1	REVISION 2
2	Spectroscopic study on the local structure of sulfate (SO42-) incorporated in
3	scorodite (FeAsO ₄ ·2H ₂ O) lattice: Implication for understanding the Fe(III)-
4	As(V)-SO ₄ ²⁻ bearing minerals formation
5	XU MA ¹ , FENGDAI QI ¹ , MARIO ALBERTO GOMEZ ³ , RUI SU ² , ZELONG YAN ¹ ,
6	SHUHUA YAO ³ , SHAOFENG WANG ^{2,} *, YONGFENG JIA ²
7	¹ Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of
8	Education, China), School of Environmental Science and Technology, Dalian
9	University of Technology, Dalian 116024, China.
10	² Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016,
11	China.
12	³ Liaoning Engineering Research Center for Treatment and Recycling of Industrially
13	Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang
14	110142, China.
15	* Corresponding authors: Telephone: +86 24 83970502
16	E-mail addresses: wangshaofeng@iae.ac.cn (Shaofeng Wang).
17	

18

ABSTRACT

19	The incorporation of sulfate (SO_4^{2-}) into the scorodite (FeAsO ₄ ·2H ₂ O) lattice is an
20	important mechanism during arsenic (As) fixation in natural and engineered settings.
21	However, spectroscopic evidence of SO_4^{2-} speciation and local structure in scorodite
22	lattice is still lacking. In this study, X-ray diffraction (XRD), Fourier transform infrared
23	spectroscopy (FTIR), sulfur K-edge X-ray absorption near edge structure (XANES),
24	and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses in
25	combination with density functional theory (DFT) calculations were used to determine
26	the local coordination environment of $\mathrm{SO}_4{}^{2\text{-}}$ in the naturally and hydrothermally
27	synthetic scorodite. The natural scorodite on SO42- retention and the effect of pH value
28	and initial Na^+ concentration on the incorporation of SO_4^{2-} in synthetic scorodite were
29	investigated. The results showed that trace amounts of $\mathrm{SO}_4{}^{2\text{-}}$ were incorporated in
30	natural scorodite sample. Scanning electron microscopy (SEM) results revealed that
31	SO4 ²⁻ was homogeneously distributed inside the natural and synthetic scorodite
32	particles, and its content in the synthetic scorodite increased slightly with initial Na ⁺
33	concentration at pH of 1.2 and 1.8. The FTIR features and XANES results indicated
34	that the coordination number (CN) of FeO ₆ octahedra around SO_4^{2-} in scorodite lattice
35	is four. The DFT calculation optimized interatomic distances of S-O were 1.45, 1.46,
36	1.48, and 1.48 Å with an average of \sim 1.47 Å, and the interatomic distances of S-Fe
37	were 3.29, 3.29, 3.33, and 3.41 Å with an average of ~3.33 Å. EXAFS analysis gave an
38	average S-O bond length of 1.47(1), and S-Fe bond length of 3.33(1) Å with a $\rm CN_{S-}$
39	$_{Fe}$ =4 for SO ₄ ²⁻ in the scorodite structure, in good agreement with the DFT optimized

40	structure. The results conclusively showed that SO_4^{2-} in the scorodite lattice may be in
41	the form of a $Fe_2(SO_4)_3$ -like local structure. The present study is significant for
42	understanding the formation mechanism of scorodite in natural environments and
43	hydrometallurgical unit operations for waste sulfuric acid treatment.
44	Keywords: Arsenic, Scorodite, Sulfate, Incorporation, Local environment
45	INTRODUCTION
46	Crystalline ferric arsenate (scorodite, $FeAsO_4 \cdot 2H_2O$) is one of the least soluble As
47	phases and a pivotal secondary As-bearing mineral controlling the fate and transport of
48	As in acidic Fe(III)-As(V)-SO42H2O systems, such as arsenic-contaminated soil,
49	hydrometallurgical tailings, and acid mine drainage (AMD) (Giere et al. 2003; Drahota
50	and Filippi 2009; Murciego et al. 2011). Several studies have found that arsenopyrite
51	(FeAsS) and arsenical-pyrite (As-FeS ₂) solid wastes in abandoned mine tailings were
52	enveloped by secondary scorodite and amorphous ferric arsenate under natural
53	weathering conditions (Flemming et al. 2005; Langmuir et al. 2006; Paktunc and
54	Bruggeman 2010). Furthermore, scorodite precipitation is a sink for As in metallurgical
55	processing due to its high As content (~32 wt%), low solubility, and good-settling
56	properties (Debekaussen et al. 2001; Fujita et al. 2008b, 2008c, 2009b; Le Berre et al.
57	2008; Ma et al. 2019; Zhu et al. 2019).
58	It is well known that scorodite can be formed in natural and industrial settings,
59	where the dissolved Fe and As appeared simultaneously with sulfate (SO ₄ ²⁻). For
60	example, the natural weathering of arsenide or sulfide minerals in natural settings (i.e.,

AMD), and the utilization of Fe₂(SO₄)₃ or FeSO₄ as an iron source for the conversion

62	of arsenic into scorodite in metallurgical plant effluents (Giere et al. 2003; Drahota and
63	Filippi 2009; Murciego et al. 2011). It has been reported that dissolved SO_4^{2-}
64	concentrations in such natural settings and industrial systems are a few orders of
65	magnitude higher than those of toxic elements (e.g., As, Cu ²⁺ , Zn ²⁺ , Pb ²⁺ , and Cd ²⁺) at
66	a wide pH range (-3.6 to circumneutral) (Nordstrom et al. 2000; López-Archilla et al.
67	2001; Casiot et al. 2003; Morin et al. 2003; Maillot et al. 2013). Due to the similar
68	geometry and charge between $HAsO_4^{2-}$ and SO_4^{2-} , $HAsO_4^{2-}$ can be incorporated into
69	SO ₄ -bearing minerals via the isomorphic substitution for SO_4^{2-} and forming solid
70	solutions. For example, $As(V)$ -barite $(Ba(SO_4)_x(HAsO_4)_{1-x})$, $As(V)$ -gypsum
71	$(Ca(SO_4)_x(HAsO_4)_{1-x} \cdot 2H_2O)$ and basic ferric arsenate sulfate solid solutions
72	(Fe(AsO ₄) _{0.2-0.7} (SO ₄) _{0.7-0.2} (OH) _{0.7-0.2}) have been reported (Fernández-Martínez et al.
73	2008; Gomez et al. 2010; Bolanz et al. 2016; Ma et al. 2017). Analogously, coexisting
74	SO ₄ ²⁻ can also be incorporated into the scorodite host phase and form a SO ₄ -scorodite
75	solid solution (Fujita et al. 2009b).

It is widely accepted that the Fe(III)-sulfate-bearing phase minerals originate from 76 aqueous Fe(III)-SO₄²⁻ complexes such as $FeSO_4^+$ and $Fe(SO_4)_2^-$ (Majzlan and Myneni 77 2005). Therefore, the crystallization and precipitation of scorodite in the presence of 78 Fe(III)-SO4²⁻ complexes may be one of the main reasons for the formation of SO4-79 scorodite solid solution (Majzlan and Myneni 2005; Yang et al. 2015; Chai et al. 2017). 80 Some detailed investigations of the nucleation and crystallization of scorodite in the 81 presence of SO₄²⁻ have been performed to explore the optimal parameters for As 82 fixation in metallurgical plant effluents (Singhania et al. 2006; Fujita et al. 2008a; 83

84	Gomez et al. 2011; Qi et al. 2020). It has been reported that elevated aqueous SO_4^{2-}
85	concentrations can significantly reduce the crystallinity and particle size of
86	hydrothermally synthetic scorodite (Singhania et al. 2006). Gomez et al. (2011) found
87	that scorodite could incorporate a considerable amount of SO_4^{2-} , which can reach up to
88	5.0 wt%. The incorporated structural SO_4^{2-} in the scorodite lattice can cause a decrease
89	in its stability and increase its corresponding arsenic mobility (Fujita et al. 2009a). It
90	has been reported that the leached As from a synthetic atmospheric scorodite using the
91	Toxicity Characteristic Leaching Procedure (TCLP) rose from 1.9 to 2.8 mg/L with the
92	content of incorporated SO_4^{2-} increasing from 2.5 to 4.2 wt.% (Singhania et al. 2006).
93	Therefore, understanding the local SO42- coordination environment has important
94	implications for understanding the role of SO_4^{2-} in scorodite formation, structural
95	stabilization, and reactivity. Furthermore, it can give us more insights into the transport
96	and transformation behavior of As. Based on the fact that the isomorphic substitution
97	between HAsO42- and SO42- in minerals (e.g., jarosite, gypsum, and barite) occurs
98	(Fernández-Martínez et al. 2008; Gomez et al. 2010; Bolanz et al. 2016), Fujita et al.
99	(2009a) proposed that SO_4^{2-} was more likely incorporated into scorodite via the
100	isomorphic substitution for AsO ₄ , in a formula $Fe(AsO_4)_x(SO_4)_{1-x}$ ·2H ₂ O. On the other
101	hand, they also studied the effect of pH and solution compositions, such as divalent
102	metal cations and Na ⁺ on the physical properties and stability of the hydrothermal
103	synthetic scorodite. However, to the best of our acknowledge, the quantitative
104	investigation of doped SO_4^{2-} and its local structure in scorodite using spectroscopic
105	method is still lacking.

106	As such various analytical techniques, including X-ray diffraction (XRD),
107	scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX),
108	Fourier transform infrared spectroscopy (FTIR), and synchrotron-based sulfur K-edge
109	X-ray absorption fine spectroscopy (XAFS) were used to determine the SO42-
110	coordination environments in scorodite. Density functional theory (DFT) calculations
111	were also utilized to construct the local molecular structure of SO_4^{2-} in scorodite. The
112	objectives of the present study are (1) to quantitatively investigate the content of SO_4^{2-}
113	incorporated into scorodite at different initial Na ⁺ concentrations; (2) to elucidate the
114	local coordination environment of SO4 ²⁻ in scorodite.
115	MATERIALS AND METHODS
116	Materials
117	Analytical grade reagents, clean glassware, and Deionized (DI) water (18.2 $M\Omega$
118	cm) were used for all experiments. The stock solutions of As(V), Fe(III), [Fe(II)+SO4 ²⁻],
119	and Na ⁺ were prepared by dissolving As ₂ O ₅ , Fe(NO ₃) ₃ ·9H ₂ O, FeSO ₄ ·7H ₂ O, and NaNO ₃
120	into acidic DI-water, respectively. The varied coexisting Na ⁺ concentrations (ionic
120 121	into acidic DI-water, respectively. The varied coexisting Na ⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the
120 121 122	into acidic DI-water, respectively. The varied coexisting Na ⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the evaluation of the arsenic precipitation efficiency during scorodite formation is beyond
120 121 122 123	into acidic DI-water, respectively. The varied coexisting Na ⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the evaluation of the arsenic precipitation efficiency during scorodite formation is beyond the scope of the present paper.
120 121 122 123 124	 into acidic DI-water, respectively. The varied coexisting Na⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the evaluation of the arsenic precipitation efficiency during scorodite formation is beyond the scope of the present paper. Natural and hydrothermally synthetic SO₄²⁻ doped scorodite samples
 120 121 122 123 124 125 	 into acidic DI-water, respectively. The varied coexisting Na⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the evaluation of the arsenic precipitation efficiency during scorodite formation is beyond the scope of the present paper. Natural and hydrothermally synthetic SO₄²⁻ doped scorodite samples One natural scorodite sample (defined as <i>Natural-scorodite</i> hereafter) was
 120 121 122 123 124 125 126 	 into acidic DI-water, respectively. The varied coexisting Na⁺ concentrations (ionic strength) may affect the efficiency of As precipitation. However, in this work, the evaluation of the arsenic precipitation efficiency during scorodite formation is beyond the scope of the present paper. Natural and hydrothermally synthetic SO₄²⁻ doped scorodite samples One natural scorodite sample (defined as <i>Natural-scorodite</i> hereafter) was collected from Guangxi, China, for the evaluation of natural scorodite on SO₄²⁻

particles appeared as pyramidal or pseudo-octahedral shapes with sizes up to several millimeters. The scorodite grains were enveloped by arsenical-pyrite crystals, revealing that the secondary scorodite mineral was originated from the natural weathering of arsenical-pyrite (data not shown), in agreement with the previous reports (Paktunc and Bruggeman 2010). The selected parts of *Natural-scorodite* single-crystal particles were cut or ground to obtain the cross-section or solid powders, then cleaned with 70% ethanol via ultrasound for chemical characterization.

The SO_4^{2-} doped scorodite (denoted as *SO₄-scorodite* hereafter) was synthesized 135 at a fixed SO₄²:Fe(II):As(V) molar ratio of 1.5:1.5:1 with various initial Na⁺ 136 concentrations at pH 1.2 and 1.8 via the method previously reported by Fujita et al. 137 (2008a). Relative high $[SO_4^2 + Fe]/As$ ratio and acidity used in the present study are 138 139 relevant to AMD sties and industrial operations (Debekaussen et al. 2001; Casiot et al. 140 2003; Fujita et al. 2009; Murciego et al. 2011; Min et al. 2015). Various initial Na⁺ 141 concentrations was used based on the fact that the ionic strength is an important 142 parameter in AMD and waste sulfuric acid and Na⁺ has negligible effect on the crystallization and transformation of scorodite. The synthesis of SO_4^{2-} -doped scorodite 143 was performed by introducing a FeSO₄·7H₂O solution into a mixture of As(V) and Na⁺ 144 solution at 95 °C simultaneously with Fe(II) oxidization via air bubbling. Briefly, 100 145 mL of 0.2 M As(V)+Na⁺ solutions with varying concentrations of NaCl solutions (i.e., 146 0, 2, 4, and 8 M) were prepared by mixing As(V) and NaCl solutions. Then 100 mL 147 Fe^{II}SO₄ solution was pre-adjusted to pH 1.2 or 1.8 by using 2 M HCl. This solution was 148 then added into the $As(V)+Na^+$ solutions (Fe/As molar ratio =1.5) to precipitate SO₄-149

150	scorodite under mechanical agitation and heated at 95 °C followed by slow Fe(II)
151	oxidization via air bubbling. The volume of the final solution was ~200 mL. The final
152	concentrations in the systems were: 0.1 MAs , 0.15 MFe , and 0.15 MSO_4^{2-} with various
153	additional Na ⁺ concentrations of 0, 1, 2, and 4 M. The final suspensions were subjected
154	to solid-liquid separation by filtration through 0.22-µm membranes. All solid samples
155	were washed five times with 0.1 mM HCl solutions (pH \sim 4) to remove the residual
156	solutions in the solids since scorodite has a relatively low degree of solubility at such
157	pH conditions (Langmuir et al., 2006). Then the solids were freeze-dried, and stored in
158	a desiccator for further solid characterization.

159 Synthesis of standard compounds

The SO₄-bearing hydrous ferric arsenate (defined as *SO₄-ferric arsenate* hereafter) 160 161 was synthesized according to the method reported previously (Wang et al. 2016). 162 Briefly, an equal volume of 0.2 M As(V) (As₂O₅) and 0.2 M Fe(III) (Fe₂(SO₄)₃) 163 solutions were mixed at pH 1.2 and maintained at that pH for 24 h by using NaOH or 164 HCl solutions. The SO₄-free scorodite (defined as scorodite hereafter) was synthesized using Fe(NO₃)₃·9H₂O as a Fe source by continuous heating of As(V) and Fe mixed 165 solutions (0.15 M Fe and 0.15 M As, pH 1.2) at 95 °C for 12 h. Jarosite 166 167 (KFe₃(SO₄)₂(OH)₆) synthesis was carried out by heating the mixture of 0.2 M Fe (from Fe₂(SO₄)₃) and 0.3 M SO₄²⁻ (K₂SO₄) solution at pH 1.4 and 98 °C for 24 h (Paktunc 168 169 and Dutrizac 2003). All the synthetic solids were separated by centrifugation, washed five times using DI water with the same pH as the reaction systems. This was done to 170 remove the interparticle-entrained residual solutions. The solids were then freeze-dried 171

172 and stored in a desiccator for further analysis.

Determination of SO₄²⁻ contents in scorodite 173

174 A known amount of solid samples were digested in 6 M HCl, and the clear solutions were used to analyze the SO₄²⁻ concentrations. The concentration of dissolved 175 SO₄²⁻ in solution was determined by the nephelometric method using a UV-visible 176 177 spectrophotometer (Shimadzu, Japan) at 420 nm. The detection limit for SO₄²⁻ was 0.1 mg/L with an uncertainty of $\pm 5\%$ (Sörbo 1987). 178

179

Solid-phase characterization

180 The mineralogical characteristics of the solid samples were determined by using a Rigaku D/max 2400 X-ray diffractometer (Rigaku Corporation, Japan) equipped with 181 a copper target (CuK α_1 radiation, $\lambda = 1.54056$ Å), a graphite monochromator, and a 182 scintillation detector. The equipment was run at 56 kV and 182 mA by step scanning 2θ 183 from 10° to 80° with an increment of 0.02°. The pattern refinement in the range of 2θ 184 10° to 60° was executed. 185

186 The morphologies and elemental distribution of the solid samples were characterized using scanning electron microscopy coupled with energy-dispersive X-187 ray spectroscopy (SEM-EDX) on a scanning electron microscope (Phenom ProX, 188 189 Netherlands). Two methods were used for analysis, i: placed the solid particles on double-sided carbon tape and examined them with SEM-EDX; ii: mounted the solid 190 particles in a cold setting epoxy resin, which once solidified was polished to uncover 191 the particles from the resin and create cross-sections of the particles for point element 192 mapping analysis. 193

Fourier transform infrared spectroscopy (FTIR) of the solid samples were collected on a Thermo Nicolet 6700 Fourier transform infrared spectrometer. Approximately 5 mg was mixed with 200 mg high purity KBr and then pressed into a disk. The spectra were collected in the range of 400 - 4000 cm⁻¹ with a spectral resolution of 4 cm⁻¹ and 128 co-added scans in transmission mode.

199 The sulfur (S) K-edge X-ray absorption fine spectra (XAFS) was collected on the 4B7A-mid-energy station at the Beijing Synchrotron Radiation Facility (BSRF) to 200 determine the SO_4^{2-} coordination environments in *SO*₄-scorodite. The storage ring was 201 202 operated at 2.5 GeV and 250 mA. The measurements were carried out at ambient temperature under high vacuum ($10^{-6} - 10^{-8}$ mbar) conditions in fluorescence mode. 203 Each spectrum was collected between -50 eV and 750 eV before and after the S K-edge 204 absorption edge (~2482 eV). The step size was set to 0.1 eV/step for the pre-edge region, 205 3 eV/step for the XANES region, and 3 eV/step for the EXAFS region. The XAFS 206 spectra were Fourier transformed from k to R space using Kaiser-Bessel apodization 207 windows with an R_{bkg} value of 0.9 Å. The k-space range was set to 4 - 11 Å⁻¹ to obtain 208 the radial structural functions (RSFs). The final fitting of the spectra was made on 209 Fourier transformed k^3 weighted spectra in R space. For data fitting and modeling, 210 scattering paths were calculated with ATOMS and FEFF using Na₂SO₄ and 211 paracoquimbite (Fe₂(SO₄)₃·9H₂O), Fe₂(SO₄)₃ crystallographic data (Fang and 212 Robinson 1970; Hawthorne and Ferguson 1975; Christidis and Rentzeperis 1976). 213

214 **DFT modeling**

The structure of SO_4^{2-} -doped scorodite was optimized by applying density

216	functional theory (DFT), using the pw.x code available in the QUANTUM ESPRESSO
217	(v. 6.3) software package (Giannozzi 2009). The code uses plane waves and
218	pseudopotentials to solve the Kohn-Sham equations. The geometric optimization was
219	performed in a periodic system using the generalized gradient approximation (GGA) of
220	the Perdew-Wang (PW91) type (Giacomazzi and Scandolo 2010), and the semi-
221	empirical dispersion correction at the D2 level (DFT-D2) (Grimme 2006). All
222	calculations were repeated with the $GGA+U$ method (Anisimov et al. 1991), which
223	accounts for strong correlations. Norm-conserving pseudopotentials were used for all
224	calculations. The crystallographic data of scorodite obtained from Kitahama et al. (1975)
225	was used as the initial model with the dimension of $8.953 \times 10.325 \times 10.038$ Å ³ ($a \times b$
226	\times c) and cell volume of 927.91 Å ³ . The SO ₄ -doped scorodite was built by one SO ₄ OH
227	substituting for one $AsO_4({\rm H_2O})$ in the scorodite lattice and corresponded to a $SO_4{}^{2\text{-}}$
228	concentration of 5.32 wt%, which was used in the initial model for EXAFS fitting. The
229	plane-wave kinetic energy cut-off for wave functions, charge density, and potential
230	were set as 80 Ry and 320 Ry, respectively. Tests showed that these parameters could
231	give a satisfactory convergence of total energy (< 0.2 mRy/atom).
232	RESULTS AND DISCUSSION
233	Contents of SO ₄ ²⁻ in natural and hydrothermally synthetic scorodite
234	The chemical composition of the single-crystal of Natural-scorodite is tested
235	(Table S1). The results showed that Fe(III) and As(V) content in Natural-scorodite
236	samples were up to 22.6 wt.% and 30.5 wt.%, respectively, nearly consistent with the

content of Fe and As in the scorodite standard that was 24.2 wt.% and 32.4 wt.%. The

content of SO4²⁻ was 2.87 wt% in *Natural-scorodite*. According to the contents of Fe, 238 As, S, and divalent metal cations, i.e. Cu²⁺, Pb²⁺, and Cd²⁺ (Table S1) in Natural-239 240 scorodite and the molecular charge balance principle, the molecular formula of Naturalscorodite could be described by Fe_{0.94}(AsO₄)_{0.9}(SO₄)_{0.1}Me_{0.06} · 2H₂O, where Me 241 represents divalent metals. Based on the charge balance principle and stoichiometry of 242 Fe, As, SO₄²⁻, and Me(II)s in *Natural-scorodite*: $(3 \times Fe^{3+}+2 \times Me(II)=3 \times AsO_4^{3-}+2 \times Me(II)=3 \times Me(II)$ 243 SO_4^{2-}), we extrapolated that approximately 40% SO_4^{2-} is associated with Fe³⁺, while the 244 other 60% SO₄²⁻ may be balanced with Me(II)s and trapped in scorodite host phase via 245 246 the incorporation or solid inclusions of MeSO₄. To avoid the impurities-effect and better evaluate the local structure of SO₄²⁻ in scorodite lattice, the synthetic scorodite in lab-247 scale was performed to investigate the local coordination environments of SO42- in 248 249 scorodite, as shown below.

Figure 2 shows the contents of SO_4^{2-} in scorodite as a function of Na⁺ 250 concentration at pH 1.2 and 1.8. The results showed that the contents of SO₄²⁻ in 251 252 scorodite decreased slightly from 3.66 to 1.93 wt% and 3.87 to 2.15 wt% with increasing Na⁺ concentrations from 0 to 4 M at pH 1.2 and 1.8. This result suggests that 253 the amount of incorporated SO₄²⁻ in scorodite decreased slightly with increasing initial 254 255 Na⁺ concentrations, in agreement with the observation of Fujita et al. (2009a) (Figure S1). It is worth to note that $FeSO_4^+$ and $Fe(SO_4)_2^-$ are the precursor for the formation of 256 SO₄-scorodite (Majzlan and Myneni 2005). The decreased structural SO₄ contents 257 could be ascribed to the increased percentage of NaSO4⁻ complex in terms of total S 258 with increasing Na⁺ concentrations (Na⁺ + SO₄²⁻ = NaSO₄⁻, log K_{sp} = 0.936, Table S2). 259

This reduces the effective concentrations of Fe(III)-SO₄²⁻ complexes and SO₄²⁻ for SO_4 -260 scorodite formation. Furthermore, the amount of incorporated SO₄²⁻ at pH 1.8 was 261 262 slightly higher than at pH 1.2 with the same initial Na⁺ concentration, possibly due to 263 slightly higher percentage of $[FeSO_4^+ + Fe(SO_4)_2^-]$ complexes formed at pH 1.8 vs. 1.2 (Table S2 and Figure S2). Previous studies have reported that the solution stability of 264 scorodite decreases with increasing the incorporated amounts of SO42-. Hence, the 265 following sections of this study focused on the determination of sulfate coordination 266 environment in scorodite. 267

268 Mineralogical results

The mineralogical characteristics of Natural-scorodite and SO₄-scorodite 269 synthesized at various initial Na⁺ concentrations were characterized by XRD and 270 271 compared with reference compounds (SO₄-ferric arsenate and scorodite) (Figure 3). As 272 can be seen, the SO₄-ferric arsenate showed two broad humps at 20 of $\sim 28.52^{\circ}$ and 273 ~60.24°, indicating its amorphous nature. In comparison, the main XRD peaks of 274 Natural-scorodite, the synthesized scorodite and SO₄-scorodite are almost located at the same positions, hence indicating the dominant crystalline phase was scorodite. This 275 result also suggests that the incorporation of SO42- did not modify the characteristic 276 structure of scorodite. However, the incorporation of SO₄ slightly altered the lattic 277 parameters of scorodite (Figure S3). In the case of scorodite, the diffraction peaks of 278 the (212), (131), (133) planes located at 2θ of ~28.16°, 29.28°, 29.88° were observed. 279 However, in the SO₄²⁻ incorporated samples, the same diffraction peaks shifted to 280 ~28.06°, 29.16°, and 29.76°. The refinements showed that the incorporation of SO_4^{2-} 281

into the structure of scorodite induced a slight volume decrease of its unit cell (Table S3). This result suggests that the incorporation of SO_4^{2-} distorts the scorodite lattice slightly. For the XRD patterns of *Natural-scorodite*, we did not perform the refinement step because the trapped impurities in *Natural-scorodite*, i.e., Me(II) may affect the refinement results.

287 SEM and EDX analyses

The SEM images, elemental mapping, EDX results of SO₄-scorodite formed at pH 288 1.2 with different initial Na⁺ concentrations are shown in Figure 4. It can be generally 289 290 observed that the morphology of the SO₄-scorodite was highly dependent on the initial Na⁺ concentrations. For example, *SO*₄-scorodite formed in the absence of Na⁺ appeared 291 as the aggregation of fine particles. In contrast, SO₄-scorodite formed in the presence 292 293 of Na⁺ appeared as regular orthorhombic particles with sizes of $\sim 15 \,\mu m$, regardless of the Na⁺ concentration. Chemical composition analysis indicated that the SO₄²⁻ content 294 in scorodite decreased with increasing Na⁺ concentrations. These results suggested that 295 296 the coexistence of Na⁺ may favor the formation of the single-crystal scorodite via the inhibition of SO_4^{2-} incorporation. The elemental mapping and EDX results (Figure 4) 297 revealed that the major elements (As, Fe, O, and S) were homogeneously distributed on 298 the SO4-scorodite particles and corresponded well with the shape of the particles 299 examined by SEM. This result further confirms that SO_4^{2-} is trapped into the scorodite 300 301 host phase, in line with the chemical composition results.

However, the above-mentioned elemental mapping and EDX analysis may only identify the elements on the surface of the *SO*₄-scorodite</sub> particles due to its limited

304	penetration depth. Hence, in order to clearly show that $SO_4^{2^-}$ may have been
305	incorporated into the scorodite lattice, cross-sections of Natural-scorodite and SO4-
306	scorodite particles formed at various initial Na ⁺ concentrations were analyzed by
307	elemental mapping (Figure 5). It can be seen that elements O, As, Fe, and S showed a
308	clear boundary between the cross-section part and epoxy resin part, while the S revealed
309	a heterogeneous distribution. This result confirmed that SO42- was at least in part
310	incorporated into the scorodite host phase, consistent with the chemical composition
311	result.

312 FTIR analysis

SO₄-scorodite, Natural-scorodite, and reference compounds were 313 The characterized using FTIR spectroscopy (Figure 6). The frequency regions of interest 314 $(400 - 1300 \text{ cm}^{-1} \text{ and } 2000 - 4000 \text{ cm}^{-1}$, Figure 6a) are the infrared active stretching and 315 bending vibrations of SO₄, AsO₄ and H₂O/OH (Omori 1968; Myneni et al. 1998). The 316 317 IR band positions of the stretching and bending vibrations of SO₄ in the reference 318 compounds and SO₄-scorodite are tabulated in Table 1. For the SO₄-ferric arsenate (Figure 6b), three weak broad bands at ~1066, 1124, and 1187 cm⁻¹ were ascribed to 319 320 the v_3 stretching vibrations of SO₄ (Hug 1997; Peak et al. 1999; Lane 2007); no band 321 was observed in this region for pure ferric arsenate and scorodite. In contrast, SO₄scorodite showed one SO₄ v_1 stretching vibration at ~1001 cm⁻¹ and three SO₄ v_3 322 stretching vibrations at ~1070, 1103, and 1205 cm⁻¹ (Table 1 and Figure 6). The results 323 indicated that the SO₄ vibrational modes in scorodite were significantly different from 324 those of NaSO₄, SO₄-ferric arsenate, paracoquimbite, and jarosite, suggesting that a 325

different coordination environment SO_4^{2-} may exist in the *SO*₄-scorodite.

The relationship between the symmetry of SO₄ in minerals and their infrared 327 spectra has been well established based on infrared theory (Peak et al. 1999). The SO_4 328 coordination environments in reference compounds (römerite, paracoquimbite, jarosite, 329 330 and FeOHSO₄) are shown in Figure S4. For structural SO₄ that had similar bonding 331 environments, such as NaSO₄ and FeOHSO₄ with an S-Fe coordination number (CN) of 0 and 4 (Figure S4), which corresponding to the site symmetry of C_1 (Table 1). As 332 such they exhibited one v_1 band for Na₂SO₄ and [one v_1 band and three v_3 bands] for 333 334 FeOHSO₄. For römerite with CN_{S-Fe}=1, the symmetry of monodentate SO₄ will be lowered to $C_{3\nu}$, causing the split of v_3 into two bands with one infrared active v_1 band 335 (Table 1). For paracoquimbite (CN_{S-Fe}=2), the bidentate complex structure will further 336 lower the symmetry of SO_4^{2-} to $C_{2\nu}$ with the ν_3 band splitting into three bands in the 337 frequency range of 1050 - 1250 cm⁻¹ (Hug 1997; Peak et al. 1999) (Table 1). Based on 338 this theory, the one v_1 and three v_3 stretching vibration bands indicated that structural 339 340 SO_4^{2-} in *SO*₄-scorodite was associated with four Fe atoms via bridging oxygen.

341 XANES analysis

Figure 7 compares the S *K*-edge XANES spectra and pre-edge feature of SO_{4-} scorodite and reference compounds (Na₂SO₄ and SO_{4-} ferric arsenate). The results showed that the white line (peak B) of SO_{4-} scorodite, SO_{4-} ferric arsenate, and Na₂SO₄ appeared at the same energy position of ~2482.5 eV, indicating the same sulfur (S) oxidation state (Figure 7a). A broad peak (peak C) in the range of (2490 - 2510 eV) above the absorption edge of Na₂SO₄ and SO_{4-} scorodite corresponded to the 1s \rightarrow

348	continuum-state transition (Figure 7a). As can be seen, when SO ₄ is associated with
349	Fe(III) in the scorodite lattice, this peak C significantly shifts to higher energies in
350	comparison with Na ₂ SO ₄ (Myneni 2000). Additional weak pre-edge features (peak A)
351	appeared at ~2.0 eV below the absorption edge spectra of SO_4 -scorodite and SO_4 -ferric
352	arsenate samples, whereas no pre-edge feature was observed for the Na ₂ SO ₄ . These
353	pre-edge features are caused by the electronic transition from S $1s$ orbital to $3p$ orbital
354	that is hybridized with $Fe(III)$ 3d orbitals. This pre-edge feature indicates that there
355	exists inner-sphere bonding between SO_4^{2-} and Fe^{3+} via bridging oxygen (Okude et al.
356	1999; Myneni 2000; Majzlan and Myneni 2005). The increase in the number of Fe(III)
357	atoms coordinating with $\mathrm{SO_4^{2-}}$ can result in the pre-edge features shifting to higher
358	energy (Majzlan and Myneni 2005). Using this indicator, it has been proposed that each
359	SO_4^{2-} ion complexes to one Fe^{3+} ion in an acidic SO_4 -Fe(III) bearing solution (Majzlan
360	and Myneni 2005). The pre-edge features of römerite $(Fe^{2+}Fe^{3+}_2(SO_4)_4 \cdot 14H_2O)$,
361	paracoquimbite (Fe ₂ (SO ₄) ₃ ·9H ₂ O), and jarosite (KFe ³⁺ ₃ (SO ₄) ₂ (OH) ₆) appeared at
362	~2479.4, 2479.51, and 2479.89 eV, respectively (Figure 5b and Figure S4);
363	corresponding to the CN_{S-Fe} of 1, 2, and 3 (Fanfani et al. 1970; Fang and Robinson 1970;
364	Basciano and Peterson 2007; Gomez et al. 2013). In contrast, the pre-edge feature of
365	SO ₄ -scorodite appeared at approximately 2480.18 eV, which was higher than those of
366	römerite, paracoquimbite, and jarosite. This result indicates that SO42- is more likely to
367	coordinate with four Fe(III) atoms via bridging O. Based on this data, we can infer that
368	SO_4 incorporates into scorodite via the isomorphic substitution for AsO_4 and is in
369	agreement with the FTIR results.

370 **DFT calculation**

371	Our FTIR and XANES results suggested that each SO42- coordinates with four Fe
372	atoms in the SO_4 -scorodite. Therefore, we constructed a unit crystal cell with one SO_4^{2-}
373	substituted for one AsO4 ³⁻ while controlling the charge balance to give a formula of
374	Fe ₈ (AsO ₄) ₇ SO ₄ OH·15H ₂ O. After which the energy minimization was performed to
375	optimize the structure using DFT calculations as shown in Figure 8 and Figure S5. The
376	optimized dimension was 8.8873 \times 10.1919 \times 9.9873 Å^3 (a \times b \times c) versus that of
377	normal scorodite which is $8.9530 \times 10.3250 \times 10.0380$ Å ³ (a × b × c), thus suggesting
378	that the incorporation of SO_4^{2-} into scorodite reduced the volume of scorodite cell,
379	consistent with the XRD results. The DFT optimized interatomic distances of S-O, As-
380	O, As-Fe, and S-Fe in SO_4 -scorodite are compared with those in Fe ₂ (SO ₄) ₃ and standard
381	scorodite (Table 2). The results showed that the d_{As-O} were 1.67, 1.68, 1.68, and 1.69 Å
382	with an average of ~1.68 Å and the d_{As-Fe} were 3.34, 3.35, 3.36, and 3.39 Å with an
383	average of ~3.36 Å in scorodite. For SO_4 -scorodite, the optimized d_{S-O} were 1.46, 1.46,
384	1.48, and 1.48 Å with an average of ~1.47 Å, and the d_{S-Fe} were 3.29, 3.29, 3.33, and
385	3.41 Å with an average of \sim 3.33 Å. The optimized interatomic distances of S-Fe were
386	almost equal to that of $d_{\text{S-Fe}}$ in Fe ₂ (SO ₄) ₃ (3.30, 3.30, 3.31, and 3.31 Å) and $d_{\text{As-Fe}}$ in
387	scorodite (Table 2). This result suggests the SO ₄ local coordination environment in
388	scorodite was similar to that of SO ₄ in $Fe_2(SO_4)_3$ and as such indicates that SO ₄ can
389	substitute for the AsO ₄ site in the scorodite lattice.

- 390 EXAFS analysis
- 391 EXAFS fittings were also performed to investigate the coordination environments

392	of SO ₄ in our SO ₄ -scorodite. The EXAFS data of Na ₂ SO ₄ , paracoquimbite, and SO ₄ -
393	scorodite were fitted using the crystallographic data of NaSO4, paracoquimbite, and
394	$Fe_2(SO_4)_3$ or the DFT optimized structure, respectively (Figure 9 and Table 3). In the
395	case of Na ₂ SO ₄ , the EXAFS fitting gave S-O bonds with an average interatomic
396	distance of 1.45(4) Å with a CN of 4 for the first shell, in agreement with the reported
397	crystallographic data (Hawthorne and Ferguson 1975). For paracoquimbite, the EXAFS
398	fitting gave an average S-O interatomic distance of 1.46(2) Å with a CN of 4 for the
399	first shell, and an average S-Fe interatomic distance of 3.23(5) Å with a $\ensuremath{\text{CN}_{\text{S-Fe}}}$ of 2 for
400	the second shell. This again is in agreement with the previous published
401	crystallographic data (Fang and Robinson 1970). The fewer Fe atoms binding to SO ₄ ²⁻
402	for the Na ₂ SO ₄ (CN _{S-Fe} =0) and paracoquimbite (CN _{S-Fe} =2) than for the SO ₄ -scorodite
403	(CN _{S-Fe} =4) are consistent with the lower peak intensity at ~2.9 Å (R+ Δ R) in R space
404	(Figure 9b), where the S-Fe shell is located. For the SO4-scorodite, the EXAFS fitting
405	showed that the first-neighbor contributions were fitted with four oxygen (O) atoms
406	with an averaged interatomic distance of 1.47(1) Å (Figure 9 and Table 3). The second
407	shell gave an average S-Fe interatomic distance of 3.33(3) Å with $\text{CN}_{\text{S}}\text{-Fe}$ of
408	approximately 4, in agreement with the DFT optimized structure. Overall, the EXAFS
409	fitting results again suggested that the SO4 ²⁻ may form Fe ₂ (SO4) ₃ -like local structure in
410	scorodite lattice.

411

CONCLUSIONS

In this study, the effect of pH value and initial Na^+ concentration on the amount of incorporated SO_4^{2-} and the local coordination environment of SO_4^{2-} in scorodite were

428	IMPLICATIONS
427	the SO_4^{2-} in the scorodite lattice may be in the form of a Fe ₂ (SO ₄) ₃ -like local structure.
426	the DFT modeling results. Overall, the spectroscopic and DFT results confirmed that
425	$_{Fe}$ =4 for the SO ₄ local environments in the scorodite lattice. This is in agreement with
424	S-O bond lengths of 1.47(1) and an averaged S-Fe bond lengths of 3.33(3) Å with CN_{S-1}
423	3.29, 3.29, and 3.41 Å with an average of ~3.33 Å. EXAFS analysis gave an averaged
422	and 1.48 Å with an average of \sim 1.47 Å, and the interatomic distances of S-Fe were 3.29,
421	AsO ₄ (H ₂ O). The DFT optimized interatomic distances of S-O were 1.46, 1.46, 1.48,
420	the formula of $Fe_8(AsO_4)_{15}SO_4OH \cdot 15H_2O$ by one $SO_4(OH)$ substitution for one
419	lattice is four. The DFT modeling constructed a structure of SO4 ²⁻ doped scorodite with
418	indicated that the coordination number of FeO6 octahedra surrounding SO4 in scorodite
417	decreasing Na ⁺ concentrations or increasing pH value. The FTIR and XANES results
416	scorodite host phase, and the amount of incorporated SO42- increased slightly with
415	calculations. The results showed that SO42- was homogeneously distributed on the
414	investigated by using FTIR, XANES, EXAFS spectroscopy in combination with DFT

The transportation and evolution of Fe, As, and SO_4^{2-} and the formation of ferric iron sulfate/arsenate minerals are critical geochemical processes. Among these processes, the incorporation of SO_4^{2-} in the scorodite structure is an important process during its formation in mining-related settings such as acid mine drainage and hydrometallurgical tailings. The incorporation of SO_4^{2-} in scorodite is also an important mechanism during the immobilization of arsenic in waste sulfuric acid using scorodite as an As-carrier (Debekaussen et al. 2001; Fujita et al. 2008b, 2008c, 2009b; Le Berre

436	et al. 2008; Ma et al. 2019). The local environments of SO_4^{2-} in scorodite can provide
437	numerous important insights into the structure, formation (i.e., grain size and surface
438	area), and dissolution behavior of scorodite (i.e., dissolution rate). For example, the
439	environmental stability of scorodite is controlled by its crystallinity, particle size
440	(specific area), and structural SO_4^{2-} content. When scorodite solids have similar
441	crystallinity and particle size, the structural SO ₄ ²⁻ contents in scorodite may be a critical
442	factor in controlling its stability. Our study indicated that Fe^{3+} and $\mathrm{SO}_4{}^{2\text{-}}$ may form
443	Fe ₂ (SO ₄) ₃ -like local structure in scorodite. Hence, we extrapolated that higher solubility
444	of local Fe ₂ (SO ₄) ₃ (vs. FeAsO ₄ ·2H ₂ O, Table S4) trapped in scorodite may be the main
445	reason for the higher solubility of SO4-scorodite. Furthermore, the structure of SO4-
446	scorodite solid solution can also help to understand the evolution and crystallization
447	processes of its precursors, i.e., amorphous ferric arsenate. Overall, this study is
448	significant for understanding the speciation and formation of $Fe(III)$ -SO ₄ ²⁻ and Fe(III)-
449	As(V)-SO4 ²⁻ bearing minerals in natural and mining-impacted environments.
450	ACKNOWLEDGMENTS
451	We thank the National Key Research and Development Program of China (No.
452	2020YFC1807800), the National Natural Science Foundation of China (Nos. 41530643

and 41877393) and the Chinese Academy of Sciences (No. QYZDJ-SSW-DQC038) for
the financial support. We thank the beamline 4B7A-mid-energy station at the Beijing
Synchrotron Radiation Facility (BSRF) for their help on the sulfur *K*-edge XAS spectral
measurements.

457 Appendix A. Supplementary data

458	Supplementary	data	associated	with	this	article	can b	be four	id in	the	online	version
	·- ··											

459	Declaration of Competing Interest
460	The authors declare that they have no known competing financial interests or personal
461	relationships that could have appeared to influence the work reported in this paper.
462	REFERENCES CITED LIST

Anisimov, V.I., Zaanen, J., and Andersen, O.K. (1991) Band theory and Mott insulators:

464 Hubbard-U instead of Stoner I. Physical Review B, 44, 943-954.

- 465 Basciano, L.C., and Peterson, R.C. (2007) Jarosite-hydronium jarosite solid-solution
- series with full iron site occupancy: Mineralogy and crystal chemistry. American
- 467 Mineralogist, 92, 1464-1473.
- 468 Bolanz, R.M., Gottlicher, J., Steininger, R., and Wieczorek, A. (2016) Structural
- 469 incorporation of As^{5+} into rhomboclase $((H_5O_2)Fe^{3+}(SO_4)_2 \cdot 2H_2O)$ and 470 $(H_3O)Fe(SO_4)_2$. Chemosphere, 146, 338-345.
- 471 Casiot, C., Leblanc, M., Bruneel, O., Personne, J.C., Koffi, K., and Elbazpoulichet, F.
- 472 (2003) Geochemical processes controlling the formation of As-rich waters within
- 473 a tailings impoundment (Carnoulès, France). Aquatic Geochemistry, 9, 273-290.
- 474 Chai, L.Y., Yang, J.Q., Zhang, N., Wu, P.J., Li, Q.Z., Wang, Q.W., Liu, H., and Yi, H.B.
- 475 (2017) Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes
- using UV-Vis, XAS and DFT-TDDFT. Chemosphere, 182, 595-604.
- 477 Christidis, P.C., and Rentzeperis, P.J. (1976) The crystal structure of rhombohedral
- 478 Fe2(SO4)3. Zeitschrift Für Kristallographie, 144, 341-352.

479	Debekaussen, R., Droppert, D., and Demopoulos, G.P. (2001) Ambient pressure
480	hydrometallurgical conversion of arsenic trioxide to crystalline scorodite. CIM
481	Bulletin, 94, 116-122.

- 482 Drahota, P., and Filippi, M. (2009) Secondary arsenic minerals in the environment: A
- 483 review. Environment International 35, 1243-1255.
- 484 Fanfani, L., Nunzi, A., and Zanazzi, P.F. (1970) The crystal structure of roemerite.
 485 American Mineralogist, 55, 78-89.
- 486 Fang, J.H., and Robinson, P.D. (1970) Crystal structures and mineral chemistry of
- 487 hydrated ferric sulfates. I. The crystal structure of coquimbite. American
 488 Mineralogist, 55, 1534-1540.
- 489 Fernández-Martínez, A., Cuello, G.J., Johnson, M.R., Bardelli, F., Román-Ross, G.,
- 490 Charlet, L., and Turrillas, X. (2008) Arsenate incorporation in gypsum probed by
- 491 neutron, X-ray scattering and density functional theory modeling. Journal of
- 492 Physical Chemistry A, 112, 5159-5166.
- 493 Flemming, R.L., Salzsauler, K.A., Sherriff, B.L., and Sidenko, N.V. (2005)
- Identification of scorodite in fine-grained, high-sulfide, arsenopyrite mine-waste
 using micro X-ray diffraction (µXRD). Canadian Mineralogist, 43, 1243-1254.
- 496 Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T.
- 497 (2008a) Effects of zinc, copper and sodium ions on ferric arsenate precipitation in
 498 a novel atmospheric scorodite process. Hydrometallurgy, 93, 30-38.
- 499 Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T.
- 500 (2008b) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate

501	solution.	Part I.	Hydrometa	llurgy,	90.	92-102.
JUT	solution.	I ult I.	11 y al Ollietta	margy,	<i>J</i> 0,	102.

- Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T.
 (2008c) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate
 solution. Part II. Effect of temperature and air. Hydrometallurgy, 90, 85-91.
 Fujita, T., Taguchi, R., Abumiya, M., Matsumoto, M., Shibata, E., and Nakamura, T.
 (2009a) Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous
 ions: Physical properties and stability of the scorodite. Hydrometallurgy, 96, 189198.
- 509 Fujita, T., Taguchi, R., Shibata, E., and Nakamura, T. (2009b) Preparation of an As(V)
- solution for scorodite synthesis and a proposal for an integrated As fixation process
 in a Zn refinery. Hydrometallurgy, 96, 300-312.
- 512 Giacomazzi, L., and Scandolo, S. (2010) Gypsum under pressure: A first-principles
 513 study. Physical Review B, 81.
- 514 Giannozzi, P. (2009) Quantum ESPRESSO: a modular and open-source software
- project for quantum simulations of materials. Journal of Physics Condensed Matter,
 21, 395502.
- 517 Giere, R., Sidenko, N.V., and Lazareva, E.V. (2003) The role of secondary minerals in
- controlling the migration of arsenic and metals from high-sulfide wastes (Berikulgold mine, Siberia). Applied Geochemistry, 18, 1347-1359.
- Gomez, M.A., Assaaoudi, H., Becze, L., Cutler, J.N., and Demopoulos, G.P. (2010)
 Vibrational spectroscopy study of hydrothermally produced scorodite
- 522 (FeAsO₄ \cdot 2H₂O), ferric arsenate sub-hydrate (FAsH; FeAsO₄ \cdot 0.75H₂O) and basic

Page 24 / 31

523	ferric arsenate sulfate (BFAS; $Fe(AsO_4)_{1-x}(SO_4)_x(OH)_x \cdot wH_2O)$. Journal of Ram	nan
524	Spectroscopy, 41, 212-221.	

- Gomez, M.A., Becze, L., Celikin, M., and Demopoulos, G.P. (2011) The effect of
 copper on the precipitation of scorodite (FeAsO₄·2H₂O) under hydrothermal
 conditions: Evidence for a hydrated copper containing ferric arsenate sulfate-short
 lived intermediate. Journal of Colloid and Interface Science, 360, 508-518.
- 529 Gomez, M.A., Ventruti, G., Celikin, M., Assaaoudi, H., Putz, H., Becze, L., Lee, K.E.,
- and Demopoulos, G.P. (2013) The nature of synthetic basic ferric arsenate sulfate (Fe(AsO₄)($_{1-x}$)(SO₄)($_{x}$)(OH)($_{x}$)) and basic ferric sulfate (FeOHSO₄): their crystallographic, molecular and electronic structure with applications in the environment and energy. RSC Advances, 3, 16840-16849.
- Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a
 long-range dispersion correction. Journal of Computational Chemistry, 27, 17871799.
- Hawthorne, F.C., and Ferguson, R.B. (1975) Refinement of crystal-structure of
 Krohnkite. Acta Crystallographica Section B-Structural Science, 31, 1753-1755.
- 539 Hug, S.J. (1997) In situ Fourier Transform Infrared measurements of sulfate adsorption
- on hematite in aqueous solutions. Journal of Colloid and Interface Science, 188,
 415-422.
- 542 Kitahama, K., Kiriyama, R., and Baba, Y. (1975) Refinement of crystal-structure of
 543 scorodite. Acta Crystallographica Section B-Structural Science, 31, 322-324.
- 544 López-Archilla, A.I., Marin, I., and Amils, R. (2001) Microbial community

- 545 composition and ecology of an acidic aquatic environment: The Tinto River, Spain.
- 546 Microbial Ecology, 41, 20-35.
- 547 Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing
- 548 minerals. American Mineralogist, 92, 1-18.
- 549 Langmuir, D., Mahoney, J., and Rowson, J. (2006) Solubility products of amorphous
- ferric arsenate and crystalline scorodite (FeAsO₄·2H₂O) and their application to arsenic behavior in buried mine tailings. Geochimica Et Cosmochimica Acta, 70, 2942-2956.
- Le Berre, J.F., Gauvin, R., and Demopoulos, G.P. (2008) A study of the crystallization
- kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 117-129.
- 557 Ma, X., Gomez, M.A., Yuan, Z.D., Zhang, G.Q., Wang, S.F., Li, S.F., Yao, S.H., Wang,
- 558 X., and Jia, Y.F. (2019) A novel method for preparing an As(V) solution for
- scorodite synthesis from an arsenic sulphide residue in a Pb refinery.
 Hydrometallurgy, 183, 1-8.
- 561 Ma, X., Yuan, Z.D., Gomez, M.A., Wang, X., Wang, S.F., Yao, S.H., and Jia, Y.F. (2017)
- 562 A qualitative and quantitative investigation of partitioning and local structure of
- arsenate in barite lattice during coprecipitation of barium, sulfate, and arsenate.
- 564 American Mineralogist, 102, 2512-2520.
- 565 Maillot, F., Morin, G., Juillot, F., Bruneel, O., Casiot, C., Ona-Nguema, G., Wang, Y.H.,
- 566 Lebrun, S., Aubry, E., and Vlaic, G. (2013) Structure and reactivity of As(III)- and

567	As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the
568	Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model
569	compounds and implications for As remediation. Geochimica Et Cosmochimica
570	Acta, 104, 310-329.
571	Majzlan, J., and Myneni, S.C.B. (2005) Speciation of iron and sulfate in acid waters:
572	Aqueous clusters to mineral precipitates. Environmental Science & Technology,
573	39, 188-194.
574	Morin, G., Juillot, F., Casiot, C., Bruneel, O., Personne, J.C., Elbaz-Poulichet, F.,
575	Leblanc, M., Ildefonse, P., and Calas, G. (2003) Bacterial formation of tooeleite
576	and mixed arsenic(III) or arsenic(V)-iron(III) gels in the carnoulbs acid mine
577	drainage, France. A XANES, XRD, and SEM study. Environmental Science &
578	Technology, 37, 1705-1712.
579	Min, X.B., Liao, Y.P., Chai, L.Y., Yang, Z.H., Xiong, S., Liu, L. and Li, Q.Z. (2015).
580	Removal and stabilization of arsenic from anode slime by forming crystal
581	scorodite. Trans. Nonferrous Met. Soc. China, 25(4): 1298-1306.
582	Murciego, A., Álvarez-Ayuso, E., Pellitero, E., Rodríguez, M.a., García-Sánchez, A.,
583	Tamayo, A., Rubio, J., Rubio, F., and Rubin, J. (2011) Study of arsenopyrite
584	weathering products in mine wastes from abandoned tungsten and tin exploitations.
585	Journal of Hazardous Materials, 186, 590-601.
586	Myneni, S.C.B. (2000) X-Ray and vibrational spectroscopy of sulfate in earth materials.
587	Reviews in Mineralogy & Geochemistry, 40, 113-172.
588	Myneni, S.C.B., Traina, S.J., Waychunas, G.A., and Logan, T.J. (1998) Vibrational

589	spectroscopy	of functional	group of	chemistry	and arsenate	coordination	in ettringite.
000			0r				

- 590 Geochimica Et Cosmochimica Acta, 62, 3499-3514.
- 591 Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., and Blowes, D.W. (2000) Negative pH
- and extremely acidic mine waters from Iron Mountain, California. Environmental
- 593 Science & Technology, 34, 254-258.
- 594 Okude, N., Nagoshi, M., Noro, H., Baba, Y., Yamamoto, H., and Sasaki, T.A. (1999) P
- and S K-edge XANES of transition-metal phosphates and sulfates. Journal of
- Electron Spectroscopy and Related Phenomena, 101–103, 607-610.
- 597 Omori, K. (1968) Infrared diffraction and the far infrared spectra of anhydrous sulfates.
 598 Mineralogical Journal, 5, 334-354.
- 599 Paktunc, D., and Bruggeman, K. (2010) Solubility of nanocrystalline scorodite and
- amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes.
- 601 Applied Geochemistry, 25, 674-683.
- 602 Paktunc, D., and Dutrizac, J.E. (2003) Characterization of arsenate-for-sulfate
- substitution in synthetic jarosite using X-ray diffraction and X-ray absorption
 spectroscopy. Canadian Mineralogist, 41, 905-919
- Peak, D., Ford, R.G., and Sparks, D.L. (1999) An in situ ATR-FTIR investigation of
- sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science,218, 289-299.
- 608 Powers, D.A., Rossman, G.R., Schugar, H.J., and Gray, H.B. (1975) Magnetic behavior
- and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs.
- Journal of Solid State Chemistry, 13, 1-13.

- 611 Qi, X.J., Li, Y.K., Wei, L.H., Hao, F.Y., Zhu, X., Wei, Y.G., Li, K.Z., and Wang, H.
- 612 (2020) Disposal of high-arsenic waste acid by the stepwise formation of gypsum
 613 and scorodite. RSC Advances, 10, 29-42.
- 614 Sörbo, B. (1987) Sulfate: Turbidimetric and nephelometric methods. Methods in
 615 Enzymology, 143, 3-6.
- 2112 June 10 BJ, 1 10, 0 01
- 616 Singhania, S., Wang, Q.K., Filippou, D., and Demopoulos, G.P. (2006) Acidity, valency
- and third-ion effects on the precipitation of scorodite from mixed sulfate solutions
- 618 under atmospheric-pressure conditions. Metallurgical and Materials Transactions
- B-Process Metallurgy and Materials Processing Science, 37, 189-197.
- 620 Ventruti, G., Della Ventura, G., Gomez, M.A., Capitani, G., Sbroscia, M., and Sodo, A.
- 621 (2020) High-temperature study of basic ferric sulfate, FeOHSO₄. Physics and
 622 Chemistry of Minerals, 47.
- Wang, S.F., Ma, X., Zhang, G.Q., Jia, Y.F., and Hatada, K. (2016) New insight into the
- 624 local structure of hydrous ferric arsenate using full-potential multiple scattering
- 625 analysis, density functional theory calculations, and vibrational spectroscopy.

626 Environmental Science & Technology, 50, 12114-12121.

- Yang, J.Q., Chai, L.Y., Yue, M.Q., and Li, Q.Z. (2015) Complexation of arsenate with
 ferric ion in aqueous solutions. RSC Advances, 5, 103936-103942.
- 629 Zhu, X., Kirk Nordstrom, D., Blaine McCleskey, R., Wang, R., Lu, X., Li, S., and
- Henry Teng, H. (2019) On the thermodynamics and kinetics of scorodite
 dissolution. Geochimica et Cosmochimica Acta, 265, 468-477.

632 **LIST OF FIGURE CAPTIONS**

- 633 **FIGURE 1.** Optical images of the Natural-scorodite. The red and green dot represent
- 634 the scorodite and pyrite crystal, respectively.
- FIGURE 2. Contents of SO_4^{2-} in scorodite as a function of initial Na⁺ concentrations
- 636 at pH 1.2 and 1.8.
- 637 FIGURE 3. Comparison of XRD patterns of Natural-scorodite, SO₄-ferric arsenate,
- 638 scorodite with SO₄-scorodite formed at pH 1.2 and various initial Na⁺ concentrations.

639 FIGURE 4. SEM images, elemental mapping, and EDX results of SO₄-scorodite

- formed at pH 1.2 in the absence of Na^+ (**a**) and in the presence of 1 M (**b**), 2 M(**c**), and
- 641 4 M (**d**) Na⁺.

642 FIGURE 5. SEM, elemental cross sectional mapping images of (a) Natural-scorodite

and SO₄-scorodite formed at pH 1.2 in the absence of Na^+ and in the presence of 1 M

644 (b) and 4 M (c) Na⁺. The dotted lines represent the crosss section of the SO₄-scorodite.

645 FIGURE 6. FTIR spectra of Natural scorodite, reference compounds and SO₄-

scorodite formed at various pH values and Na⁺ concentrations. (a) 400 - 1300 and 2000

 -4000 cm^{-1} (**b**) 950 - 1300 cm⁻¹ in SO₄-ferric arsenate, scorodite, and SO₄-scorodite.

648 **FIGURE 7.** Sulfur *K*-edge XANES spectra of (**a**) SO₄-scorodite (1 M Na⁺ and pH 1.2),

- 649 SO₄-ferric arsenate, Na₂SO₄, and (b) the pre-edge features in the S K-edge spectra of
- 650 römerite, paracoquimbite, jarosite, and SO₄-scorodite. The continuous energy region
- above the adsorption edge was magnified from 2490 2510 eV in (a). A, B, and C
- 652 represent pre-edge feature, white line peak and $1s \rightarrow$ continuum-state transition,

- 653 respectively.
- 654 **FIGURE 8.** DFT optimized (a) unit cell of SO₄-scorodite and (b) SO₄²⁻ local
- 655 coordination environments in SO₄-scorodite.
- 656 **FIGURE 9.** Sulfur (S) *K*-edge k^3 -weighted χ functions (a), Fourier transformed (FTs) χ
- 657 functions (b), and real part of Fourier transformed EXAFS spectra (c) of reference
- 658 compounds (Na₂SO₄ and paracoquimbite) and SO₄-scorodite (1 M Na⁺ and pH 1.2).

1					TABL	ES	
2							
3	TABLE 1.	Comparis	on of	S-O	vibration ban	d positio	ons of reference compounds with
4	SO ₄ -scorod	ite in the I	FTIR	spect	ra.		
			S	-O Stre	tching vibrations (cm⁻¹)	
	Mineral	Symmetry	V ₁ V ₂ V ₃ V ₄			V 4	
	Na ₂ SO ₄	C ₁			1132 (shoulder)	615/640	
	römerite	C _{3v}	987		1101/1151	615	
	paracoquimbite	C _{2v}	1024		1054/110/1195		
	jarosite	Cv	1006	445	1220/1197	635	
	FeOHSO ₄ ^(a)	C ₁	1058		1172/1138/1112	638/650	
	SO ₄ -scorodite	C ₁	1001		1070/1103/1205		
5 6 7	(a): The FT	IR data wa	as rep	orted	by Powers et	al. (197	'5).
8							
9							
10							
11	TABLE 2.	The DFT	calcı	lated	l interatomic	distance	s of S-O, S-Fe in SO ₄ -scorodite
	1.4			. 1.		<u>с</u> р.	

12 and the reported interatomic distances of S-O, S-Fe in FeOHSO₄, and As-O, As-Fe in

13 scorodite.

Somalo Formula	Description	Bond length (Å)			
Sample Formula	Description	S-O, CN = 4	S-Fe, CN = 4		
SO ₄ -scorodite	$case CO^{2-}$ substituting for any AcO^{3-}	1.46; 1.48	3.29; 3.29;		
Fe ₈ (AsO ₄) ₇ SO ₄ (OH)·15H ₂ O	one SO ₄ substituting for one ASO ₄	1.48; 1.46	3.33; 3.41		
FeOHSO ₄ (a)	determined by VDD	1.44; 1.44	3.30; 3.31		
Fe ₁₅ (OH) ₁₅ (SO ₄) ₁₅		1.46; 1.46	3.30; 3.31		
Fe ₂ (SO ₄) ₃ (b)	determined by VDD	1.46; 1.47	3.23; 3.26		
$Fe_{26}S_{30}O_{166}$		1.47; 1.47	3.29; 3.36		
Secredite (a)		As-0, CN = 4	As-Fe, CN = 4		
	unit cell determined by XRD ^b	1.67; 1.68	3.34; 3.35		
FE8(ASU4)8 10H2U		1.68; 1.69	3.36; 3.39		

14 (a): Ventruti et al. 2005.

15 (b): Christidis and Rentzeperis 1976.

16 (c): Kitahama et al. 1975.

17

19 (NaSO ₄ and paracoquimbite) and SO ₄ -scorodite. CN: coordination number. R_{apt} : 20 interatomic distance. Σ^2 : Debye-Waller parameter. ΔE : energy-shift parameter. χ^2_{red} : 21 reduced chi-square. <i>R</i> -factor: mean-square misfit between the measured and the 22 modeled data. The number of independent points (N_{idp}) and variables (N_{var}) were	18	TABLE 3. The shell-fit results for the S K-edge EXAFS of reference compounds
20 interatomic distance. Σ^2 : Debye-Waller parameter. ΔE : energy-shift parameter. χ^2_{red} : 21 reduced chi-square. <i>R</i> -factor: mean-square misfit between the measured and the 22 modeled data. The number of independent points (N_{idp}) and variables (N_{var}) were	19	(NaSO ₄ and paracoquimbite) and SO ₄ -scorodite. CN: coordination number. R_{apt} :
reduced chi-square. <i>R</i> -factor: mean-square misfit between the measured and the modeled data. The number of independent points (N_{idp}) and variables (N_{var}) were	20	interatomic distance. Σ^2 : Debye-Waller parameter. ΔE : energy-shift parameter. χ^2_{red} :
22 modeled data. The number of independent points (N_{idp}) and variables (N_{var}) were	21	reduced chi-square. R-factor: mean-square misfit between the measured and the
	22	modeled data. The number of independent points (N_{idp}) and variables (N_{var}) were

23 11.95 and 6, respectively.

Path	CN	R _{path} (Å)	σ ² (Å ²)×10 ⁻²	ΔE (eV)	X ² red	R-factor
Na ₂ SO ₄						
S-0	4	1.45(4)	0.059(4)	2.20(6.9)	105	0.022
Paracoquimbite						
S-0	4	1.46(2)	0.154(11)	0.50(5.1)	218	0.028
S-0-0	12	2.76(7)	0.190(11)	0.50(5.1)		
S-Fe	2	3.23(5)	0.820(11)	0.50(5.1)		
SO ₄ -scorodite (Fe ₂ (SO ₄) ₃ as the initial model)						
S-0	4	1.47(1)	0.019(42)	7.60(2.38)	28	0.016
S-0-0	12	2.71(2)	0.032(42)	7.60(2.38)		
S-Fe	4	3.33(3)	0.986(42)	7.60(2.38)		
SO ₄ -scorodite (DFT optimized structure as the initial model)						
S-0	4	1.47(1)	0.031(45)	7.10(2.56)	32	0.021
S-0-0	12	2.86(2)	0.053(45)	7.10(2.56)		
S-Fe	4	3.31(2)	1.001(34)	7.10(2.56)		

24

Pyrite crystal

The yellow part was cut for SEM analysis

