1	The Crystal Structure and Chemistry of Natural Giniite and
2	Implications for Mars
3	Wordcount: 5081
4 5	Christopher. T. Adcock ¹ , Elisabeth M. Hausrath ¹ , Elizabeth B. Rampe ² , Hexiong Yang ³ , and Robert T. Downs ³
6 7 8 9	¹ Department of Geoscience, University of Nevada, Las Vegas, 4505 S. Maryland Pky., Las Vegas, Nevada 89154- 4010, U.S.A. ² NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, U.S.A. ³ Department of Geosciences, University of Arizona, 1040 East 4th Streat, Tucson, Arizona 85721, 0077, U.S.A.
10	Department of Geosciences, University of Afrizona, 1040 East 4th Street, Tucson, Afrizona 85721-0077, U.S.A.
12 13	REVISION 1 Abstract
14	Investigations of planetary processes using phosphate minerals often focus on igneous,
15	recrystallized, or potentially metasomatized minerals, likely as a result of the minerals commonly
16	available for study within meteorites and lunar samples. However, Mars is a relatively
17	phosphorus-rich planet and possesses abundant evidence of past aqueous surface interactions.
18	Therefore, secondary phosphate phases may be important on the Martian surface. Giniite
19	$[Fe^{2+}Fe_4^{3+}(PO_4)_4(OH)_2 \cdot 2H_2O]$ is a secondary phosphate mineral that has been suggested as a
20	potentially significant phase at locations in Gusev Crater and Meridiani Planum on Mars.
21	Although relatively rare as a natural mineral on Earth, giniite has gained attention as an
22	important mineral in industry and technology, especially the lithium battery industry, and the
23	ferrian version of the mineral is often synthesized. This suggests giniite may be important as an
24	in-situ resource utilization (ISRU) target for future extended human missions to Mars. Despite
25	this, there are few data available on the natural mineral and the last characterization of the
26	structure was over 40 years ago. There has also been confusion in the literature as to whether
27	giniite is orthorhombic or monoclinic. In this work we revisit and document the chemistry and
28	crystal structure of natural giniite from the type locality at the Sandamab pegmatite in Namibia

29	using updated techniques. Our results refine and update what was previously known regarding
30	the structure and chemistry of giniite and support the potential of the mineral as a possible
31	Martian scientific and resource target for further study to aid future missions.
32	
33	Keywords
34	Giniite, Fe-phosphate, ferrous giniite, ferric giniite, ferrian, phosphate,
35	hydroxyphosphate, Martian habitability, Mars, ISRU, XRD,
36	
37	Introduction
38	The study of phosphorus minerals yields insight into planetary interior and surface
39	processes. For instance, primary or igneous phosphate minerals have been used to investigate
40	volatile abundances in the interiors of Earth, Mars, the Moon, and asteroidal bodies (e.g.
41	McCubbin et al., 2011; Patiño Douce et al., 2011; Filiberto et al., 2016; Jones et al., 2014;
42	McCubbin et al., 2014), as potential indicators of oxygen fugacity during late stage magma
43	crystallization (Shearer et al., 2015), and even as recorders of past aqueous surface environments
44	on Mars (Mojzsis and Arrhenius, 1998; Hurowitz et al., 2006; Ming et al., 2006; Adcock and
45	Hausrath, 2015). Phosphorus, as phosphate or a more reduced species, is also an essential
46	nutrient for all known life, and considered important in prebiotic reactions that led to life on
47	Earth (Wald, 1964; Westheimer, 1987; Powner et al., 2009; Pasek and Kee, 2011; Benner and
48	Kim, 2015; Burcar et al., 2016). Consequently, P-bearing minerals have important implications
49	for past and present habitability and the potential for life on other planetary bodies (Weckwerth
50	and Schidlowski, 1995; Mojzsis et al., 1996; Yang et al., 2011; Adcock et al., 2013; Adcock and
51	Hausrath, 2015).

52	Investigations of planetary processes using phosphate minerals often focus on igneous,
53	recrystallized, or potentially metasomatized minerals (e.g. Brearley and Jones, 1998; Jones et al.,
54	2014; McCubbin and Jones, 2015; Adcock et al., 2017). For extraterrestrial studies, this focus is
55	likely the result of the minerals commonly available for study within meteorites and lunar
56	samples. Though various secondary phosphate minerals are present in some meteorites (Dyar et
57	al., 2014), the most common phosphate minerals in most meteorites and lunar samples are
58	merrillite [Ca ₉ NaMg(PO ₄) ₇] and apatite [Ca ₅ (PO ₄) ₃ (F,Cl,OH)], often of igneous origin (Shearer
59	et al., 2006; McCubbin et al., 2014; Adcock and Hausrath, 2015). This is especially the case for
60	Martian meteorites (McSween and Treiman, 1998).
61	However, Mars is a relatively phosphorus-rich planet (Wänke and Dreibus, 1988; Taylor,
62	2013) and analyses from the surface of Mars indicate relatively high P-concentrations in soils,
63	rocks, and dust compared to Earth (Goetz et al., 2005; Gellert et al., 2006; Yang and Post, 2011;
64	Rampe et al., 2017; Yen et al., 2017; Rampe et al., 2020). Mars also possesses abundant
65	evidence of past aqueous surface interactions (Carr and Head III, 2003; Hurowitz et al., 2006;
66	Grotzinger et al., 2014; Adcock and Hausrath, 2015; Rampe et al., 2016; McCollom et al., 2018).
67	Reactive transport modeling of measured rock profiles at Gusev Crater indicate dissolution of
68	primary phosphate minerals, the product of which would be secondary phosphates (Adcock and
69	Hausrath, 2015). Thermodynamic modeling by Berger et al., (2016) indicates the formation of
70	the secondary phosphate mineral strengite (FePO ₄ \cdot 2H ₂ O) at Gale Crater, Mars. Recent data from
71	the Alpha Particle X-ray Spectrometer (APXS) on board Curiosity at Gale Crater indicate
72	enrichments of P and Mn in nodules, veins, and other surface features there (Berger et al., 2021).
73	ChemMin diffraction data from Gale Crater also show the potential presence of secondary
74	flourapatite (Rampe et al., 2017) and a secondary manganese-bearing phosphate of the jahnsite-

75	whiteite group (Treiman et al., 2021). These models and observations suggest aqueously altered
76	or precipitated secondary phosphate minerals may not be uncommon phases on the Martian
77	surface and thus warrant more in-depth consideration.
78	Among the potential secondary minerals that may occur on Mars is giniite
79	$[Fe^{2+}Fe^{3+}_4(PO_4)_4(OH)_2 \cdot 2H_2O]$. Although rare on Earth, giniite has gained attention in industry,
80	including as a potential component in Li-ion battery production (Hong et al., 2003; Whittingham,
81	2004; Lv et al., 2017), wastewater processing (Duan et al., 2013; Han et al., 2017; Priambodo et
82	al., 2017), biomedical materials, and as a deprotonation catalyst (Chen et al., 2014; Nedkov et
83	al., 2016).
84	In comparison to Earth, Mars has notably higher Fe and P content, and Hausrath et al.,
85	(2013) first suggested that giniite may be a significant secondary phase on that planet based on
86	terrestrial hydrothermal experiments that produced giniite, and Mössbauer data acquired from
87	Gusev Crater on Mars. In later work, alteration experiments using P-enriched basalts as analogs
88	of rocks at Meridiani Planum also produced giniite, suggesting the mineral may likewise be of
89	importance at that location on Mars (McCollom et al., 2018). The confirmation of giniite on
90	Mars would be scientifically important. Like primary minerals, secondary minerals are products
91	of their formation environments, and are therefore potentially useful indicators of past Martian
92	environmental conditions (e.g. Klingelhöfer et al., 2004; Wiseman et al., 2008). Minerals like
93	giniite also have implications for the availability of bio-essential phosphate in these past
94	environments, and thus are astrobiologically relevant. Giniite may further represent a potential
95	resource for extended human missions to Mars. For instance, as a hydrated mineral, giniite
96	contains approximately 48 liters of H ₂ O per metric ton (not including the OH ⁻ component) that
97	can be driven off between 175° and 300° C (Jambor and Dutrizac, 1988; Rouzies et al., 1994;

98	Gonçalve et al., 2017; Liu et al., 2017). McCollom et al., (2018) suggest as much as 8% of the								
99	Fe in the Burns Formation at Meridiani Planum on Mars may be held in giniite, with another								
100	29% in jarosite (a hydrated Fe-sulfate holding \sim 10% H ₂ O) (Morris et al., 2006). Therefore,								
101	giniite, along with other hydroxides in Martian soils or rocks, could be a useful source of water.								
102	The mineral could also be processed into fertilizer, and oxidation of the Fe^{2+} component in								
103	minerals has been shown to produce H ₂ or CH ₄ , potential fuel components (e.g. Miller et al.,								
104	2017; Adcock et al., 2021). In Situ Resource Utilization (ISRU) is the practice of using materials								
105	or energy sources derived at space destinations (such as Mars) to replace or supplement								
106	resources that would otherwise have to be transported from Earth (Sanders and Larson, 2011;								
107	Sridhar et al., 2000; Starr and Muscatello, 2020). The above qualities, including the potential								
108	availability, suggest that giniite may be a good subject for further investigation as a possible								
109	Martian ISRU target.								
110	Despite the potential importance of giniite both terrestrially and on Mars, most of the								
111	research and data currently available focus upon the synthetic, generally ferrian, analog of the								
112	mineral, rather than the natural, typically more reduced form. To our knowledge, there are few								

data on the natural mineral and the only characterization was over 40 years ago by Keller (1980a;

114 1980b), who originally documented the mineral with X-ray diffraction, electron microprobe and

thermogravimetric analysis (TGA). The original structure was reported as orthorhombic

116 (Fleischer et al., 1980; Keller, 1980a), but following work suggested this assessment was the

result of twinning and the structure was revised to monoclinic (Keller, 1980b). Despite this,

giniite is still sometimes reported as orthorhombic (e.g. Liu et al., 2017; Zhang et al., 2013). In

this work we use modern single-crystal X-ray diffraction with an area detector on natural ginite

120 from the type locality, to reassess the structure in the correct monoclinic system. Additionally, Raman

spectroscopy and electron microprobe techniques are employed to revisit and document thechemistry.

- 123
- 124

Background

125 Minerals exhibit characteristics of their formation environments. In the case of secondary phosphate minerals, these characteristics may include temperature, pH, chemistry, and oxidation 126 127 state of any interacting fluids (Moore, 1973; Hawthorne, 1998; Dill et al., 2008). Vivianite $[Fe_3^{2+}(PO_4)_2 \cdot 8H_2O]$ for instance, indicates a near neutral pH, anoxic, reducing, low temperature, 128 high water:rock ratio aqueous formation environment (Hawthorne, 1998; McGowan and 129 Prangnell, 2006). Brushite $[Ca(HPO_4) \cdot 2H_2O]$ and monetite $[Ca(HPO_4)]$ are indicators of acidic, 130 131 and potentially biogenic formation environments on Earth (Dumitras et al., 2004; Dosen and Giese, 2011; Frost and Palmer, 2011; Frost et al., 2013b). Although not confirmed on Mars, 132 brushite has been suggested as a possible acidic weathering product on that planet (Hurowitz et 133 134 al., 2006; Ming et al., 2006). Secondary Al- and Fe-phosphates are also probable components in the P-enriched amorphous fraction of soils documented at Gale Crater by the Mars Science 135 Laboratory *Curiosity*, again with implications for past aqueous Martian weathering environments 136 (Morris et al., 2013; Tu et al., 2014; Vaniman et al., 2014; Rampe et al., 2016). All of these 137 secondary phosphate minerals have the potential to inform us about past and present formation 138 environments, including those on Mars. 139 Giniite is no exception and its presence and paragenesis can provide detailed insights 140 141 regarding its formation environment. On Earth, the mineral typically occurs within pegmatites or iron-bearing ore bodies (Keller, 1980a; Jambor and Dutrizac, 1988; Nunes et al., 2009). In 142 pegmatite settings, the mineral is a product of hydrothermal alteration of primary triphylite 143

[LiFePO₄]. Keller (1980a) identified it as part of a paragenetic or age sequence of triphylite \rightarrow 144 145 hureaulite \rightarrow [an unidentified dark green mineral + giniite] \rightarrow tavorite \rightarrow leukophosphite. Keller (1980a) speculated that giniite took the place of barbosalite $[Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}]$ in a similar sequence 146 147 at other pegmatites in the region (e.g. Keller and Knorring, 1989), suggesting giniite is the 148 product of mid- to late-stage hydrothermal alteration (<250 °C) (Hawthorne, 1998). In metal ore bodies the genetic history of giniite is less clear. Phosphorus is a common 149 150 impurity in iron-bearing metal ore bodies (Cheng et al., 1999; Delvasto et al., 2008; Ofoegbu, 151 2019), and at the Silver Coin mine in Nevada, USA, phosphate minerals, including giniite, are products of acidic hydrothermal precipitation associated with the ore body (Adams et al., 2015). 152 However, at mines near Saalfeld, Germany, giniite appears to occur as a low temperature 153 weathering product of the ore body associated with a hydrous mineral gel formed in open natural 154 caves (Ullrich, 2017). 155

Recent industrial, technologic, and scientific interests in the mineral (noted above) have
led to several synthesis methods and studies. Most of these synthesis methods produce a fully

158 ferric form of the mineral we refer to as ferrian giniite $[Fe^{3+}_{5}(PO_{4})_{4}(OH)_{3} \cdot H_{2}O]$ (e.g. Jambor and

159 Dutrizac, 1988; Rouzies et al., 1994; Frost et al., 2007; Duan et al., 2013; Zhang et al., 2013;

160 Nedkov et al., 2016; Han et al., 2017; Liu et al., 2017). However, mixed Fe valence giniite more

similar to natural giniite has also been synthesized with ferrous/ferric content up to $Fe^{2+}_{1.7}/Fe^{3+}_{3.3}$

162 (Rouzies et al., 1994). To account for different Fe^{2+}/Fe^{3+} ratios, charge balance is maintained by

163 changes in the OH^{-/} H₂O ratio through hydrating/dehydrating OH⁻ sites (Keller, 1980a; Rouzies

tet al., 1994) and can be expressed as

165
$$[Fe^{2+}_{x} Fe^{3+}_{(5-x)}(PO_4)_4(OH)_{(3-x)} \cdot (1+x)H_2O].$$

166 It is of note, however, that in the absence of measured data, giniite is often reported with $2 H_2O$

units regardless of Fe valence or OH⁻ content (e.g. Roncal-Herrero et al., 2009; Zhang et al.,

168 2015; Priambodo et al., 2017). In addition, x=1.7 is the highest Fe²⁺ content currently observed.

169 Corbin et al., (1986) synthesized a fully ferrous phase $[Fe_5^{2+} P_4O_{20}H_{10}, \text{ or } Fe_5^{2+} H_2(PO_4)_4 \cdot 4H_2O]$

170 (i.e., x=5) referred to as giniite (e.g. Dyar et al., 2014; Gonça ves et al., 2017). However, a fully

171 ferrous giniite structure is not stable, and instead this chemistry adopts the hureaulite structure

172 $[Mn_5(PO_3OH)_2(PO_4)_2 \cdot 4H_2O]$ (Corbin et al., 1986).

Although the rare natural occurrence of giniite on Earth somewhat limits paragenetic and 173 174 minerogenetic data, the conditions of giniite synthesis can yield further insight into the environments where the mineral may form. Based on synthesis methods, giniite forms under 175 relatively high water:rock ratios (>10:1) and formation temperatures from 25° to 250°C (>150°C 176 appearing optimum for highest yields) (Rouzies et al., 1994; Roncal-Herrero et al., 2009; 177 Hausrath et al., 2013; Nedkov et al., 2016; Gonca ves et al., 2017). Highly acidic conditions 178 appear to be optimum (pH 0.6 to 2) (Jambor and Dutrizac, 1988; Hausrath et al., 2013). 179 However, in the presence of other monovalent cations like Na and K, giniite can form at as high 180 as pH 6 (Gonça ves et al., 2017). While these conditions represent a range of potential settings 181 for giniite formation, the mineral can exhibit variable chemistry and morphology while 182 maintaining the giniite structure (Jambor and Dutrizac, 1988; Zhang et al., 2013) and these 183 184 aspects may reflect specific details of formation conditions. For instance, Roncal-Herrero (2009) found that crystal morphology of giniite synthesized at 150°C was spheroidal while giniite 185 synthesized at 200°C had a bi-pyramidal morphology. Other studies have noted morphology 186 dependencies based on solution Fe and P concentrations (dendritic, spherical, and octahedral) 187 (Liu et al., 2017), and the presence of different organic compounds in synthesis solutions 188 (spheres and star-like) (Duan et al., 2013; Han et al., 2017). Tubular morphologies have been 189

reported as products of biogenic formation at 25°C (Nedkov et al., 2016). The pH and presence
of Li, Na, or K in solution also appear to act on morphology (asterisk- or flower-like, and
dendritic morphologies) (Gonça ves et al., 2017). It is not clear if the Li, Na, or K substitute into
giniite in that study, however SO₄²⁻ substitution for PO₄³⁻ has been noted (Jambor and Dutrizac,
1988) and divalent cations including Mn and Mg are known to incorporate into the mineral
(Keller, 1980a). These conditions, though potentially broader, are not inconsistent with what is
known about natural giniite formation environments.

197 Although giniite has not been definitively identified on Mars, several lines of evidence suggest that it may be present. Experiments that mimic Martian conditions of acidic solutions 198 placed in contact with a mixture of fluorapatite, olivine, and basaltic glass at 150°C by Hausrath 199 et al. (2013) produced ferrian giniite [Fe₅(PO₄)₄(OH)₃·2H₂O]. Follow-up Mössbauer 200 measurements of the ferrian giniite alteration products were consistent with analyses performed 201 by the Mars Exploration Rover Spirit on Paso Robles soil at Gusev Crater. Hausrath et al. (2013) 202 could not confirm the phase on Mars based on Mössbauer alone, as measurements were also 203 204 consistent with ferric sulfate phases (Hausrath et al., 2013; Dyar et al., 2014). However, $Fe_2O_3 +$ FeO concentrations in PasoRobles and PasoLight1 soils on Mars are too high to be accounted for 205 solely by sulfate phases and indicate acid fluid transport in high fluid:rock ratios to the location 206 207 of the Paso Robles soils, general conditions shown to precipitate giniite. McCollom et al. (2018) also suggested giniite may help explain phosphate immobility in the Burns formation at 208 Endurance Crater, as well as the potentially high P measured in alteration halos around fractures 209 previously documented in the Stimson and Murray formations at Gale Crater suggesting the 210 presence of phosphate-rich fluids (Yen et al., 2017). The P-containing fluids that formed these 211 alteration haloes have also been quantitatively modeled (Hausrath et al., 2018). Rampe et al. 212

213	(2017), suggest acidic phosphate-rich fluids in the lower Murray at Gale Crater. This indicates
214	conditions suitable for the natural formation of giniite, especially considering giniite genesis at
215	the Silver Coin Mine, Nevada. Therefore, formation of giniite or other ferric phosphate phases
216	may have occurred at multiple locations on Mars. Updating and refining our fundamental
217	knowledge of these minerals, and investigating them more deeply, will help us to detect and
218	identify them on the Martian surface.
219	
220	Experimental
221	Materials
222	A natural sample of giniite was acquired from the Sandamab pegmatite, Namibia by the
223	RRUFF project (Lafuente et al., 2016). Sandamab (sometimes spelt Sandamap) pegmatite is the
224	type locality for the mineral as originally identified by Keller (1980a; 1980b). The sample was a
225	black fragment within a more massive sample of associated triphylite, hureaulite, yellow-
226	greenish tavorite, and black heterosite and was preliminarily identified as giniite based on color
227	and rough habit. RRUFF reference number is R060765 (Supplementary Figure S1).
228	
229	Analytical Methods
230	The broad scan Raman spectrum of giniite was collected from a randomly oriented
231	crystal with a Thermo Almega microRaman system using a solid-state laser with a frequency of
232	532 nm at 150 mW and a thermoelectrically cooled CCD detector. The laser is partially polarized
233	with 4 cm ^{-1} resolution and a spot size of 1 μ m.
234	Chemical analyses were carried out on a Cameca SX-100 electron microprobe (EMP).
235	The giniite sample was mounted in epoxy, polished and carbon coated. Samples were analyzed

236 using wavelength-dispersive spectroscopy (WDS) X-ray analysis. Analysis conditions were 15 237 keV and 10 nA using a 2 μ m beam. Standards and configuration package are detailed in Supplementary Table S1. Multiple analyses (n=15, Figure 1) of the giniite crystal were taken and 238 239 averaged. EMP does not detect OH-, H₂O, or Fe valence. To estimate OH⁻ and H₂O, ideal stoichiometry as determined by Keller (1980a) of $Fe^{2+}Fe^{3+}_4(PO_4)_4(OH)_2 \cdot 2H_2O$ was used. To 240 estimate the Fe valence ratio, the EMP data were fit to the ideal formula with $Fe^{3+} = 4$ formula 241 242 units. Synthetic giniite is known to have variable Fe valence and this may be possible for natural 243 giniite as well. Therefore, the EMP data were further fit to a range of stoichiometries based on $Fe^{2+}_{x}Fe^{3+}_{(5-x)}(PO_{4})_{4}(OH)_{(3-x)}$ · (1+x)H₂O (Keller, 1980; Rouzies et al., 1994) by varying x to 244 determine the Fe^{3+} formula units and calculating the resulting Fe^{2+} formula units and the 245 estimated OH and H₂O. A "best fit" was determined based on total Fe and PO₄ formula units 246 being closest to the ideal of 5 and 4 respectively, in the same fit. 247 Single-crystal X-ray diffraction (SC-XRD) of giniite was carried out using MoKa 248 radiation on a Rigaku XtaLAB Synergy diffractometer and radiation at 50 kV and 1mA. All 249 250 reflections were indexed on the basis of a monoclinic unit-cell (Table 1, Supplementary Table S2). The systematic absences of reflections suggested the possible space group Pn, or P2/n. The 251 crystal structure was solved and refined using SHELX2018 (Sheldrick, 2015a; Sheldrick, 2015b) 252 253 based on space group P2/n, because it yielded better refinement statistics in terms of bond lengths and angles, atomic displacement parameters, and R factors. All H atoms were located 254 from the difference Fourier maps. The ideal chemistry was assumed during the refinements. The 255 positions of all atoms were refined with anisotropic displacement parameters, except those for 256 the H atoms, which were refined only with isotropic parameters. 257

259

Results

260 Structure

X-ray diffraction data collected in this study allowed calculation of a powder X-ray 261 262 diffraction pattern that is a very close match to published patterns of both a synthetic ferric 263 giniite (Frost et al., 2007) and Keller's (1980a) natural giniite sample (Figure 2). The close match suggests the study sample is indeed giniite. Final coordinates and displacement parameters of 264 265 atoms in giniite are listed in Supplementary Table S3, and selected bond distances in Table 2. 266 Calculated bond-valence sums using the parameters of Brese and O'Keeffe (1991) are given in Table 3. Crystallographic results of the single crystal data indicate giniite is monoclinic P2/n, a =267 10.3472(6), b = 5.1497(2), c = 14.2338(7) Å, $\beta = 111.175(6)^{\circ}$ and V = 707.24(7) Å³ (Table 1 and 268 Supplementary Table S2). Atomic positions in Supplementary Table S3 show three unique Fe 269 sites (here labeled Fe1, Fe2 and Fe3) and two unique PO₄ sites (P1 and P2), as well as O and H 270 positions. Determined Fe-O and P-O bond length values fall within expected ranges (Gagné and 271 Hawthorne, 2018; Kanowitz and Palenik, 1998) with average (Fe1-O) bond lengths (2.14 Å) 272 longer than the other two (2.01 Å) indicating that Fe1 contains Fe^{2+} while Fe2 and Fe3 contain 273 Fe^{3+} (Table 2). Bond valence calculations are consistent with this assignment and are generally as 274 expected (Table 3) with the potential exception of the O7 site which is ~0.45 deficient. 275 276 Chemistry Results of 15 EMP analyses (Figure 1 and Supplementary Table S4) were averaged into a 277

single analysis which appears in Table 4 along with Keller's (1980a) original EMP analysis. Low
analysis totals are the result of unaccounted for OH⁻ and molecular water which the technique
cannot directly detect. EMP can also not detect Fe valence state. In order to estimate wt% OH⁻,

H₂O, and Fe²⁺/Fe³⁺ for comparison to Keller (1980a), the analyses from this study and Keller

(1980a) were fit to the ideal giniite formula of $Fe^{2+}Fe^{3+}_4(PO_4)_4(OH)_2 \cdot 2H_2O$ with $Fe^{3+}=4.00$.

283 This fitting produced an average stoichiometry of

284 $(Fe^{2+}_{0.80}Mn_{0.11}Mg_{0.02})_{\Sigma=0.93}Fe^{3+}_{4.00}(PO_4)_{4.03}(OH)_{2.00} \cdot 2H_2O$ for this study and

285 $(Fe^{2+}_{0.67}Mn_{0.07}Mg_{0.13})_{\Sigma=0.87}Fe^{3+}_{4.00}(PO_4)_{4.05}(OH)_{2.00} \cdot 2H_2O$ for Keller (1980a) data. Incorporating

the estimates as wt.% into the EMP data improved the analysis totals for this study and Keller

287 (1980a) to ~97.15 and 91.83 wt% respectively (Table 4).

EMP data fit to a range of Fe valence ratios based on $[Fe^{2+}_{x} Fe^{3+}_{(5-x)}(PO_4)_4(OH)_{(3-x)}$.

289 $(1+x)H_2O$ (Keller, 1980; Rouzies et al., 1994), with x used to determine the Fe³⁺ valence (i.e.

290 Fe^{2+} was calculated), produced a "best fit" stoichiometry of

291 $(Fe^{2+}_{0.90}Mn_{0.11}Mg_{0.02})_{\Sigma=1.03}Fe^{3+}_{3.92}(PO_4)_{4.05}(OH)_{1.92} \cdot 2.08H_2O$ (Supplementary Tables S5 and S6).

This fit is based on x = 1.08 to determine Fe³⁺, however, the calculated Fe²⁺ is 1.03 formula units.

A broad scan Raman spectrum in Figure 3 is consistent with previously reported giniite 294 spectra. There is one non-equivalent hydroxyl group and one water molecule with two non-295 equivalent O-H pairs in giniite, consistent with the single sharp peak at 3324 cm⁻¹ that overlaps 296 with the broad peak at \sim 3250 cm⁻¹, typical of overlapping O-H stretching modes for OH and H₂O 297 (e.g. Frost et al., 2011; Kolesov, 2006; Weber et al., 2018). PO₄ symmetric stretching modes are 298 in the 800 - 1100 cm⁻¹ range with asymmetric v_3 stretching in the 1100 to 1200 cm⁻¹ range. In 299 phosphates, bands in the 400 - 650 cm⁻¹ range are generally representative of O-P-O angle 300 bending (both v_2 and v_4) (Frost et al., 2007; Hausrath and Tschauner, 2013). The sharp bands in 301 the 200 – 440 cm⁻¹ range are typical of Fe-O stretches (Aatig et al., 2016; Frost et al., 2007, 302 2013a,c). For a plot of raw data, see Supplementary Figure S2. 303

305

Discussion

306 Minerals like giniite are a challenge to chemically characterize. They contain both ferric 307 and ferrous iron as well as OH^{-} and H_2O . These components are often undetectable or 308 undistinguishable by common analytical techniques, including electron microprobe. As a result, 309 Keller (1980a) noted low EMP totals for giniite (Table 4) in that study. Using EMP and X-ray data, Keller was able to produce a generalized formula for giniite accounting for the OH/H₂O 310 which can be expressed as 311 $Fe^{2+x} Fe^{3+}_{(5-x)} (PO)_4 (OH)_{(3-x)} \cdot (1+x)(H_2O)$ 312 Thermo-gravimetric analysis allowed Keller (1980a) to estimate water content and thereby 313 conclude "x" in the expression to be 1 which produced an Fe^{3+} : $Fe^{2+}+Fe^{3+}$ formula unit ratio of 314 0.80 (i.e., Fe^{2+}/Fe^{3+}_4). Thus, $Fe^{2+}Fe^{3+}_4(PO)_4(OH)_2 \cdot 2H_2O$ was accepted as the ideal formula for 315 giniite by the International Mineralogical Association (IMA). 316 In the present study, Raman data, which are generally consistent with data from a 317 318 previously characterized synthetic ferric giniite sample (Frost et al., 2007), confirm OH/H₂O in the study sample. EMP analyses from this study, fit to the ideal formula by fixing $Fe^{3+} = 4$ 319 formula units, generate an Fe^{3+} : $Fe^{2+}+Fe^{3+}$ formula unit ratio of ~0.80 and calculated 320 stoichiometry even closer to the ideal formula than Keller's original work fit in the same way 321 (Supplementary Table S5). Like Keller (1980a), the original EMP analyses here produced low 322 totals. However, accounting for the Fe valence and OH/H₂O produces totals of ~97% (Table 4). 323 An additional stoichiometric best fit with the EMP data using the more generalized formula of 324 giniite $[Fe^{2+}x Fe^{3+}(5-x) (PO)_4(OH)_{(3-x)} \cdot (1+x)(H_2O)]$ also produces an Fe^{3+} : $Fe^{2+}+Fe^{3+}$ formula unit 325 ratio of ~0.80 (i.e., $Fe^{2+}_{1,03}/Fe^{3+}_{3,92}$ or $x \sim 1$) (Supplementary Table S6). Thus, chemical data in 326 this study are consistent with Keller (1980a) and the ideal giniite formula. 327

328 It is of note, however, that in determining the ideal formula for giniite, Keller (1980a) 329 assumed the divalent site stoichiometry to be a fixed integer. A number of studies have documented synthetic giniite with Fe^{3+} : $Fe^{2+}+Fe^{3+}$ ratios ranging from 1 (ferrian giniite) to as 330 low as 0.65 (e.g. Rouzies et al., 1994; Roncal-Herrero et al., 2009; Duan et al., 2013; Goncalve 331 et al., 2017; Priambodo et al., 2017). Consequently, Fe^{2+} is observed to range from 0 to 1.7 332 formula units while still maintaining the giniite structure. In fact, one of the interesting aspects of 333 giniite is the range of chemistry, and even morphology, that the mineral can possess while still 334 335 maintaining the giniite structure (e.g. Jambor and Dutrizac, 1988; Zhang et al., 2013; Gonca ves et al., 2017; Martins et al., 2020). Some of this range can be attributed to analytical uncertainty. 336 Data in this study, for instance, allow for variation in the Fe^{3+} : $Fe^{2+}+Fe^{3+}$ ratio of 0.81 to 0.76 337 (Fe²⁺ content of 1.0 to 1.2) before the summed Fe or PO₄ stoichiometry begin to deviate too far 338 from giniite. However, the observed range in the literature is too large to be explained by this 339 uncertainty alone. While these variations occur in synthetic forms of giniite, and this study 340 focuses on a natural sample as would be found on Mars, the synthesis conditions of at least some 341 342 of the giniite discussed here are similar to the known petrogenetic/minerogenetic conditions of natural giniite in both pegmatite and ore body settings. Therefore, though the data in this study 343 are consistent with the ideal Fe^{3+} : $Fe^{2+}+Fe^{3+}$ ratio of 0.80 inferred by Keller (1980a), this ratio 344 may only be nominally true in natural specimens. 345

Crystallographically, Keller (1980a) originally reported giniite as orthorhombic and this was how it was initially documented as a new mineral (Fleischer et al., 1980). Follow-up work by Keller (1980b) showed that the orthorhombic determination was a probable consequence of unrecognized twinning, and the natural mineral was actually monoclinic. However, synthetic giniite has still been reported as orthorhombic (e.g. Liu et al., 2017; Zhang et al., 2013), possibly

351	as a product of confusion from the literature. Single crystal data/refinement results in this study							
352	of natural giniite indicate our sample to be monoclinic, consistent with Keller (1980b).							
353	The giniite structure can be described as short chains (Fe1-Fe2-Fe1 trimers) of face-							
354	sharing irregular FeO ₆ octahedra oriented along [100], corner-linked by both 6-coordinated							
355	evenly spaced FeO ₆ octahedra associated with Fe3 arranged in columns along [010], and							
356	alternating (P1)O ₄ and (P2)O ₄ tetrahedra (Figure 4). In the context of this description the Fe1 site							
357	houses the ferrous iron component. The O atom of the H_2O molecule is bonded to ferric Fe3 and							
358	ferrous Fe1 atoms. The O atom in the OH group is bonded to all three Fe atoms and, with H, it is							
359	tetrahedrally coordinated (Figure 4). The structure shares some similarities with that of							
360	barbosalite $[Fe^{2+}Fe^{3+}_2(PO_4)_2(OH)_2]$ (Poienar et al., 2020; Redhammer et al., 2000) which also							
361	has Fe trimers joined to phosphate and an additional Fe octahedral site, although in that mineral							
362	the trimer valences are ordered Fe^{3+} , Fe^{2+} , Fe^{3+} , whereas in giniite the trimers are sequenced							
363	Fe^{2+} , Fe^{3+} , Fe^{2+} . These similarities are in-line with speculation by Keller (1980a) that giniite							
364	shares certain structural components with other Fe-hydroxy-phosphates and that in more							
365	generalized pegmatitic settings giniite may take the place of barbosalite in the evolution of							
366	secondary minerals associated with the decomposition of triphylite.							
367	Of further interest in this study is the "O7" site associated with the Fe1 and P2 sites. Fe-O							

and P-O bond lengths and bond valence calculations are generally as expected (Tables 2 & 3). However, bond valence sums for the O7 site are deficient (~1.5 e). Non-ideal bond valence sums can result for many reasons, including vacancies or undetected substitutions/components in the structure. In this study, the configuration of the O7 sites results in them being adjacent across an opening in the giniite structure (Figure 4, Supplementary Figure S3). The Fe1-O7-P2 bond angle is 127.33° and the O7-O7 distance is approximately 2.46 Å. It may be possible that H⁺ protons

374 occupy some of these "O7 voids" oscillating between O7 sites, and a shared H⁺ proton would 375 account for the valence value. Proton oscillation or "hopping" between sites has previously been indicated in the Fe-phosphate minerals barbosalite $[Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}]$ and ludlamite 376 377 $[(Fe,Mn,Mg)_3(PO4)_2 \cdot 4H_2O]$ where H⁺ ions have been suggested to oscillate between OH sites 378 and PO₄ (Frost et al., 2013a,c). Many analytical techniques cannot detect H⁺, and for techniques that can, because there is already significant OH⁻ or H₂O in giniite, it is unlikely such additional 379 H⁺ would be easily identified. If undetected H⁺ resides in the "O7 void", this may explain the 380 381 bond valence deficiency and add to the interesting nature of the mineral. Giniite has gained recent attention in industry and as a potential mineral occurring on 382 Mars. The characteristic of the mineral to maintain the giniite structure and chemistry while 383 384 exhibiting different morphologies based on formation environment mean it could be a powerful 385 indicator of past environments and potentially of life, on Earth or Mars. Overall, the results of this study refine and better detail the structure of giniite and confirm that giniite is indeed a 386 monoclinic mineral rather than orthorhombic. The results here are also consistent with the ideal 387 formula, including the Fe valence ratio, for natural giniite. However, based on synthetic giniite, 388 variations in the Fe valence ratio cannot be ruled out in the natural mineral, and this should be 389 further investigated in the future. Along with morphology, the Fe valence ratio may be an 390 391 indicator of formation conditions. In addition, if considering giniite as a potential Martian resource, valence can influence how, and how much, water and H⁺ can be evolved from the 392 mineral. 393 394 Raman spectrometers, like the spectrometers on the SuperCam and Scanning Habitable

Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument
 suites on *Perseverance*, X-ray diffractometers, like the CheMin instrument on *Curiosity*, and the

397	Mössbauer instruments carried by Spirit and Opportunity all have the potential to identify giniite							
398	in situ. This is especially the case if a combination of these instruments is deployed. We							
399	encourage deployment of these mineralogical instruments on future Mars missions with data							
400	libraries that include secondary phosphates to help identify minerals like giniite that can							
401	elucidate habitability and potentially be used as a resource.							
402	Implications							
403	Giniite has become a recent mineral of interest as a potential component in applications							
404	including water purification, energy storage, and bio-medical materials on Earth. However,							

secondary phosphate minerals, like giniite, are also likely to hold a wealth of information

406 regarding past Martian surface processes and past environments. If confirmed on Mars, the

407 variable morphologies and broad formation conditions of giniite may make the mineral

408 especially important as an indicator of past environments and habitably. The discovery of giniite

409 with tubular morphologies on Mars, or in samples returned from Mars, might also be an indicator

410 of past life on the planet. In addition, terrestrial investigations of giniite as a resource in

411 technology and industry have potential implications for Mars. If substantial amounts of giniite

412 are present on Mars, long-term human exploration missions to the planet may be able to utilize

the mineral in applications developed on Earth (e.g., water purification, energy storage, bio-

414 medical materials). Beyond this, giniite is also potentially a resource for phosphate, water, and

415 fuel generation on Mars.

Deepening our knowledge base of secondary minerals that are possible or probable on the Martian surface, like giniite, will enhance our resource flexibility during long-term missions on Mars while also yielding insight into the Martian past. Secondary phosphate minerals in samples potentially collected by the *Perseverance* rover and returned by future missions will further our

420	knowledge of ancient aqueous environments on Mars, their habitability, and potential resources
421	for future human missions. However, if minerals like giniite are to be fully explored as scientific
422	and practical resources, up to date fundamental data, like those provided in this study, are
423	essential.
424	
425	Acknowledgements
426	We would like to acknowledge the RRUFF project for data and sample access to the giniite used
427	in this study.
428	

429	References Cited							
430 431	Aatiq, A., Tigha, M.R., Fakhreddine, R., Bregiroux, D., and Wallez, G. (2016) Structure,							
432	infrared and Raman spectroscopic studies of newly synthetic A^{II} (Sb ^V _{0.50} Fe ^{III} _{0.50})(PO ₄) ₂							
433	(A = Ba, Sr, Pb) phosphates with yavapaiite structure. Solid State Sciences, 58, 44-54.							
434	Adams, P.M., Wise, W.S., and Kampf, A.R. (2015) The Silver Coin Mine. The Mineralogical							
435	Record, 45(September–October), 702-728.							
436	Adcock, C.T., and Hausrath, E.M. (2015) Weathering Profiles in Phosphorus-Rich Rocks at							
437	Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially							
438	Habitable Near-Neutral Waters. Astrobiology, 15, 1060-1075.							
439	Adcock, C.T., Hausrath, E.M., and Forster, P.M. (2013) Readily available phosphate from							
440	minerals in early aqueous environments on Mars. Nature Geoscience, 6, 824-827.							
441	Adcock, C.T., Tschauner, O., Hausrath, E.M., Udry, A., Luo, S., Cai, Y., Ren, M., Lanzirotti, A.,							
442	Newville, M., and Kunz, M. (2017) Shock-transformation of whitlockite to merrillite and							
443	the implications for meteoritic phosphate. Nature communications, 8(1), 1-8.							
444	Adcock, C., Hausrath, E., Rampe, E., Panduro-Allanson, R., and Steinberg, S. (2021) In Situ							
445	Resources from Water-Rock Interactions for Human Exploration of Mars. In LPI, Ed.							
446	52nd Lunar and Planetary Science Conference, p. 1665. LPI, Virtual.							
447	Benner, S.A., and Kim, HJ. (2015) The case for a Martian origin for Earth life. Instruments,							
448	Methods, and Missions for Astrobiology XVII, 9606, 96060C. International Society for							
449	Optics and Photonics.							
450	Berger, J., Schmidt, M., Izawa, M., Gellert, R., Ming, D., Rampe, E., VanBommel, S., and							
451	McAdam, A. (2016) Phosphate stability in diagenetic fluids constrains the acidic							

452	alteration model for lower Mt. Sharp sedimentary rocks in Gale crater, Mars. 47th Lunar						
453	and Planetary Science Conference, p. 1652. LPI, The Woodlands.						
454	Berger, J., VanBommel, S., Clark, B., Gellert, R., House, C., King, P., McCraig, M., Ming, D.,						
455	O'Connell-Cooper, C., and Schmidt, M. (2021) Manganese-and Phosphorus-Rich						
456	Nodules in Gale Crater, Mars: APXS Results from the Groken Drill Site. In LPI, Ed.						
457	52nd Lunar and Planetary Science Conference, p. 2194. LPI, Virtual.						
458	Brearley, A., and Jones, R. (1998) Chondritic Meteorites. In J. Papike, Ed. Planetary materials,						
459	36, p. 3-1. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,						
460	Chantilly, Virginia.						
461	Brese, N., and O'keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica						
462	Section B: Structural Science, 47(2), 192-197.						
463	Burcar, B., Pasek, M., Gull, M., Cafferty, B.J., Velasco, F., Hud, N.V., and Menor-Salván, C.						
464	(2016) Darwin's warm little pond: a one-pot reaction for prebiotic phosphorylation and						
465	the mobilization of phosphate from minerals in a urea-based solvent. Angewandte						
466	Chemie International Edition, 55(42), 13249-13253.						
467	Carr, M.H., and Head III, J.W. (2003) Oceans on Mars: An assessment of the observational						
468	evidence and possible fate. Journal of Geophysical Research: Planets, 108(E5), 5042						
469	Chen, Q., Wei, C., Zhang, Y., Pang, H., Lu, Q., and Gao, F. (2014) Single-crystalline						
470	hyperbranched nanostructure of iron hydroxyl phosphate Fe ₅ (PO ₄) ₄ (OH) ₃ ·2H ₂ O for						
471	highly selective capture of phosphopeptides. Scientific Reports, 4(1), 1-7.						
472	Cheng, C.Y., Misra, V.N., Clough, J., and Muni, R. (1999) Dephosphorisation of western						
473	australian iron ore by hydrometallurgical process. Minerals Engineering, 12(9), 1083-						
474	1092.						

- 475 Corbin, D., Whitney, J., Fultz, W., Stucky, G., Eddy, M., and Cheetham, A. (1986) Synthesis of
- 476 open-framework transition-metal phosphates using organometallic precursors in acidic
- 477 media. Preparation and structural characterization of $Fe_5P_4O_{20}H_{10}$ and $NaFe_3P_3O_{12}$.
- 478 Inorganic Chemistry, 25(14), 2279-2280.
- 479 Delvasto, P., Valverde, A., Ballester, A., Muñoz, J.A., González, F., Blázquez, M.L., Igual, J.M.,
- and García-Balboa, C. (2008) Diversity and activity of phosphate bioleaching bacteria
 from a high-phosphorus iron ore. Hydrometallurgy, 92(3), 124-129.
- 482 Dill, H.G., Melcher, F., Gerdes, A., and Weber, B. (2008) The origin and zoning of hypogene
- and supergene Fe–Mn–Mg–Sc–U–REE phosphate mineralization from the newly
- 484 discovered Trutzhofmühle aplite, Hagendorf pegmatite province, Germany. The
- 485 Canadian Mineralogist, 46(5), 1131-1157.
- 486 Dosen, A., and Giese, R.F. (2011) Thermal decomposition of brushite, CaHPO4 · 2H2O to
- 487 monetite CaHPO4 and the formation of an amorphous phase. American Mineralogist,
 488 96(2-3), 368-373.
- 489 Duan, X., Li, D., Zhang, H., Ma, J., and Zheng, W. (2013) Crystal-Facet Engineering of Ferric
- 490 Giniite by Using Ionic-Liquid Precursors and Their Enhanced Photocatalytic
- 491 Performances under Visible-Light Irradiation. Chemistry–A European Journal, 19(22),
 492 7231-7242.
- Dumitras, D.-G., Marincea, S., and Fransolet, A.-M. (2004) Brushite in the bat guano deposit
 from the" dry" Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrbuch fur
 Mineralogie-Abhandlungen, 180(1), 45-64.

496	Dyar, M.D.	, Jawin, E.R.	, Breves, E.	, Marchand,	G., Nelms,	M., Lane	, M.D., Mertzman	, S.A.,
-----	------------	---------------	--------------	-------------	------------	----------	------------------	---------

- 497 Bish, D.L., and Bishop, J.L. (2014) Mössbauer parameters of iron in phosphate minerals:
- 498 Implications for interpretation of martian data. American Mineralogist, 99(5-6), 914-942.
- 499 Filiberto, J., Gross, J., and McCubbin, F.M. (2016) Constraints on the water, chlorine, and
- fluorine content of the Martian mantle. Meteoritics & Planetary Science, 51(11), 20232035.
- Fleischer, M., Cabri, L., Chao, G., and Pabst, A. (1980) New Mineral Names. American
 Mineralogist, 65, 1065 1070.
- 504 Frost, R.L., and Palmer, S.J. (2011) Thermal stability of the 'cave'mineral brushite CaHPO₄.
- 505 2H₂O–Mechanism of formation and decomposition. Thermochimica Acta, 521(1-2), 14506 17.
- Frost, R.L., Wills, R.-A., and Martens, W.N. (2007) A Raman spectroscopic study of synthetic
 giniite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(1),
 42-47.
- 510 Frost, R.L., Bahfenne, S., Čejka, J., Sejkora, J., Plášil, J., Palmer, S.J., Keeffe, E.C., and Němec,
- 511 I. (2011) Dussertite BaFe³⁺³(AsO₄)₂(OH)₅—a Raman spectroscopic study of a hydroxy-
- arsenate mineral. Journal of Raman Spectroscopy, 42(1), 56-61.
- 513 Frost, R.L., Xi, Y., López, A., Scholz, R., de Carvalho Lana, C., and e Souza, B.F. (2013a)
- 514 Vibrational spectroscopic characterization of the phosphate mineral barbosalite
- 515 $Fe^{2+}Fe_{2}^{3+}(PO4)_{2}(OH)_{2}$ Implications for the molecular structure. Journal of Molecular
- 516 Structure, 1051, 292-298.

517	Frost, R.L., Xi, Y., Millar, G., Tan, K., and Palmer, S.J. (2013b) Vibrational spectroscopy of
518	natural cave mineral monetite CaHPO4 and the synthetic analog. Spectroscopy Letters,
519	46(1), 54-59.
520	Frost, R.L., Xi, Y., Scholz, R., and Belotti, F.M. (2013c) Vibrational spectroscopic
521	characterization of the phosphate mineral ludlamite (Fe,Mn,Mg) ₃ (PO ₄) ₂ · 4H ₂ O–A
522	mineral found in lithium bearing pegmatites. Spectrochimica Acta Part A: Molecular and
523	Biomolecular Spectroscopy, 103, 143-150.
524	Gagné, O.C., and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen:
525	Results for the non-metals and discussion of lone-pair stereoactivity and the
526	polymerization of PO ₄ . Acta Crystallographica Section B: Structural Science, Crystal
527	Engineering and Materials, 74(1), 79-96.
528	Gellert, R., Rieder, R., Brückner, J., Clark, B., Dreibus, G., Klingelhöfer, G., Lugmair, G., Ming,
529	D., Wänke, H., and Yen, A. (2006) Alpha Particle X-ray Spectrometer (APXS): Results
530	from Gusev crater and calibration report. Journal of Geophysical Research: Planets, 111,
531	E02S05.
532	Goetz, W., Bertelsen, P., Binau, C.S., Gunnlaugsson, H.P., Hviid, S.F., Kinch, K.M., Madsen,
533	D.E., Madsen, M.B., Olsen, M., and Gellert, R. (2005) Indication of drier periods on
534	Mars from the chemistry and mineralogy of atmospheric dust. Nature, 436(7047), 62-65.
535	Gonçalve , R., Martins, R., Costa, C.M., Ferdov, S., and Lanceros-Méndez, S. (2017) Crystal
536	Morphology Control of Synthetic Giniite by Alkaline Cations and pH Variations. Crystal
537	Growth & Design, 17(9), 4710-4714.

538	Grotzinger, J.P., Sumner, D.Y., Kah, L., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K.,
539	Schieber, J., and Mangold, N. (2014) A habitable fluvio-lacustrine environment at
540	Yellowknife Bay, Gale Crater, Mars. Science, 343(6169), 1242777.
541	Han, C., Zhoumin, Ye, Q., Yao, L., and Xu, Z. (2017) Controllable synthesis of sphere-and star-
542	like Fe ₅ (PO ₄) ₄ (OH) ₃ • 2H ₂ O microcrystals for effective photo-Fenton-like degradation of
543	rhodamine B. Inorganic and Nano-Metal Chemistry, 47(6), 806-809.
544	Hausrath, E.M., and Tschauner, O. (2013) Natural fumarolic alteration of fluorapatite, olivine,
545	and basaltic glass, and implications for habitable environments on Mars. Astrobiology,
546	13(11), 1049-1064.
547	Hausrath, E., Golden, D., Morris, R., Agresti, D., and Ming, D. (2013) Acid sulfate alteration of
548	fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications
549	for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at
550	Gusev Crater, Mars. Journal of Geophysical Research: Planets, 118, 1-13.
551	Hausrath, E. M., Ming, D. W., Peretyazhko, T., and Rampe, E.B., (2018) Reactive transport and
552	mass balance modeling of the Stimson sedimentary formation and altered fracture zones
553	constrain diagenetic conditions at Gale crater, Mars. Earth and Planetary Science Letters,
554	491, 1-10.
555	Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. Mineralogical
556	Magazine, 62(2), 141-164.
557	Hong, Y.S., Ryu, K.S., and Chang, S.H. (2003) New Iron-Containing Electrode Materials for
558	Lithium Secondary Batteries. Electronics and Telecommunications Research Institute
559	Journal, 25(5), 412-417.

560	Hurowitz.	J.A.,	McLennan.	S	Tosca	N.	. Arvidson	. R.	. Michalski.	J.R.	. Ming	. D.W.	Schroder.
				,		,					2 4 2		

- 561 C., and Squyres, S.W. (2006) In situ and experimental evidence for acidic weathering of
 562 rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19.
- Jambor, J., and Dutrizac, J. (1988) Synthesis of the ferric analog of the ferrous-ferric phosphate,

564 giniite. Neues Jahrbuch für Mineralogie / Abhandlungen, 159(1), 51-58.

- Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014)
- 566 Phosphate minerals in LL chondrites: A record of the action of fluids during
- metamorphism on ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta,
 132, 120-140.
- 569 Kanowitz, S.M., and Palenik, G.J. (1998) Bond Valence Sums in Coordination Chemistry Using
- 570 Oxidation-State-Independent R 0 Values. A Simple Method for Calculating the Oxidation
 571 State of Iron in Fe- O Complexes. Inorganic Chemistry, 37(8), 2086-2088.

572 Keller, P. (1980a) GINIIT, $Fe^{2+}Fe_4^{3+}((H_2O)_2(OH)_2(PO_4)_4)$, Ein Neues Mineral Aus Dem

- 573Pegmatit von Sandamab Bei Usakos, Namibia. Neues Jahrbuch fürineralogie.
- 574 /Monatshefte, 2, 49-56.
- -. (1980b) GINIT, Fe²⁺ Fe₄³⁺ ((H₂O)₂(OH)₂(PO₄)₄): Neue Kristallographische Daten. Neues
 Jahrbuch fü⁻ Mineralogie / Monatshefte, 12, 561-563.
- Keller, P., and Knorring, O. (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia Part
 I: Phosphate mineral associations of the Clementine II pegmatite. European Journal of
 Mineralogy, 567-594.
- 580 Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P., Yen,
- A., Gellert, R., Evlanov, E., and Zubkov, B. (2004) Jarosite and hematite at Meridiani
- 582 Planum from Opportunity's Mössbauer spectrometer. Science, 306(5702), 1740-1745.

583	Kolesov, B. (2006) Raman investigation of H ₂ O molecule and hydroxyl groups in the channels
584	of hemimorphite. American Mineralogist, 91(8-9), 1355-1362.

Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2016) The power of databases: the RRUFF

- project. In A. T, and D.R. M, Eds. Highlights in mineralogical crystallography, p. 1-29.
- 587 Walter de Gruyter GmbH, Berlin.
- Liu, A., Ma, F., and Chen, Y. (2017) Synthesis of shape-controlled Fe₅(PO₄)₄(OH)₃·2H₂O
- 589 microcrystal via one-step hydrothermal method. Micro & Nano Letters, 12(5), 325-328.
- Lv, C., Duan, X., Deng, J., and Wang, T. (2017) LiFePO 4 mesocrystals coated with N-doped
 carbon from an ionic liquid for Li-ion batteries. CrystEngComm, 19(9), 1253-1257.
- 592 Martins, P., Salazar, H., Aoudjit, L., Gonçalves, R., Zioui, D., Fidalgo-Marijuan, A., Costa, C.,
- Ferdov, S., and Lanceros-Mendez, S. (2020) Crystal morphology control of synthetic
 giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole.
- 595 Chemosphere, 128300.
- 596 McCollom, T.M., Donaldson, C., Moskowitz, B., Berquó, T.S., and Hynek, B. (2018)
- 597 Phosphorous immobility during formation of the layered sulfate deposits of the Burns
 598 formation at Meridiani Planum. Journal of Geophysical Research: Planets, 123(5), 1230599 1254.
- McCubbin, F.M., and Jones, R.H. (2015) Extraterrestrial apatite: Planetary geochemistry to
 astrobiology. Elements, 11(3), 183-188.
- 602 McCubbin, F.M., Jolliff, B.L., Nekvasil, H., Carpenter, P.K., Zeigler, R.A., Steele, A., Elardo,
- 603 S.M., and Lindsley, D.H. (2011) Fluorine and chlorine abundances in lunar apatite:
- 604 Implications for heterogeneous distributions of magmatic volatiles in the lunar interior.
- 605 Geochimica et Cosmochimica Acta, 75(17), 5073-5093.

- 606 McCubbin, F.M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M., and Papike,
- 507 J.J. (2014) Volatile abundances of coexisting merrillite and apatite in the martian
- 608 meteorite Shergotty: Implications for merrillite in hydrous magmas. American
- 609 Mineralogist, 99(7), 1347-1354.
- McGowan, G., and Prangnell, J. (2006) The significance of vivianite in archaeological settings.
 Geoarchaeology: An International Journal, 21(1), 93-111.
- McSween, H., and Treiman, A. (1998) Planetary Materials. Reviews in Mineralogy, 36, 6-1.
- Miller, H.M., Mayhew, L.E., Ellison, E.T., Kelemen, P., Kubo, M., and Templeton, A.S. (2017)
- 614 Low temperature hydrogen production during experimental hydration of partially-

serpentinized dunite. Geochimica et Cosmochimica Acta, 209, 161-183.

- 616 Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D., Gellert, R., Yen, A., Clark, B.C.,
- 617 Squyres, S.W., Farrand, W.H., and Ruff, S.W. (2006) Geochemical and mineralogical
- 618 indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of
- 619 Geophysical Research: Planets, 111, E02S12.
- 620 Mojzsis, S.J., and Arrhenius, G. (1998) Phosphates and carbon on Mars: exobiological
- 621 implications and sample return considerations. Journal of Geophysical Research: Planets,
 622 103(E12), 28495-28511.
- 623 Mojzsis, S.J., Arrhenius, G., McKeegan, K., Harrison, T., Nutman, A., and Friend, C. (1996)
- Evidence for life on Earth before 3,800 million years ago. Nature, 384(6604), 55-59.
- 625 Moore, P. (1973) Pegmatite phosphates: descriptive mineralogy and crystal chemistry.
- 626 Mineralogical Record, 4(3), 103-130.
- 627 Morris, R.V., Klingelhoefer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza,
- P., Wdowiak, T., Fleischer, I., and Gellert, R. (2006) Mössbauer mineralogy of rock, soil,

629	and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop,
630	basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research:
631	Planets, 111(E12).
632	Morris, R.V., Ming, D., Blake, D., Vaniman, D., Bish, D., Chipera, S., Downs, R., Gellert, R.,
633	Treiman, A., Yen, A., and others and the MSL Science Team (2013) The amorphous
634	component in martian basaltic soil in global perspective from MSL and MER missions.
635	In LPI, Ed. 44th Lunar and Planetary Science conference, p. 1653. LPI, The Woodlands,
636	TX.
637	Nedkov, I., Groudeva, V., Angelova, R., Iliev, M., and Slavov, L. (2016) New Iron
638	Oxides/Hydroxides Biomaterials for Application in Electronics and Medicine. Machines.
639	Technologies. Materials., 10(12), 48-51.
640	Nunes, A.P.L., de Araujo, A.C., de Magalhães, P.R., and Viana, A.B.H. (2009) Occurence of
641	phosphorus-bearing minerals in Brazilian iron ores. Proceedings of the GEOMIN 2009
642	Conference, First International Seminar on Geology for the Mining Industry, p. 10-12,
643	Antofagasta, Chile.
644	Ofoegbu, S.U. (2019) Technological challenges of phosphorus removal in high-phosphorus ores:
645	Sustainability implications and possibilities for greener ore processing. Sustainability,
646	11(23), 6787.
647	Pasek, M.A., and Kee, T.P. (2011) On the origin of phosphorylated biomolecules. In R. Egel,
648	Lankenau, D., Mulkidjanian, A.Y., Ed. Origins of Life: The Primal Self-Organization, p.
649	57-84. Springer, Berlin, Heidelberg.
650	Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yogodzinski, G. (2011)
651	Compositional variability of terrestrial mantle apatites, thermodynamic modeling of

- apatite volatile contents, and the halogen and water budgets of planetary mantles.
- 653 Chemical Geology, 288(1), 14-31.
- Poienar, M., Damay, F., Rouquette, J., Ranieri, V., Malo, S., Maignan, A., Elkaïm, E., Haines, J.,
- and Martin, C. (2020) Structural and magnetic characterization of barbosalite

 $Fe_3(PO_4)_2(OH)_2$. Journal of Solid State Chemistry, 121357.

- Powner, M.W., Gerland, B., and Sutherland, J.D. (2009) Synthesis of activated pyrimidine
- ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239-242.
- Priambodo, R., Tan, Y.-L., Shih, Y.-J., and Huang, Y.-H. (2017) Fluidized-bed crystallization of
- iron phosphate from solution containing phosphorus. Journal of the Taiwan Institute ofChemical Engineers, 80, 247-254.
- Rampe, E.B., Morris, R.V., Archer, P.D., Agresti, D.G., and Ming, D.W. (2016) Recognizing
- sulfate and phosphate complexes chemisorbed onto nanophase weathering products on
- Mars using in-situ and remote observationsk. American Mineralogist, 101(3), 678-689.
- Rampe, E., Ming, D., Blake, D., Bristow, T., Chipera, S., Grotzinger, J., Morris, R., Morrison,
- 666 S., Vaniman, D., and Yen, A. (2017) Mineralogy of an ancient lacustrine mudstone
- succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science
 Letters, 471, 172-185.
- 669 Rampe, E.B., Blake, D.F., Bristow, T., Ming, D.W., Vaniman, D., Morris, R., Achilles, C.,
- 670 Chipera, S., Morrison, S., and Tu, V. (2020) Mineralogy and geochemistry of
- sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth
- years of exploration with Curiosity. Geochemistry, 80(2), 125605.

673	Redhammer, G., Tippelt, G., Roth, G., Lottermoser, W., and Amthauer, G. (2000) Structure and
674	Mössbauer spectroscopy of barbosalite $Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}$ between 80 K and 300 K.
675	Physics and Chemistry of Minerals, 27(6), 419-429.
676	Roncal-Herrero, T., Rodrígu z-Blanco, J.D., Benning, L.G., and Oelkers, E.H. (2009)
677	Precipitation of iron and aluminum phosphates directly from aqueous solution as a
678	function of temperature from 50 to 200 C. Crystal Growth & Design, 9(12), 5197-5205.
679	Rouzies, D., Varloud, J., and Millet, JM.M. (1994) Thermal behaviour and physico-chemical
680	characterization of synthetic and natural iron hydroxyphosphates. Journal of the
681	Chemical Society, Faraday Transactions, 90(21), 3335-3339.
682	Sanders, G.B., and Larson, W.E. (2011) Integration of in-situ resource utilization into lunar/Mars
683	exploration through field analogs. Advances in Space Research, 47(1), 20-29.
684	Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E.,
685	Longhi, J., Elkins-Tanton, L.T., Neal, C.R., and Antonenko, I. (2006) Thermal and
686	magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60(1), 365-
687	518.
688	Shearer, C., Burger, P., Papike, J., McCubbin, F., and Bell, A. (2015) Crystal chemistry of
689	merrillite from Martian meteorites: Mineralogical recorders of magmatic processes and
690	planetary differentiation. Meteoritics & Planetary Science, 50(4), 649-673.
691	Sheldrick, G.M. (2015a) Crystal structure refinement with SHELXL. Acta Crystallographica
692	Section C: Structural Chemistry, 71(1), 3-8.
693	(2015b) SHELXT-Integrated space-group and crystal-structure determination. Acta
694	Crystallographica Section A: Foundations and Advances, 71(1), 3-8.

- 695 Sridhar, K., Finn, J., and Kliss, M. (2000) In-situ resource utilization technologies for Mars life
- support systems. Advances in Space Research, 25(2), 249-255.
- Starr, S.O., and Muscatello, A.C. (2020) Mars in situ resource utilization: a review. Planetary
 and Space Science, 182, 104824.
- Taylor, G.J. (2013) The bulk composition of Mars. Geochemistry, 73(4), 401-420.
- 700 Treiman, A., Downs, R., Ming, D., Morris, R., Thorpe, M., Hazen, R., Downs, G., Rampe, E.,
- and CheMin Team, T. (2021) Possible Detection of a Jahnsite-Whiteite Group Phosphate
- Mineral by MSL CheMin in Glen Torridon, Gale Crater, Mars. 52nd Lunar and Planetary
- 703 Science Conference, p. 1200. LPI, Virtual.
- Tu, V.M., Hausrath, E.M., Tschauner, O., Iota, V., and Egeland, G.W. (2014) Dissolution rates
- of amorphous Al-and Fe-phosphates and their relevance to phosphate mobility on Mars.
 American Mineralogist, 99(7), 1206-1215.
- 707 Ullrich, B. (2018) Zur Mineralogie anthropogen induzierter Alterationsprozesse-
- 708 Sekundärminerale des historischen Alaunschieferbergbaus von Saalfeld und
- 709 Schmiedefeld im Thüringischen Schiefergebirge. Geologica Saxonica, 64, 67-79.
- Vaniman, D., Bish, D., Ming, D., Bristow, T., Morris, R., Blake, D., Chipera, S., Morrison, S.,
- Treiman, A., and Rampe, E. (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale
 crater, Mars. Science, 343(6169), 1243480.
- Wald, G. (1964) The origins of life. Proceedings of the National Academy of Sciences of the
 United States of America, 52(2), 595.
- 715 Wänke, H., and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial
- 716 planets. Philosophical Transactions of the Royal Society of London. Series A,
- 717 Mathematical and Physical Sciences, 325(1587), 545-557.

718	Weber, I., Böttger, U., Pavlov, S.G., Stojic, A., Hübers, H.W., and Jessberger, E.K. (2018)
719	Raman spectra of hydrous minerals investigated under various environmental conditions
720	in preparation for planetary space missions. Journal of Raman Spectroscopy, 49(11),
721	1830-1839.
722	Weckwerth, G., and Schidlowski, M. (1995) Phosphorus as a potential guide in the search for
723	extinct life on Mars. Advances in Space Research, 15(3), 185-191.
724	Westheimer, F.H. (1987) Why nature chose phosphates. Science, 235(4793), 1173-1178.
725	Whittingham, M.S. (2004) Lithium batteries and cathode materials. Chemical Reviews, 104(10),
726	4271-4302.
727	Wiseman, S.M., Arvidson, R., Andrews-Hanna, J., Clark, R., Lanza, N., Des Marais, D., Marzo,
728	G., Morris, R., Murchie, S., and Newsom, H.E. (2008) Phyllosilicate and sulfate-hematite
729	deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical
730	Research Letters, 35(19).
731	Yang, H., Sun, H.J., and Downs, R.T. (2011) Hazenite, KNaMg2 (PO4) 2. 14H2O, a new
732	biologically related phosphate mineral, from Mono Lake, California, USA. American
733	Mineralogist, 96(4), 675-681.
734	Yang, X., and Post, W.M. (2011) Phosphorus transformations as a function of pedogenesis: A
735	synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences,
736	8(10), 2907.
737	Yen, A., Ming, D., Vaniman, D., Gellert, R., Blake, D., Morris, R., Morrison, S., Bristow, T.,
738	Chipera, S., and Edgett, K. (2017) Multiple stages of aqueous alteration along fractures in
739	mudstone and sandstone strata in Gale Crater, Mars. Earth and Planetary Science Letters,
740	471, 186-198.

- 741 Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and Tan, T. (2013) Synthesis, morphological
- analysis and electrochemical performance of iron hydroxyl phosphate as a cathode
- material for lithium ion batteries. Journal of Power Sources, 243, 274-279.

Figure Captions
Figure 1. BSE image at 15 kV of giniite. Dots are locations of EMP analysis on the crystal.
Figure 2. Calculated comparison of XRD patterns of natural (top and bottom patterns) and
synthetic ferrian (middle pattern) giniite. Patterns are calculated for $CuK\alpha$ radiation.
Figure 3. Broad Scan Raman spectra of giniite showing band consistent with giniite chemistry
and structure. Typical PO4, Fe-O, and O-H ranges are shown at bottom of figure and are
consistent with Raman of synthetic giniite and other minerals with structure similarities. 2nd-
order Savitzky-Golay filter applied (interval of 10). See Supplementary Figure S2 for plot of raw
data.
Figure 4. Giniite structure viewed down b (top) and a (bottom) axes. Four unit cells pictured.
Spheres on tetrahedral and octahedral corners are oxygen. Smaller spheres are H ⁺ , O7 oxygen
atoms discussed in the text are labeled in lower right cell of the top panel. Supplementary Figure
S3 is a close up of this "void" area.

762		Tables
763		
764	Table 1. Summary of cry	stallographic data for giniite
	Empirical chemical formula	$(Fe^{2+}_{0.80}Mn_{0.11}Mg_{0.02})_{\Sigma=0.93}Fe^{3+}_{4}(PO_{4})_{4.03}(OH)_{2}\cdot 2H_{2}O$
	Ideal chemical formula	$Fe^{2+}Fe^{3+}_{4}(PO_{4})_{4}(OH)_{2}\cdot 2H_{2}O$
	Crystal symmetry	Monoclinic
	Space group	P2/n
	a (Å)	10.3472(6)
	<i>b</i> (Å)	5.1497(2)
	<i>c</i> (Å)	14.2338(7)
	β (°)	111.175(6)
	$V(Å^3)$	707.24(7)
765		

766

Table 2. Select bolid distances (A) for glinte								
Fe1—O8	1.986 (2)	P1—O3	1.518 (2)					
Fe1—O7	2.069 (2)	P101	1.526 (2)					
Fe1—O2	2.082 (2)	P1—O4	1.544 (2)					
Fe1—O10W	2.183 (2)	P1—O2	1.553 (2)					
Fe1—O4	2.253 (2)	Ave.	1.54 (2)					
Fe1—O9H	2.279 (2)							
Ave.	2.14 (12)							
		P2—O6	1.513 (2)					
Fe2—O4 x 2	1.995 (2)	P2—O5	1.521 (2)					
Fe2—O2 x 2	2.013 (2)	P2—O8	1.537 (2)					
Fe2—O9H x 2	2.024 (2)	P2—O7	1.563 (2)					
Ave.	2.01 (2)	Ave.	1.53 (2)					
Fe3—O6	1.938 (2)							
Fe3—O5	1.954 (2)							
Fe3—O3	1.969 (2)							
Fe3—O1	1.985 (2)							
Fe3—O9H	2.024 (2)							
Fe3—O10W	2.226 (2)							
Ave.	2.02 (11)							

Table 2. Select bond distances (Å) for giniite

768

769

	Fe1	Fe2	Fe3	P1	P2	Sum
01			0.543	1.323		1.866
02	0.356	0.503 x 2↓		1.233		2.092
03			0.567	1.354		1.920
O4	0.224	0.529 x 2↓		1.263		2.016
05			0.591		1.341	1.932
06			0.617		1.373	1.990
07	0.369				1.199	1.568
08	0.462				1.287	1.749
09	0.209	0.489 x 2↓	0.489			1.187
O10	0.271		0.283			0.554
Sum	1.891	3.042	3.090	5.173	5.200	

771	Table 3. Bond	Valence	calculations	for Fe-O	and P-O	bonds.
-----	---------------	---------	--------------	----------	---------	--------

773

Analysis					Fitted ^d		
					This Study	This Study	
(wt%)	Keller	This Study ^b		Keller	Ideal	Best Fit	Ideal
Fe ₂ O ₃	46.07	51.25	(0.34)	39.21	42.74	41.73	43.80
FeO	-	-	-	6.17	7.66	8.57	9.85
Al ₂ O ₃	1.20	-	-	1.20			
MgO	0.68	0.10	(0.02)	0.68	0.10	0.10	
P_2O_5	36.99	38.34	(0.25)	36.99	38.34	38.34	38.94
MnO	0.63	1.07	(0.20)	0.63	1.07	1.07	
H ₂ O _(Total) ^a	-	-	-	6.95	7.24	7.31	7.41
Total	85.57	90.76	(0.37)	91.83	97.15	97.11	100.00

Table 4. Comparison of chemical analyses of giniite by EMP in oxide wt%. This study
compared to Keller (1980a).

777NOTE: Parenthetical values are 1 standard deviation. ${}^{a}H_{2}O_{(Total)}$ is the wt% sum of OH and molecular H2O. ${}^{b}Based$ 778on 15 analyses. ${}^{d}Values$ in table are based on a calculated fit. Fits for Keller and "This Study Ideal" based on ideal779formula and fully occupied Fe3+ sites. "This Study Best Fit" represent best fit result from a range of calculated

780 stoichiometries using EMP data from this study.

781

Figures

785

783 784

Figure 1. BSE image at 15 kV of giniite. Dots as locations of EMP analysis on the crystal.

788

789

Figure 2. Calculated comparison of XRD patterns of natural (top and bottom patterns) and synthetic ferrian (middle pattern) giniite. Patterns are calculated for $CuK\alpha$ radiation.

793

Figure 3. Broad Scan Raman spectra of ginite showing band consistent with ginite chemistry
and structure. Typical PO4, Fe-O, and O-H ranges are shown at bottom of figure and are
consistent with Raman of synthetic ginite and other minerals with structure similarities. 2ndorder Savitzky-Golay filter applied (interval of 10). See Supplementary Figure S2 for plot of raw
data.

799

Figure 4. Giniite structure viewed down *b* (top) and *a* (bottom) axes. Four unit cells pictured. Spheres on tetrahedral and octahedral corners are oxygen. Smaller spheres are H^+ . O7 oxygen atoms discussed in the text are labeled in lower right cell of the top panel. Supplementary Figure S3 is a close up of this "void" area.