs. 1b and d). In the small temperature interval where H_2O is in excess in HPx-mb16 but not
351	in rhyolite-MELTS (i.e., ~1100–1000 °C; Figs. 1b and d), the liquid proportion is higher in
352	rhyolite-MELTS (Figs. 1b and d). In the high-P runs, H ₂ O-saturated conditions are only reached
353	in the high-H ₂ O run in both models (Figs. 2b and d). Similar to the low-P runs, H ₂ O occurs at
354	slightly higher temperatures in HPx-mb16 runs (Figs. 2b and d).
355	In all our calculations, there are four phases that are only stable in either rhyolite-MELTS
356	or in HPx-mb16. These are analcime (only predicted by rhyolite-MELTS) and epidote, titanite,
357	and rutile (only predicted by HPx-mb16). (Figs. 1 and 2).
358	
359	Differences in the calculated phase compositions
360	Liquid compositions. The calculated silicate liquids follow relatively similar compositional
361	trends as a function of temperature (Fig. 3); changes in liquid composition are controlled by the
362	crystallization or consumption of phases which, as noted above, differ between models.
363	Generally, high- T liquid compositions are relatively similar in SiO ₂ but for most
364	calculations, diverge at lower temperatures. In the low-P-low-H ₂ O run, where the SiO ₂ is
365	enriched in HPx-mb16 at high temperatures compared to the liquid predicted by rhyolite-MELTS
366	(Fig. 4a). At lower temperatures in the low-H ₂ O runs, HPx-mb16 liquid compositions are SiO ₂ -

367	depleted compared to rhyolite-MELTS (up to ~5 wt%; Figs. 4a and 6a); by contrast, in the high-
368	H ₂ O runs, the HPx-mb16 liquid compositions are SiO ₂ -enriched compared to rhyolite-MELTS
369	(up to ~16 wt%; Figs. 5a and 7a). The liquid SiO ₂ contents in the low- P -high-H ₂ O runs in
370	rhyolite-MELTS and HPx-mb16 are almost identical (Fig. 5a)
371	Calculated liquids are systematically—and substantially—more mafic in the HPx-mb16
372	than in rhyolite-MELTS (up to ~18 wt% higher in the high- P -low-H ₂ O run at 1080°C; Fig. 6c).
373	Liquid FeO ^t + MgO in HPx-mb16 shows a distinct enrichment at high temperatures that is not
374	observed in rhyolite-MELTS (Figs. 4c, 5c, 6c, and 7c). These changes are less significant as the
375	H ₂ O content increases at the same pressure (Figs. 4c and 5c); the high-P-high-H ₂ O run show the
376	least difference in liquid $FeO^t + MgO$ (Fig. 7c).
377	The liquid CaO and H ₂ O contents have similar compostional trends in both models, and
378	tend to be higher in rhyolite-MELTS. The relative difference in the CaO and H ₂ O contents is
379	greater in the low-P runs (up to 5 wt% in Cao and ~4 wt% in H ₂ O Figs. 4f and 5f); by contrast,
380	in the high-P runs, the difference in the liquid CaO and H ₂ O content is smaller (Figs. 6f and 7f).
381	In all the runs, the H ₂ O liquid content tend to diverge the most at lower temperatures (Figs. 4f,
382	5f, 6f, and 7f).
383	Liquid Al ₂ O ₃ and alkali contents are relatively different between the models throughout.
384	The liquid Al ₂ O ₃ content follow different trends in all the runs (Figs. 4b, 5b, 6b, and 7b); the
385	alkali content are relatively similar in all the low-P runs (Figs. 4d and 5d). In the high-P runs,
386	within 1200–900 °C (in the low-H ₂ O content run) and 1100–750 °C (in the high-H ₂ O content
387	run), rhyolite-MELTS calculated liquid compostion is greater in the alkali contents compared to
388	the HPx-mb16 liquid composition (up to 2–3 wt%; Figs. 6d and 7d).

389	Overall, liquid compositions show the greatest difference at lower temperatures, closer to
390	the solidus: the low-P runs are the most similar (especially CaO and alkalis; Figs. 4 and 5),
391	whereas in the high-P runs, compositional differences are more distinct (especially in the case of
392	SiO ₂ , Al ₂ O ₃ , and H ₂ O; Figs. 6 and 7).
393	
394	Mineral compositions. Details of the mineral chemical evolution and the results derived from

395 both models can be found in Appendix 1 and in the Supplementatory Figures S2–S5. Among the most important differences is that the clinopyroxene shows similar Mg# $Mg# = Mg/(Fe^{2+} +$ 396

397 Mg)] at temperatures near the liquidus, but with decreasing temperature, rhyolite-MELTS

398 predicts higher clinopyroxene Mg# values compared to HPx-mb16 in all runs. Plagioclase

399 anorthite content is systematically higher in HPx-mb16 at any temperature compared to rhyolite-

400 MELTS in all the runs. In the high-P runs, garnet Mg# values are systematically higher in

401 rhyolite-MELTS compared to HPx-mb16 at any given temperature; almandine and grossular

402 contents are systematically higher and pyrope contents lower in HPx-mb16. Calculated

403 amphibole compositions are substantially different between rhyolite-MELTS and HPx-mb16,

404 reflecting the complexity and difficulty modeling a-X relations in multisite-multicomponent

405 amphibole phases using available experimental data (Supplementary Table S4). The Si, Mg# and

406 Ca contents are systematically higher in rhyolite-MELTS than in HPx-mb16 at any given

407 temperature in the high-*P*-high-H₂O run.

- 408
- 409

TRACE-ELEMENT SIGNATURES OF MODEL LIQUIDS

410 Here, we explore the effect of calculated phase relations on the trace-element signatures of the 411 liquids. We used calculated liquid and solid fractions (Supplementary Table S5) along with

412	liquid-mineral partition coefficients to model the liquid trace-element signatures at (1) 900 °C in
413	the low-P-low-H ₂ O run, (2) 1000 °C in the high-P-low-H ₂ O run, and (3) 850 °C in the high-P-
414	high-H ₂ O run. These three scenarios were selected because of the markedly different predicted
415	equilibria between the models. Trace-element modeling was performed at the given state point
416	using mass balance equations found elsewhere (e.g., Shaw, 2006; Spera et al., 2007). A wide
417	selection of variably incompatible trace elements was chosen, and partition coefficients were
418	from Bédard (2006) (Supplementary Table S6). To highlight the similarities and differences in
419	trace element signatures resulting solely from phase assemblage differences, constant liquid-
420	mineral partition coefficients (for each mineral) were used. The starting bulk trace-element
421	composition was that of mean N-MORB from Gale et al. (2013). The results are given in Table 3
422	and illustrated in normalized incompatible trace-element diagrams and REE diagrams in Figure
423	8.
424	In the low- <i>P</i> -low-H ₂ O run at 900 °C, the stable phase assemblage predicted by rhyolite-
425	MELTS is liquid-plagioclase-orthopyroxene-clinopyroxene-magnetite (Fig. 1c). The calculated
426	liquid trace-element pattern (Figures 8a and b) is relatively enriched in Ta and Zr, and depleted
427	in Ba, Pb, Sr, Eu, and Ti. The liquid composition is further characterized by a low Sr/Y ratio
428	(Sr/Y = 0.44; Table 3), and is not strongly fractionated in REE (La/Yb = 1.86 ; Table 3). The
429	chondrite-normalized REE pattern shows a strong negative Eu anomaly (Eu/Eu* = $[Eu/(Sm x = Eu/(Sm $
430	Nd) ^{0.5}] = 0.07; Table 3), and is characterized by a flat heavy-REE (HREE) slope (Yb/Gd = 0.62;
431	Table 6). The calculated paragenesis using HPx-mb16 is liquid–plagioclase–amphibole–
432	orthopyroxene-clinopyroxene-ilmenite (Fig. 1c). While the HPx-mb16 liquid compositions
433	show relatively lower concentrations of all the considered trace elements, most of trace elements
434	are similar to those calculated with rhyolite-MELTS. Exceptions are Ta, Gd and Tb which are

435	much lower in concentration in HPx-mb16. The liquid composition is characterized by low Sr/Y
436	(Sr/Y = 0.76) and La/Yb (La/Yb = 2.26) ratios (Table 3), a strong Eu negative anomaly (Eu/Eu*
437	= 0.12; Table 3), and a flat HREE slope (Yb/Gd = 0.78 ; Table 3).
438	In the high-P-low-H ₂ O run, the stable phase assemblage at 1000°C for the rhyolite-
439	MELTS run is liquid-plagioclase-clinopyroxene-garnet (Fig. 2c). The calculated trace-element
440	compositions are shown in Figures 8c and d. The liquid incompatible trace-element pattern is
441	slightly enriched in Ta and Ti but depleted in Ba and Sr, and further characterized by a moderate
442	Sr/Y ratio (Sr/Y = 10.93; Table 3). It is also strongly fractionated in light to heavy REE (La/Yb = $\frac{1}{2}$).
443	35.24; Table 3) because garnet is a stable phase. The REE pattern does not show a negative Eu
444	anomaly (Eu/Eu* = 0.30; Table 3), and is characterized by a steep HREE slope (Yb/Gd = 0.18 ;
445	Table 3). The paragenesis in HPx-mb16 is liquid-plagioclase-amphibole-orthopyroxene-
446	clinopyroxene-ilmenite (Fig. 2c). The incompatible trace-element pattern of HPx-mb16 is
447	similar to that of rhyolite-MELTS for highly incompatible elements, but there are significant
448	differences in terms of Eu, Gd, Ta, and HREE; the liquid composition is also characterized by a
449	low Sr/Y ratio (Sr/Y = 0.80; Table 3). The REE pattern is not fractionated (La/Yb = 2.12 ; Table
450	6), shows a strong negative Eu anomaly (Eu/Eu* = 0.12 ; Table 3), and is enriched in HREE
451	(Yb/Gd = 0.72; Table 3).
452	In the high-P-high-H ₂ O run at 850 °C, the paragenesis predicted by MELTS is liquid-
453	clinopyroxene-garnet (Fig. 2d). The calculated trace-element compositions are shown in Figures

454 8e and f. The calculated incompatible trace-element pattern is slightly enriched in Pb, Sr, and Ti

and slightly depleted in Th. The liquid composition has a high Sr/Y ratio (Sr/Y = 142.48; Table

456 3) and is strongly fractionated in LREE/HREE (La/Yb = 74.96; Table 3) due to residual garnet.

457 The REE pattern further shows a small positive Eu anomaly (Eu/Eu* = 0.48; Table 3), and is

458 characterized by a steep HREE slope (Yb/Gd = 0.17; Table 3). The calculated paragenesis in 459 HPx-mb16 is liquid-amphibole-orthopyroxene-clinopyroxene-garnet-titanite (Fig. 2d). The 460 incompatible trace-element pattern is depleted in highly incompatible elements but enriched in 461 more compatible elements relative to that of the rhyolite-MELTS liquid. The pattern is further 462 characterized by a slight enrichment in Pb. Sr. and Zr and depletion in Ti: the liquid composition 463 has a moderate Sr/Y ratio (Sr/Y = 12.07; Table 3). The REE pattern is not fractionated (La/Yb = 464 3.54; Table 3), does not show an Eu negative anomaly ($Eu/Eu^* = 0.37$; Table 3), and is enriched 465 in HREE (Yb/Gd = 0.81; Table 3).

466

Contrasting liquid trace-element signatures: the effect of contrasting mineral assemblages 467 468 As discussed in the previous sections, both models yield significant differences in calculated 469 phases and their relative abundances. Unsurprisingly, this directly affects the trace-element signatures of the liquids. For example, partitioning of Ba, Sr, and Eu into plagioclase (Gromet 470 471 and Silver, 1983), means that the increase of plagioclase stability at higher temperatures in HPx-472 mb16 relative to rhyolite-MELTS and the differences in plagioclase proportion will lead to 473 differences in the concentrations of the Ba, Sr, and Eu in liquids in equilibrium with their 474 associated crystals at each state point (Fig. 8; Table 3). The considerable effect of the discordant 475 phase equilibria on the trace-element budget is also well illustrated by the contrasting garnet 476 stabilities in the different models. Garnet is more stable in all rhyolite-MELTS calculations, and 477 since it is an important HREE repository (e.g., Bea et al., 1994), its fractionation causes notable 478 HREE depletions in the corresponding rhyolite-MELTS liquid compositions (Fig. 8; Table 3). 479 The HPx-mb16 trace-element patterns always show negative Ti anomalies, whereas 480 trace-element patterns of rhyolite-MELTS calculations only show negative Ti anomalies in the

481	high-P-low-H ₂ O case (Fig. 8; Table 3). The negative Ti anomalies in HPx-mb16 trace-element
482	patterns are controlled by partitioning of Ti into titanite, ilmenite, and amphibole (where
483	present), whereas such phases are never stable in rhyolite-MELTS calculations. In the only
484	example where there is a negative Ti anomaly (Fig. 8; Table 3) in rhyolite-MELTS, the main Ti
485	repository is magnetite.
486	A key difference in the mineral assemblage predicted by rhyolite-MELTS and HPx-mb16
487	models is the presence of amphibole. This mineral has relatively high partition coefficients for
488	MREE and HREE (Table S6; Bédard, 2006) likely accounting for the depletition in MREE and
489	HREE contents in amphibole-rich HPx-mb16 calculations compared to those of rhyolite-
490	MELTS, as well as to HPx-mb16 calculations with less amphibole (Fig. 8; Table 3).
491	Other trace elements (e.g., Cs, Rb, Th, U, and light-REE) are mainly incompatible to the
492	solid phases present in the calculations, thus the concentrations in the melt are only slightly
493	affected by the choice of the thermodynamic model (Fig. 8; Table 3). Rather subtle relative
494	differences in their concentrations can be observed in the high-P-high-H ₂ O run (Fig. 8; Table 3).
495	Highly incompatible elements may thus generally represent better proxies to model
496	crystallization or anatectic processes with both rhyolite-MELTS and HPx-mb16, since they are
497	less prone to differ significantly with model choice.
498	
499	COMPARING MODELS TO PETROLOGICAL EXPERIMENTS
500	To further assess the robustness of the phase equilibria models, we compared model predictions
501	with results from low- and high-P petrological experiments. We selected the experimental
502	studies of Berndt et al. (2005) and Sen and Dunn (1994) as benchmarks for the comparison. We
503	used the synthetic MORB B1 composition from Berndt et al. (2005) and compared the phase

504	equilibria at 0.2 GPa and 950 °C and 1000 °C. These conditions correspond to their runs 148 and
505	153 (their Table 3c). The data in Berndt et al. (2005) were not used in either rhyolite-MELTS or
506	HPx-mb16 calibrations. In addition, we utilized the natural basaltic amphibolite from the Sen
507	and Dunn (1994) experiment and compared the phase equilibria at 1.5 GPa and 975 °C and 1025
508	°C. These conditions correspond to their runs B17 and M2 (their Table 2). Although data from
509	Sen and Dunn (1994) were not used to calibrate HPx-mb16, Sen and Dunn data did form a very
510	small part of the data used to calibrate rhyolite-MELTS (Ghiorso et al., 2002). The Berndt et al.
511	(2005) experiments considered oxygen fugacities corresponding to the FMQ buffer whereas the
512	Sen and Dunn (1994) oxygen fugacity corresponds to $FMQ = +0.5$. Here, for simplicity,
513	calculations with both rhyolite-MELTS and HPx-mb16 where run along the FMQ buffer. Phase
514	proportions from the Berndt et al. (2005) and Sen and Dunn (1994) experiments as well as phase
515	equilibria calculations with rhyolite-MELTS (v1.2.0) and HPx-mb16 are shown in Figure 9 and
516	given in Table 4; experimental and calculated liquid compositions are given in Table 5.
517	

518 MORB B1 of Berndt et al. (2005)

519 Phase equilibria at 950 °C slightly differs between the models and experiment 153 (Fig. 9a;

520 Table 4). Liquid–olivine–clinopyroxene–plagioclase–amphibole–H₂O is the observed

521 paragenesis in the experiment. Rhyolite-MELTS differs from the experiment in that it stabilizes

522 orthopyroxene and a small amount of magnetite but not amphibole. HPx-mb16 stabilizes

- 523 amphibole, clinopyroxene, and plagioclase as in the experiment but with additional
- orthopyroxene and a small amount of ilmenite and no olivine. The liquid proportion in the
- 525 experiment is similar to that predicted in HPx-mb16 but significantly lower in rhyolite-MELTS.
- 526 Clinopyroxene and plagioclase proportions are relatively similar in HPx-mb16 compared to the

527	experiment; rhyolite-MELTS predicts higher proportions of these phases than both HPx-mb16
528	and the experiment. The olivine proportion is higher in the rhyolite-MELTS model compared to
529	the experiment. On the other hand, the proportion of amphibole observed in the experiment is
530	similar to that predicted by HPx-mb16. In general, HPx-mb16 is able to better reproduce the
531	phase relations from the experiment 153. The rhyolite-MELTS liquid composition is relatively
532	similar to that of the experiment in terms of MgO and CaO contents whereas the HPx-mb16
533	liquid composition is in relative agreement with regards to all the other major oxides (Table 5).
534	Significant differences include the MgO and K2O contents; for instance, the liquid's MgO
535	content in rhyolite-MELTS is within \sim 5% of the experiment whereas the K ₂ O content is within
536	~382% of the experiment. By contrast, the the HPx-mb16 calculated MgO content is within
537	~115% of the experiment whereas the K_2O content is within ~74% of the experiment. Note that
538	the large relative difference in the K_2O content is exacerbated by low K_2O contents.
539	At 1000 °C, the rhyolite-MELTS and HPx-mb16 models, and the experiment 148 of
540	Berndt et al. (2005) show the same phase assemblage, melt-olivine-clinopyroxene-plagioclase-
541	H ₂ O, with the exception of a very small amount of ilmenite that is predicted in HPx-mb16.
542	However, the phase proportions are somewhat different (Fig. 9b; Table 4); both rhyolite-MELTS
543	and HPx-mb16 predict considerably less liquid than observed in the experiment, and both models
544	predict more plagioclase. Rhyolite-MELTS predicts slightly more olivine than measured in the
545	experiment whereas the HPx-mb16 predicts slightly less olivine than in the experiment. Modeled
546	and experimental clinopyroxene proportions are similar. Overall, rhyolite-MELTS is able to
547	better reproduce the phase equilibria from experiment 148. The HPx-mb16 calcualted liquid
548	composition is relatively similar to that of the experiment in terms of SiO ₂ , Al ₂ O ₃ , and H ₂ O
549	contents, whereas the rhyolite-MELTS liquid composition is in reasonable agreement with the

550	experiment for all the other major oxides (Table 5). Important differences in the compositions
551	include the MgO and K ₂ O contents; for example, the MgO liquid content in rhyolite-MELTS is
552	within ~3% of the experiment whereas the liquid's K_2O content is within ~38% of the
553	experiment. On the other hand, the HPx-mb16 calculated liquid MgO content is within ~74% of
554	the experiment and the K_2O content within ~51% of the experiment.
555	
556	Natural basaltic amphibolite of Sen and Dunn (1994)
557	The stable phase assemblage in the 975 °C experiment M2 is liquid-clinopyroxene-plagioclase-
558	amphibole-garnet-rutile. Rhyolite-MELTS model does not stabilize plagioclase, amphibole, or
559	rutile, whereas HPx-mb16 stabilizes the same experimental phase assemblage with the exception
560	of plagioclase (Fig. 9c; Table 4). Phase proportions are relatively different between both models
561	and the experiment; the calculated liquid fractions are considerably higher than in the
562	experiment. The calculated clinopyroxene proportion in HPx-mb16 is similar to that in the
563	experiment but considerably higher in rhyolite-MELTS. Similarly, the garnet proportions
564	predicted by both models are significantly higher than in the experiment. The calculated
565	amphibole proportion in HPx-mb16 is relatively less than in the experiment. Rutile occurs as
566	minor phase in both HPx-mb16 and the experiment. In general, HPx-mb16 better reproduces the
567	phase relations at 975 °C. The rhyolite-MELTS liquid composition is relatively similar to that of
568	the experiment in terms of FeO ^t and MgO liquid contents whereas the HPx-mb16 liquid
569	composition is in relative agreement with the experiment for all the other major oxides (Table 5).
570	Significant differences include the FeO ^t and K ₂ O contents; for instance, the FeO ^t liquid content
571	in rhyolite-MELTS is within ~29% of the experiment whereas the liquid K_2O content is within

572	~86% of the experiment. On the other hand, the HPx-mb16 calculated FeO ^t liquid content is
573	within ~73% of the experiment and the K_2O content is within ~32% of the experiment.
574	The observed paragenesis at 1025 °C in the Sen and Dunn (1994) experiment B17 is
575	liquid-clinopyroxene-amphibole-garnet-rutile. HPx-mb16 predicts the same phases, whereas
576	rhyolite-MELTS differs from the experiment in that it stabilizes neither amphibole nor rutile.
577	Proportions of most other phases are fairly similar between the computed models and the
578	experiment, although HPx-mb16 predicts relatively more liquid and less clinopyroxene (Fig. 9d;
579	Table 4). The proportion of garnet calculated with rhyolite-MELTS is considerably higher than
580	in the experiment, whereas HPx-mb16 predicts a relatively higher amount of garnet. The
581	amphibole proportion observed in the experiment is similar to that predicted by HPx-mb16.
582	Rutile occurs as a minor phase in both HPx-mb16 and the experiment. In general, HPx-mb16
583	better reproduces the phase relations of the experiment M2. The rhyolite-MELTS liquid
584	composition is relatively similar to that of the experiment in terms of SiO ₂ , FeO ^t , and MgO
585	contents, whereas the HPx-mb16 liquid composition is in relative agreement with all other major
586	element oxides (Table 5). Important differences include the FeO ^t and Na ₂ O contents; for
587	example, the FeO ^t liquid content in rhyolite-MELTS is within ~32% of the experiment whereas
588	the liquid Na ₂ O content is within \sim 79% of the experiment. By contrast, the HPx-mb16 calculated
589	FeO ^t is within ~78% of the experiment and the liquid's Na ₂ O content within ~1% of the
590	experiment.

591

592

DISCUSSION

Although a minor oxide and therefore not as important as many of the major element oxides, the lack of the TiO₂ component in the Green et al. (2016) liquid a-X relations precludes accurately

595	modeling phase equilibria at or near liquidus conditions using HPx-mb16 in the NCKFMASHTO
596	system. As TiO ₂ cannot be incorporated into the liquid, there is always a Ti-bearing stable phase
597	at high- <i>T</i> ; this, in turn, affects the overall phase equilibria incluing the liquid compositions. For
598	instance, rhyolite-MELTS predicts the liquidus at ~1340–1100 °C, whereas in the HPx-mb16
599	model is unable to model these conditions; clinopyroxene and/or plagioclase, and a Ti-bearing
600	phase are already present at the liquidus conditions predicted by rhyolite-MELTS (Figs. 1 and 2).
601	Recently, Holland et al. (2018) and Tomlinson and Holland (2021) published <i>a</i> –X relations for
602	relevant crystalline solutions enabling modeling of peridotitic to granitic liquids. This set of $a-X$
603	relations includes more complex liquid and clinopyroxene $a-X$ relations (including TiO ₂ and
604	Fe_2O_3 in the liquid, and TiO_2 and K_2O in the clinopyroxene) than in the <i>a</i> - <i>X</i> relations from HPx-
605	mb16. In the first instance, this set of $a-X$ relations might represent a better approach to
606	modeling suprasolidus processes than HPx-mb16; yet, a recent study indicates that phase
607	equilibria calculated with the Holland et al. (2018) relations are not significantly different from
608	calculations performed with HPx-mb16; moreover, HPx-mb16 produces similar compositions
609	and better reproduces the FeO ^t and MgO liquid contents from experiments than the Holland et al.
610	(2018) <i>a–X</i> relations (García-Arias, 2020).
611	When comparing our model predictions to experiments, rhyolite-MELTS and HPx-mb16
612	better reproduce phase equilibria within the $P-T$ conditions in which they were calibrated to be
613	used. The phase equilibria predicted by rhyolite-MELTS are broadly similar to the high- T
614	experiments compared to those predicted by HPx-mb16 (Fig. 9; Tables 4 and 5); by contrast, at
615	temperatures less than ~1000 °C, HPx-mb16 provides more robust liquid-present phase
616	equilibria (Fig. 9; Tables 4 and 5) as it better reproduces the considered experiments compared to

617 rhyolite-MELTS. Importantly, as shown in some works (e.g. White et al., 2007; Green et al.,

618 2016), HPx-mb16 is able to accurately capture subsolidus equilibria.

619 One of the key differences between the rhyolite-MELTS and HPx-mb16 models is how 620 H_2O is partitioned in the liquid and hydroxyl (OH⁻) in the crystalline phases. Amphibole is 621 predicted in HPx-mb16 calculations whereas amphibole stability and modal abundance are quite 622 limited in rhyolite-MELTS (Figs. 1 and 2; Table 2). In the calculations presented here, rhyolite-623 MELTS partitions H₂O into liquid and/or analcime and/or a coexisting fluid phase (Figs. 1 and 2; 624 Table 2). These results illustrate the acknowledged limitation of rhyolite-MELTS in modeling 625 amphibole (and biotite)-bearing phase equilibria (http://melts.ofm-research.org/; Ghiorso and 626 Gualda, 2015). The HPx-mb16 model may therefore be the best choice to model equilibrium 627 melting and crystallization in scenarios where significant amounts of modal amphibole are 628 observed or predicted. 629 While not considered in our present study, the use of the HPx-mb16 model to study 630 fractional crystallization or any other open-system process would be relatively laborious for this 631 task with the current software available (i.e., Theriak-Domino, Perple X, and THERMOCALC), 632 although several works using these software have succesfully modeled open-system processes 633 (e.g., Yakymchuk and Brown, 2014; Kendrick and Yakymchuk, 2020; Stuck and Diener, 2020; 634 Johnson et al., 2021; Hernández-Montenegro et al., 2021) 635 Furthermore, it is important to note that recent comparative study assessing the 636 robustness of the Green et al. (2016) clinopyroxene and amphibole a-X relations shows 637 discrepancies between the phase equilibria calculations and natural rocks in the proportions and 638 compositions (Forshaw et al., 2019; Santos et al., 2019); yet, our comparisons with the 639 experiments show that the difference in proportions are not as significant as suggested in those

640 studies. We argue that these different outcomes may be related to different bulk-rock

641 compositions used in the comparisons.

642

643

IMPLICATIONS

From the examples presented here, the lesson is clear: the modeling tool choice, and an

645 understanding of model constraints, uncertainties, and the similarities (and differences) among

646 models are critical to accruately convey the geological implications of a computational result.

647 Below, we highlight selected examples of how model choice can influence geologic

648 interpretations. The examples cited below are illustrative since we only present a small subset of

649 possible compositions and conditions, and yet, the underlying principal conclusion likely

remains relevant to all model-based studies of the magmatic evolution of the crust and upper

651 mantle.

HPx-mb16 and rhyolite-MELTS vield distinctly different minerals assemblages for some 652 653 of the runs. For example, at 850 °C in the low-P-high-H₂O run, the crystalline phases in 654 equilibrium with liquid predicted by rhyolite-MELTS correspond to a granulitic assemblage 655 whereas in HPx-mb16, an amphibolite-like assemblage is predicted (Figs. 1b and d). Similarly, 656 at 800 °C in the high-P-low-H₂O run, rhyolite-MELTS predicts a plagioclase-bearing garnet 657 pyroxenite crystalline assemblage whereas HPx-mb16 predicts a garnet amphibolite crystalline 658 assemblage (Figs. 2a and c; Table 2). As a consequence of the difference in amphibole stability, 659 the distribution of H₂O content among solid phases is different depending on the modeling tool. 660 This has important implications for modeling crustal anatexis and growth processes. For 661 example, the fertility (i.e., the potential to melt) of these solid assemblages will differ 662 significantly; amphibole dehydration melting of the amphibolitic cumulate would promote

663 greater liquid fractions (for the same pressure and temperature conditions) compared to the dry 664 granulitic and/or pyroxenite cumulate; different modeling approaches will lead to different 665 volumes of liquid, and thus in different crustal growth rates. The differences of the calculated 666 phases can also affect petrophysical properties such as density, seismic velocities, and thermal 667 conductivity (e.g., Carlson and Miller, 2004; Whittington et al, 2009). For example, at 900 °C in 668 the high-*P*-high-H₂O run (Figs. 2a and c; Table 2), the dry crystalline assemblage predicted by rhyolite-MELTS (i.e., the garnet pyroxenite) has a significantly higher density ($\rho = 3.59$ g/cm³) 669 than the hydrated mineral assemblage predicted by the HPx-mb16 model ($\rho = 2.82 \text{ g/cm}^3$); such 670 671 differences may influence interpretations invoking crustal foundering via gravitational 672 instabilities which in turn may drastically affect the compositional stratification of the crust. Differences in thermal diffusivity would also be expected between the hydrous and anhydrous 673 674 mineral assemblages, which would affect heat flow and the associated local geotherms. Thus, the choice of modeling approach may yield different intepretations for the development of 675 676 chemical stratification of continental crust, the potential for crustal delamination, and the thermal 677 and rheological crustal structure. 678 Observed differences between the calculated liquid compositions may have important 679 implications for forward modeling of igneous processes. For instance, different calculated melt 680 compositions may lead to distinct liquid lines of descent representing different magma series 681 (Fig. 3; e.g., Carmichael et al, 1974). In the low-P-high-H₂O run, the HPx-mb16 liquid 682 composition produced by equilibrium crystallization follows a subalkaline tholeiitic trend 683 whereas the liquid calculated with rhyolite-MELTS evolves first along a subalkaline trend but 684 then follows an alkaline series trend when equilibrium crystallization is greater than 50% 685 complete (Fig. 3b). These model differences could lead to differences in, for example,

686 hypotheses about tectonic setting. Furthermore, our results show that calculated liquid 687 compositions diverge more at near-solidus temperatures, the difference being greater in the high-688 P calculations (Fig. 3). These differences have implications for modeling processes such as 689 crustal assimilation because the composition of small degree (near solidus) anatectic melts can 690 have profound impact on the major and trace element, isotopic, and phase equilibria signatures of 691 crustally contaminated magmas (e.g., Bohrson et al., 2014). Our results therefore concur with the 692 recognized limitation of thermodynamic modeling at "lower" temperatures, particularly using 693 rhyolite-MELTS (http://melts.ofm-research.org/) (e.g., rhyolite-MELTS is suggested to perform 694 best when a silicate liquid is present in the phase assemblage, as illustrated in the comparison 695 with the experiments (Fig. 9; Tables 4 and 5). 696 The difference in the calculated liquid compositions coupled with the calculated solid 697 fractions may significantly impact interpretation of tonalite-trondhjemite-granodiorite (TTGs) 698 and adakite petrogenesis. The major elements commonly used to identify and classify TTGs and 699 adakites (e.g., high Mg# and low K_2O/Na_2O) are some of the elements that vary the most 700 between the models. (Figs. 4–7), complicating their use in documenting the petrogenesis of such 701 rocks (e.g. Moyen, 2011; Palin et al., 2016; Hernández-Uribe et al., 2020). The solid assemblage 702 controls the trace-element liquid signature, which has been considered diagnostic of the source 703 depth and composition of the liquid (Moven and Martin, 2012). TTGs are subdivided into high-, 704 medium-, and low-pressure groups based on the Sr/Y and La/Yb ratios, which are controlled by 705 garnet, plagioclase, rutile, and amphibole stabilities (Moyen, 2011; Moyen and Martin, 2012). 706 According to our results, the presence or absence, and abundace of such phases may vary 707 substantially between the two thermodynamic models examined here (Figs. 1 and 2; Table 2). 708 For example, garnet stability is increased in rhyolite-MELTS compared to HPx-mb16, whereas

709 plagioclase stability is expanded to higher temperatures in HPx-mb16 but generally predicted in 710 lower proportions (Figs. 1 and 2). Such differences could easily lead to contrasting trace-element 711 signatures (Table 3) and thus result in different explanations for tectonic environments of 712 formation for TTGs (e.g., slab melting during subduction vs. melting of a thickened crust; Martin 713 et al., 2014; Palin et al., 2016; Johnson et al., 2017). This emphasizes the need for careful 714 consideration of model limitations and uncertainties. 715 Statements about model performance are nuanced and must be thoughtfully considered 716 depending on the particular application under study, including the inherent geological 717 uncertainties not associated with the thermodynamic model *per se*. There may be cases where the 718 geological uncertainties are larger than the model uncertainties or vice versa. A careful parsing 719 of all uncertainties-intermodel, intramodel and geologic-is critical when applying 720 thermodynamic models to Earth systems. 721 The comparisons presented in this study are illustrative not exhaustive. We performed 722 equilibrium modeling using a single bulk composition (N-MORB) over a modest range of 723 pressures and bulk H₂O contents. We did not consider fractional or open-system processes, nor 724 other redox conditions; such comparisons are outside of the scope of a single paper. In felsic 725 and/or open systems, which often show considerably higher degrees of geochemical 726 heterogeneity, the differences between the models may be larger, especially when amphibole and 727 sheet silicate crystalline solutions are more abundant. We hope our work spurs additional work 728 including further comparative examination of other thermodynamic conditions (composition, 729 volatiles, redox, pressure, phase assemblages) and models. 730 From our limited set of comparative calculations, there are three major points. The first is 731 that our results show how the choice of petrological modeling tool can influence conclusions

732	about associated geological processes. We have shown that for the same model input (e.g., $P-T-$
733	H ₂ O), model choice may lead to different intepretations of crustal structure, density, and melting
734	systematics. The second point is that different models are better suited to modeling different $P-T$
735	ranges, and that studies such as ours are needed to highlight these differences for users more
736	comprehensively. For example, HPx-mb16 is likely better suited for modeling water-rich
737	systems with hydrous mineral phases (e.g., volcanic arc settings) at lower temperatures, whereas
738	rhyolite-MELTS may work better for drier systems at lower pressures and higher temperatures
739	(e.g., MORB and OIB's). Third, our work illustrates the importance of using mutiple petrological
740	indicators to assess the efficacy of one model versus another. Major- and trace-element and
741	isotopic compositions of mineral phases as well as mineral proportions can enhance the choice of
742	a best-fit model compared to using melt compostional data only.
743	While the current thermodynamic databases and <i>a</i> – <i>X</i> relations for solid-solution phases
744	used in the igneous and metamorphic petrology communities provide a framework for forward
745	modeling of important igneous and metamorphic processes, the ultimate goal should be to
746	develop an internally consistent thermodynamic database and $a-X$ relations applicable to both
747	subsolidus metamorphic processes as well as suprasolidus igneous and metamorphic processes.
748	This methodological development should proceed hand-in-hand with new petrological
749	experiments that fill the current gap in knowledge (especially at high pressure conditions) and
750	with a development of a user-friendly software with the capability to model the range of closed
751	and open-system processes that are relevant to igneous and metamorphic systems (e.g.,
752	equilibrium/fractional melting/crystallization and crustal assimilation). In parallel with model

- 753 development and enhancement, systematic comparative studies—such as the one presented
- here—are necessary to thoroughly assess and test predictions from different models and to

755	compare to experimental and natural data. We hope our study provokes others to continue to
756	explore the strengths and weaknesses of the available multicomponent and multiphase phase
757	equilibria tools.

758

759 ACKNOWLEDGMENTS

- 760 D. Hernández-Uribe thanks M. Konrad-Schmölke and J. D. Hernández-Montenegro for help
- 761 with Theriak-Domino calculations. F. J. Spera acknowledges the support of the U.S. National
- 762 Science Foundation over the past fifty years. W. A. Bohrson received funding for this project
- from the U. S. National Science Foundation and the Colorado School of Mines. The contribution
- of J. S. Heinonen was supported by the Academy of Finland Grant 295129. Reviews by J. Brian
- 765 Balta and J. Diener greatly improved the manuscript and are gratefully acknowledged. A.
- 766 Acosta-Vigil is thanked for editorial handling.
- 767

768 **REFERENCES**

- Asimow, P. D., and Ghiorso, M. S. (1998) Algorithmic modifications extending MELTS to
- calculate subsolidus phase relations. American Mineralogist, 83, 1127–1132.
- Asimow, P. D., Dixon, J. E., and Langmuir, C. H. (2004) A hydrous melting and fractionation
- model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores.
- 773 Geochemistry, Geophysics, Geosystems, 5(1).
- Balta, J. B., and McSween Jr, H. Y. (2013) Application of the MELTS algorithm to Martian
- compositions and implications for magma crystallization. Journal of Geophysical
- 776 Research: Planets, 118, 2502–2519.

777	Bartoli, O., and Carvalho, B. B. (2021) Anatectic granites in their source region: A comparison
778	between experiments, thermodynamic modelling and nanogranitoids. Lithos, 106046.
779	Bédard, J.H., 2006, A catalytic delamination-driven model for coupled genesis of Archaean crust
780	and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70, 1188-
781	1214.
782	Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system
783	Na ₂ O-K ₂ O-CaO-MgO-FeO-Fe ₂ O ₃ -Al ₂ O ₃ -SiO ₂ -TiO ₂ -H ₂ O-CO ₂ . Journal of Petrology, 29,
784	445–522.
785	Berman, R. G. (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. American Mineralogist, 75,
786	328–344.
787	Berman, R. G. and Brown, T. H. (1985) Heat capacity of minerals in the system Na ₂ O-K ₂ O-
788	CaO-MgO-FeO-Fe ₂ O ₃ -Al ₂ O ₃ -SiO ₂ -TiO ₂ -H ₂ O-CO ₂ : representation, estimation, and high
789	temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168-183.
790	Berman, R. G., and Koziol, A. M. (1991) Ternary excess properties of grossular-pyrope-
791	almandine garnet and their influence in geothermobarometry. American Mineralogist, 76,
792	1223–1231.
793	Berndt, J., Koepke, J., and Holtz, F. (2005) An experimental investigation of the influence of
794	water and oxygen fugacity on differentiation of MORB at 200 MPa. Journal of Petrology,
795	46, 135–167.
796	Bohrson, W. A., Spera F. J., Heinonen, J. S., Brown, G. A., Scruggs, M. A., Adams, J. V.,
797	Takach, M., Zeff, G., and Suikkanen, E. (2020) Diagnosing open-system magmatic
798	processes using the Magma Chamber Simulator (MCS): part I - major elements and phase
799	equilibria. Contributions to Mineralogy and Petrology, 175, 104.

- 800 Bohrson, W. A., Spera, F. J., Ghiorso, M. S., Brown, G. A., Creamer, J. B., and Mayfield, A.
- 801 (2014) Thermodynamic model for energy-constrained open-system evolution of crustal
- 802 magma bodies undergoing simultaneous recharge, assimilation and crystallization: The
- 803 magma chamber simulator. Journal of Petrology, 55, 1685–1717.
- 804 Bowen, N. L. (1928) The Evolution of the Igneous Rocks, Princeton, Univ. Press, Princeton,
- 805 New Jersey.
- Bowen, N. L. (1945) Phase equilibria bearing on the origin and differentiation of alkaline rocks.
 American Journal of Science, 243, 75–89.
- 808 Brown, M. (2007) Crustal melting and melt extraction, ascent and emplacement in orogens:
- 809 mechanisms and consequences. Journal of the Geological Society, 164, 709–730.
- 810 Carlson, R. L., and Jay Miller, D. (2004) Influence of pressure and mineralogy on seismic
- 811 velocities in oceanic gabbros: Implications for the composition and state of the lower
- 812 oceanic crust. Journal of Geophysical Research: Solid Earth, 109(B9), B09205.
- 813 Carmichael, I. S., Turner, F. J., and Verhoogen, J. (1974) Igneous petrology. McGraw-Hill, Inc.
- 814 USA.
- 815 Connolly, J. A. (2005) Computation of phase equilibria by linear programming: a tool for
- geodynamic modeling and its application to subduction zone decarbonation. Earth and
 Planetary Science Letters, 236, 524–541.
- 818 de Capitani, C., and Brown, T. H. (1987) The computation of chemical equilibrium in complex
- 819 systems containing non-ideal solutions. Geochimica et Cosmochimica Acta, 51, 2639–
- 820 2652.
- de Capitani, C., and Petrakakis, K. (2010) The computation of equilibrium assemblage diagrams
 with Theriak/Domino software. American Mineralogist, 95, 1006–1016.

- 823 Elkins, L. T., and Grove, T. L. (1990) Ternary feldspar experiments and thermodynamic models.
- 824 American Mineralogist, 75, 544–559.
- 825 England, P. C., and Thompson, A. (1986) Some thermal and tectonic models for crustal melting
- 826 in continental collision zones. Geological Society, London, Special Publications, 19, 83–
- 827 94.
- 828 Essene, E. J. (1989) The current status of thermobarometry in metamorphic rocks. In: Daly, J. S.,
- 829 Cliff, R. A. and Yardley, B. W. D. (eds) Evolution of Metamorphic Belts. Geological
- 830 Society, London, Special Publications, 43, 1–44.
- 831 Forshaw, J. B., Waters, D. J., Pattison, D. R., Palin, R. M., and Gopon, P. (2019) A comparison
- of observed and thermodynamically predicted phase equilibria and mineral compositions in
- 833 mafic granulites. Journal of Metamorphic Geology, 37, 153–179.
- Fowler, S. J., and Spera, F. J. (2010) A metamodel for crustal magmatism: phase equilibria of
 giant ignimbrites. Journal of Petrology, 51, 1783–1830.
- 836 Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J. G. (2013) The mean
- composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, 489–518.
- 838 García-Arias, M. (2020) Consistency of the activity-composition models of Holland, Green, and
- 839 Powell (2018) with experiments on natural and synthetic compositions: A comparative
- study. Journal of Metamorphic Geology, 39, 993–1010
- 841 García-Arias, M., and Stevens, G. (2017) Phase equilibrium modelling of granite magma
- 842 petrogenesis: A. An evaluation of the magma compositions produced by crystal
- entrainment in the source. Lithos, 277, 131–153.

- 844 Gervais, F., & Trapy, P. H. (2021) Testing solution models for phase equilibrium (forward)
- 845 modeling of partial melting experiments. Contributions to Mineralogy and Petrology, 176,
- 846 1–18.
- 847 Ghiorso, M. S. (1990) Thermodynamic properties of hematite—ilmenite—geikielite solid
- solutions. Contributions to Mineralogy and Petrology, 104, 645–667.
- 849 Ghiorso, M. S., and Gualda, G. A. (2015) An H₂O–CO₂ mixed fluid saturation model compatible

850 with rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169, 1–30.

- 851 Ghiorso, M. S., and Sack, O. (1991) Fe-Ti oxide geothermometry: thermodynamic formulation
- and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy
- and Petrology 108, 485–510.
- B54 Ghiorso, M. S., and Sack, R. O. (1995) Chemical mass transfer in magmatic processes IV. A
- revised and internally consistent thermodynamic model for the interpolation and
- 856 extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and

pressures. Contributions to Mineralogy and Petrology, 119, 197–212.

- 858 Ghiorso, M. S., Evans, B. W., Hirschmann, M. M., and Yang, H. (1995) Thermodynamics of the
- amphiboles: Fe-Mg cummingtonite solid solutions. American Mineralogist, 80, 502–519.
- 860 Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., and Kress, V. (2002) The pMELTS: An
- 861 revision of MELTS aimed at improving calculation of phase relations and major element
- partitioning involved in partial melting of the mantle at pressures up to 3 GPa.
- 863 Geochemistry, Geophysics, Geosystems, 3.
- Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., Palin, R. M. (2016)
- Activity–composition relations for the calculation of partial melting equilibria in metabasic
 rocks. Journal of Metamorphic Geology, 34, 845–869.

867	Gualda	G A	Ghiorso	MS	Lamong	ΡV	and Carley	ТΙ	(2012)	Phyol	ita MEL TS. (
00/	Gualua,	U. A.,	Uniorso.	, IVI. S .	, Lemons.	, K. V	, and Carley,	, I. L.	(2012)	KIIYOI	ILE-IVIEL I S. a

- 868 modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems.
- 869 Journal of Petrology, 53, 875–890.
- 870 Guevara, V. E., and Caddick, M. J. (2016) Shooting at a moving target: Phase equilibria
- 871 modelling of high-temperature metamorphism. Journal of Metamorphic Geology, 34, 209–
- 872 235.
- Heinonen, J. S., Luttinen, A. V., Spera, F. J., and Bohrson, W. A. (2019) Deep open storage and
- shallow closed transport system for a continental flood basalt sequence revealed with
- 875 Magma Chamber Simulator. Contributions to Mineralogy and Petrology, 174, 87.
- 876 Hernández-Uribe, D., and Palin, R. M. (2019) A revised petrological model for subducted
- 877 oceanic crust: insights from phase equilibria modeling. Journal of Metamorphic Geology,

878 37, 745–768.

- 879 Hernández-Uribe, D., Hernández-Montenegro, J. D., Cone, K. A., and Palin, R. M. (2020)
- 880 Oceanic slab-top melting during subduction: Implications for trace-element recycling and
- adakite petrogenesis. Geology, 48, 216–220.
- Hernández-Montenegro, J. D., Palin, R. M., Zuluaga, C. A., and Hernández-Uribe, D. (2021)
- Archean continental crust formed by magma hybridization and voluminous partial melting.
 Scientific Reports, 11, 1–9.
- Hirschmann, M. M., Ghiorso, M. S., Wasylenki, L. E., Asimow, P. D., and Stolper, E. M. (1998)
- 886 Calculation of peridotite partial melting from thermodynamic models of minerals and
- melts. I. Review of methods and comparison with experiments. Journal of Petrology, 39,

888 1091–1115.

- 889 Holland, T. J. B., and Powell, R. (1998) An internally consistent thermodynamic data set for
- phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.
- 891 Holland, T. J. B., and Powell, R. (2001) Calculation of phase relations involving haplogranitic
- 892 melts using an internally consistent thermodynamic dataset. Journal of Petrology, 42, 673–
 893 683.
- Holland, T. J. B., and Powell, R. (2003) Activity–composition relations for phases in petrological
- calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and
 Petrology, 145, 492–501.
- 897 Holland, T. J. B., and Powell, R. (2011) An improved and extended internally consistent
- 898 thermodynamic dataset for phases of petrological interest, involving a new equation of
- state for solids. Journal of Metamorphic Geology, 29, 333–383.
- 900 Holland, T. J., Green, E. C., and Powell, R. (2018) Melting of peridotites through to granites: a
- 901 simple thermodynamic model in the system KNCFMASHTOCr. Journal of Petrology 59,
 902 881–900.
- Jennings, E. S., and Holland, T. J. (2015) A simple thermodynamic model for melting of
 peridotite in the system NCFMASOCr. Journal of Petrology, 56, 869–892.
- Johnson, T. E., White, R. W., and Powell, R. (2008). Partial melting of metagreywacke: a
- 906 calculated mineral equilibria study. Journal of Metamorphic Geology, 26, 837–853.
- Johnson, T. E., Morrissey, L. J., Nemchin, A. A., Gardiner, N. J., and Snape, J. F. (2021). The
- 908 phases of the Moon: Modelling crystallisation of the lunar magma ocean through
- 909 equilibrium thermodynamics. Earth and Planetary Science Letters, 556, 116721.
- Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L., and Smithies, R. H. (2017) Earth's
- 911 first stable continents did not form by subduction. Nature, 543, 239–242.

- 912 Kerrick, D. M. and Jacobs, G. K. (1981) A modified Redlich–Kwong equation for H₂O, CO₂,
- 913 and H₂O–CO₂ mixtures at elevated pressures and temperatures. American Journal of
- 914 Science, 281, 735–767.
- 915 Kerrick, D. M., and Connolly, J. A. D. (2001) Metamorphic devolatilization of subducted
- 916 oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling.
- Earth and Planetary Science Letters, 189, 19–29.
- 918 Kendrick, J., & Yakymchuk, C. (2020) Garnet fractionation, progressive melt loss and bulk
- 919 composition variations in anatectic metabasites: complications for interpreting the
- 920 geodynamic significance of TTGs. Geoscience Frontiers, 11(3), 745–763.
- 921 Korhonen, F. J., Clark, C., Brown, M., and Taylor, R. J. M. (2014) Taking the temperature of
- Earth's hottest crust. Earth and Planetary Science Letters, 408, 341–354.
- 923 Lanari, P., and Duesterhoeft, E. (2019) Modeling metamorphic rocks using equilibrium
- thermodynamics and internally consistent databases: past achievements, problems and
 perspectives. Journal of Petrology, 60, 19–56.
- 926 Le Bas, M. L., Maitre, R. L., Streckeisen, A., and Zanettin, B. A. (1986) A chemical
- 927 classification of volcanic rocks based on the total alkali-silica diagram. Journal of
 928 Petrology, 27, 745–750.
- 929 Martin, H., Moyen, J. F., Guitreau, M., Blichert-Toft, J., and Le Pennec, J. L. (2014) Why
- Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198,
- 931 1–13.
- McDonough, W. F., and Sun, S. S., 1995, The composition of the Earth. Chemical Geology, 120,
 223–253.

- Moyen, J. F. (2009) High Sr/Y and La/Yb ratios: the meaning of the "adakitic signature". Lithos,
- 935 112, 556–574.
- Moyen, J. F. (2011) The composite Archaean grey gneisses: petrological significance, and
- 937 evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123, 21–36.
- Moyen, J. F., and Martin, H. (2012) Forty years of TTG research. Lithos, 148, 312–336.
- Palin, R.M., White, R.W. and Green, E.C.R. (2016) Partial melting of metabasic rocks and the
- 940 generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean:
- 941 Constraints from phase equilibrium modelling. Precambrian Research, 287, 73–90.
- Palin, R. M., Reuber, G. S., White, R. W., Kaus, B. J., and Weller, O. M. (2017) Subduction
- 943 metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: an integrated
- geodynamic and petrological modelling approach. Earth and Planetary Science Letters,

945 467, 108–119.

- Pamukcu, A. S., Gualda, G. A., Ghiorso, M. S., Miller, C. F., and McCracken, R. G. (2015)
- 947 Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3:
- 948 Application to the Peach Spring Tuff (Arizona–California–Nevada, USA). Contributions to
- 949 Mineralogy and Petrology, 169, 33.
- 950 Pan, R., Macris, C. A., and Menold, C. A. (2020) Thermodynamic modeling of high-grade
- 951 metabasites: a case study using the Tso Morari UHP eclogite. Contributions to Mineralogy
- 952 and Petrology, 175, 1–28.
- 953 Pichavant, M., Weber, C., and Villaros, A. (2019) Effect of anorthite on granite phase relations:
- Experimental data and models. Comptes Rendus Geoscience, 351, 540–550.

- 955 Pitzer, K. S. and Sterner, S. M. (1995) Equations of state valid continuously from zero to
- extreme pressures with H₂O and CO₂ as examples. International Journal of Thermophysics,
 16, 511–518.
- 958 Powell, R., and Holland, T. J. B. (2008) On thermobarometry. Journal of Metamorphic Geology,
- 959 26, 155–179.
- 960 Powell, R., and Holland, T. J. B. (1988) An internally consistent dataset with uncertainties and
- 961 correlations: 3. Applications to geobarometry, worked examples and a computer program.
- Journal of metamorphic Geology, 6, 173–204.
- 963 Powell, R., Guiraud, M., and White, R. W. (2005) Truth and beauty in metamorphic phase-
- 964 equilibria: conjugate variables and phase diagrams. The Canadian Mineralogist, 43, 21–33.
- 965 Powell, R., Holland, T. J. B., and Worley, B. A. (1998) Calculating phase diagrams involving
- solid solutions via non-linear equations, with examples using THERMOCALC. Journal of
 metamorphic Geology, 16, 577–588.
- 968 Robie, R. A., Hemingway, B. S. and Fisher, J. R. (1978) Thermodynamic properties of minerals
- and related substances at 298.15K and 1 bar (105 pascals) pressure and at higher
- 970 temperatures. US Geological Survey Bulletin, 1452, 456 pp.
- 971 Sack, R. O., and Ghiorso, M. S. (1989) Importance of considerations of mixing properties in
- 972 establishing an internally consistent thermodynamic database: thermochemistry of minerals
- 973 in the system Mg_2SiO_4 -Fe_2SiO_4-SiO_2. Contributions to Mineralogy and Petrology, 102,
- 974 41–68.
- 975 Sack, R. O., and Ghiorso, M. S. (1991a) An internally consistent model for the thermodynamic
- 976 properties of Fe- Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and
- 977 Petrology, 106, 474–505.

- 978 Sack, R. O., and Ghiorso, M. S. (1991b) Chromian spinels as petrogenetic indicators:
- 979 Thermodynamics and petrological applications. American Mineralogist, 76(5–6), 827–847.
- 980 Sack, R. O., and Ghiorso, M. S. (1994) Thermodynamics of multicomponent pyroxenes: I.
- Formulation of a general model. Contributions to Mineralogy and Petrology, 116(3), 277–
 286.
- 983 Santos, C. A., Moraes, R., and Szabó, G. A. (2019) A comparison between phase diagram
- 984 modelling of metamafic rocks and experimental and independent thermobarometric data.
- 985 Lithos, 340, 108–123.
- 986 Sen, C., and Dunn, T. (1994) Dehydration melting of a basaltic composition amphibolite at 1.5
- 987 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and
- 988 Petrology, 117(4), 394–409.
- Shaw, D.M., 2006, Trace elements in magmas: a theoretical treatment. Cambridge University
 Press.
- Spera, F. J., Bohrson, W. A., Till, C. B., and Ghiorso, M. S. (2007) Partitioning of trace elements
 among coexisting crystals, melt, and supercritical fluid during isobaric crystallization and
 melting. American Mineralogist, 92, 1881–1898.
- Starr, P. G., Pattison, D. R., and Ames, D. E. (2020) Mineral assemblages and phase equilibria of
- 995 metabasites from the prehnite–pumpellyite to amphibolite facies, with the Flin Flon
- Greenstone Belt (Manitoba) as a type example. Journal of Metamorphic Geology, 38, 71-
- 997 102.
- Stuck, T. J., & Diener, J. F. (2018) Mineral equilibria constraints on open-system melting in
 metamafic compositions. Journal of Metamorphic Geology, 36, 255–281.

- 1000 Sun, S. S., and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts:
- 1001 implications for mantle composition and processes. Geological Society, London, Special
- 1002 Publications, 42, 313–345.
- 1003 Thompson, J. B. (1967) Thermodynamic properties of simple solutions: in Abelson, P.H., ed.,
- 1004 Researches in Geochemistry, Vol. 2, John Wiley and Sons, mmInc., New York.
- 1005 Tomlinson, E. L., and Holland, T. J. (2021) A thermodynamic model for the subsolidus

1006 evolution and melting of peridotite. Journal of Petrology, 62, egab012.

- 1007 Turcotte, D. L., and Schubert, G. (2002) Geodynamics. Cambridge university press. UK
- 1008 White, R. W., Powell, R., and Holland, T. J. B. (2001) Calculation of partial melting equilibria in
- 1009 the system Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O (NCKFMASH) Journal of
- 1010 metamorphic Geology, 19, 139–153.
- 1011 White, R. W., Powell, R., and Holland, T. J. B. (2007) Progress relating to calculation of partial
- 1012 melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511–527.
- 1013 White, R. W., Powell, R., Holland, T. J. B. and Worley, B. A. (2000) The effect of TiO₂ and
- 1014 Fe₂O₃ on metapelitic assemblages at greenschist and amphibolite facies conditions:
- 1015 mineral equilibria calculations in the system $K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O-TiO_2-$
- 1016 Fe₂O₃. Journal of Metamorphic Geology, 18, 497–511.
- 1017 White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C. R. (2014) New
- 1018 mineral activity–composition relations for thermodynamic calculations in metapelitic
- 1019 systems. Journal of Metamorphic Geology, 32, 261–286.
- 1020 White, R. W., and Powell, R. (2002) Melt loss and the preservation of granulite facies mineral
- assemblages. Journal of Metamorphic Geology, 20, 621–632.

- 1022 White, R. W., Stevens, G., and Johnson, T. E. (2011) Is the crucible reproducible? Reconciling
- 1023 melting experiments with thermodynamic calculations. Elements, 7, 241–246.
- 1024 Whitney, D. L., and Evans, B. W. (2010) Abbreviations for names of rock-forming minerals.
- 1025 American Mineralogist, 95, 185–187.
- 1026 Whittington, A., Hofmeister, A. and Nabelek, P. (2009) Temperature-dependent thermal
- 1027 diffusivity of the Earth's crust and implications for magmatism. Nature, 458, 319–321
- 1028 Yakymchuk, C. (2017) Applying phase equilibria modelling to metamorphic and geological
- 1029 processes: recent developments and future potential. Geoscience Canada, 44, 27–45.
- 1030 Yakymchuk, C., and Brown, M. (2014) Consequences of open-system melting in tectonics.
- 1031 Journal of the Geological Society, 171, 21–40.
- 1032

1033 FIGURE CAPTIONS

- **Figure 1.** Equilibrium phase assemblages at 0.25 GPa for a N-MORB composition. (a, b)
- 1035 rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H₂O (0.5 wt% H₂O) calculations. (b, d) High-
- 1036 H₂O (4 wt% H₂O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the
- 1037 exception of "L" and "F" which refer to liquid and fluid, respectively.
- 1038 Figure 2. Equilibrium phase assemblages at 1 GPa for a N-MORB composition. (a, b) rhyolite-
- 1039 MELTS and (c, d) HPx-mb16. (a, c) Low-H₂O (0.5 wt% H₂O) calculations. (b, d) High-H₂O (4
- 1040 wt% H₂O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the
- 1041 exception of "L" and "F" which refer to liquid and fluid, respectively.
- 1042 Figure 3. Total alkali-silica (TAS) classification diagram (Le Bas et al., 1986) for the calculated
- 1043 N-MORB liquids (liquid compositions correspond to those presented in Figs. 1 and 2). Liquid
- 1044 compositions are shown every 10 °C from the liquidus to the solidus.

1045 Figure 4. Liquid compositional evolution (wt%) at 0.25 GPa for a low-H₂O (0.5 wt H₂O) N-1046 MORB composition. (a-f) Calculated liquid compositions as a function of temperature. (g-i) Liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are shown 1047 1048 in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively. 1049 1050 Figure 5. Liquid compositional evolution (wt%) at 0.25 GPa for a high-H₂O (4 wt H₂O) N-1051 MORB composition. (a-f) Modeled liquid compositions as a function of temperature. (g-i) 1052 Modeled liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are 1053 shown in (a) for comparison between modeling approaches. Mineral abbreviations follow 1054 Whitney and Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, 1055 respectively. 1056 Figure 6. Liquid compositional evolution (wt%) at 1 GPa for a low-H₂O (0.5 wt H₂O) N-MORB 1057 composition. (a–f) Modeled liquid compositions as a function of temperature. (g–i) Modeled liquid compositions shown in Harker diagrams. Approximate liquid fractions (wt%) are shown in 1058 1059 (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and 1060 Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively. 1061 Figure 7. Liquid compositional evolution (wt%) at 1 GPa for a high-H₂O (4 wt H₂O) N-MORB 1062 composition. (a–f) Modeled liquid compositions as a function of temperature. (g–i) Modeled 1063 liquid compositions shown in Harker diagrams. Approximate liquid fractions (in wt%) are shown 1064 in (a) for comparison between modeling approaches. Mineral abbreviations follow Whitney and 1065 Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively. 1066 Figure 8. Liquid incompatible trace-element patterns at (a–b) 900 °C in the low-P–low-H₂O run, 1067 (c-d) 1000 °C in the high-P-low-H₂O run, and (e-f) 850 °C in the high-P-high-H₂O run. (a), (c),

- and (e) normalized to primitive mantle (Sun and McDonough, 1989) and (b), (d), and (f)
- 1069 normalized to chondrite (McDonough and Sun, 1995). The orange line is mean N-MORB from
- 1070 Gale et al. (2013).
- 1071 Figure 9. Phase proportion comparison experiments of basaltic compositions and model
- 1072 predictions. (a, b) Comparison with Berndt et al. (2005) experiments (BKH). (c, d) Comparison
- 1073 with Sen and Dunn, 1994 (SD). Phase proportions are shown on an anhydrous basis (recalcualted
- 1074 to 100%). In the SD experiments, rutile is also present as a trace phase. Rhyolite-MELTS models
- 1075 where calculated with rhyolite-MELTS v1.2.0. Mineral abbreviations follow Whitney and Evans
- 1076 (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively.
- 1077

1078 TABLE CAPTIONS

- 1079 **Table 1.** Bulk-rock compositions used for petrological modeling (normalized wt%).
- 1080 **Table 2.** Phase proportions of N-MORB at 0.25 and 1 GPa (wt%).
- 1081 **Table 3.** Liquid trace-element compositions (ppm).
- 1082 **Table 4.** Comparison of phase proportions between experiments of basaltic compositions and
- 1083 model predictions (wt%).
- 1084 **Table 5.** Comparison of liquid compositions between experiments of basaltic compositions and
- 1085 model predictions (wt%).
- 1086

1087 SUPPLEMENTARY MATERIAL

- 1088 Appendix 1. The Appendix 1 describes the phase evolution as well as the liquid and mineral
- 1089 composition evolution. The appendix also include the mineral composition comparison between

- 1090 rhyolite-MELTS and HPx-mb16, Supplementary Tables S1–S4, and Supplementary Figures
- 1091 S1–S6.
- 1092 Figure S1. Equilibrium phase assemblages at 0.25 GPa for a N-MORB composition in vol%. (a,
- b) rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H₂O (0.5 wt% H₂O) calculations. (b, d)
- 1094 High-H₂O (4 wt% H₂O) calculations. Mineral abbreviations follow Whitney and Evans (2010)
- 1095 with the exception of "L" and "F" which refer to liquid and fluid, respectively.
- **Figure S2.** Equilibrium phase assemblages at 1 GPa for a N-MORB composition in vol%. (a, b)
- 1097 rhyolite-MELTS and (c, d) HPx-mb16. (a, c) Low-H₂O (0.5 wt% H₂O) calculations. (b, d) High-
- 1098 H₂O (4 wt% H₂O) calculations. Mineral abbreviations follow Whitney and Evans (2010) with the
- 1099 exception of "L" and "F" which refer to liquid and fluid, respectively.
- 1100 **Figure S3.** Calculated clinopyroxene compositions (in atoms per formula unit, a.p.f.u.) at (a–f)
- 1101 0.25 GPa and (g–l) 1 GPa. (a–c and g–i) Clinopyroxene compositions in a low-H₂O (0.5 wt%)
- 1102 MORB composition. (d-f and j-l) Clinopyroxene compositions in a high-H₂O (4 wt%)MORB
- 1103 composition. Mineral abbreviations are the same as in Figure 1.
- 1104 **Figure S4.** Calculated anorthite content (An) in plagioclase. (a) Plagioclase compositions at 0.25
- 1105 GPa for a low-H₂O (0.5 wt%) MORB composition. (b) Plagioclase compositions at 0.25 GPa for
- 1106 a high-H₂O (4 wt%) MORB composition. (c) Plagioclase compositions at 1 GPa for a low-H₂O
- 1107 (0.5 wt%) MORB composition. Mineral abbreviations are the same as in Figure 1.
- 1108 **Figure S5.** Calculated orthopyroxene compositions (in atoms per formula unit, a.p.f.u.) at 0.25
- 1109 GPa for a low- $H_2O(0.5 \text{ wt\%})$ MORB composition.
- 1110 Figure S6. Calculated garnet compositional evolution (in end-member proportions) at 1 GPa for
- 1111 a low-H₂O (0.5 wt%) MORB composition.

- 1112 **Table S1.** Components considered in the activity–composition relations used in this work (see
- 1113 text for detail).
- 1114 **Table S2.** Liquid compositions of N-MORB at 0.25 GPa (wt%).
- 1115 **Table S3.** Liquid compositions of N-MORB at 1 GPa (wt%).
- 1116 **Table S4.** Amphibole composition comparison at 1 GPa (wt%).
- 1117 **Table S5.** Phase proportions used for trace-element modeling (wt%).
- 1118 **Table S6.** Partition coefficients from Bedard (2006).

Figure 1

Figure 2

Figure 4

Figure 5

Figure 6

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8211. http://www.minsocam.org/

Figure 8

Table 1 . Bulk-rock compositions used forpetrological modelling (normalized wt%).											
N-MORB-0.5 N-MORB											
SiO ₂	50.69	48.91									
TiO ₂	1.54	1.48									
Al_2O_3	15.21	14.68									
FeO ^t	9.86	9.52									
MgO	7.80	7.53									
CaO	11.41	11.01									
Na ₂ O	2.85	2.75									
K ₂ O	0.14	0.14									
H ₂ O	0.50	4.00									
Total	100.00	100.00									

All compositions correspond to the mean N-MORB from Gale et al. (2013) but with different H_2O contents.

Table 2. Phase proportions of N-MORB at 0.25 and 1 GPa (wt%).																			
	L	OI	Орх	Срх	Grt	Fsp	Qz	Amp	Anl	Ilm	Mag	Ttn	Rt	F	Total	Solids	Fluid	Melt	Total
0.25 Gpa											-								
0.5 wt% H 20																			
900 °C	-																		
MELTS	7	_	18	31	_	41	_	_	_	_	4	_	_	_	100	93	_	7	100
HPy-mb16	, a	_	13	26	_	10	_	Q	_	3	_	_	_	_	100	01	_	, Q	100
1000 °C	5		15	20		40		5		5					100	51		5	100
MELTS	13	_	1/	21	_	38	_	_	_	_	5	_	_	_	100	87	_	13	100
	30	_	6	20	_	22	_	_	_	2	_	_	_	_	100	70	_	30	100
1100 °C	30	_	0	20	_	55	_	_	_	5	_	_	_	_	100	70	_	30	100
	22	_	_	20	_	27	_	_	_	_	2	_	_	_	100	68	_	22	100
UDy mb16	52	_	_	25	_	27	_	_	_	_	2	_	2	_	100	50 50	_	52	100
	50	-	-	25	-	25	-	-	-	-	-	-	Z	-	100	50	-	50	100
4 W(% H ₂ U	-																		
900 °C																			
MELTS	19	-	17	32	-	27	-	-	-	-	2	-	-	2	100	78	2	19	100
HPx-mb16	26	-	3	21	-	22	-	24	-	2	-	-	-	2	100	72	2	26	100
1000 °C																			
MELTS	61	4	-	34	-	-	-	-	-	-	1	-	-	-	100	39	-	61	100
HPx-mb16	52	1	-	25	-	17	-	-	-	3	-	-	-	1	100	46	1	52	100
1100 °C																			
MELTS	88	3	-	8	-	-	-	-	-	-	-	-	-	-	100	12	-	88	100
HPx-mb16	84	-	-	13	-	-	-	-	-	-	-	-	4	<1	100	16	<1	84	100
1 Gpa																			
0.5 wt% H ₂ O																			
800 °C	-																		
MELTS	5	_	_	42	32	19	2	-	_	_	-	_	_	-	100	95	_	5	100
HPx-mb16	0	_	_	26	15	27	4	27	_	_	_	_	1	_	100	100	_	0	100
900 °C																			
MELTS	9	_	_	42	29	20	<1	_	_	_	_	_	_	_	100	91	_	9	100
HPx-mb16	3	_	7	28	7	35	1	18	_	1	_	_	1	_	100	97	_	3	100
1000 °C																			
MELTS	13	_	_	44	25	18	_	_	_	_	_	_	_	_	100	87	_	13	100
HPx-mb16	13	_	11	31	_	36	-	6	_	3	_	_	-	_	100	87	_	13	100
1100 °C																			
MELTS	22	_	_	47	17	14	_	_	_	_	_	_	_	_	100	78	_	22	100
HPx-mb16	39	_	2	32	_	26	_	_	_	_	_	_	2	_	100	61	_	39	100
4 wt% H _ O																			
<u>800 °C</u>	-																		
	22			24	20				E						100	77		22	100
IVIELIS	25	-	-	54 14	20	1	1	-	5	-	-	-	-	-	100	77 CT	-	25	100
	27	-	-	14	-	T	<1	50	-	-	-	-	2	-	100	/5	-	27	100
	21			22	27										100	60		21	100
IVIELIS	31	-	-	32	3/	-	-	42	-	-	-	-	-	-	100	69	-	31	100
пРХ-Ш016 1000 °C	34	-	-	21	T	-	-	43	-	<1	-	Ţ	-	-	100	66	-	54	100
	20			22	20										400	62		20	400
IVIELIS	38	-	-	32	30	-	-	-	-	_	-	_	-	-	100	62	-	38	100
HPX-MD16	50	-	-	26	-	-	-	23	-	1	-	1	-	-	100	50	-	50	100
1100 °C					4.5										400			50	
IVIELIS	59	-	-	29	12	-	-	-	-	-	-	_	-	-	100	41	-	59	100
нРх-тр16	/3	-	-	26	-		_	-	-	-	-	1	-	_	100	27	-	/3	100

Mineral abbreviations follow Whitney & Evans (2010) with the exception of "L" and "F" which refer to liquid and fluid, respectively.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 3. Liquid trace-element compositions (ppm).

Table 4. Co	omparison of p	hase pro	portions be	tween exp	periments of	basaltic comp	ositions	and model p	redictions	s (wt%).					
		0.2	GPa and 950) °C			0.2	GPa and 100	0 °C	1.5 GPa and 975 °C					
	BKH (153)	MELTS	HPx-mb16	% diff. ¹	% diff. ²	BKH (148)	MELTS	HPx-mb16	% diff. ¹	% diff. ²	SD (M2)	MELTS	HPx-mb16	% diff. ¹	% diff. ²
L	19	6	18	-70	-3	49	37	33	-25	-31	12	17	20	40	61
OI	5	6	-	29	-	11	14	9	19	-24	-	-	-	-	-
Орх	_	13	9	-	-	_	-	-	-	-	-	-	-	-	-
Срх	26	31	24	21	-9	24	26	27	8	10	21	40	26	89	21
Pl	29	42	28	47	-1	16	24	30	53	90	9	-	-	-	-
Amp	22	-	21	-	-8	_	-	-	-	-	39	-	24	-	-39
Ilm	_	-	<1	-	-	_	-	2	-	-	-	-	-	-	-
Mag	_	2	-	-	-	_	-	-	-	-	-	-	-	-	-
Grt	_	-	-	-	-	_	-	-	-	-	19	43	30	122	58
Rt	_	-	-	-	-	_	-	-	-	-	tr	-	<1	-	-

¹difference between the experiment and MELTS; ²difference between the experiment and HPx-mb16. tr–trace; BKH–Berndt et al. (2005); SD–Sen & Dunn (1994). Mineral abbre of "L" which refers to liquid. Phase proportions are shown in an anhydrous basis (recalcualted to 100%).

 Table 5. Comparison of liquid compositions between experiments of basaltic compositions and model predictions (wt%).

		0.2 0	Pa and 9	50 °C			0.2 GI	Pa and 10	00 °C	1.5 GPa and 925 °C						
	BKH (153)	MELTS	IPx-mb1	% diff. ¹	% diff. ²	BKH (148)	MELTS	IPx-mb1	% diff. ¹	% diff. ²	SD (M2)	MELTS	IPx-mb1	% diff. ¹	% diff. ²	
L fraction (wt. %)	19	6	18	-70	-3	49	37	33	-25	-31	12	17	20	40	61	
SiO ₂	55.77	59.67	55.60	7	0	50.83	54.83	53.90	8	6	65.29	67.33	63.18	3	-3	
TiO ₂	1.13	0.30	-	-74	-	1.19	0.52	-	-56	-	0.76	0.39	-	-49	-	
Al ₂ O ₃	16.78	14.10	14.48	-16	-14	18.37	15.73	15.00	-14	-18	18.53	12.25	18.16	-34	-2	
FeO ^t	8.56	4.89	10.96	-43	28	8.16	7.46	10.85	-9	33	2.85	2.02	4.93	-29	73	
MgO	2.40	2.28	5.16	-5	115	3.61	3.70	6.29	3	74	0.72	0.54	1.21	-25	68	
CaO	6.30	4.72	3.19	-25	-49	9.10	7.36	4.28	-19	-53	2.63	2.13	3.11	-19	18	
Na ₂ O	3.96	6.62	5.80	67	46	3.75	4.48	5.22	19	39	6.49	10.26	5.81	58	-10	
K ₂ O	0.22	1.06	0.38	382	74	0.15	0.21	0.23	38	51	2.73	5.08	3.59	86	32	
H ₂ O	4.88	6.36	4.42	30	-10	4.83	5.71	4.22	18	-13	-	-	-	-	-	
Total	100	100	100	73		100	100	100			100	100	100			

¹difference between the experiment and MELTS; ²difference between the experiment and HPx-mb16. tr–trace; BKH–Berndt et al. (2005); SD–Sen & Dunn (1994); L–liquid.