1 Revision 2 of manuscript 8171R for American Mineralogist

- 2
- ³ Oxidation of arcs and mantle wedges by reduction of manganese in
- 4 pelagic sediments during seafloor subduction
- 5
- 6 Shuguang Song^{1*}, Shiting Ye¹, Mark B. Allen², Yaoling Niu², Weidong Sun³, Lifei Zhang¹
- 7 1 MOE Key Laboratory of Orogenic Belt and Crustal Evolution, School of Earth and Space Sciences,
- 8 Peking University, Beijing 100871, China
- 9 2 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
- 10 3 Center of Deep Sea Research, Institute of Oceanography, Chinese Academy of Sciences, Qingdao
- 11 266071, China
- 12
- 13 *Correspondent author: Shuguang Song
- 14 Email: <u>sgsong@pku.edu.cn</u>

15 ABSTRACT

Plate subduction links the Earth's surface and interior and reshapes the redox state of the Earth's 16 17 mantle. Mantle wedges above subduction zones have high oxygen fugacity compared with other 18 mantle reservoirs, but the cause is debated. Here we analyse high-pressure metamorphic rocks derived 19 from ferromanganese pelagic sediments in the Qilian subduction complex, NW China. We show that progressive metamorphism is a process of reducing reactions, in which Mn^{4+} is reduced to Mn^{2+} . On 20 the global scale, such reactions would release significant amounts of oxygen ($\sim 1.27 \times 10^{12}$ g year⁻¹), 21 22 estimated from the global flux of MnO in sediments passing into subduction zones. This budget is 23 sufficient to raise the oxygen fugacity of the mantle wedge, hence arc magmas, to a higher level than other mantle reservoirs. In contrast, ferric iron (Fe^{3+}) enters hematite, aegirine and garnet, without 24 valence change, and plays little role in the oxidation of the mantle wedge. Fe^{3+} remains stable to depths 25 of >100 km, but will transfer to the deeper mantle along with the subducting slab. The manganese 26 27 reduction process provides a new explanation for high oxygen fugacity in the mantle wedge. 28 Key words: Ferromanganese pelagic sediments, high-pressure metamorphism, reductive reactions, 29 subduction zone, mantle oxidation

30 INTRODUCTION

Subduction zones are key places for understanding the dynamics of the Earth, and play an
important role in the oxidation state and recirculation of oxygen and water (Wood et al, 1990; Frost
and McCammon, 2008; Evens, 2012a; Kelley, 2009; Debret et al., 2014). It has been demonstrated
that mantle wedges above subduction zones are more oxidized than oceanic or ancient cratonic

35	mantle, by the high oxidation state of both island-arc tholeiites and peridotites from the mantle
36	wedges (Arculus, 1985; Parkinson and Arculus, 1999; Evens and Tomkins, 2011; Richards, 2015;
37	Bucholz and Kelemen, 2019). Redox reactions in oceanic subduction zones must play important
38	roles in controlling the oxidation state of the mantle wedge and the generation of island-arc tholeiites,
39	and also in dictating the circulation of oxygen during whole-mantle convection.
40	The major factors controlling mantle oxygen fugacity, including volatile-budgets and mineral
41	assemblages, and how tectonic processes drive its secular evolution, are still debated (Kelley, 2009;
42	Lee et al., 2010). Dehydration fluids produced by high-pressure metamorphism in subduction
43	channels are thought to be responsible for the oxidation and partial melting of the mantle wedge
44	(Brandon and Draper, 1996; Song et al., 2009; Foley 2011), either directly through addition of
45	volatiles, or indirectly if hydrous fluids carry dissolved Fe ³⁺ or sulphate (Kelley et al., 2009;
46	Malaspina et al. 2017). Previous work suggested that oxidized Fe, C and S in sediments, altered
47	ocean crust, and partially serpentinised lithospheric mantle in the subduction zones could also be
48	important elements in controlling the redox state of the mantle (Evans and Tomkins, 2011; Evans,
49	2012b; Debret, 2014; Bénard et al., 2018). However, large amounts of organic carbon and sulfides in
50	pelagic sediments (Alt, 1995; Evens, 2012; Plank and Langmuir, 1998; Plank, 2014) are in a reduced
51	state and may need extra oxygen, while carbonates and sulfates can be stable at depths greater than
52	100 km (Forst and McCammon, 2008; Wang et al., 2016). Li et al. (2020) demonstrated that
53	slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle. Thus S may not play an
54	important role as an oxidizer in subduction zones. Several aspects of the redox state in subduction
55	zones remain unclear, notably (1) how to generate high fO_2 fluid and the quantification of fluid $3/21$

fluxes, and (2) the behavior of Fe^{3+} in subduction channels. The details of redox reactions in subduction zones are poorly known.

58	Ferromanganese (Fe-Mn) chert is a common pelagic sedimentary rock both on the modern ocean
59	floor and in subduction-zone complexes preserved in orogenic belts. The majority of iron and
60	manganese in oceanic sediments is held in Mn-rich polymetallic nodules/crusts and banded Fe-Mn
61	layers developed in deep ocean basins (Bonatti and Nayudu, 1965). These rocks are carried to mantle
62	depths during subduction, and interact with mantle wedge as redox factors (Thamdrup et al., 1994;
63	Tumiati et al., 2015). In this paper, we present detailed petrologic studies of Mn-rich, high pressure
64	metasedimentary rocks from a representative, exhumed, ancient subduction complex, to define the
65	Mn mineral assemblages produced during subduction. We describe redox reactions for
66	ferromanganese-rich rocks at high-pressure. We demonstrate that reduction of Mn^{4+} to Mn^{2+} during
67	subduction releases significant oxygen and water, which will be the major factor for oxidation of the
68	mantle at depths of 70-100 km. Conversely, we show that Fe^{3+} plays very little role at shallow
69	mantle depths, and is subducted to depths greater than 100 km.

70 GEOLOGICAL SETTING AND PETROGRAPHY

The Qilian Orogen extends for ~1000 km between the Alashan block to the north and the Qaidam
Block to the south. Form north to south, the Qilian Orogen can be subdivided into the North Qilian
Accretionary Belt (NQAB), the Central Qilian Block (CQB), the South Qilian Accretionary Belt
(SQAB), the North Qaidam ultrahigh-pressure metamorphic belt (NQUB) and the Qaidam Block
(Song et al., 2014, 2017). The NQAB consists of two ophiolite belts, a magmatic arc belt and

76	high-pressure metamorphic complexes (Fig. 1a). The southern ophiolite belt consists of MORB-type
77	ophiolite sequences with ages of 550-495 Ma, and ophiolites in the northern belt are SSZ-type and
78	aged ~490–450 Ma (Song et al., 2013). The arc belt between the two ophiolite belts consists of mafic
79	to felsic volcanic rocks and granitic plutons with zircon ages ranging from ~ 530 Ma to 440 Ma (Xia et
80	al., 2012; Song et al., 2013). The high-pressure metamorphic rocks occur as three WNW-trending
81	tectonic slices within arc-type volcanic rocks. The lawsonite eclogite and carpholite metapelite, with
82	P-T conditions of 2.0–2.6 GPa and 450–550 °C with metamorphic ages of 500–460 Ma, provide
83	convincing evidence for cold seafloor subduction with a low geothermal gradient (6–7 $^{\circ}C/km$) in the
84	early Paleozoic (Song et al., 2007; Zhang et al., 2007).
85	High-pressure metamorphosed Mn-rich siliceous rocks occur as lenticular and layered blocks
86	intercalated with lawsonite-bearing eclogites, blueschist and serpentinite (Fig. 2a). Four types of
87	Mn-rich siliceous rocks have been recognized, including (1) Mn-rich quartzitic schist (Fig. 1c), (2) Mn
88	(Fe) nodule-bearing quartzite (Fig. 1d), and (3) banded aegirine-hematite-pyroxmangite quartzite (Fig.
89	1e,f). All these rocks show the protolith characteristics of pelagic sediments from a deep ocean basin.
90	The Mn-rich quartzitic schist occurs as foliated blocks and is composed of a mineral assemblage
91	that includes garnet, sodic clinopyroxene, glaucophane, phengite, piedmontite, sursassite, ardennite,
92	hematite and quartz (Fig. 2a,b), suggesting its protolith would have been Mn-rich clay. The Fe-Mn
93	nodule-bearing quartzite consists of weakly-deformed quartzite with thin Mn-Fe oxide layers and
94	nodules. The nodules are 3-10 cm in diameter and scattered randomly in the quartzite. Mn-silicate
95	minerals, including garnet, pyroxmangite, and minor coombsite, appear as a pink-colored rims around
96	the Mn (Fe) nodules (Fig. 2c). The aegirine-hematite quartzite occurs in the same blocks. It exhibits $5/21$

97	banded structure with Fe-Mn oxide layers and aegirine-quartz layers. The bands are 0.5-10 cm in
98	thickness and consist predominantly of random, euhedral hematite (Fe ₂ O ₃) with minor sussexite
99	[Mn ²⁺ BO ₂ (OH)]. Aegirine is scattered within both quartz bands and hematite bands (Fig. 2d,e). The
100	banded hematite-pyroxmangite quartzite was found in several Mn (Fe)-rich quartzite blocks. The
101	bands are 2-20 cm in thickness and consist predominantly of interbedded layers of euhedral
102	pyroxmangite (+ garnet) and hematite (Fig. 1e,f).

103 ANALYTICAL METHODS AND RESULTS

104 The studied samples are summarised in Appendix Figs. DR1 and DR2. Polished thin sections were

105 produced from representative pieces of studied samples, and these were examined in detail using a

106 petrographic microscope. Mineral compositions were analysed on an electron-probe micro-analyzer

107 (EPMA) (JEOL JXA-8100) at Peking University, operated at 15 kV acceleration voltage, with 20 nA

108 beam current and 1–5 µm beam spot. Routine analyses were obtained by counting for 20s at peak

and 5s on background. Synthetic silica (Si) and spessartine (Mn), natural sanidine (K), pyrope (Mg),

110 andradite (Fe and Ca), albite (Na and Al) and rutile (Ti) served as standards. Ferric iron in minerals

111 was determined based on the scheme of Droop (1987)

112 Raman analyses were conducted at the school of Earth and Space Science, Peking University.

113 The Raman spectra were acquired using a HORIBA Jobin Yvon confocal LabRAM HR Evolution

114 micro-Raman system. The system is equipped with a frequency doubled Nd:YAG green laser

115 (532.06 nm), a 100× short-working distance objective, and a stigmatic 800 mm spectrometer with a

116 600 groove/mm grating. The laser power was 100 mW at the source. The confocal hole was set at

117 100 μ m and the corresponding spectral resolution was ± 0.7 cm-1. The laser spot size was focused to

118 2 μ m. During the experiments, Raman spectra between 100 and 1800 cm⁻¹ were recorded, and 119 accumulation times varied between 10 and 20 seconds.

120

121	Garnet. Garnet in the Mn-rich quartz schist exhibits skeletal, syn-kinematic crystals with
122	orientated mineral inclusions of piedmontite, hematite and quartz (Fig. 2a). In the Fe-Mn quartzite,
123	garnet is fine- to medium-grained (10-500 $\mu m)$ and euhedral (Fig. 2c). All garnets have high MnO,
124	medium CaO and FeOt, and low MgO (0.34-0.6) wt% (Fig. 3a, Appendix Table S1). FeOt in garnet is
125	all Fe^{3+} ($Fe^{3+}/\Sigma Fe = 1$) on the basis of formula calculations. Raman spectrum shows major bands of
126	spessartine (358, 552, 906 cm ⁻¹) with weak bands of andradite (517, 815, 847 cm ⁻¹) (Fig. 4a).
127	Sodic clinopyroxene. Sodic clinopyroxene (Cpx) in the Mn-rich quartz schist occurs as colourless,
128	anhedral grains and forms assemblages with quartz and Mn-rich minerals (Fig. 2b). It is composed of
129	~26-45 mol% of jadeite, and 45-50 mol.% of aegirine. Sodic Cpx in the banded Fe-Mn quartzite is
130	light-green (Fig. 2d). It has extremely high aegirine content of 81-87 mol%, without jadeite (Fig. 3b
131	and Appendix Table S2). These two kinds of Cpx show variable Raman spectra with characteristic
132	bands of aegirine (Figs. 4b and 4c).
133	Pyroxmangite. Pyroxmangite occurs in the Fe-Mn quartzite as tabular and rectangular prismatic
134	crystals with massive or coxcomb/radiated aggregates. It is nearly pure MnSiO ₃ with minor Fe and Mg
135	(Appendix Table S3). Raman microspectroscopic analysis yields the characteristic bands at 416, 669,

136 973 and 997 cm^{-1} and weak bands at 331 and 871 cm^{-1} (Fig. 4d).

137	Piedmontite and Sursassite. Piedmontite occurs as pink-colored, euhedral crystals in the Mn-rich
138	quartz schist. It lies within the foliation with the assemblage garnet + clinopyroxene + Mn-epidote +
139	glaucophane + phengite + quartz (Fig. 1b). Sursassite occurs as euhedral, red brown crystals in the
140	Mn-rich quartz schist with other minerals. It contains high MnO (24.8-27.1 wt%) and low CaO
141	(2.5-3.6 wt%) (Appendix Table S4). Raman spectra of piedmontite and sursassite show multiple
142	characteristic bands of epidote-group due to their complicated components (Figs. 3e and 3f).
143	Phengite. Phengite occurs as 50–200 μ m homogeneous flakes in equilibrium with garnet and
144	clinopyroxene, which forms ~5 vol.% of the rock matrix in the Mn-rich quartz schist. Si-contents
145	range from 3.43 to 3.47 Si atoms per formula unit based on 11 oxygen (Appendix Table S5).
146	Fe oxide. All iron oxides in the studied samples are exclusively hematite (Appendix Table S6).
147	They occur as euhedral crystals in both matrix and in garnet, and as bands in the Fe-Mn quartzite (Fig.
148	1). Raman spectroscopy shows that these euhedral crystals are typical hematite (Fe ₂ O ₃) with major
149	bands at 228, 294, 412 and 497 cm ⁻¹ (Fig. 3g).
150	Ardennite-(As). Ardennite occurs as golden-yellow, prismatic crystals together with garnet,
151	glaucophane, piedmontite and sursassite in the Mn-rich quartz schist (Fig. 4f). The mineral was
152	crystallographically and compositionally characterized by Ye et al. (2019). This mineral is enriched in
153	As (As ₂ O ₅ 5.0-7.9 wt%) with minor abundances of F, V and P. Raman spectrum show that the
154	ardennite-(As) has complex characteristic peaks, probably indicating the presence of arsenate, MnO
155	and SiO ₃ bonds (Fig. 3h).

156 In summary, hematite and ardennite-(As), in the absence of magnetite, reveal that the studied 157 samples were formed at conditions of extremely high oxygen fugacity (fO_2) above the hematite– 158 magnetite (HM) buffer, up to $\Delta FMQ + 12.7$ (Tumiati et al., 2015).

159 **DISCUSSION**

160 Reduction of Mn from Mn⁴⁺ to Mn²⁺ in subduction zones at depths of 60-100 km

161 The majority of manganese in deep marine sediments occurs as Mn^{4+} in the mineral assemblage

- 162 buserite (Na₄Mn₁₄O₂₇·21H₂O), birnessite ((Na₇Ca₇K)_{0.5}(Mn⁴⁺,Mn³⁺)₂O₄·1.5H₂O), vernadite
- 163 $((Mn^{4+},Fe^{3+},Ca,Na)(O,OH)_2 \cdot nH_2O)$, and todorokite $((Ca,K,Na)(Mn^{4+},Mn^{3+},A1)_6O_{12} \cdot 3H_2O)$ (Post,
- 164 1999; Rona, 2008). When seafloor subduction occurs, these Mn-Fe-rich sedimentary rocks go down
- 165 the subduction zone and experience HP metamorphism, which in the Qilian orogen has been
- determined at conditions of P = 2.0-2.6 GPa and T = 450-550 °C (Song et al., 2007; Zhang et al.,
- 167 2007; Wei and Song, 2008). According to the mineral assemblages described above, redox reactions
- 168 of the Fe-Mn chert in the subduction zones may be defined as follows:
- 169 $\operatorname{MnO}_2 \cdot \operatorname{H}_2 O + \operatorname{SiO}_2 \rightarrow \operatorname{MnSiO}_3 (\operatorname{pyroxmangite}) + \operatorname{H}_2 O + 0.5 \operatorname{O}_2^{\uparrow}$ (1)
- 170 $MnO_2 \cdot H_2O + CO_2 \rightarrow MnCO_3 \text{ (rhodochrosite)} + 0.5O_2 + H_2O$ (2)
- 171 (Ca,K,Na)(Mn⁴⁺, Mn³⁺,Al)₆O₁₂·3H₂O + Fe₂O₃·H₂O + SiO₂ \rightarrow (Ca,Mn²⁺)₂(Al,Fe³⁺)₂ Si₃O₁₂ (garnet)
- 172 + Na(Al,Fe³⁺)Si₂O₆ (sodic pyroxene) + O₂[↑] + H₂O (3)

173
$$(Mn^{4+}, Fe^{3+}, Ca, Na)(O, OH)_2 \cdot nH_2O (vernadite) + SiO_2 \rightarrow (Ca, Mn^{2+})_3(Al, Fe^{3+})_2Si_3O_{12} (garnet) + SiO_2 \rightarrow (Ca, Mn^{2+})_3(Al, Fe^{3+})_3(Al, Fe^{$$

174 Na[Fe³⁺]Si₂O₆ (aegirine) + O₂[†] + H₂O (4)

175	All manganese in our samples is in the Mn^{2+} oxidation state, with minor Mn^{3+} (in piedmontite
176	and sursassite). These dehydration reactions represent a significant production and potential release
177	of oxygen along with water from the deep marine minerals. These reactions occur in the shallow part
178	of subduction zones at depths of about 60-80 km, and up to ~ 100 km for all Mn ³⁺ to Mn ²⁺ as
179	decomposition of epidote-group minerals (e.g., piedmontite) takes place (e.g., Poli and Smith, 2001).
180	Therefore, the O ₂ and H ₂ O released by Mn reduction reactions potentially plays an important role in
181	the oxidation of subduction zones and mantle wedges.
182	Global budget of oxygen released by Mn reduction during subduction
183	Manganese is the 10 th most abundant element in the Earth's crust (Post, 1999). In Phanerozoic
184	orogenic belts that preserve relicts of oceanic subduction zones, manganese chert (or Mn-ore
185	deposits) occurs as residual blocks in high-pressure metamorphosed mélanges and ophiolite
186	complexes. Besides the Qilian region, various grades of metamorphic Fe-Mn cherts have been
187	reported in most oceanic subduction-zone complexes, e.g., subduction mélanges of the Alps
188	(Frezzotti et al., 2014; Tumiati et al., 2015), the Otago accretionary mélange complex of New
189	Zealand (Kawachi et al., 1983), the Franciscan complex (Huebner and Flohr, 1990), accretionary
190	belts of Japan (Akasaka et al., 1988), the high-pressure metamorphic complex in Bohemian part of
191	the Moldanubian Zone (Vrána, 2011), high-pressure/low-temperature complex at Bahia Mansa,
192	Coastal Cordillera of south-central Chile (Willner et al., 2001), and, ophiolitic mélange zones of
193	Turkey, Pakistan and Iran (Table 1).
194	In the present-day ocean floor, polymetallic Fe-Mn nodules cover more than 50% of the sea floor
195	over large areas of the abyssal Pacific and Central Indian oceans (Rona, 2008). The total amount of

196	polymetallic Fe-Mn nodules (27–30% metallic manganese) lying on the sea floor surface was
197	estimated at more than 1.5 trillion tonnes (Mero, 1965). Besides the Fe-Mn nodules, ca. 2×10^{11}
198	tonnes of Fe-Mn crusts occur as pavements and coatings on rocks at water depths of 400-7000 m
199	(Hein et al., 2003; González, et al., 2010), with a varying range of 14.5-34 wt % metallic Mn.
200	However, these Fe-Mn nodules and crusts only occur within less than 5 meters of the surface (Hein
201	et al., 2013); they represent volumetrically a minor component of the subducted sediments. In
202	present-day pelagic sediments, Mn mainly occurs in ferromanganese-rich brown clay layers,
203	observed in ODP and DSDP drill cores (Plank and Langmuir, 1998; Plank, 2014). A rough estimate
204	for MnO flux of global subducting sediment (GLOSS) given by Plank and Langmuir (1998) is
205	4.19×10^{12} g year ⁻¹ , and increasing to 5.63×10^{12} g year ⁻¹ in the revised GLOSS-II (Plank, 2014).
206	Given that all Mn in the pelagic brown clays, nodules and crust are predominantly in the Mn ⁴⁺ state
207	(Post, 1999; Hein et al., 2003; März, et al. 2011), they would produce ca. $\sim 3.97 \times 10^{10}$ mole (or
208	$\sim 1.27 \times 10^{12}$ g) of O ₂ each year during subduction through reduction of Mn ⁴⁺ to Mn ²⁺ (i.e., Mn oxides
209	to Mn-silicate phases), assuming complete conversion using GLOSS-II (Plank, 2014).
210	As the total length of subduction zones on Earth is ~51310 km (Bird, 2003), the average oxygen
211	production rate is up to $\sim 2.475 \times 10^{13}$ g km ⁻¹ my ⁻¹ . Assuming all the oxygen is used to oxidize the FeO
212	into Fe ₂ O ₃ , it would produce ca. $\sim 2.47 \times 10^8$ g km ⁻¹ year ⁻¹ , or $\sim 2.47 \times 10^{14}$ g km ⁻¹ my ⁻¹ , of Fe ₂ O ₃ in the
213	mantle wedge, which would significantly increase the oxygen fugacity of the subarc mantle up to a
214	higher level than any other mantle reservoir.
215	The released oxygen from the subduction zone to forearc and mantle wedge is also significant

216 because it impacts the rate of oxygen fugacity increase.. There are many potential mechanisms for

217	oxygen transport, but we highlight three that are known to be significant contributors to the
218	transportation of oxygen as follows. (1) The released oxygen oxidizes carbon to CO_2 and sulphur to
219	SO_4^{2-} , (2) oxygen and water become supercritical fluids at high pressure and temperature, which
220	increases the migration significantly (e.g. Ni et al., 2017), and (3) because the Mn-rich pelagic cherts
221	are located in the upmost part of the subducted slab, their released fluids could be transported into
222	the forearc and the mantle wedge as a result of proximity.
223	Therefore, these fluids provide an important and consistent source of oxidizers to the subduction
224	channel and mantle wedge at the shallow part of subduction zones (Fig. 5). These processes are
225	simple, but effective mechanisms to produce oxygen or oxidizing agents by reduction reactions of
226	Mn^{4+} to Mn^{2+} in subduction zones.

227 Function of Fe³⁺ in subduction zones

228 Iron oxides and oxyhydroxides in marine environments in Fe-Mn nodules/crusts and banded iron formations are mainly goethite (α -FeOOH) and lepidocrocite (γ -FeOOH) with accessory minerals of 229 230 carbonates, pyrite, rutile, ilmenite and chlorite (Post, 1999). Reactions of iron oxide in the 231 subduction zones can be as a simple dehydration of goethite (FeOOH) to hematite as 2FeOOH = 232 $Fe_2O_3 + H_2O_2$. During the reduction of Mn4+ to Mn3+ and Mn2+, Fe is typically present in the ferric 233 state in hematite, aegirine and the Mn-epidote minerals, and even into garnet. These solid 234 Fe^{3+} -bearing phases are difficult to dissolve in subduction-zone fluids (Evens and Tomkins, 2011), and thus play little role in the shallow part of subduction zones and the mantle wedge. 235

236	The ferric iron (Fe ^{$3+7$}) minerals in high-pressure rocks, such as hematite, aegirine and garnet,
237	which in these rocks has a spessartine composition with minor andradite, can be stable beyond at
238	least 100 km in subduction zones, even to the transition zone or the lower mantle (Bebout, 2007),
239	which would provide a continuous potential oxidizer for the transition zone and the lower mantle.

240 Implications

241 Progressive metamorphism of ferromanganese-rich sediments is a sequence of reducing reactions,

and the valence change of Mn from +4 to +2 in the subduction zone is an important factor for mantle

243 wedge oxidation and oxygen recirculation. Our study identifies the importance of Mn as a control on

the redox state of the mantle wedge above subduction zones.

245 The estimated oxygen flux generated by progressive metamorphism of Mn-rich pelagic sediments

could reach as high as $\sim 1.28 \times 10^{12}$ g each year, which may significantly alter the oxidation state of

the mantle wedge, increasing it significantly..

All the ferric iron (Fe^{+3}) in the sediments is hosted by hematite, aegirine, piedmontite and garnet, and underwent little to no valence change. This permits the transportation of Fe into the deep mantle and where it plays very little role in changing the oxidation state of the sub-arc mantle wedge.

Acknowledgments: We thank G.M. Shu and X.L. Li for helps in EPMA analysis, and Y. Cui for help with Raman analysis. We thank Katy Evans for constructive suggestions on the early version of the manuscript. We also thank Hans-Peter Schertl, two anonymous reviewers, as well as Editor Callum J Hetherington, for their constructive comments, which significantly improved the quality of the paper.

255	This research is supported by the National Key Research and Development Program of China
256	(2019YFA0708503), and National Natural Science Foundation of China (Grant Nos. 91955202).
257	
258	References
259	Akasaka, M., Sakakibara, M., and Togari, K. (1988). Piemontite from the manganiferous hematite
260	ore deposits in the Tokoro Belt, Hokkaido, Japan. Mineralogy and Petrology, 38, 105-116.
261	Alt, J.C. (1995). Sulfur isotopic profile through the oceanic-crust — sulfur mobility and
262	seawater-crustal sulfur exchange during hydrothermal alteration. Geology, 23, 585-588.
263	Arculus, R.J. (1985). Oxidation Status of the Mantle. Past and Present. Annual Review of Earth and
264	Planetary Sciences, 13, 75-95.
265	Bebout, G.E. (2007). Metamorphic chemical geodynamics of subduction zones. Earth and Planetary
266	Science Letters, 260, 373-393.
267	Bénard, A., Klimm, K., Woodland, A. B., Arculus, R. J., Wilke, M., Botcharnikov, R. E., Shimizu,
268	N., Nebel, O., Rivard, C., and Ionov, D. A., 2018, Oxidising agents in sub-arc mantle melts link
269	slab devolatilisation and arc magmas. Nature Communications, 9, 3500.
270	Bird, P., (2003). An updated digital model of plate boundaries, Geochemistry, Geophysics,
271	Geosystems, 4(3), 1027.
272	Bonatti, E., and Nayudu, Y. R. (1965). The origin of manganese nodules on the ocean floor.
273	American Journal of Science, 263, 17-39.
274	Brandon, A. D., and Draper, D. S. (1996). Constraints on the origin of the oxidation state of mantle
275	overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica Et
276	Cosmochimica Acta, 60, 1739-1749. 14 / 21

- 277 Brown, P., Essene, E. J., and Peacor, D. R. (1978). The mineralogy and petrology of manganese-rich
- rocks from St. Marcel, Piedmont, Italy. Contributions to Mineralogy and Petrology, 67, 227-232.
- 279 Bucholz, C. E., and Kelemen, P. B. (2019). Oxygen fugacity at the base of the Talkeetna arc, Alaska.
- 280 Contributions to Mineralogy and Petrology, 174(10), 79.
- 281 Debret, B., Andreani, M., Muñoz, M., Bolfan-Casanova, N., Carlut, J., Nicollet, C., Schwartz, S.,
- and Trcera, N. (2014). Evolution of Fe redox state in serpentine during subduction. Earth and
- 283 Planetary Science Letters, 400, 206-218.
- 284 Droop, G. R. T. (1987). Ageneral equation for estimating Fe³⁺ microprobe analyses, using
- stoichiometric criteria. Mineralogical Magazine, 51, 431–435.
- Evans, K.A. (2012). The redox budget of subduction zones. Earth-Science Reviews, 113, 11-32.
- Evans, K.A., and Tomkins, A.G. (2011). The relationship between subduction zone redox budget and
 arc magma fertility. Earth and Planetary Science Letters, 308, 401-409.
- Evans, K. A., Elburg, M. A., and Kamenetsky, S. (2012). Oxidation state of subarc mantle. Geology,
 40, 783-786.
- Foley, S. F. (2011). A Reappraisal of Redox Melting in the Earth's Mantle as a Function of Tectonic
 Setting and Time. Journal of Petrology, 52, 1363-1391.
- 293 Frezzotti, M.-L., Huizenga, J.-M., Compagnoni, R. and Selverstone, J. (2014). Diamond formation
- by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochimica
- 295 Et Cosmochimica Acta, 143, 68-86.
- 296 Frost, D.J., and McCammon, C.A. (2008). The Redox State of Earth's Mantle. Annual Review of
- Earth and Planetary Sciences, 36, 389-420.

- 298 González, F. J., Somoza, L., Lunar, R., Martínez-Frías, J., Rubí, J. A. M., Torres, T., Ortiz, J. E., and
- 299 Díaz-del-Río (2010). Internal features, mineralogy and geochemistry of ferromanganese nodules
- 300 from the Gulf of Cadiz: The role of the Mediterranean Outflow Water undercurrent. Journal of
- 301 Marine Systems, 80, 203-218.
- 302 Hein, J. R., Koschinsky, A., and Halliday, A. N. (2003). Global occurrence of tellurium-rich
- ferromanganese crusts and a model for the enrichment of tellurium. Geochimica et
- 304 Cosmochimica Acta, 67, 1117-1127.
- 305 Huebner, S., and Flohr, M.J.K. (1990). Microbanded Manganese Formations: Protoliths in the
- 306 Franciscan Complex, California. U.S. Geological Survey Professional Paper 1502, United States
- 307 Government Printing Office, Washington, 72p.
- 308 Kawachi, Y., Grapes, R. H., Coombs, D. S., and Dowse, M. (1983). Mineralogy and petrology of a
- 309 piemontite-bearing schist, western Otago, New Zealand. Journal of Metamorphic Geology, 1,
- 310 353-372.
- Kelley, K.A., and Cottrell, E. (2009). Water and the Oxidation State of Subduction Zone Magmas.
 Science, 325, 605-607.
- Lee, C.-T.A., Luffi, P., Le Roux, Dasgupta, R., Albarede, F., and Leeman, W.P., 2010. The redox
- 314 state of arc mantle using Zn/Fe systematics. Nature, 468, 681-685.
- Li, J.-L., Schwarzenbach, E. M., John, T., Ague, J. J., Huang, F., Gao, J., Klemd, R., Whitehouse, M.
- J., and Wang, X.-S. (2020). Uncovering and quantifying the subduction zone sulfur cycle from
- 317 the slab perspective. Nature Communications, 11, 514.

318	Malaspina, N., Langenhorst, F., Tumiati, S., Campione, M., Frezzotti, M. L., and Poli, S. (2017). The
319	redox budget of crust-derived fluid phases at the slab-mantle interface. Geochimica Et
320	Cosmochimica Acta, 209, 70-84.
321	März, C., Stratmann, A., Matthiessen, J., Meinhardt, A. K., Eckert, S., Schnetger, B., Vogt, C., Stein,
322	R., and Brumsack, H. J. (2011). Manganese-rich brown layers in Arctic Ocean sediments.
323	Composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica
324	Acta, 75, 7668-7687.
325	McCammon, C.A., Frost, D.J., Smyth, J.R., Laustsen, H.M.S., Kawamoto, T., Ross, N.L., and van
326	Aken, P.A. (2004). Oxidation state of iron in hydrous mantle phases: implications for subduction
327	and mantle oxygen fugacity. Physics of the Earth and Planetary Interiors 143–144, 157-169.
328	Mero, J. L. (1965). The mineral resources of the sea. Elsevier Oceanography Series, 312p.
329	Narejo, A. A., Shar, A. M., Fatima, N., and Sohail, K. (2019). Geochemistry and origin of Mn
330	deposits in the Bela ophiolite complex, Balochistan, Pakistan. Journal of Petroleum Exploration
331	and Production Technology, 9, 2543-2554
332	Ni, H., Zhang, L., Xiong, X., Mao, Z., and Wang, J. (2017). Supercritical fluids at subduction zones:
333	Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167,
334	62-71.
335	Parkinson, I.J., and Arculus, R.J. (1999). The redox state of subduction zones: insights from
336	arc-peridotites. Chemical Geology, 160, 409-423.
337	Poli, S., and Schmidt, M. W. (2002). Petrology of subducted slabs. Annual Review of Earth and
338	Planetary Sciences, 30, 207-235.

220	\mathbf{D} \mathbf{U}	(1000)		• 1	• •	0			1	•	1	•	. 1
339	Post J E	1999) Manganese	oxide	minerals	(Cr	vstal stri	uctures a	nd	economic	and	environme	ntal
22/	1 000, 0.11.	(± / / /)	/. ITTAILGALLOUV	Ulline.	minereno.	\sim	, Duri Dur	actures a		00011011110	MILA		II COLL

- 340 significance. Proceedings of the National Academy of Sciences, 96, 3447-3454.
- Rajabzadeh, M. A., Haddad, F., Polgári, M., Fintor, K., Walter, H., Molnár, Z., and Gyollai, I.
- 342 (2017). Investigation on the role of microorganisms in manganese mineralization from
- 343 Abadeh-Tashk area, Fars Province, southwestern Iran by using petrographic and geochemical
- data. Ore Geology Reviews, 80, 229-249.
- 345 Richards, J. P. (2015). The oxidation state, and sulfur and Cu contents of arc magmas: implications
- for metallogeny. Lithos, 233, 27-45.
- Rona, A. (2008). The changing vision of marine minerals. Ore Geology Reviews, 33, 618-666.
- 348 Song, S.G., Niu, Y.L., Su, L., and Xia, X.H. (2013). Tectonics of the North Qilian orogen, NW
- China. Gondwana Research, 23, 1378-1401.Song, S.G., Zhang, L.F., Niu, Y.L., Wie, C.J., Liou,
- 350 J.G., and Shu, G.M. (2007). Eclogite and carpholite-bearing metasedimentary rocks in the North
- 351 Qilian suture zone, NW China: implications for early palaeozoic cold oceanic subduction and
- 352 water transport into mantle. Journal of Metamorphic Geology, 25, 547-563.
- 353 Song, S. G., Niu, Y. L., Su, L., Zhang, C., and Zhang, L. F. (2014). Continental orogenesis from
- 354 ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The
- example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129, 59-84.
- 356 Song, S. G., Yang, L. M., Zhang, Y. Q., Niu, Y. L., Wang, C., Su, L. and Gao, Y. L. (2017). Qi-Qin
- 357 Accretionary Belt in Central China Orogen: accretion by trench jam of oceanic plateau and
- formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62,
- 359 1035-1038.

360	Vrána S	S((2011)	Manganese	-rich	oarnet-	quartz rocks	and	oneisses	in	the	Rohemian	nart	oft	he
500	viana, k	D. (4011	. Manganese	-i ivii	garnet-	qualitz rocks	anu	gneisses	111	unc	Donoman	part	υιι	,IIC

- 361 Moldanubian Zone: Lithostratigraphic markers. Journal of Geosciences, 56, 359–374.
- 362 Whitney, D. L. and Evans, B. W. (2010). Abbreviations for names of rock-forming minerals.
- 363 American Mineralogist 95, 185-187.
- 364 Willner, A.P., Pawlig, S., Massonne, H.J., and Hervé, F. (2001). Metamorphic evolution of
- 365 spessartine quartzites (coticules) in the high-pressure, low-temperature complex at Bahia Mansa,
- 366 Coastal Cordillera of south-central Chile. Canadian Mineralogist, 39, 1547–1569.
- 367 Tahir Shah, M. Khan, A. (1999). Geochemistry and origin of Mn-deposits in the Waziristan ophiolite
- 368 complex, north Waziristan, Pakistan. Mineralium Deposita, 34, 697-704.
- 369 Tahir Shah, M., and Moon, C. J. (2007). Manganese and ferromanganese ores from different tectonic
- 370 settings in the NW Himalayas, Pakistan. Journal of Asian Earth Sciences, 29, 455-465.
- 371 Tumiati, S., Martin, S., Godard, G. (2010). Hydrothermal origin of manganese in the highpressure
- 372 ophiolite metasediments of Praborna ore deposit (Aosta Valley, Western Alps). European Journal
- of Mineralogy, 11, 577–594.
- Tumiati, S., Godard, G., Martin, S., Malaspina, N., and Poli, S. (2015). Ultra-oxidized rocks in
- subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich
 metasomatic environment. Lithos, 226, 116-130.
- Wei, C. J., and Song, S. G. (2008). Chloritoid-glaucophane schist in the north Qilian orogen, NW
- 378 China: phase equilibria and P-T path from garnet zonation. Journal of Metamorphic Geology, 26,
- 379 301-316.

500	wood, B.J., Bryndzia, L.I., and Johnson, K.E. (1990). Manue Oxidation State and its Relationship
381	to Tectonic Environment and Fluid Speciation. Science, 248, 337-345.
382	Xia, X. H., Song, S. G., and Niu, Y. L. (2012). Tholeiite-Boninite terrane in the North Qilian suture
383	zone: Implications for subduction initiation and back-arc basin development. Chemical Geology,
384	328, 259-277.
385	Ye, S.T., Song S.G., and Chen, J. (2019). Mineralogy of ardennite-(As) from HP metamorphic
386	Mn-rich silica rocks in North Qilian Mountain. Acta Petrologica et Mineralogica, 38, 90-96 (in
387	Chinese with English abstract).
388	Zhang, J.X., Meng, F.C., and Wan, Y.S., (2007). A cold Early Palaeozoic subduction zone in the
389	North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints. Journal
390	of Metamorphic Geology, 25, 285-304.
391 392	Figure Captions
393	
394	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b)
394 395	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed
394 395 396	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite
394 395 396 397	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite (Pxm) (pink). (e) Pxm+Grt (pink) with hematite (Hem) band. (f) Banded hematite -aegirine quartzite.
 394 395 396 397 398 	 Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite (Pxm) (pink). (e) Pxm+Grt (pink) with hematite (Hem) band. (f) Banded hematite -aegirine quartzite. Mineral Abbreviations are after Whitney and Evans (2010).
 394 395 396 397 398 399 	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite (Pxm) (pink). (e) Pxm+Grt (pink) with hematite (Hem) band. (f) Banded hematite -aegirine quartzite. Mineral Abbreviations are after Whitney and Evans (2010).
 394 395 396 397 398 399 400 	 Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite (Pxm) (pink). (e) Pxm+Grt (pink) with hematite (Hem) band. (f) Banded hematite -aegirine quartzite. Mineral Abbreviations are after Whitney and Evans (2010). Fig. 2. Photomicrographs of Mn-Fe high-pressure cherts in the North Qilian orogeny. (a) BSE image
 394 395 396 397 398 399 400 401 	Fig. 1. (a) Geological maps of the North Qilian suture zone (modified after Song et al., 2007). (b) Qingshuigou section of the HP subduction complex with locations of Mn-rich cherts. (c) Deformed Mn-rich chert (Mn-rich quartzite schist). (d) Fe-Mn nodule (black) surrounded by pyroxmangite (Pxm) (pink). (e) Pxm+Grt (pink) with hematite (Hem) band. (f) Banded hematite -aegirine quartzite. Mineral Abbreviations are after Whitney and Evans (2010). Fig. 2. Photomicrographs of Mn-Fe high-pressure cherts in the North Qilian orogeny. (a) BSE image of syn-kinetic garnet with hematite in the Mn-rich quartz schist. Note that this rock was strongly

402	deformed, suggesting a syn-tectonic high-pressure metamorphism. (b) Jadeite (Jd) in the Mn-rich
403	quartz schist. (c) Grt + Pxm + Hem in the nodule-bearing quartzite. All minerals are euhedral
404	without deformation. (d) Aegirine (Aeg) in the banded Fe-Mn-rich quartzite. (e) BSE image of
405	euhadral hematites with minor sussexite in the banded Fe-Mn-rich quartzite. Note that the rock did
406	not experience deformation during HP metamorphism. (f) Ardennite-(As) (Ard) with sursassite (Srs)
407	and piedmontite in the Mn-rich quartz schist.
408	
409	Fig. 3. Composition diagrams for garnets (a) and sodic clinopyroxenes (b). Note that all garnet and
410	sodic clinopyroxene have calculated $Fe^{3+}/\Sigma Fe$ ratios of 1.
411	
412	Fig. 4. Raman spectra for ferromanganese-rich minerals in the HP cherts (see description in the text
413	for details).
414	
415	Fig. 5. A schematic diagram showing circulation of oxygen and water with redox reactions of
416	manganese and iron in the ocean floor and the subduction zone. Oxygen would further react with
417	organic carbon and sulfite, or as the supercritical fluids transporting to the mantle wedge.
418	
419	Table 1. Representative metamorphic Mn-rich cherts within global ophiolite and subducted mélange
420	belts

Location	Rock assemblage	Mineral assemblages	P-T conditions	References	
Qilian Orogen	Fe-Mn Chert in	Garnet, omphacite-jadeite-aegirine,	P=2.0-2.6 GPa	This study	
ophiolitic mélange,		pyroxmangite, piedmontite, phengite,	T=450-550 °C		
	eclogite, blueschist	glaucophene, hematite, ardennite			
Praborna	Fe-Mn Chert in	Garnet, omphacite-jadeite-aegirine,	$P = 2.1 \pm 0.3 \text{ GPa}$	Tumiati et al.,	
Mn-ore Deposit,	meta-ophiolites,	pyroxmangite, braunite, piedmontite,	$T = 550 \pm 60^{\circ}C$	2010, 2015	
Zermatt-Saas,	eclogite, blueschist,	phengite, glaucophene, hematite, ardennite			
Western Alps					
St. Marcel,	Meta-chert in	Diopside-omphacite-albite-quartz, braunite,	$P = 0.8 \pm 0.1 \text{ GPa}$	Brown et al.,	
Piedmont, Italy	blueschists	microcline, hollandite, piedmontite,	$T = 300 \pm 50 \ ^{\circ}C$	1978	
		phengite, quartz			
Sanbagawa	Piemontite quartz	Grt, aegirine-augite, sodic-amphibole,	P = 1.0–1.2 GPa	Izadyar et al.,	
Metamorphic	schist with blueschist	piemontite, phengite, braunite, albite,	T = 300-600 °C	2000	
Belt, central	and eclogite	hematite, talc, crossite			
Shikoku, Japan					
Eastern	The	Piemontite, pumpellyite, hematite, quartz	P > 0.8 GPa	Akasaka et al.,	
Hokkaido, Japan piemontite-bearing			T< 400~450 °C	1988	
	chert				
Otago, New	Fe-Mn quartzose	Garnet, phengite, albite, coombsite,	P = 0.64 GPa	Kawachi et al.,	
Zealand schist in ophiolitic		zussmanite, parsettensite, caryopilite,	T = 400 °C	1983	
	mélange complex	hematite, rutile, quartz			
Buckeye,	Mn-deposit in bedded	Rhodochrosite, gageite, hausmannite,	Blueschist/Greensc	Huebner and	
Franciscan	chert.	braunite, caryopilite, taneyamalite, chlorite,	hist facies	Flohr, 1990,	
Complex, USA		hematite, aegirine-augite, quartz		1992	
Paleo-Tethyan,	Mn-deposits in cherts	braunite, bixbyite, psilomelane, Mn-calcite,	Greenschist to	Öztürk, 1997	
Karakaya and	in ophiolitic mélange	hematite, quartz, chlorite, zeolite	sub-greenschist		
Neo-Tethyan	zones		facies		
suture belts,					
Turkey					
Waziristan and	Mn-Fe rich chert and	Braunite, psilomelane, hematite, quartz	Sub-greenschist	Tahir Shah and	
Bela, Pakistan	Mn-deposits in		facies	Khan, 1999	
	ophiolites			Tahir Shah and	
				Moon, 2007	
				Narejo et al.,	
				2019	
Abadeh-Tashk	Mn-deposits in	Psilomelane, braunite, hollandite,	Sub-greenschist	Rajabzadeh et	
area, Fars	Neyriz ophiolite	birnessite, todorokite, pyrolusite, rancieite,	facies	al., 2017	
Province, Iran	mélange,	pyrochroite, hematite, quartz, aurorite,			
		rancieite			

Table 1. Representative metamorphic Mn-rich cherts within global ophiolite and subducted mélange belts*

*Note: The low-grade metamorphosed Mn-deposits from ophiolites are dominated by Mg⁴⁺ and Mg³⁺ minerals, and change systematically from Mn4+ to Mn2+ with the progression of metamorphic grades.

Fig 2

