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Abstract 11 

 Interpretation of chemical zoning within igneous minerals is critical to many petrologic studies. 12 

Zoning in minerals, however, is commonly observed in thin sections or grain mounts, which are random 13 

2D slices of a 3D system. Use of these 2D sections to infer 3D geometries requires a set of assumptions, 14 

often not directly tested, introducing a number of issues and partial loss of zoning information. Computed 15 

X-ray microtomography (microCT) offers a way to assess 3D zoning in minerals at high resolution. To 16 

observe 3D mineral zoning using microCT, however, requires that zoning is observable as differences in 17 

X-ray attenuation. Sanidine, with its affinity for Ba in the crystal lattice, can display large, abrupt, 18 

variations in Ba that are related to various magma reservoir processes. These changes in Ba also 19 

significantly change the X-ray attenuation coefficient of sanidine, ultimately allowing for discrete mineral 20 

zones to be mapped in 3D using microCT. Here we utilize microCT to show 3D chemical zoning within 21 

natural sanidines from a suite of volcanic eruptions throughout the geologic record. We also show that 22 

changes in microCT grayscale in sanidine are largely controlled by changes in Ba. Starting with 3D 23 

mineral reconstructions, we simulate thin section making by generating random 2D slices across a 24 

mineral zone to show that slicing orientation alone can drastically change the apparent width and slope of 25 

composition transitions between different zones. Furthermore, we find that chemical zoning in sanidine 26 

can commonly occur in more complex geometries than the commonly interpreted concentric zoning 27 



 2 

patterns. Together, these findings have important implications for methodologies that rely on the 28 

interpretation of chemical zoning within minerals and align with previously published numerical models 29 

that show how chemical gradient geometries are affected by random sectioning during common sample 30 

preparation methods (e.g., thin sections and round mounts).   31 

Keywords: computed X-ray microtomography, mineral zoning, sanidine, barium 32 

Introduction 33 

Chemical zoning is nearly ubiquitous in igneous minerals and the compositions of zoned 34 

crystals preserve records of magmatic conditions and compositions when mineral growth 35 

occurred. Therefore, documenting and interpreting such zoning, as well as relating compositional 36 

variations to textural features is a crucial pillar upon which modern igneous petrology is based. 37 

Studies of mineral chemical zoning provide important insight into common igneous processes 38 

such as: magma mixing (e.g., Streck et al., 2005; Kent et al., 2010; Eichelberger, 1975; 39 

Anderson, 1976; Simonetti et al., 1996); frequency and origins of magma recharge (e.g.,Tepley 40 

et al., 2000; Davidson et al., 2001; Davidson and Tepley, 1997; Singer et al., 1995); thermal 41 

evolution of magma reservoirs (e.g.,Cooper and Kent 2014; Rubin et al. 2017; Shamloo and Till 42 

2019); and the rates of igneous processes (e.g.,Costa and Dungan, 2005; Ruprecht and Plank, 43 

2013; Costa et al., 2003; Morgan and Blake, 2006). Changes in mineral chemistry can also be 44 

used to understand the temporal sequence and evolution of the these and other processes (Cooper 45 

2017). When applied to a sufficiently large and representative population of grains, this approach 46 

then allows the long-term physicochemical conditions within a given magmatic system to be 47 

constrained.  48 

The vast majority of mineral zoning studies, however, only investigate the interplay 49 

between chemical zoning and mineral textures using 2D exposures (i.e., thin sections or mineral 50 
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mounts). However, use of 2D mineral zoning patterns to represent 3D systems can also introduce 51 

a number of artifacts and other issues (e.g., incorrect estimates of mineral size and shape, width 52 

of compositional zones, modification of compositional gradients etc.), potentially leading to 53 

incomplete and or inaccurate characterization and interpretation of igneous processes (e.g., 54 

Higgins 2000). For example, recent studies have numerically investigated the effects of 55 

sectioning 3D zoned crystals using modeling approaches for the purposes of documenting 56 

diffusion gradients (e.g., Shea et al. 2015; Krimer and Costa 2017; Couperthwaite et al. 2021). 57 

This shows that many 2D sections suffer from partial loss of zoning information, requiring a 58 

careful evaluation of each crystal studied to avoid a distorted view of the true concentration 59 

gradient between chemical zones and obtain reliable results (e.g., diffusion timescales). Despite 60 

this realization, however, studies of 3D zoning in natural mineral examples have been relatively 61 

underutilized to address 2D sectioning issues.  62 

To observe natural mineral chemical zoning in 3D, previous studies have used serial 63 

sectioning combined with either electron probe (e.g., Spear and Daniel 2003), focused ion beam 64 

time of flight secondary ion mass spectrometry (FIB ToF SIMS; Wirth 2009; Tajčmanová et al. 65 

2012), or atom probe tomography (APT; Reddy et al. 2020; Rickard et al. 2020), however these 66 

approaches: 1) often only produce 3D imaging/chemical information for an extremely small 67 

volume and are difficult to apply to an entire mineral (e.g., FIB ToF SIMS, APT); 2) can only 68 

create coarse 3D reconstructions based on limited 2D slices (electron probe serial sections); 3) 69 

necessitate the destruction of the sample being studied; 4) are extremely time consuming making 70 

it challenging to be representative of an entire magmatic system. 71 

In recent years, technological developments in high resolution imaging via absorption 72 

(e.g., Uesugi et al. 2010; Tsuchiyama et al. 2013; Pankhurst et al. 2018; Mourey and Shea 2019) 73 
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and phase contrast (e.g., Arzilli et al. 2015, 2016) computed X-ray microtomography (microCT) 74 

have provided new opportunities to observe textural and zoning characteristics throughout 75 

individual minerals in 3D. These studies show there is great potential to further use microCT and 76 

related techniques (e.g., Diffraction Contrast Tomography; Pankhurst et al. 2019) to document 77 

and understand compositional zoning in igneous minerals, but there remains a need to develop 78 

greater understanding of the potential for using microCT in different mineral systems, and to 79 

establish what the 3D variations in X-ray attenuation revealed by microCT correspond to in 80 

terms of compositional variations for specific minerals.  In this study we use absorption microCT 81 

to document intracrystalline 3D chemical zoning of natural sanidine crystals and explore the 82 

geochemical controls responsible for changes in X-ray attenuation throughout this mineral. 83 

X-ray micro tomography 84 

When X-rays interact with a sample they are attenuated according to Lambert-Beer’s 85 

Law: 86 

1. 𝐼 = 𝐼0exp(−𝜇𝐷) 87 

Where I is the attenuated intensity of X-rays after they pass through a sample of thickness D, I0 88 

is the incident radiation (X-ray) intensity, and  is the linear attenuation coefficient of the 89 

material the X-rays are interacting with. The linear attenuation coefficient is a constant that 90 

describes the fraction of attenuated incident photons in a monoenergetic beam per unit thickness 91 

of a material, and varies with beam energy, atomic electron density, and the bulk density of the 92 

material (Wildenschild and Sheppard 2013). Although attenuation mechanisms also vary with 93 

beam energy (i.e., Compton scattering for 5<I0 <10 MeV; pair production I0 > 10 MeV), for 94 

geologic materials a beam energy of 50-100 keV is typically used and the photoelectric effect 95 

dominates (Mccullough 1975). This is an extremely useful observation as both the photoelectric 96 
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effect and Compton scattering are sensitive to the atomic number of an element (Van Grieken 97 

and Markowicz 2002), allowing for the possibility of correlating changes in linear attenuation 98 

coefficient to changes in chemical composition of minerals and other geologic materials.  Earlier 99 

attempts to use absorption contrast microCT to quantify intracrystalline chemical heterogeneity 100 

within olivine and pyroxene from meteorites were successfully made  by Uesugi et al. (2010) and 101 

Tsuchiyama et al. (2013), respectively, however attempts to apply this methodology to terrestrial 102 

igneous minerals have been underutilized (Pankhurst et al. 2014, 2018) and largely aimed at 103 

textural analysis (e.g., Pamukcu and Gualda 2010; Zandomeneghi et al. 2010; Giachetti et al. 104 

2011; Voltolini et al. 2011). Phase contrast tomography has also been utilized on geologic 105 

materials to help distinguish between similarly attenuating phases (i.e., feldspar and matrix glass; 106 

Arzilli et al. 2016) by improving signal to noise ratios, however, it is important to note that 107 

grayscale images produced from the reconstruction using this method contain values that do not 108 

correlate directly with linear attenuation coefficients (Boone et al. 2012).  As we are concerned 109 

with not only observing chemical zoning in 3D but understanding which elements are largely 110 

responsible for controlling x-ray attenuation in sanidine (e.g., those that change the linear 111 

attenuation coefficient significantly), we have not explored phase contrast tomography in this 112 

study. Furthermore, our image segmentation pipeline (see Image Processing section below) has 113 

been successful at increasing signal to noise ratios within our data to sufficiently allow for the 114 

accurate segmentation of unique phases (i.e., feldspar, glass, epoxy). Thorough reviews further 115 

expanding on previous applications of X-ray computed tomography within the geosciences can 116 

be found in Hanna and Ketcham (2017) as well as Cnudde and Boone (2013). For a more 117 

comprehensive description of photon interaction with matter the reader is referred to Mccullough 118 

(1975) and Van Grieken and Markowicz (2002). 119 
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 In order to create tomographic images of a material, X-rays must pass through the sample 120 

from many directions and then be combined through reconstruction methods to produce a stack 121 

of 2D “slices”. A slice is compiled from X-ray intensity measurements at a given height for a full 122 

360 rotation around the sample and, when monochromatic X-ray beams are used, can be 123 

thought of as a spatial distribution of linear attenuation coefficient () values (Denison et al. 124 

1997). Each slice represents a finite thickness based on setup conditions and these slices can then 125 

be further combined to construct a 3D rendering of the sample that can then be quantitatively 126 

investigated. Although there are a few types of scanning in commercial microCT setups, the 127 

method used in this study employs helical scanning from a conical X-ray source which improves 128 

the signal to noise ratio by allowing for an increased cone angle and subsequently a closer source 129 

to sample distance to be utilized compared to circular scanning setups (Wildenschild and 130 

Sheppard 2013). Furthermore, although extremely sensitive to sample misalignments, this  131 

allows for faster scan times, longer specimen scans, and allows for theoretically exact 132 

reconstruction of the sample that is free of artefacts (Varslot et al. 2011a, 2011b). A more in-133 

depth explanation of both microCT equipment configurations and helical scanning reconstruction 134 

can be found in Wildenschild and Sheppard (2013) and (Varslot et al. 2011a, 2011b) 135 

respectively.  136 

Sanidine 137 

 Feldspars are the most abundant constituents of common igneous rocks and as such, are 138 

integral to many petrologic studies. Sanidine ([K,Na]AlSi3O8; Or37-100) is the dominant alkali 139 

feldspar found in volcanic rocks and frequently displays frequent chemical zoning. As it 140 

typically equilibrates at higher temperatures than other alkali feldspars, sanidine is prone to 141 

having greater amounts of elemental substitution (typically Ba+2, Sr+2, Ti+4, Fe+2, Fe+3, Mg+2) in 142 
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its crystal structure (Deer et al. 1966). Of these, Ba2+ substitution is the most common because of 143 

similar atomic radii between K+ and Ba2+ and is accommodated into sanidine in the following 144 

substitution (Icenhower and London 1996): 145 

2. (𝐵𝑎2+, 𝑆𝑟2+) + 𝐾+ + 𝐴𝑙3+ = 2𝑁𝑎+ + 𝑆𝑖4+ 146 

Thus, Ba is a highly compatible element in sanidine and is often present at concentrations that 147 

range from 100’s of µg/g to weight percent levels. Barium zoning is also commonly observed in 148 

sanidine and other alkali feldspars from plutonic and volcanic rocks (e.g., Chambers et al. 2020; 149 

Rout et al. 2021). Specifically, sanidine populations that display frequent high (>1 wt%) Ba 150 

zones occur in many large ignimbrites (e.g., Bachmann et al. 2014; Szymanowski et al. 2017, 151 

2019; Forni et al. 2018; Lubbers et al. 2020) from throughout the geologic record, implying that 152 

the processes responsible for forming them is also of importance in understanding the evolution 153 

of many silicic systems capable of producing large volcanic eruptions. Commonly proposed 154 

mechanisms for formation of these high Ba zones are either localized cumulate melting (e.g., 155 

Bachmann et al. 2014; Wolff et al. 2015, 2020), mass transfer from a more mafic magma 156 

relatively enriched in Ba (e.g., Ginibre et al., 2004), or temperature cycling (Rout et al. 2021), 157 

however reconciling these mechanisms with other types of data (i.e., major element zoning, other 158 

trace element zoning, diffusive equilibration timescales, thermodynamic modeling) often 159 

introduces additional ambiguity, such that it is difficult to definitively discern between 160 

competing models (Shamloo and Till 2019). Interpretations are also complicated by the 161 

relatively slow rates of Ba diffusion in silicate melts (Singer et al. 1995; Zhang 2010), which can 162 

result in a decoupling of major and minor element behavior, and also by lack of accurate 163 

description of Ba partitioning as a function of P-T-X, reflecting the fact that alter-valent (i.e., 2+ 164 

to 1+) Ba partitioning into K sites in sanidine is also highly sensitive to changes in melt 165 
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composition (Mcintire 1963). As a result, although Ba zoning has also been shown to be useful 166 

for understanding the timescales associated with recharge leading up to an eruption (Morgan and 167 

Blake 2006; Chamberlain et al. 2014; Till et al. 2015; Shamloo and Till 2019), the ultimate 168 

causes of this zonation remains incompletely understood. Furthermore, in addition to its 169 

petrologic importance, Ba also has a significantly higher mass attenuation coefficient than any 170 

other major stoichiometric component in sanidine (Table 1). We therefore hypothesize that 171 

changes in CT grayscale will largely correspond to changes in Ba concentration in sanidine 172 

ultimately allowing for us to better constrain 3D zoning of Ba in sanidine, potentially leading to 173 

a better understanding of the magmatic processes responsible for forming Ba zoning as well as 174 

their associated timescales, furthering our understanding of igneous systems in which sanidine is 175 

present.   176 

Methods 177 

Samples 178 

 To observe the relationship between CT data and sanidine composition, sanidines from a 179 

number of different volcanic rocks have been studied: the 35.3 Ma Kneeling Nun Tuff 180 

(Szymanowski et al. 2017) from the Mogollon-Datil Volcanic Field (MDVF); the 27.55 Ma 181 

Carpenter Ridge Tuff (Lipman and McIntosh 2008) from the Southern Rocky Mountain 182 

Volcanic Field (SRMVF); the 631 ka Lava Creek Tuff (Matthews et al. 2015) from Yellowstone 183 

caldera; and recent dome lavas from Taapaca volcano in northern Chile (e.g., Rout et al. 2021). 184 

These samples were chosen because they all show significant zoning in Ba contents, and 185 

collectively also span a large range in both bulk rock compositions (i.e., dacite to rhyolite) and 186 

BaO (i.e., 0 – ~3.5 wt%) concentrations. Sanidine grains were mechanically separated and hand-187 

picked using conventional crushing and picking methods. Once picked, selected sanidine grains 188 
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were then mounted vertically in a thin epoxy rod approximately 3 mm in diameter and 40mm tall 189 

such that they were completely encased by epoxy (Figure 1). This geometry was selected to 190 

produce a shorter X-ray source to sample distance compared to 25 mm epoxy round mounts, 191 

while still allowing for many grains to be scanned at once using helical scanning. The shorter 192 

source to sample distance allows for higher spatial resolution data to be gathered as microCT 193 

data voxel size is proportional to sample distance from a conical X-ray source (Sheppard et al. 194 

2014). 195 

MicroCT 196 

MicroCT scans were acquired using Oregon State University’s microCT facility 197 

(microct.oregonstate.edu). The OSU microCT X-ray source consists of a cone-beam setup using 198 

a Hamamatsu L10711-19 specifically customized to microCT applications. The focal spot size is 199 

630 nm and X-rays are projected directly onta a 3000 x 3000 Varex Paxscan amorphous silicon 200 

detector that incorporates a high sensitivity CsI scintillator. Instrument settings utilized in this 201 

study are a voltage of 80kV, current of 60A, and source to sample distance of 5 mm. While 202 

image resolution may be subject to debate, these settings resulted in a voxel size of 2.1-2.2 m. 203 

Using helical scanning, the instrument captured a total of 5628 projections of the sample as it 204 

rotates through 360 degrees. Maps of X-ray intensities for each sequential 2D frame were 205 

reconstructed using custom built software that allows for helical retrieval and auto-focus 206 

alignment following the methodology of Varslot et al. (2011a). When fully reconstructed, a full 207 

scan produces a 3D volume that consists of a series of 2D digital grayscale images.  A total of 208 

three scans were completed for this study over the span of 18 months and throughout we find no 209 

issue with either beam hardening or ring artefacts in our data.  210 
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Electron Probe MicroAnalyzer 211 

Backscatter electron (BSE) images and major element analyses of sanidine grains were 212 

obtained using a Cameca SX100 electron probe microanalyzer (EPMA) at Oregon State 213 

University. For all analyses, a focused beam of 5m, 15kV accelerating voltage, and 30nA 214 

current was used. Reference materials used as standards and detection limits for each element 215 

can be found in Table 2. Two approaches were taken to facilitate direct comparison of data and 216 

2D images from the EPMA to 3D microCT images. Initially, individual crystals were sectioned, 217 

polished and imaged using BSE after microCT images were taken, and we then selected the 218 

section in the microCT volume that most closely matched the 2D section. This proved 219 

challenging in some cases, however, and for subsequent analyses, crystals were sectioned and 220 

analyzed via EPMA prior to microCT in order to locate crystals with the largest amount of 221 

variation of Ba contents for analysis. After CT scans, corresponding BSE and CT 2D sections 222 

were chosen for comparison. To maintain as close as a 1:1 comparison between EPMA and CT 223 

data, CT grayscale profiles mimicked the size of the EPMA beam as close as possible (i.e., 224 

profile values are the average of 3 pixels along the same path as the EPMA transect and spot 225 

values are the average of a 3x3 pixel area). This produces CT transects that have a width of 6.2 226 

µm and spots that have an area of 37.21 µm2 compared to 5 µm and 25 µm2 on the EPMA, 227 

respectively. Uncertainties in CT grayscale value were determined by taking the standard 228 

deviation of a 3x3 pixel area (e.g., approximately the size of one EPMA spot) and range from 40 229 

– 300. In all plots and calculations, we assume maximum observed uncertainty and report the 230 

mean grayscale value ± 300, which is 1-2% of the overall attenuation signal. 231 
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Image Processing 232 

In microCT data, variations in linear attenuation coefficient of a material are observed as 233 

changes in grayscale intensity in the reconstructed 3D volumes (Denison et al. 1997). Linear 234 

attenuation coefficients of sanidine areas analyzed by EPMA in this study were also predicted 235 

using Mccullough (1975): 236 

3. 𝜇𝑙 = 𝜇𝑚(𝑡𝑜𝑡𝑎𝑙)𝜌𝑚𝑖𝑛𝑒𝑟𝑎𝑙 237 

Where m is the mass attenuation coefficient taken from Chantler (2000) and 𝜌 is the density of 238 

the mineral. Mass attenuation coefficients of mixtures (i.e., sanidine) were also calculated using 239 

(Mccullough 1975): 240 

4. 𝜇𝑚(𝑡𝑜𝑡𝑎𝑙) =∑ 𝑖(μ𝑚)𝑖
𝑛
𝑖=1  241 

Where m is the mass attenuation coefficient and  is the proportion by weight of stoichiometric 242 

component i. Chemical zoning in minerals, if sufficiently different, will be observed as changes 243 

in X-ray attenuation (Equations 3-4).  244 

The software/coding packages used for image processing in this project are shown in 245 

Table 3. Datasets generated from the initial 3D volume were cropped into smaller, more 246 

manageable sizes that: 1) reflect individual minerals; 2) reduce file size substantially to make 247 

subsequent processing achievable on a standard personal laptop. One of the goals of this project 248 

was also to make the methodology as open source and accessible as possible. Because of this, all 249 

of the image processing besides the cropping and slicing of datasets (Avizo) was done in either 250 

Fiji/ImageJ or via scripting in Python. While we note both Python and Fiji/ImageJ are capable of 251 

cropping and resampling datasets on personal computers, the large file size of an individual scan 252 

(i.e., > 100GB) necessitated the use of the OSU microCT lab processing workstation.  Built on 253 

top of the Python package scikit-image ( https://scikit-image.org/; Van Der Walt et al. 2014), we 254 
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have also created a Python module, CTPy (https://github.com/jlubbersgeo/ctpy; Lubbers 2021), 255 

to help make the image segmentation process more streamlined. 256 

To quantify the number of distinct phases or regions within a sample, a histogram was 257 

generated where each peak generally corresponds to a specific phase/region. For materials with 258 

different attenuation (e.g., sanidine, epoxy, air) the histogram peaks of CT grayscale were 259 

typically distinct (e.g., Figure 2). When dealing with intracrystalline zoning in minerals, 260 

however, we found that although there are observable differences in grayscale within minerals 261 

(Figure 2A: right) the histogram created from these two zones still overlapped significantly 262 

(Figure 2A: left). To refine these histograms by removing inherent noise from the data, while 263 

still preserving crucial textural information, we applied a non-local means (NLM) algorithm 264 

(Buades et al. 2005; Van Der Walt et al. 2014) to each individual 2D image. This was 265 

implemented using scikit-image and was completed using a block size of 10 pixels and search 266 

window of 10 pixels. After this filter was applied, we typically observe four peaks in the slice 267 

data (background, epoxy, mineral zone 1, mineral zone 2; Figure 2B left) that match what we 268 

qualitatively see in grayscale (Figure 2B: right). This approach allowed us to better quantify 269 

areas and volumes of individual mineral zones via image segmentation (i.e., partitioning the 270 

image into distinct regions/segments based on a set of characteristics).  271 

Image segmentation was completed using the watershed algorithm (Vincent and Soille 272 

1991; Roerdink and Meijster 2000; Van Der Walt et al. 2014). Using predefined markers, the 273 

watershed algorithm identifies the spatial extent of the two regions of interest. For our sanidine 274 

grains, we create these markers by applying the Sobel gradient operator to create an image mask 275 

where pixel values correspond to their intensity gradient (Jähne et al. 1999; Van Der Walt et al. 276 
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2014). With sanidines segmented into distinct regions based on both grayscale value and 277 

location, three dimensional reconstructions of these volumes were made (Figure 3A-C).  278 

Results 279 

Histograms for each sanidine crystal can be found in Supplementary Figure 1 and 280 

compositional data for each crystal gathered using EPMA can be found in Appendix 1. Most 281 

samples display multiple CT grayscale feldspar peaks after passed through the non-local means 282 

denoising filter (e.g., Figure 3E), except for Lava Creek Tuff (LCT-B) sanidines which typically 283 

only display one. Likewise, backscattered electron (BSE) imaging of LCT-B sanidines also 284 

shows little to no grayscale zoning, whereas sanidines from the other samples display frequent 285 

grayscale zoning (Figure 4). BaO concentrations in sanidines measured range from near 286 

detection limit (~300 ppm) to 3.7 wt% and brighter BSE zones correspond to higher BaO 287 

contents in all 2D sections analyzed. In the following section, the relationship between CT 288 

grayscale and sanidine composition is further explored.  289 

Discussion 290 

Geochemical controls on X-ray attenuation in sanidine 291 

A first order observation in the denoised histograms of sanidine microCT data is that 292 

there are multiple peaks corresponding to regions within the minerals that attenuate X-rays to 293 

different degrees (Figure 3E). In order to translate this observation to useful 3D compositional 294 

information we first need to investigate the controls on X-ray attenuation in sanidine. Equation 3 295 

shows that the mass attenuation coefficient (m), and subsequently linear attenuation coefficient 296 

(l), of a mixture can be predicted on the basis of the stoichiometric proportions of all elements 297 

within a mixture and individual mass attenuation coefficients for a given energy. Because major 298 
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element chemistry totals measured via EPMA sum to close to 100 wt.% (Appendix 1), they are 299 

sufficient to estimate mass attenuation coefficients. Trace elements present in lower 300 

concentrations (e.g., Sr, Mg, REE, Pb, etc.) can also be included in this calculation, although 301 

typically the lower concentrations mean that attenuation characteristics will have lesser impact 302 

on overall attenuation.  303 

In figures 5, 6 we compare the composition of the sanidine with its calculated linear 304 

attenuation coefficients and the observed CT greyscale values, respectively. Calculated linear 305 

attenuation values and CT grayscale values correlate strongly with observed sanidine 306 

composition (Figure 5, 6). This is consistent with greyscale intensity being directly related to the 307 

linear attenuation coefficient for a given voxel (Denison et al. 1997). Moreover, although 308 

calculated linear attenuation coefficients show weak correlations with SiO2, CaO and Na2O in 309 

some samples, for all samples Ba contents are very strongly correlated (Figure 5), suggesting that 310 

Ba is the primary control on X-ray attenuation and that changes in Ba contents are reflected in 311 

the observed changes in greyscale. Other elements display no clear relationship between changes 312 

in concentration and changes in calculated linear attenuation coefficient or voxel greyscale in 313 

sanidine (Figure 5). Although Ba is present at lower concentrations than other stoichiometrically 314 

important components, the relatively high atomic weight and resulting photoelectric X-ray 315 

attenuation above the K-shell edge of Ba (particularly relative to the other elements present) 316 

coupled with the large variations evident in Ba strongly suggest that Ba is the primary control on 317 

X-ray attenuation in sanidine under the scanning conditions used in this study.  318 

To further test this hypothesis, we have also compared measured CT greyscale and 319 

measured Ba contents along transects across regions where Ba contents change substantially 320 

(Figure 7). In these examples we again observe that CT grayscale is strongly correlated with Ba 321 
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contents, and not with other elements. Figure 8 quantifies both the global and local relationships 322 

observed between BaO in the different sanidines studied for this experiment. The data suggest 323 

that overall increases in BaO will result in an increase in CT grayscale (Figure 8A) and follows 324 

the relationship: 325 

5. 𝐵𝑎𝑂(𝑤𝑡%) = (3.4 × 10−4 ± 1.28 × 10−5)𝑋 − (5.974 ± 0.25) 326 

 327 

 Where X is the CT grayscale value. The RMSE for this relationship is 0.275. Rewritten in terms 328 

of ppm Ba, the relationship is: 329 

6.  𝐵𝑎(𝑝𝑝𝑚) = (0.1055 ± 0.004)𝑋 − (1867.067 ± 78.023) 330 

With a RMSE of 86. Although a single relationship can be used to define the impact of Ba 331 

contents of X-ray attenuation, the relatively high RMSE and the observation that sanidine from 332 

different samples fall into distinct regions on the plot of BaO vs. CT greyscale (and define 333 

different trends) in Figure 8B suggest that there may be additional minor controls on X-ray 334 

attenuation. As all CT scans were done with the same setup conditions, we hypothesize that the 335 

small variations in the exact relation between BaO and X-ray attenuation are due to other 336 

elements also contributing more minor changes to the linear attenuation coefficient, although it is 337 

also possible that this variation may be due in some part to slight changes in detector sensitivity 338 

across different scans. For example, we see in both the LCTB and CRT that CaO and Na2O also 339 

have linear relationships with CT grayscale value (Figure 6), however the slope of this 340 

relationship is much greater in the CRT than it is in the LCTB.  341 

To further quantify the influence other elements have on the overall CT attenuation, we 342 

utilized several supervised machine learning regression algorithms, specifically, the random 343 

forest (Breiman 2001) and extremely randomized trees (ERT; Geurts et al., 2006) algorithms as 344 
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they performed the best out of all algorithms tested (e.g., highest R2 and lowest RMSE values). 345 

These algorithms were employed  via the scikit-learn package (https://scikit-learn.org/; 346 

Pedregosa et al., 2011) in Python as it is 1) open-source and 2) allows one to easily implement 347 

both supervised and unsupervised machine learning algorithms (e.g., Petrelli et al. 2020). In 348 

brief, our data was split randomly into both training and test datasets, where they consisted of 349 

random subsamples from each system studied in this experiment so as to be representative of a 350 

wide range of both geochemical characteristics and geologic settings. Once split into training and 351 

test datasets, each was standardized and further separated into features (i.e., wt% oxide 352 

measurements) and a target (i.e., CT grayscale value). While multiple linear regression also 353 

offers a way to incorporate the influence of multiple features on a given target, we prefer the 354 

ERT and random forest algorithms as they have both better performance metrics (Figure 9) and 355 

allow us to quantify the relative importance each feature has on predicting a target value without 356 

having to deal with issues related to multicollinearity (e.g., SiO2, Al2O3) that cause multiple 357 

regression coefficients to have limited predictive power. We find that both ERT and random 358 

forest algorithms predict observed CT values well (Figure 10 A) as well as further reinforce the 359 

importance of Ba in controlling attenuation Figure 10 B. 360 

Observing chemical zoning in 3D 361 

 Having established the geochemical controls on X-ray attenuation in sanidine now allows 362 

us to both observe and quantify chemical zoning in 3D. Using image segmentation previously 363 

outlined in the “Image Processing” section we segment individual sanidine grains into “high” 364 

(e.g., Figure 3E peak 4) and “low” (e.g., Figure 3E peak 3) Ba zones for KNT and LCT-B 365 

sanidines (Figure 11). While the number of segmented regions is ultimately user defined and 366 

specific to individual  datasets, the designation of distinct high and low Ba zones are justified 367 
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based on 1) CT data histograms (e.g., Figure 3E); 2) previous literature illustrating high and low 368 

Ba zones found in sanidines from many of the systems studied (Bachmann et al. 2014; Shamloo 369 

and Till 2019; Szymanowski et al. 2019; Rout et al. 2021).  370 

Defining two zones on the basis of Ba also allows us to study the 3D geometry of these 371 

regions, and although our sample set is still somewhat limited, we observe a range of different 372 

zoning types. Some high-Ba zones were observed as concentric rims (Figure 11A,C), consistent 373 

with a simple view of progressive crystal growth from magmas with different Ba contents,  but 374 

other zones also display more complex geometric relationships, such as in intermediate zones 375 

between the crystal core and rim, (Figure 11B,D,E). The observation of intermediate high-Ba 376 

zones is important, as it implies that the magma reservoir processes responsible for producing 377 

these zones are not tied to eruption or initiation of eruption, but rather that they occur within a 378 

magma reservoir during ongoing magma storage and evolution. This aligns with recent thermal 379 

models, showing that large silicic magma reservoirs can reside in the upper crust long periods of 380 

time (Gelman et al. 2013) and accommodate volume/pressure changes related to rejuvenation in 381 

order to promote growth rather than eruption (de Silva and Gregg 2014).  382 

We also find that some KNT sanidine crystals have high-Ba zones that were largely 383 

discontinuous (i.e., they did not form a zone around/throughout the entire grain), did not have 384 

uniform thickness, and were never cores of grains. While we note that the markers used for the 385 

watershed algorithm may influence the final geometry of mineral zone reconstructions, these 386 

observations hold true for all of the grains scanned from the KNT, suggesting that they are 387 

representative of features of the sanidines from this system. Previously, these high-Ba zones 388 

have been interpreted as the result of cumulate remelting in a thermally heterogeneous magma 389 

reservoir prior to eruption (Szymanowski et al. 2019). Our 3D reconstructions of high-Ba zones 390 
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agree with this interpretation, as we argue that progressive mineral growth in a closed system is 391 

unlikely to produce the wide array of geometries observed here. Rather, as mineral zoning 392 

reflects the thermochemical conditions in which the mineral grew, the heterogeneous mineral 393 

zoning geometries observed are most likely the result of reservoir scale heterogeneities. Further 394 

CT-based works offer the potential for quantitatively examining the shape and distribution of 395 

high Ba zones in these samples and in other igneous rocks to test models for magma genesis and 396 

evolution. 397 

Implications for mineral zoning studies 398 

Gradient Variability Between Two Zones 399 

 Assessing the shape of the concentration gradient between two chemical zones is critical 400 

for understanding magma evolution, and also for petrologic approaches such as diffusion 401 

chronometry. Commonly this approach utilizes either thin sections or mineral grain mounts to 402 

analyze the 1D changes in chemistry across a concentration gradient (i.e., chemical zone 403 

boundary) within a mineral. Production of thin sections or grain mounts commonly produces 404 

random or near random sectioning of crystals, and this can strongly influence the nature of a 405 

given concentration gradient (Shea et al. 2015). Slices that are near perpendicular to 406 

compositional zoning will have a steeper gradient between zones than slices that are more 407 

oblique. At their extremes, slicing perpendicular to zoning will reflect the true gradient shape, 408 

while slicing parallel to zoning will show no zoning at all. This effect has been studied 409 

numerically using synthetic crystals (Shea et al. 2015; Krimer and Costa 2017), however our 410 

information on the 3D distribution of Ba in sanidine allows us to also study this in natural 411 

crystals, and simulate the 2D sectioning process by randomly slicing a 3D CT volume. We can 412 



 19 

then compare this with the profile extracted from a slice perpendicular to the gradient to see the 413 

how the shape of that gradient changes with slicing orientation.  414 

As expected, significant variability can be introduced into the shape of gradients between 415 

zones simply by randomly slicing the same grain through its center (Figure 12). When combined 416 

with slicing orientation information we see that as slices become more perpendicular to the 2D 417 

plane that represents the true gradient, profiles both increase in slope and decrease in width 418 

(Figure 13). Looking at the distribution of slopes across a range of random slice numbers it 419 

becomes clear that the highest number of random slices are not centered around the true slope, 420 

but rather much shallower (Figure 14C) implying that the majority of 2D section profiles from 421 

random slices do not reflect the true shape of the concentration gradient between zones.  422 

Similarly, we find that the width of a given concentration gradient is not accurately 423 

represented by the mean of random slices and overestimates the true width (Figure 14A). 424 

Random slicing of a grain across a concentration gradient, however, does accurately capture the 425 

height of a concentration gradient (Figure 14B). To accurately obtain concentration gradient 426 

information (e.g., slope, width, height), Shea and others (2015) suggest that by following a list of 427 

criteria (e.g., discarding small grains, constructing profiles away from crystal corners, avoiding 428 

profiles with dipping plateaus, when concentric zoning is present avoid zoning that is 429 

asymmetric), constructing profiles from 2D sections can more accurately portray the true 430 

gradient shape if ~20 well-chosen analytical profiles are constructed. However, it is also true that 431 

when 3D information is available, it is possible to no longer speculate about the shape of the 432 

concentration gradient between zones but rather to directly observe it by going into the CT stack 433 

and extracting a slice perpendicular to CT grayscale zoning. If CT grayscale is governed by 434 

changes in a specific element (e.g., Ba in sanidine, Fe-Mg differences in olivine), then accurate 435 
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1D, 2D, and 3D diffusion modeling can be completed without ambiguity as to whether or not we 436 

are measuring the true shape of the concentration gradient.  437 

Beyond barium in sanidine 438 

 While it has been shown here that 3D chemical zoning in Ba can be observed in sanidine, 439 

in theory this methodology should not be limited to just sanidine if chemical zones within 440 

minerals have a sufficient difference in linear attenuation coefficient. The absolute difference 441 

required to observe chemical zoning using microCT, however, depends on the voxel resolution 442 

used for imaging and the machine settings (i.e., voltage, current, exposure time) used, which 443 

affect image contrast (signal-to-noise ratio). Because the photoelectric effect (and its sensitivity 444 

to atomic number) and density are the dominant attenuation mechanisms for energies used in 445 

scanning geologic samples, large changes in heavy elements should be relatively easy to observe. 446 

This makes minerals with proportionally high concentrations and zoning of heavier elements, 447 

such as rare earth elements, actinides (U, Th) and heavier transition metals (e.g., Pb) likely 448 

candidates for observing chemical zoning using microCT if they are present in sufficient 449 

quantity. Different Fe-Mg olivine populations have already been successfully identified using 450 

both monochromatic (Pankhurst et al. 2018) and polychromatic microCT (Pankhurst et al. 2014), 451 

making the intracrystalline investigation of Fe-Mg zoning another worthwhile pursuit (cf. NIST 452 

Standard Reference Database 66, Chantler, 2000).  453 

 One of the current limitations of industrial microCT devices is that they emit 454 

polychromatic radiation and are subject to potential imaging artifacts (e.g., beam hardening) and 455 

limitations in X-ray output, requiring longer scan times. To overcome these, synchrotron sources 456 

are typically used (e.g. Hanna and Ketcham 2017). The large amount of flux produced by a 457 

synchrotron source allows for beam filtration and fine scale ‘tuning’ over a given energy range 458 
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(Willmott 2011). The use of this in the petrology community is minimal (e.g., Gualda and Rivers 459 

2006; Gualda et al. 2010; Pamukcu and Gualda 2010; Pankhurst et al. 2018), however the 460 

potential is very high, as it allows for one to theoretically focus in on a given element, and 461 

scanning above and below the photoelectric absorption edge for that element to allow for 462 

subtraction tomography. If utilized, the benefit of this would be twofold: (i) better elemental 463 

resolving power and (ii) a range of lower beam energies to subject the sample to, further 464 

increasing the contrast in grayscale between chemical zones. This increased contrast would then 465 

lead to more accurate segmentation of geochemically distinct phases and allow us to better view 466 

the complexities of mineral zoning in 3D and the interpretations that come from its investigation 467 

(e.g., diffusion chronometry, mineral growth/dissolution, glomerocryst formation).  468 
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 711 

 712 

 713 

Figure 1: Schematic of the sample setup used in the microtomographic scanning. Sanidine grains were mounted vertically in a thin epoxy rod 714 
and placed in the sample holder on the helical rotation stage. This allowed for a source to sample distance of 5mm, and the helical trajectory 715 
subsequently allowed for numerous grains to be scanned in one single (long) scan at high resolution.  716 

 717 

Figure 2: Individual CT slices extracted from the 3D dataset and their corresponding histograms. A) raw, unfiltered data that shows changes in 718 
pixel value within the mineral, however there is significant overlap between the mineral peaks (3 and 4). B) same slice processed using a non-719 
local means filter (using Python’s scikit-image) . The slice histogram now has resolvable peaks that better correspond to distinct mineral regions 720 
and allows for reliable image segmentation, and subsequent quantification. 721 

 722 

Figure 3: 3D rendering of a segmented sanidine from the Kneeling Nun Tuff and the same grain shown in Figure 1KNT. A, B, and C all have the 723 
same orientation. A) Whole mineral. B) Mineral zone that corresponds to peak 4 in the post denoising histogram. C)  Mineral zone that 724 
corresponds to peak 3 in the post denoising histogram. D) Raw CT data histogram and E) denoised histogram justifying the segments used to 725 
train the watershed algorithm.  726 

 727 

Figure 4: Representative sanidine grains from each system studied comparing BSE (left) and CT (middle) grayscale images for similar 2D slices 728 
through the same grain. Yellow spots annotated on BSE images indicate locations for EPMA spot analyses and BaO concentrations are listed next 729 
to each spot. The right panel shows histograms of normalized CT grayscale values for both raw data (red line) and denoised data (black line with 730 
gray fill) for each grain and illustrates its ability to sufficiently remove Gaussian noise such that mineral zoning in CT can be quantified via image 731 
segmentation methods.  732 

 733 
Figure 5: Calculated linear attenuation coefficient (µ) plotted against major element compositions for each analysis. While the Carpenter Ridge 734 
Tuff displays weak linear correlations between µ and CaO and Na2O, BaO shows strong linear correlations with µ for all sanidines studied in this 735 
project.  736 

 737 

Figure 6: Observed CT grayscale for the same location on a given sanidine that EPMA analyses were completed, plotted against major element 738 
compositions for the same location. The shape of the observed CT grayscale vs. major element relationships qualitatively looks similar to that 739 
described by the µ vs. major element relationships shown in Figure 5. This is in agreement with Denison et al. (1997), which shows that CT 740 
grayscale is linearly related to µ. 741 
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 742 

Figure 7: Comparison of BSE image and CT grayscale image for the same plane through a KNT sanidine that was scanned via microCT prior to 743 
EPMA analysis. Yellow lines illustrate location of the EPMA and CT transects that are plotted below. Both show the same relative changes in 744 
magnitude and have similar slopes. This further adds to the relationships shown in Figure 4 by adding in a spatial component and shows that CT 745 
grayscale is largely controlled by Ba concentrations throughout the mineral.  746 

 747 

Figure 8: A) Regression for Ba vs. CT relationship for all sanidines studied in this experiment. B) Regression for Ba vs. CT for each individual 748 
eruption studied in this experiment. Note there is no regression for the LCTB, as it displayed too narrow a range in BaO concentrations. While 749 
KNT, TP, and CRT sanidines all show a linear correlation between BaO and CT grayscale, the parameters that define each relationship vary 750 
slightly, however suggest that although BaO is largely responsible for controlling X-ray attenuation in sanidine, its influence on each system is 751 
not the same.  752 

 753 

Figure 9: R2 and Root Mean Squared Error (RMSE) of predicted CT grayscale results of a Monte Carlo simulation in which each machine 754 
learning algorithm for predicting CT values was run 1000 times. For every iteration, the splitting, training, and validation steps for each algorithm 755 
were randomized so as to remove bias of any one iteration on the overall interpretation of a given algorithm’s accuracy and precision. The 756 
Extremely Random Trees (ERT) regression algorithm performs the best by both R2 ( = 0.86) and RMSE ( = 487) metrics, therefore making it 757 
the preferred algorithm for predicting CT grayscale in this study.  758 

 759 

Figure 10: A) scatter plot of predicted vs. observed CT grayscale values from the ERT (left) and random forest (right) algorithms for one of the 760 
random iterations of the Monte Carlo simulation shown in Figure 9 illustrating that they: 1) accurately predict the observed CT values (e.g., falls 761 
along a 1:1 predicted vs. observed line); 2) produces low RMSE values relative to the overall attenuation signal (i.e., < 3%). B) bar charts 762 
displaying the relative importance of each feature used in the regression algorithms. The height of the bars is the mean value of each feature’s 763 
importance from the Monte Carlo simulation and error bars are 1 uncertainties for each mean value.  Note, the total height of all the bars is 764 
equal to 1. Single feature values closer to 0 are not as useful at predicting the target and values closer to 1 are extremely useful at predicting the 765 
target. Barium displays the highest feature importance in both algorithms and accounts for the majority of information required to accurately 766 
predict CT grayscale values, suggesting it is largely responsible for controlling X-ray attenuation in sanidine.   767 

 768 

Figure 11: 3D volume reconstructions of chosen sanidines segmented in this study. Left column is entire mineral outline, center column green 769 
isosurfaces represent extent of zones classified as “low-Ba” within the grain, and right column yellow isosurfaces outline extent of areas within 770 
the grain classified as “high-Ba”. Rows A-D are grains from the Kneeling Nun Tuff and row E is a Lava Creek Tuff – B sanidine. Note that 771 
zoning patterns are frequently: 1) not always concentric and 2) not always on the rims of the grain.  772 

 773 
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Figure 12: Random 2D slices through the CT stack for grain LCTB – 1 shown in Figure 11E and their corresponding 1D CT grayscale profiles. 774 
CT grayscale profiles were chosen by making a transect perpendicular to observed grayscale zoning in each random slice. The slope for each 775 
profile is indicated by the red line and is calculated chosen based where there is an abrupt change in grayscale values and the grayscale values on 776 
each side of the gradient. Grayscale profiles display a wide range of widths and slopes, illustrating the effect that random slicing through a grain 777 
has on the interpretation of chemical zoning.  778 

 779 

Figure 13: Stereonet of 150 random slices through crystal LCTB – 1 shown in Figure 11E, where each pole to the plane for a given random slice 780 
is a spot on the stereonet. Here, degrees are in arbitrary 3D space, not cardinal directions. Colors of each spot are mapped to the slope of the 781 
concentration gradient, while the size of each spot is mapped to the width. Overall, shallower slopes and longer profile widths are associated with 782 
slices that are more parallel to the true gradient orientation (e.g., upper left on the stereonet).  783 

 784 

Figure 14: Breakdown of random slicing exercise in which 35, 75, and 150 random slices were generated through the center of grain LCTB-1, 785 
shown in Figure 10E. Slices were through the center of the grain so as to ensure that the concentration gradient was intersected by the slice. A) 786 
Kernel density estimates (KDE) of concentration gradient widths illustrating how the true width of a concentration gradient is overestimated by 787 
majority of slices B) KDE plot for gradient heights. Here, the random slicing exercise suggests that the mean of random slicing more accurately 788 
portrays the height of a given concentration gradient C) KDE plot for gradient slopes. Similar to A, the majority of slices do not reflect the true 789 
slope of a given concentration gradient and the majority of slopes generated from random slicing are significantly less than the true slope of the 790 
concentration gradient.  791 

 792 

Table 1: List of major stoichiometric cations found in sanidine, their atomic weight, and mass attenuation coefficient (µ·𝜌-1) at 793 

80keV (i.e., the energy used in this experiment) showing that Ba has a significantly higher mass attenuation coefficient than all 794 

other cations. Mass attenuation coefficients taken from Chantler (2000).  795 

Element Atomic weight  
(amu) 

80keV mass attenuation coefficient  
(cm2·g-1) 

Na 22.990 0.1796 
Al 26.982 0.2018 
Si 28.085 0.2228 
K 39.098 0.3251 
Ca 40.078 0.3656 
Fe 55.845 0.5952 
Ba 137.330 3.9630 

 796 

Table 2: Standards utilized in EPMA experiment calibration for each element measured, along with the relative standard error 797 

and detection limit for each element measured. ALBI and SANI standards are synthetic albite and sanidine standards made by 798 
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Astimex Scientific Ltd and NMNH standards are from the collection at the Smithsonian Museum of Natural History. Established 799 

concentrations can be found in the Appendix 1. 800 

Standard Element Relative Standard Error (%) Detection limit (µg/g) 
ALBI Na 0.40 334 
SANI Al 0.14 336 
SANI Si 0.12 684 
SANI K 0.17 438 
NMNH 115900 Ca 21.61 357 
NMNH 113498-1 Fe 4.77 812 
SANI Ba 0.28 309 

801 

802 

803 

Table 3: List of programs/software used in this research and what each was used for. 804 

Program/Software Use 

Avizo ® Dataset cropping, 2D slicing of dataset (both random and non-random) 
Fiji/ImageJ (Schneider et al. 2012): Image measurement functions (i.e. linear grayscale profiles, ROI 

histograms), adjusting image brightness/contrast  
Python/JupyterLab © Dataset cropping, image denoising, image segmentation, image statistics, 

interactive volume reconstructions. Utilizes the package scikit-image (Van 
Der Walt et al. 2014) and volume reconstructions require package K3D-
jupyter © 

805 
806 

807 
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