1	Word count: 39,201
2	Revision 1
3	Pyradoketosite, a new, unexpected, polymorph of
4	Ag ₃ SbS ₃ from the Monte Arsiccio mine (Apuan Alps,
5	Tuscany, Italy)
6	
7	CRISTIAN BIAGIONI ^{1,*} , LUCA BINDI ² , YVES MOËLO ³ , CHRISTOPHER J.
8	STANLEY ⁴ , FEDERICA ZACCARINI ⁵
9	
10 11 12 13 14 15	 ¹ Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy ² Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy ³ Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France ⁴ Department of Earth Sciences, Natural History Museum, London, SW 7 5BD, United Kingdom ⁵ Department of Applied Geological Sciences and Geophysics, University of Leoben, Peter Tunner Str. 5, A-
16 17	8700 Leoben, Austria
18	*e-mail address: <u>cristian.biagioni@unipi.it</u>
19	

20

ABSTRACT

21 Although everything seemed clear about the Ag-Sb-S compounds belonging to one of the more deeply studied experimental systems, nature allowed us to discover a new polymorph of 22 Ag₃SbS₃, which could represent a compound for assessing new technological potentialities. The 23 new mineral species pyradoketosite, Ag₃SbS₃ (IMA 2019-132), was discovered in the pyrite + 24 baryte + iron oxide ore deposit of the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs 25 as brittle orange acicular crystals, up to 200 µm in length and 25 µm in thickness, with adamantine 26 luster. Under reflected light, pyradoketosite is slightly bluish grey, with abundant orange internal 27 reflections. Bireflectance is weak and anisotropism was not observed, being masked by abundant 28 29 internal reflections. Minimum and maximum reflectance data for the wavelengths recommended by the Commission on Ore Mineralogy $[R_{\min}/R_{\max} (\%), (\lambda, nm)]$ are: 32.8/32.9 (470), 30.2/30.7 (546), 30 29.0/29.6 (589), and 27.5/28.4 (650). Electron microprobe analysis gave (mean of 6 spot analyses, 31 in wt%): Ag 59.81, Sb 22.63, S 17.78, total 100.22. On the basis of (Ag+Sb) = 4 atoms per formula 32 unit, the empirical formula of pyradoketosite is Ag_{2.996(11)}Sb_{1.004(11)}S_{2.996(15)}. Pyradoketosite is 33 monoclinic, space group $P2_1/n$, with a = 13.7510(15), b = 6.9350(6), c = 19.555(2) Å, $\beta = 10.555(2)$ 34 94.807(4)°, V = 1858.3(3) Å³, Z = 12. The crystal structure was solved and refined to $R_1 = 0.063$ on 35 the basis of 2682 unique reflections with $F_{o} > 4\sigma(F_{o})$ and 191 refined parameters. The crystal 36 structure of pyradoketosite can be described as formed by the alternation of {101} layers: an Sb-37 rich layer, Sb₃AgS₃, and two distinct Ag₈S₆ layers. This layered organization allows to identify 38 structural relationships with the wittichenite-skinnerite pair. Pyradoketosite is associated with 39 pyrargyrite, tetrahedrite-(Hg), valentinite, and probable pyrostilpnite in baryte + dolomite + quartz 40 veins embedded in metadolostone. Its name derives from the old Greek words " $\pi v \rho$ " (fire) and 41 "άδόκητος" (unforeseen), owing to the unexpected occurrence of this third polymorph of the 42 compound Ag₃SbS₃. 43

44

- 45 Key-words: pyradoketosite, silver, antimony, sulfosalt, crystal structure, new mineral, Monte
- 46 Arsiccio mine, Apuan Alps, Tuscany, Italy.

48

INTRODUCTION

More than 150 Ag-chalcogenides are currently known as valid mineral species, mainly 49 represented by sulfosalts (e.g., Moëlo et al. 2008; Bindi and Biagioni 2018). Indeed, silver is a 50 chemical constituent of several minerals belonging to important groups of sulfosalts, e.g., sartorite 51 (Makovicky and Topa 2015), lillianite (e.g., Makovicky and Topa 2014), polybasite (e.g., Bindi et 52 al. 2007, 2020), and tetrahedrite (Biagioni et al. 2020b) groups. Despite the wide number of mineral 53 species, the Ag-Sb-S system currently has only six approved sulfosalts, i.e., baumstarkite, 54 cuboargyrite, miargyrite, pyrargyrite, pyrostilpnite, and stephanite. Baumstarkite (triclinic), 55 cuboargyrite (cubic), and miargyrite (monoclinic) can be considered as polymorphs of the 56 compound AgSbS₂ (Smith et al. 1997; Walenta 1998; Effenberger et al. 2002), although Kitakaze et 57 al. (2006) questioned the dimorphic relations between baumstarkite and miargyrite. Trigonal 58 pyrargyrite and monoclinic pyrostilpnite are the two known dimorphs of Ag₃SbS₃ (Laufek et al. 59 2010; Biagioni et al. 2020c), with the latter being the low-T polymorph (e.g., Chang 1963; Keighin 60 and Honea 1969). Stephanite, Ag₅SbS₄, is another low-T Ag-sulfosalt, stable below $197 \pm 5^{\circ}$ C (e.g., 61 Keighin and Honea 1969), with orthorhombic symmetry (Leitl et al. 2009). 62

During the study of the sulfosalt assemblages of the Monte Arsiccio mine (Apuan Alps, 63 northern Tuscany, Italy), two samples showing µm-sized acicular crystals, orange in color, were 64 observed. Electron microprobe and single-crystal X-ray diffraction studies showed it to be a new 65 polymorph of Ag₃SbS₃. The mineral and its name were approved by the Commission on New 66 Minerals, Nomenclature and Classification of the International Mineralogical Association 67 (CNMNC-IMA) under the number IMA 2019-132. Holotype material is deposited in the 68 mineralogical collection of the Museo di Storia Naturale, Università di Pisa, Via Roma 79, Calci, 69 Pisa (Italy), under catalogue number 19913. The name pyradoketosite alludes to the unforeseeable 70 nature of this mineral and it is formed from the old Greek words " $\pi v \rho$ " (fire) and " $\alpha \delta \delta \kappa \eta \tau o \varsigma$ " 71

(unforeseen); the name also reflects the surprise at finding a new polymorph of the "ruby silvers"
 Ag₃SbS₃, as both the dimorphs pyrargyrite and pyrostilpnite have been known for a long time.
 This paper describes this new silver sulfosalt and discusses its relationships with the other
 known "ruby silvers" as well as with the members of the wittichenite-skinnerite group having

77

76

structural similarities with pyradoketosite.

78

OCCURRENCE AND MINERAL DESCRIPTION

Pyradoketosite is very rare and was identified in only two specimens from the Sant'Olga 79 level, Monte Arsiccio mine (latitude 43°58'N, longitude 10°17'E), Apuan Alps, northern Tuscany, 80 Italy. This mine exploited, up to the end of the 1980s, a pyrite + baryte + iron oxide (magnetite, 81 hematite, "limonite") ore deposit located close to the contact between a Paleozoic metasedimentary-82 metavolcanic sequence and Triassic metadolostone, in the north-eastern sector of the Sant'Anna 83 tectonic window. The Monte Arsiccio mine is the type locality for nine other mineral species, 84 among which are some other sulfosalts: boscardinite (Orlandi et al. 2012), protochabournéite 85 (Orlandi et al. 2013), arsiccioite (Biagioni et al. 2014), and andreadiniite (Biagioni et al. 2018). 86 Pyradoketosite is the tenth new mineral discovered at this locality. A review of the geological 87 setting of this mine is given in Biagioni et al. (2020a) and references therein. 88

Pyradoketosite occurs as acicular crystals, striated parallel to the elongation, up to 200 µm in length and 25 µm in thickness (Figure 1). Color and streak are orange. The mineral is translucent, with an adamantine luster. Owing to the small size and extreme rarity of pyradoketosite, hardness was not measured. This mineral is brittle. No cleavage was observed. Density was not measured; on the basis of the empirical formula and unit-cell parameters refined from single-crystal X-ray diffraction data, the calculated density is 5.809 g/cm³.

Under reflected light, pyradoketosite is slightly bluish grey in color, with abundant orange
 internal reflections. Pleochroism was not observed. Bireflectance is weak and anisotropism was not

observed, being masked by abundant internal reflections. Pyradoketosite is weakly light sensitive.
Reflectance values (SiC as standard) were measured in air (Natural History Museum, London) and
are reported in Table 1 and shown in Figure 2.

Pyradoketosite occurs in baryte + dolomite + quartz veins, in association with valentinite, a 100 tetrahedrite-group mineral [likely tetrahedrite-(Hg), on the basis of energy dispersive spectrometry 101 (EDS) data collected on an unpolished grain], and some unidentified phases. In one sample, 102 pyradoketosite occurs in a dissolution cavity of a previous unknown sulfosalt, along with 103 valentinite. Figure 1 shows the close association of the acicular crystal of pyradoketosite with two 104 other phases. Both have the same chemical composition as pyradoketosite. One of them, forming 105 106 equant crystals, with a trigonal symmetry, was identified as pyrargyrite, on the basis of singlecrystal X-ray diffraction data, whereas the other, characterized by a tabular habit, is tentatively 107 attributed to pyrostilpnite on the basis of crystal morphology. 108

- 109
- 110

CHEMICAL DATA

Preliminary chemical analyses of pyradoketosite performed through EDS showed Ag, Sb and 111 S as the only elements with Z > 8. Quantitative data were obtained through wavelength dispersive 112 spectrometry (WDS mode) with a Superprobe JEOL JXA8200 electron microprobe at the "Eugen F. 113 Stumpfl laboratory", Leoben University, Austria, using the following analytical conditions: 114 accelerating voltage 20 kV, beam current 10 nA, nominal beam diameter 1 µm. The peak and 115 backgrounds counting times were 15 and 5 seconds, respectively. The following standards (element, 116 emission line) were used: electrum Ag₇₀Au₃₀ (AgL α) and stibnite (SK α , SbL α). Chemical data are 117 given in Table 2. The empirical formula, based on 4 (Ag + Sb) atoms per formula unit (apfu), is 118 $Ag_{2,996(11)}Sb_{1,004(11)}S_{2,996(15)}$. The ideal formula of pyradoketosite, Ag_3SbS_3 , corresponds to (in wt%): 119 Ag 59.76, Sb 22.48, S 17.76, total 100.00. 120

122

X-RAY CRYSTALLOGRAPHY AND STRUCTURE REFINEMENT

123 The X-ray powder diffraction pattern of pyradoketosite was collected using a 114.6 mm 124 diameter Gandolfi camera and Ni-filtered Cu $K\alpha$ radiation. Owing to the very small size of the 125 available material, the observed pattern showed only few and weak diffraction lines despite the long 126 exposure time (one week). Table 3 reports the observed X-ray powder diffraction pattern along with 127 that calculated on the basis of the structural model described below.

Single-crystal X-ray diffraction data were collected using a Bruker Smart Breeze three-circle diffractometer equipped with an air-cooled Photon II CCD detector, with graphitemonochromatized Mo $K\alpha$ radiation (Dipartimento di Scienze della Terra, Università di Pisa). The detector-to-crystal distance was set at 50 mm. A total of 1072 frames were collected in ω scan mode in 0.5° slices, with an exposure time of 25 s per frame. Intensity data were corrected for Lorentzpolarization factors, absorption and background using the package of software *Apex3* (Bruker AXS Inc. 2016).

Pyradoketosite is monoclinic, with unit-cell parameters a = 13.7510(15), b = 6.9350(6), c =135 19.555(2) Å, $\beta = 94.807(4)^{\circ}$, V = 1858.3(3) Å³. The *a:b:c* ratio is 1.9828:1:2.8198. The analysis of 136 the reflection conditions led unequivocally to the choice of the space group $P2_1/n$. This cell can be 137 transformed in the standard space group $P2_1/c$ through the matrix $\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 \end{bmatrix}$, 138 139 resulting in the unit-cell parameters a = 13.7510(15), b = 6.9350(6), c = 22.944(2) Å, $\beta =$ 121.864(5)°, V = 1858.3(3) Å³. However, the more orthogonal $P2_1/n$ space group was preferred, 140 and the crystal structure was solved in this space group through direct methods using Shelxs-97 and 141 refined using Shelxl-2018 (Sheldrick 2015). Neutral scattering curves for Ag, Sb, and S were taken 142 from the International Tables for Crystallography (Wilson 1992). The crystal structure solution 143 allowed the location of twelve independent Ag and Sb sites, whereas following difference-Fourier 144 syntheses led to the finding of nine S positions. The isotropic refinement converged to $R_1 = 0.14$, 145 thus suggesting the correctness of the structural model. Owing to the similar scattering factors of Ag 146

147 (Z = 47) and Sb (Z = 51), these two atoms were located on the basis of their coordination 148 environment and bond-valence sums (BVS). All sites were found to be fully occupied. After several 149 cycles of anisotropic refinement for all atoms, the final statistical factor R_1 converged to 0.0626 for 150 2682 unique reflections with $F_0 > 4\sigma(F_0)$ and 191 refined parameters.

Given the relatively large atomic displacement parameters (ADP) of some of the Ag atoms (as 151 typical of fast ion conducting phases - the average ADP values of the nine Ag positions was 0.046 152 $Å^2$, to be compared with 0.019 $Å^2$ for the three Sb sites), an attempt to refine the crystal structure 153 using higher order tensor elements in the expression of the structure factor (the "non harmonic 154 approach" - Johnson and Levy 1974; Zucker and Schulz 1982) was tried. As documented by Bindi 155 156 and Evain (2007), this alternative approach, in particular the Gram-Charlier formalism which is recommended by the IUCr Commission on Crystallographic Nomenclature (Trueblood et al. 1996), 157 provides an easier convergence on the refinement, due to much lower correlations between the 158 refined parameters. The new refinement was carried out using the software JANA2006 (Petříček et 159 al. 2006). However, the occurrence of negative regions in the probability density function maps 160 indicated the inadequacy of the results. Consequently, the Gaussian approximation was preferred. 161

Details of the intensity data collection and crystal structure refinement are given in Table 4. Selected bond distances are listed in Table 5. Bond-valence sums, calculated using the bond parameters of Brese and O'Keeffe (1991), are shown in Table 6. The Crystallographic Information File (CIF), including atomic coordinates and reflection data, is available as Supplementary Material.

167

CRYSTAL STRUCTURE ANALYSIS

168 Crystal structure description

169 The crystal structure of pyradoketosite (Fig. 3) shows the presence of twelve cation sites and 170 nine anion positions. Among the cation sites, nine are occupied by Ag⁺ and three by Sb³⁺. Two 171 different but complementary approaches can be used for the description of the crystal structure, i.e.,

according to the distribution of strong (= short) and weak (= long) bonds, or cutting the structure
according to {101} layers having different chemical compositions.

Considering the shortest (= strongest) bonds, isolated SbS₃ trigonal pyramids can be observed organized according to {101} layers, with the pyramidal vertices alternately oriented towards [10-1] and [101] (Fig. 3). Antimony atoms show average <Sb–S> distances ranging between 2.429 Å and 2.465 Å (Table 5), comparable with 2.444 Å and 2.460 Å for pyrargyrite and pyrostilpnite (Laufek et al. 2010; Biagioni et al. 2020c), respectively. The BVS of Sb atoms (Table 6) ranges between 2.88 and 3.19 valence units (v.u.).

In Figure 3, $\{-102\}$ layers sub-perpendicular to SbS₃ layers can be observed. One slab is 180 partly represented in Figure 4. The Ag atom hosted at the Ag(2) site forms two strong bonds with 181 two symmetry-related S(4) atoms (at 2.46 and 2.47 Å) and a longer bond at 2.72 Å with S(7). These 182 S atoms belong to three different Sb(2)S₃ groups. In this way, an $[Ag(2)Sb(2)S_3]^{2-}$ ribbon can be 183 184 distinguished. In this ribbon, Ag(2) atoms form with S(4) atoms a zig-zag chain running along **b**, decorated on both sides by Sb(2)S₃ trigonal pyramids. An additional longer bond at 2.86 Å 185 completes the coordination environment of Ag(2). A similar configuration involves Ag(9) atoms, 186 forming with S(2) atoms a zig-zag chain decorated by Sb(1)S₃ trigonal pyramids. It gives the ribbon 187 $[Ag(9)Sb(1)S_3]^{2-}$. 188

The Sb(3)S₃ group shares its three S atoms with Ag atoms hosted at Ag(3). Along **b**, Sb(3)S₃ 189 groups and Ag(3) alternate, forming a rod of composition $[Ag(3)Sb(3)S_3]^2$. This rod is connected to 190 the adjacent $[Ag(2)Sb(2)S_3]^{2}$ ribbon through the Ag(1) site, whereas it is bonded to the 191 $[Ag(9)Sb(1)S_3]^{2-}$ ribbon through the Ag(4) site (Fig. 4). Both Ag(1) and Ag(4) sites have a three-192 fold coordination. However, the coordination of Ag(1) is increased to four owing to the occurrence 193 of an additional longer bond at 2.96 Å. The bonding of the (Ag/Sb) rod and the two (Ag/Sb) ribbons 194 gives rise to the $\{-102\}$ layer with chemical composition $[Ag_5Sb_3S_9]^{4-}$ (Fig. 3). Such layers are 195 bonded along [-101] owing to the occurrence of three-fold coordinated Ag atoms hosted at the 196

Ag(5), Ag(6), Ag(7), and Ag(8) sites (Fig. 3). Considering all Ag atoms, average $\langle Ag-S \rangle$ distances range between 2.525 Å for the three-fold coordinated Ag(9) site and 2.629 Å for the four-fold coordinated Ag(2) position (Table 5). The BVS at the Ag sites varies between 0.94 and 1.22 v.u. (Table 6). The shortest Ag–Ag distance is 2.970(2) Å for the pair Ag(3)–Ag(7). The Ag–Sb distances are usually longer than 3.30 Å; however, a very short Ag–Sb distance occurs for the pair Ag(3)–Sb(1), i.e., 2.966(2) Å. This short distance may be indicative of an average position of the Ag(3) atom which could not be resolved in two sub-positions.

An alternative description of the crystal structure of pyradoketosite considers the occurrence of chemically different {101} layers. Figure 5 shows the organization of the crystal structure according to this {101} layered arrangement. This description is particularly useful in pointing out the relationship between pyradoketosite and the members of the wittichenite-skinnerite group (see below).

The crystal-chemical formula of pyradoketosite, derived from the crystal structure study, is Ag₃SbS₃ (Z = 12).

211

212 Comparison with other Ag_3SbCh_3 (*Ch* = S, Se) compounds

The compound Ag_3SbS_3 is known in nature since the 19th Century as pyrargyrite (trigonal, *R3c*) and pyrostilpnite (monoclinic, $P2_1/c$). The replacement of Sb by As gives rise to proustite, showing isotypic relations with pyrargyrite, and xanthoconite (monoclinic, C2/c) (e.g., Bindi and Biagioni 2018 and references therein). Eckerite, ideally CuAg₂AsS₃, is a Cu-bearing isotype of xanthoconite (Bindi et al. 2015). Table 7 compares pyradoketosite with these natural phases and with the three synthetic Ag-compounds having a similar stoichiometry.

The crystal structure of pyradoketosite is different from those of the other two naturallyoccurring polymorphs, pyrargyrite (and its Se synthetic isotype) and pyrostilpnite, as well as from those of the synthetic orthorhombic Ag_3XSe_3 phases, where X = As, Sb. The crystal structure of

pyrargyrite is characterized by columns of SbS_3 pyramids running along c, with the orientation of 222 223 their vertices preserved along the polar three-fold c axis. Silver atoms have a linear two-fold coordination and give rise to spirals running along [001] (Engel and Nowacki 1966; Laufek et al. 224 2010). In pyrostilpnite, $\{010\}$ (Ag/Sb) layers, corresponding to $(210)_{PbS}$ slabs, run along c and are 225 connected through longer Ag-S bonds (Kutoglu 1968; Biagioni et al. 2020c). Antimony atoms 226 decorate these layers, and the lone-electron-pairs are directed in the space between successive layers 227 along **b**. The coordination number of Ag atoms in pyrostilpnite varies from two to four. As 228 described above, the crystal structure of pyradoketosite can be described as formed by {-102} layers 229 connected by additional Ag atoms. Silver coordination is mainly triangular, with only one atom at 230 231 the Ag(2) site having two-fold coordination.

A different packing density is also suggested by the calculation of the cell volumes for one Ag₃SbS₃ unit. Pyradoketosite is slightly less-densely packed ($V = 154.8 \text{ Å}^3$) with respect to pyrargyrite ($V = 153.6 \text{ Å}^3$) and pyrostilpnite ($V = 152.1 \text{ Å}^3$). This is reflected by the calculated densities, increasing from pyradoketosite (5.81 g/cm³) to pyrostilpnite (5.97 g/cm³), passing through pyrargyrite (5.86 g/cm³).

237

238 Relationship with the wittichenite-skinnerite homeotypic pair

On the basis of the Sb layering described in Figure 5, a supercell has been selected. This 239 supercell can be derived from the $P2_1/n$ cell through the transformation matrix $\mathbf{R} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1$ 240 1] which gives the unit-cell parameters a = 24.831(2), b = 6.9350(6), c = 22.944(2) Å, $\beta =$ 241 109.835(8)°, V = 3716.6(6) Å³. It shows the alternation with the Sb-rich layer, AgSb₃S₃, of two 242 distinct Ag₈S₆ layers (A and B). Considering the distribution of short (= strong) Ag–S distances 243 (Ag–S < 2.75 Å), each Ag₈S₆ layer can be considered as the sum of $2Ag_3S_2 + Ag_2S_2$. Such an 244 organization directly relates to the crystal structure of the wittichenite-skinnerite homeotypic pair 245 (Moëlo et al. 2008). The crystal structure of wittichenite was independently solved by Matzat 246

(1972) and Kocman and Nuffield (1973) (Fig. 6a), whereas that of skinnerite was solved by Pfitzner (1994) and Makovicky and Balić-Žunić (1995) (Fig. 6b). One BiS or SbS layer alternates with one Cu_3S_2 layer. BiS and SbS layers are equivalent, while Cu distribution differs between the two structures.

Two synthetic Li-sulfides, Li₃SbS₃ and Li₃AsS₃, relate to this group (Huber et al. 2012) and are isotypic (Fig. 6c). The coordination of Li atoms is tetrahedral (two positions) or square pyramidal (one position), whereas Cu coordination in wittichenite and skinnerite is exclusively triangular.

Table 8 compares the unit-cell parameters of all these compounds. For the reduced unit cell (basis: 4 formula units), the stacking parameter is close to 10 Å, and the two in-plane parameters are close to 8 and 6.8 Å. Unit-cell volumes are in the range 530-545 Å³. For "average pyradoketosite" (i.e., the reduced cell containing 4 formula units), Ag-for-Cu substitution increases all parameters relative to skinnerite: b + 12%, a + 6%, c + 4.5%, V + 17%.

Pyradoketosite appears as a derivative of wittichenite with a (2×3) superstructure (Table 8), 260 with developed crystal chemical formula $(Ag_3S_2)_2(Ag_2S_2)(Sb_3AgS_3) = Ag_9Sb_3S_9$. In the other 261 members of this group, while the (Bi/Sb/As)S layers are topologically identical, the adjustment of 262 the intercalated (Cu/Li)₃S₂ layer proceeds in two different ways. In wittichenite and skinnerite, Cu 263 coordination is triangular (ideal Cu-S distance: 2.27 Å), whereas in Li₃SbS₃, there are two LiS₄ 264 tetrahedra and one LiS₅ square pyramid (ideal Li–S distances: 2.45 and 2.55 Å, respectively). In 265 pyradoketosite, with Ag coordination mainly triangular (ideal Ag–S distance: 2.56 Å), due to the 266 increase of the size of Ag^+ relatively to Cu^+ or Li^+ , the steric adjustment is realized through the 267 transfer of one Ag atom among nine from the Ag₃S₂ layer to the SbS layer, reducing the expansion 268 of the former layer and expanding the latter. Pyradoketosite is a plesiotypic derivative of 269 wittichenite, according to the definition of Makovicky (1997). 270

The uneven intra-layer superstructure (\times 3) imposes a monoclinic stacking. The differentiation of two distinct Ag₈S₆ layers (A and B) results from Ag(3) pairing across the A layer (double black arrow in Figure 5), giving an Ag–Ag distance of 5.39 Å and, inversely, a longer distance across the B layer (8.17 Å).

- 275
- 276

GENESIS OF PYRADOKETOSITE

277 The occurrence of pyradoketosite reveals that unexpected complex crystal structures can occur in the Ag–Sb–S system. Details of this chemical system have been studied since the 1930s 278 (see Keighin and Honea 1969 and references therein). Several researchers tried to describe the 279 280 relationships between the products of experimental runs and the observed mineral assemblages, to use some of them as geothermometers. Pyrargyrite, the most common polymorph of Ag₃SbS₃, has 281 been easily obtained in several synthesis experiments (e.g., Barstad 1959; Keighin and Honea 1969; 282 283 Hoda and Chang 1975). On the contrary, pyrostilpnite was reported by Weil and Hocart (1953) in a synthesis carried out under glycerol. Their results, however, could not be reproduced by Keighin 284 and Honea (1969). Chang (1963) observed that pyrostilpnite can invert into pyrargyrite under 285 heating at 197°C for 300 h; on the contrary, pyrargyrite, heated at 150°C for 350 h, does not invert 286 to pyrostilpnite. Keighin and Honea (1969) proposed an inversion temperature of $192 \pm 5^{\circ}$ C for the 287 288 pyrostilpnite-pyrargyrite transition. It is worth noting that these authors underlined the experimental difficulties in attaining equilibrium assemblages, related to the sluggishness of the reaction kinetics 289 290 below 300°C, requiring long-term runs (longer than one year), with the possible formation of non-291 equilibrium assemblages.

In this respect, the occurrence of pyradoketosite is an interesting conundrum. Such a phase, to the best of our knowledge, has not been obtained in any synthetic run (e.g., Goodell 1975 and references therein). Moreover, the crystal-chemical study excludes the possible role of minor constituents in the crystallization of pyradoketosite. The close examination of the spatial relations

between the three Ag₃SbS₃ polymorphs shown in Figure 1 can help in putting forward some 296 297 hypotheses. Pyradoketosite is apparently overgrown by probable pyrostilpnite, whereas the latter is overgrown by the equant crystal of pyrargyrite. A first hypothesis could be that this association may 298 represent the result of the co-precipitation of the three Ag₃SbS₃ polymorphs. On the contrary, taking 299 into account the spatial relations among the three phases and considering that pyrostilpnite should 300 invert to pyrargyrite above $192 \pm 5^{\circ}$ C, one could suppose that the sequence pyradoketosite \rightarrow 301 pyrostilpnite \rightarrow pyrargyrite could be the result of an ephemeral prograde variation of T, not able to 302 invert the low-T polymorphs into pyrargyrite. However, the role of other physical-chemical 303 parameters (e.g., pH, Eh) or kinetic factors is currently unknown. Biagioni et al. (2020a) reported 304 305 the results of microthermometric investigations performed on fluid inclusions hosted in quartz crystals from the same kind of baryte + dolomite \pm quartz veins (occurrence of type C following 306 Biagioni et al. 2020a) where pyradoketosite was found. In these veins, two generations of fluid 307 308 inclusions occur. The first one has a modal homogenization temperature of 275°C (range 265-289°C), whereas a second generation of fluid inclusion homogenizes at 235°C (range 222-246°C). 309 310 Pyradoketosite was observed in dissolution cavities, along with valentinite, and seems to be a latestage mineral. Consequently, its crystallization may be due to a late-stage hydrothermal event, 311 possibly corresponding to the second generation of fluid inclusions hosted in quartz crystals or to a 312 313 later-stage (and likely cooler) event not recorded in the samples studied by Biagioni et al. (2020a).

314

315

IMPLICATIONS

One of the main questions for Mineralogy of the 21st Century is about the role played by the description of new mineral species. More and more Earth scientists consider this endeavor as a trivial, not important job, mainly because of the usual uniqueness of the discovered new minerals and their volumetric insignificance, apparently not playing any fundamental role in the Earth dynamics. For instance, the finding of pyradoketosite is limited to just a few crystals, with a total

volume less than 1 mm³, thus fitting the definition of rarity given by Hazen and Ausubel (2016), and its crystallization is likely constrained by a narrow *P-T-X* space. However, samples of pyrostilpnite exhibiting an acicular morphology could have been misidentified and actually be pyradoketosite.

In our opinion, the description of a new, rare mineral species as, for instance, pyradoketosite 325 cannot be considered as a mere crystal chemical exercise. Its finding improves our knowledge of the 326 Ag-Sb-S system, where the ternary compounds AgSbS₂ and Ag₃SbS₃ are actively used for their 327 thermoelectric properties as well as for their potential optical applications. Yet, pyrargyrite has long 328 been considered as a promising functional material for several opto-electronic and data storage 329 330 applications (e.g., Adler 1980) and its physical and thermodynamic properties have been deeply investigated (e.g., Lange et al. 1993; Schönau and Redfern 2002; Aspiala et al. 2016). Furthermore, 331 pyradoketosite highlights the limits of laboratory experiments trying to synthesize complex sulfides 332 to reproduce ore mineral assemblages. As previously discussed by Keighin and Honea (1969), the 333 slowness of reaction rates below 300°C requires very long-term experiments for achieving 334 equilibrium assemblages, thus representing an important limit to the study of low-T ore 335 associations. Consequently, the accurate mineralogical investigation of natural occurrences, where 336 the "synthesis experiments" performed by nature did not suffer from the time constraints typical of 337 338 human activities, remains a precious and irreplaceable way to discover novel crystal structures and to find complex, unpredictable phases, whose genesis can be related to the wide range of possible 339 *P-T-X* conditions occurring on Earth (e.g., Bindi et al. 2020). 340

Pyradoketosite, the new Ag₃SbS₃ polymorph, is thus a good example of the usefulness of
looking for and studying new mineral species.

Finally, even if it is undeniably true that to understand and get a first plausible picture of most of the geological phenomena occurring on our planet a dozen minerals might be considered sufficient, we think that rare phases can help to provide a more exhaustive scenario of the Earth

dynamics. In other words, with the well-known rock-forming minerals you get an unquestionably
correct picture, but still incomplete. Rare phases, and the stories they tell us, can shed light on
unusual geological processes and provide the hints to refine and progressively improve the scenario
itself.

- 350
- 351

ACKNOWLEDGMENTS

A. Dini is acknowledged for useful discussions. The University Centrum for Applied Geosciences (UCAG) is thanked for the access to the "Eugen F. Stumpfl" electron microprobe laboratory. This research was financially supported by the Ministero dell'Istruzione, Università e Ricerca through the project PRIN 2017 "TEOREM – deciphering geological processes using Terrestrial and Extraterrestrial ORE Minerals", prot. 2017AK8C32.

The comments of the Associate Editor Aaron J. Lussier, of Frantisek Laufek, and of two anonymous reviewers were useful for improving the original manuscript.

360	References
361	Adler, D. (1980) Threshold switching in chalcogenide-glass thin films. Journal of Applied Physics
362	51, 3289.
363	Aspiala, M., Tesfaye, F., and Taskinen, P. (2016) Thermodynamic study in the Ag-Sb-S system by
364	the EMF method. Journal of Chemical Thermodynamics, 98, 361-366.
365	Barstad, J. (1959) Phase relations in the system Ag-Sb-S at 400°C. Acta Chemica Scandinavica, 13,
366	1703-1708.
367	Biagioni, C., Bonaccorsi, E., Moëlo, Y., Orlandi, P., Bindi, L., D'Orazio, M., and Vezzoni, S.
368	(2014) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite,
369	AgHg ₂ TlAs ₂ S ₆ , a new mineral from the Monte Arsiccio mine: occurrence, crystal structure
370	and crystal chemistry of the routhierite isotypic series. Mineralogical Magazine, 78, 101-117.
371	Biagioni, C., Moëlo, Y., Orlandi, P., and Paar, W.H. (2018) Lead-antimony sulfosalts from Tuscany
372	(Italy). XIII. Andreadiniite, CuAg7HgPb7Sb24S48, a new oversubstituted (Cu,Hg)-rich member
373	of the andorite homeotypic series from the Monte Arsiccio mine, Apuan Alps. European
374	Journal of Mineralogy, 30, 1021-1035.
375	Biagioni, C., D'Orazio, M., Fulignati, P., George, L.L., Mauro, D., and Zaccarini, F. (2020a)
376	Sulfide melts in ore deposits from low-grade metamorphic settings: Insights from fluid and
377	Tl-rich sulfosalt microinclusions from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy).
378	Ore Geology Reviews, 123, 103589.
379	Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley,
380	C.J., Welch, M.D., and Bosi, F. (2020b) The tetrahedrite group: Nomenclature and
381	classification. American Mineralogist, 105, 109–122.
382	Biagioni, C., Zaccarini, F., Roth, P., and Bindi, L. (2020c) Progress in the knowledge of 'ruby
383	silvers': New structural and chemical data of pyrostilpnite, Ag ₃ SbS ₃ . Mineralogical Magazine,
384	84, 463-467.

385	Bindi, L., and Biagioni, C. (2018) A crystallographic excursion in the extraordinary world of
386	minerals: the case of Cu- and Ag-rich sulfosalts. Acta Crystallographica, B74, 527-538.

- Bindi, L., and Evain, M. (2007) Gram-Charlier development of the atomic displacement factors into
 mineral structures: The case of samsonite, Ag₄MnSb₂S₆. American Mineralogist, 92, 886-891.
- Bindi, L., Evain, M., and Menchetti, S. (2007) Complex twinning, polytypism and disorder
 phenomena in the crystal structures of antimonpearceite and arsenpolybasite. Canadian
 Mineralogist, 45, 321-333.
- Bindi, L., Pratesi, G., and Spry, P.G. (2010) Crystallographic and chemical constraints on the nature
 of the proustite-pyrargyrite solid-solution series. American Mineralogist, 95, 1725-1729.
- Bindi, L., Nestola, F., Graeser, S., Tropper, P., and Raber, T. (2015) Eckerite, Ag₂CuAsS₃, a new
 Cu-bearing sulfosalt from Lengenbach quarry, Binn valley, Switzerland: description and
 crystal structure. Mineralogical Magazine, 79, 687-694.
- Bindi, L., Nespolo, M., Krivovichev, S.V., Chapuis, G., and Biagioni, C. (2020) Producing highly
 complicated materials. Nature does it better. Reports on Progress in Physics, 83, 106501.
- Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica,
 B47, 192-197.
- 401 Bruker AXS Inc. (2016) APEX 3. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 402 Chang, L.L.Y. (1963) Dimorphic relation in Ag₃SbS₃. American Mineralogist, 48, 429–432.
- Criddle, A.J., and Stanley, C.J., Eds. (1986) The Quantitative Data File for Ore Minerals of the
 Commission on Ore Microscopy of the International Mineralogical Association (2nd Edition).
 British Museum (Natural History), 420 p.
- Effenberger, H., Paar, W.H., Topa, D., Criddle, A.J., and Fleck, M. (2002) The new mineral
 baumstarkite and a structural reinvestigation of aramayoite and miargyrite. American
 Mineralogist, 87, 753–764.

- 409 Engel, P., and Nowacki, W. (1966) Die Verfeinerung der Kristallstruktur von Proustit, Ag₃AsS₃,
- 410 und Pyrargyrit, Ag₃SbS₃. Neues Jahrbuch für Mineralogie, Monatshefte, 1966, 181–184.
- 411 Goodell, P.C. (1975) Binary and ternary sulphosalt assemblages in the Cu₂S-Ag₂S-PbS-As₂S₃-
- 412 Sb_2S_3 -Bi₂S₃ system. Canadian Mineralogist, 13, 27-42.
- Hazen, R.M., and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy.
 American Mineralogist, 101, 1245-1251.
- Hoda, S.N., and Chang, L.L.Y. (1975) Phase relations in the system PbS–Ag₂S–Sb₂S₃ and PbS–
 Ag₂S–Bi₂S₃. American Mineralogist 60, 621-623.
- 417 Huber, S., Preitschaft, C., and Pfitzner, A. (2012) Preparation, crystal structure, electronic structure,
- 418 impedance spectroscopy and Raman spectroscopy of Li₃SbS₃ and Li₃AsS₃. Zeitschrift für
 419 anorganische und allgemeine Chemie, 638, 2542-2548.
- Johnson, C.K., and Levy, H.A. (1974) International Tables for X-ray Crystallography, edited by J.
 A. Ibers and W. C. Hamilton, Vol. IV, pp. 311-336. Birmingham: Kynoch Press.
- 422 Kanatzidis, M.G., and Chou, J.-H. (1996) Isolation of β-Ag₃AsSe₃, (Me₃NH)[Ag₃As₂Se₅],
 423 K₅Ag₂As₃Se₉, and KAg₃As₂S₅: novel solid state silver thio- and selenoarsenates from
- solvento-thermal synthesis. Journal of Solid State Chemistry, 127, 186-201.
- Keighin, C.W., and Honea, R.M. (1969) The system Ag–Sb–S from 600°C to 200°C. Mineralium
 Deposita, 4, 153–171.
- Kihara, K., and Matsumoto, T. (1986) Refinements of Ag₃AsSe₃ based on high-order thermalmotion tensors. Zeitschrift f
 ür Kristallographie 177, 211-217.
- Kitakaze, A., Itoh, H., Komatsu, R., and Higuchi, Y. (2006) Baumstarkite from the Koryu mine,
 Hokkaido, Japan. Canadian Mineralogist, 50, 101–109.
- Kocman, V., and Nuffield, E.W. (1973) The crystal structure of wittichenite, Cu₃BiS₃. Acta
 Crystallographica, B29, 2528-2535.

- Kraus, W., and Nolze, G. (1996) PowderCell a program for the representation and manipulation
 of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied
 Crystallography, 29, 301-303.
- Kutoglu, A. (1968) Die Struktur des Pyrostilpnits (Feuerblende) Ag₃SbS₃. Neues Jahrbuch für
 Mineralogie, Monatshefte, 1968, 145–160.
- Lange, B., Scholz, F., Bautsch, H.-J., Damaschun, F., and Wappler, G. (1993) Thermodynamics of
 xanthoconite-proustite and pyrostilpnite-pyrargyrite phase transition as determined by
 abrasive stripping voltammetry. Physics and Chemistry of Minerals 19, 486-491.
- Laufek, F., Sejkora, J., and Dušek, M. (2010) The role of silver in the crystal structure of
 pyrargyrite: single crystal X-ray diffraction study. Journal of Geosciences, 55, 161–167.
- Leitl, M., Pfitzner, A., and Bindi, L. (2009) Preferred ion diffusion pathways and activation
 energies for Ag in the crystal structure of stephanite, Ag₅SbS₄. Mineralogical Magazine, 73,
 17–26.
- Makovicky, E. (1997) Modular crystal chemistry of sulphosalts and other complex sulfides. EMU
 Notes in Mineralogy, 1, 237-271.
- 448 Makovicky, E., and Balić-Žunić, T. (1995) The crystal structure of skinnerite, $P2_1/c$ -Cu₃SbS₃, from 449 powder data. Canadian Mineralogist, 33, 655-663.
- Makovicky, E., and Topa, D. (2014) Lillianites and andorites: new life for the oldest homologous
 series of sulfosalts. Mineralogical Magazine, 78, 387–414.
- 452 Makovicky, E., and Topa, D. (2015) Crystal chemical formula for sartorite homologues.
 453 Mineralogical Magazine, 79, 25–31.
- Matzat, E. (1972) Die Kristallstruktur des Wittichenits, Cu₃BiS₃. Tschermaks Mineralogische und
 Petrographische Mitteilungen, 18, 312-316.
- 456 Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring., A., Paar, W.H., Nickel,
- 457 E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D.,

458	Bindi, L., Bente, K., and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the
459	sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of
460	Mineralogy, 20, 7–46.
461	Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y., and Paar, W.H. (2012) Lead-antimony sulfosalts
462	from Tuscany (Italy). XII. Boscardinite, TlPb4(Sb7As2)29S18, a new mineral species from the
463	Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235-251.
464	Orlandi, P., Biagioni, C., Moëlo, Y., Bonaccorsi, E., and Paar, W.H. (2013) Lead-antimony sulfosalts
465	from Tuscany (Italy). XIII. Protochabournéite, ~Tl2Pb(Sb9-8As1-2)210S17, from the Monte Arsiccio
466	mine: occurrence, crystal structure and relationship with chabournéite. The Canadian
467	Mineralogist, 51, 475-494.
468	Petříček, V., Dusek, M., and Palatinus, L. (2006) JANA2006, a crystallographic computing system.
469	Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
470	Pfitzner, A. (1994) Cu ₃ SbS ₃ : Zur Kristallstruktur und Polymorphie. Zeitschrift für anorganische und
471	allgemeine Chemie, 620, 1992-1997.
472	Rosenstingl, J., and Pertlik, F. (1993) Neuberechnung der kristallstruktur von natürlichem und
473	synthetischem monoklinen Ag_3AsS_3 (= xanthokon) nebst einer discussion zur symmetrie.
474	Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 138, 9–15.
475	Schönau, K.A., and Redfern, S.A.T. (2002) High-temperature phase transitions, dielectric
476	relaxation, and ionic mobility of proustite, Ag ₃ AsS ₃ , and pyrargyrite, Ag ₃ SbS ₃ . Journal of
477	Applied Physics, 92, 7415-7424.
478	Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71,
479	3-8.
480	Smith, J.V., Pluth, J.J., and Han, S.X. (1997) Crystal structure refinement of miargyrite, AgSbS ₂ .
481	Mineralogical Magazine, 61, 671–675.

- 482 Trueblood, K.N., Bürgi, H.-B., Burzlaff, H., Dunitz, J.D., Gramaccioli, C.M., Schulz, H., Shmueli,
- U., and Abrahams, S.C. (1996) Atomic Dispacement Parameter Nomenclature. Report of a
 Subcommittee on Atomic Displacement Parameter Nomenclature. Acta Crystallographica,
- 485 A52, 770-781.
- Yue, C.Y., Zhang, H.P., Lu, X.X., Bai, Y.Q., Shi, H., and Xu, X. (2012) Solvothermal syntheses
 and characterization of two new silver selenidoantimonates of Ag₃SbSe₃ and Ag₅SbSe₄.
 Chinese Journal of Structural Chemistry, 35, 227-236.
- 489 Walenta, K. (1998) Cuboargyrit, ein neues Silbermineral aus dem Schwarzwald. Lapis, 23, 21–23.
- 490 Weil, R., and Hocart, R. (1953) Recherches expérimentales sur la formation des minéraux
- d'argent. Comptes Rendus du Congrès des Sociétés Savantes de Paris et des Départments,
 Toulouse, Section des Sciences, 183-188.
- 493 Wilson, A.J.C. (1992) International Tables for Crystallography Volume C. Kluwer, Dordrecht.
- Zucker, U.H., and Schulz, H.H. (1982) Statistical approaches for the treatment of anharmonic
 motion in crystals. II. Anharmonic thermal vibrations and effective atomic potentials in the
- 496 fast ionic conductor lithium nitride (Li₃N). Acta Crystallographica, A38, 568-576.

498	TABLE CAPTIONS
499	Table 1 – Reflectance data (%) for pyradoketosite in air.
500	Table 2 – Electron-microprobe data (mean of 5 spot analyses, in wt%) of pyradoketosite and atoms
501	per formula unit (apfu) on the basis of 4 (Ag+Sb) apfu.
502	Table 3 – Observed and calculated X-ray powder diffraction data for pyradoketosite. Intensity and
503	$d_{\rm hkl}$ were calculated using the software <i>PowderCell</i> 2.3 (Kraus and Nolze 1996) on the basis of the
504	refined structural model. Only reflections with $I_{calc} > 10$ are listed, if not observed. The five
505	strongest calculated reflections are given in bold. Observed intensities were visually estimated (s =
506	strong; mw = medium-weak; w = weak).
507	Table 4 – Crystal data and summary of parameters describing data collection and refinement for
508	pyradoketosite.
509	Table 5 – Selected bond distances (in Å) for pyradoketosite.
510	Table 6 – Bond valence sums (in valence units, v.u.) for pyradoketosite.
511	Table 7 – Natural and synthetic compounds chemically related to pyradoketosite.
512	Table 8 – Comparison of unit-cell parameters of members of the wittichenite-skinnerite group with
513	parameters of the supercell of pyradoketosite (see dotted lines in Figure 5).
514	
515	FIGURE CAPTIONS
516	Fig. 1 – Pyradoketosite, striated acicular crystals, orange in color (a). Scanning electron microscope
517	image shows the association with equant pyrargyrite and probable tabular pyrostilpnite (b).
518	Sant'Olga tunnel, Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. Holotype material.
519	Fig. 2 – Reflectance spectrum of pyradoketosite (square), compared with those of pyrargyrite
520	(triangles) and pyrostilphite (circles). R_1 and R_2 are shown as dotted and dashed lines, respectively.

521 Data for pyrargyrite and pyrostilpnite are after Criddle and Stanley (1986).

Fig. 3 – Crystal structure of pyradoketosite projected down **b**. The organization of SbS₃ groups in two {101} layers having different polarity is shown (arrows indicate the orientation of SbS₃ pyramids). Numbers indicate the Ag (violet) and Sb (green) sites. Dashed red lines indicate the unit cell, whereas blue dashed lines highlight {-102} layers.

Fig. 4 – Organization of {-102} layers [without marginal Ag(5) and Ag(8) atoms].

Fig. 5 – The {101} layered organization of pyradoketosite as seen down b. Grey dotted lines show
two unit cells, whereas dotted red lines represent the supercell discussed in the text. Numbers "2"

- and "3" indicate the Ag_2S_2 and Ag_3S_2 groups. Double black arrows show the Ag(3) pairing across
- 530 the A layers.
- **Fig. 6** Crystal structures of wittichenite (a), skinnerite (b), and Li₃SbS₃ (c) as seen down **b**.

λ/nm	<i>R</i> ₁	<i>R</i> ₂	λ/nm	<i>R</i> ₁	<i>R</i> ₂
400	36.0	36.9	560	29.8	30.3
420	35.0	35.6	580	29.2	29.8
440	34.0	34.3	589	29.0	29.6
460	33.0	33.3	600	28.7	29.3
470	32.8	32.9	620	28.3	29.0
480	32.2	32.4	640	27.7	28.6
500	30.9	31.9	650	27.5	28.4
520	30.9	31.3	660	27.2	28.2
540	30.4	30.8	680	26.9	28.0
546	30.2	30.7	700	26.7	27.9

534 Note: data for the four COM wavelengths are given in bold.

535

537 **Table 2** – Electron-microprobe data (mean of 5 spot analyses, in wt%) of pyradoketosite and atoms

Element	wt%	Range	e.s.d.
Ag	59.81	58.90 - 60.21	0.47
Sb	22.63	22.41 – 22.87	0.19
S	17.78	17.55 – 17.92	0.14
Total	100.21	99.31 – 100.66	0.50
	apfu (ΣMe = 4)	Range	e.s.d.
Ag	apfu (ΣMe = 4) 2.996	Range 2.976 – 3.007	e.s.d. 0.011
Ag Sb	apfu (ΣMe = 4) 2.996 1.004	Range 2.976 – 3.007 0.993 – 1.024	e.s.d. 0.011 0.011
Ag Sb S	apfu (ΣMe = 4) 2.996 1.004 2.996	Range 2.976 – 3.007 0.993 – 1.024 2.983 – 3.015	e.s.d. 0.011 0.011 0.015
Ag Sb S <i>Ev</i> (%)	apfu (ΣMe = 4) 2.996 1.004 2.996 0.3	Range 2.976 - 3.007 0.993 - 1.024 2.983 - 3.015 -0.7 - 1.4	e.s.d. 0.011 0.011 0.015 0.7

538 per formula unit (apfu) on the basis of 4 (Ag+Sb) apfu.

539

Note: $Ev(\%) = [\Sigma(val+) - \Sigma(val-)] \times 100 / \Sigma(val-).$

Table 3 – Observed and calculated X-ray powder diffraction data for pyradoketosite. Intensity and d_{hkl} were calculated using the software *PowderCell*2.3 (Kraus and Nolze 1996) on the basis of the refined structural model. Only reflections with $I_{calc} > 10$ are listed, if not observed. The five strongest calculated reflections are given in bold. Observed intensities were visually estimated (s = strong; mw = medium-weak; w = weak).

I _{obs}	$d_{ m obs}$	I _{calc}	d_{calc}	hkl	I _{obs}	$d_{\rm obs}$	I _{calc}	$d_{\rm calc}$	hkl
w	6.4	10	6.533	011	W	2.750	18	2.741	124
w	4.14	32	4.137	-204	-	-	13	2.715	321
-	-	10	4.015	-213	14/	2 654	13	2.683	501
-	-	10	3.900	-114	vv	2.004	23	2.635	315
-	-	10	3.893	-303	-	-	14	2.591	025
w	3.833	20	3.834	-105	-	-	27	2.553	-5 1 1
-	-	18	3.553	-214	-	-	19	2.549	510
100144	2 201	∫ 16	3.395	-313			(13	2.520	125
IIIvv	3.301	l 35	3.355	-115	2014/	2 505	18	2.506	-4 1 5
-	-	18	3.267	022	IIIVV	2.505	14	2.503	117
	2 100	∫ 81	3.198	-1 2 2			^L 15	2.482	-217
vv	5.190	L 61	3.193	313	2014/	2 4 4 4	∫ 17	2.438	-513
		(24	3.096	-305	IIIVV	2.441	l 19	2.436	-4 2 1
•	2 025	J 18	3.094	220	w	2.295	11	2.296	031
5	5.055	〕100	2.999	411	m14/	2 160	∫ 20	2.159	-326
		57	2.959	215	IIIVV	2.100	L 22	2.153	-5 2 1
-	-	23	2.917	222	-	-	21	2.123	127
		(11	2.861	-4 1 3	2014	1 0 1 2	∫ 15	1.946	-606
	2 0 1 1	28	2.835	-223	IIIVV	1.912	L 11	1.917	-2 0 10
vv	2.041) 59	2.832	116	2014/	1 070	∫ 15	1.898	431
		L 20	2.827	-315	IIIW	1.0/0	L 15	1.888	235
-	-	20	2.762	320	-	-	25	1.799	606

546

548 **Table 4** – Crystal data and summary of parameters describing data collection and refinement for

549 pyradoketosite.

Crystal data	
Crystal size (mm)	0.075 × 0.015 × 0.010
Cell setting, space group	Monoclinic, P2 ₁ /n
<i>a</i> (Å)	13.7510(15)
b (Å)	6.9350(6)
<i>c</i> (Å)	19.555(2)
β (°)	94.807(4)
$V(Å^3)$	1858.3(3)
Z	12
Data collection and refinement	
Radiation, wavelength (Å)	Mo <i>K</i> α, λ = 0.71073
Temperature (K)	293
2θ _{max} (°)	52.98
Measured reflections	29750
Unique reflections	3854
Reflections with $F_{o} > 4\sigma(F_{o})$	2682
R _{int}	0.1030
Ro	0.0628
	–17 ≤ <i>h</i> ≤ 17,
Range of h, k, l	$-8 \le k \le 8,$
	–24 ≤ / ≤ 24
$R[F_{o} > 4\sigma(F_{o})]$	0.0626
R (all data)	0.1005
WR (on F_0^2)	0.1341
Goof	1.082
Number of least-squares parameters	191
Maximum and	3.09 [at 1.00 Å from Ag(8)]
minimum residual peak (e Å ⁻³)	-2.93 [at 0.86 Å from Ag(8)]

553	Table 5 – Selected bond distances (in Å) for pyradoketosite.

Ag(1)	– S(7)	2.507(5)	Ag(2)	- S(4)	2.464(5)	Ag(3)	- S(9)	2.468(4)
	– S(1)	2.513(4)		– S(4)	2.471(5)		– S(6)	2.650(5)
	– S(5)	2.530(4)		– S(7)	2.715(5)		– S(5)	2.651(4)
	– S(8)	2.963(5)		- S(8)	2.865(5)		average	2.590
	average	2.628		average	2.629			
Ag(4)	– S(8)	2.466(5)	Ag(5)	– S(5)	2.475(5)	Ag(6)	– S(2)	2.512(4)
	– S(3)	2.511(4)		– S(7)	2.512(5		– S(1)	2.547(5)
	– S(6)	2.648(5)		– S(1)	2.575(4)		– S(9)	2.622(4)
	average	2.541		average	2.521		average	2.560
Ag(7)	– S(3)	2.477(5)	Ag(8)	– S(3)	2.508(4)	Ag(9)	– S(8)	2.483(5)
	– S(6)	2.532(5)		– S(7)	2.516(5)		– S(2)	2.533(5)
	– S(9)	2.594(4)		– S(6)	2.572(5)		– S(2)	2.559(5)
	average	2.534		average	2.532		average	2.525
Sb(1)	– S(2)	2.407(4)	Sb(2)	– S(4)	2.425(4)	Sb(3)	– S(5)	2.453(4)
	– S(8)	2.434(4)		– S(7)	2.460(4)		– S(9)	2.468(4)
	– S(3)	2.445(4)		– S(1)	2.463(4)		– S(6)	2.474(4)
	average	2.429		average	2.449		average	2.465

554

Site	S(1)	S(2)	S(3)	S(4)	S(5)	S(6)	S(7)	S(8)	S(9)	Σcations
Ag(1)	0.37				0.36		0.38	0.11		1.22
Ag(2)				0.43 0.42			0.22	0.14		1.21
Ag(3)					0.26	0.26			0.42	0.94
Ag(4)			0.38			0.26		0.43		1.07
Ag(5)	0.32				0.42		0.38			1.12
Ag(6)	0.34	0.38							0.29	1.01
Ag(7)			0.41			0.36			0.30	1.07
Ag(8)			0.38			0.32	0.37			1.07
Ag(9)		0.36 0.33						0.41		1.10
Sb(1)		1.12	1.03					1.04		3.19
Sb(2)	0.97			1.07			0.97			3.01
Sb(3)					0.99	0.94			0.95	2.88
Σanions	2.00	2.19	2.20	1.92	2.03	2.14	2.32	2.13	1.96	

Table 6 – Bond valence sums (in valence units, v.u.) for pyradoketos	ite.
---	------

557

Name	Chemical formula	<i>a</i> (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å ³)	S.g.	Ζ	Ref.
Eckerite	CuAg ₂ AsS ₃	11.86	6.23	16.68	90	110.8	90	1152.8	C2/c	8	[1]
Proustite	Ag ₃ AsS ₃	10.84	10.84	8.72	90	90	120	887.8	R3c	6	[2]
Pyradoketosite	Ag_3SbS_3	13.75	6.94	19.56	90	94.81	90	1858.3	P2 ₁ /n	12	[3]
Pyrargyrite	Ag_3SbS_3	11.05	11.05	8.72	90	90	120	921.6	R3c	6	[4]
Pyrostilpnite	Ag_3SbS_3	6.86	15.88	6.27	90	117.1	90	608.5	P2 ₁ /c	4	[5]
Synthetic	Ag ₃ AsSe ₃	11.30	11.30	8.76	90	90	120	968.4	R3c	6	[6]
Synthetic	Ag ₃ AsSe ₃	8.11	11.34	20.73	90	90	90	1907	Pnma	12	[7]
Synthetic	Ag₃SbSe₃	8.24	11.49	21.22	90	90	90	2009.8	Pnma	12	[8]
Xanthoconite	Ag_3AsS_3	12.02	6.26	17.08	90	110.9	90	1200.6	C2/c	8	[9]

Table 7 – Natural and synthetic compounds chemically related to pyradoketosite.

560 S.g. = space group. [1] Bindi *et al.* (2015); [2] Bindi *et al.* (2010); [3] this work; [4] Laufek *et al.* (2010); [5] Biagioni *et*

561 *al.* (2020b); [6] Kihara and Matsumoto (1986); [7] Kanatzidis and Chou (1996); [8] Yue *et al.* (2012); [9] Rosenstingl

562 and Pertlik (1993).

 Name	Chemical formula	S.g.	Ζ	A' (Å)	<i>A"</i> (Å)	S (Å)	Oblique angle (°)	<i>V</i> (Å ³)	Ref.
 Wittichenite	Cu ₃ BiS ₃	$P2_{1}2_{1}2_{1}$	4	7.726	6.716	10.935	-	539.16	[1]
Skinnerite	Cu ₃ SbS ₃	P2 ₁ /c	8	7.814	13.273	10.242	90.29	1062.27	[2]
Skinnerite	Cu ₃ SbS ₃	P2 ₁ /c	8	7.808	13.268	10.233	90.31	1060.09	[3]
Synthetic	Li ₃ SbS ₃	Pna2₁	4	7.9671	6.788	10.091	-	545.76	[4]
Synthetic	Li ₃ AsS ₃	Pna2₁	4	8.090	6.658	9.868	-	531.52	[4]
Pyradoketosite supercell	Ag_3SbS_3		24	24.831	6.935	22.944	109.84	3716.51	[5]
"average pyradoketosite"	Ag_3SbS_3		4	8.277	6.935	11.472	109.84	619.42	[5]

Table 8 – Comparison of unit-cell parameters of members of the wittichenite-skinnerite group with
 parameters of the supercell of pyradoketosite represented in Figure 5.

566 A' and A'' = in-plane unit-cell parameters; S = unit-cell parameter along the stacking direction. The oblique angle is

between A' and A'' parameters in skinnerite and between A' and S in pyradoketosite. S.g. = space group. [1] Kocman

568 and Nuffield (1973); [2] Makovicky and Balić-Žunić (1995); [3] Pfitzner (1994); [4] Huber et al. (2012); [5] this work.

Fig. 3

Fig. 4

Fig. 5

a