1 Revision 2, Word Count: 10812

2	3D crystal size distributions of pyroxene nanolites from nano X-ray computed
3	tomography: Improved correction of crystal size distributions from CSDCorrections
4	for magma ascent dynamics in conduits
5	Shota Okumura ^{1,*} , Mayumi Mujin ² , Akira Tsuchiyama ^{3,4} , and Akira Miyake ¹
6	Affiliations:
7	¹ Department of Geology and Mineralogy, Graduate School of Science, Kyoto University,
8	Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
9	² Department of Earth Science, Graduate School of Science, Tohoku University, 6-3,
10	Aramaki-Aza-Aoba, Aobaku, Sendai 980-8578, Japan
11	³ Research Organization of Science and Technology, Ritsumeikan University, 1-1-1
12	Nojihigashi, Kusatsu, Shiga 525-8577, Japan
13	⁴ CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key
14	Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry,
15	Chinese Academy of Sciences, 511 Kehua Street, Wushan, Tianhe District, Guangzhou
16	510640, China
17	

1

18

ABSTRACT

19	Groundmass crystals indicate syneruptive magmatic conditions, and thus their
20	crystal size distributions (CSDs) are used to infer magma ascent histories.
21	Three-dimensional (3D) CSDs are most commonly estimated from two-dimensional (2D)
22	observations and plotted against long-axis length, L (hereafter referred to as "L-plot CSDs").
23	However, L-plot CSDs have two significant problems: the error owing to the conversion
24	from 2D to 3D and a lowered sensitivity to changes in the degree of effective undercooling
25	(ΔT_{eff}) , which arises because a crystal's growth rate varies with ΔT_{eff} most strongly along its
26	long dimension. Although these problems can result in false interpretations of magma
27	ascent dynamics, there has been little discussion of the influence of the size criteria on
28	CSDs.
29	In this study, we investigated which 3D size criterion (i.e., long (L) , intermediate
30	(1), or short (S) axis length) is optimum for 2D-estimated CSDs of groundmass crystals
31	from two perspectives: (1) conformity with the actual distributions, and (2) the sensitivity
32	of CSD slopes to the magma ascent conditions in the conduit. We observed groundmass
33	pyroxene crystals in pumice clasts from sub-Plinian and Vulcanian eruptive phases during
34	the 2011 eruption of Shinmoedake (andesitic volcano, Japan) by using synchrotron

35	radiation-based X-ray computed nanotomography (SR-XCT) and field-emission scanning
36	electron microscopy (FE-SEM), and reinvestigated the crystallization kinetics of pyroxene
37	nanolites ranging in width from a few hundred nanometers to 1 $\mu\text{m}.$ The SR-XCT
38	observations provided the detailed 3D shapes and 3D CSDs (CT-CSDs) of these nanolites
39	directly. The FE-SEM observations allowed us to estimate 3D aspect ratios ($S : I : L$) and
40	CSDs (SEM-CSDs). L-plot SEM-CSDs, acquired using the program CSDCorrections, were
41	used to calculate S-plot SEM-CSDs and I-plot SEM-CSDs. We compared the data from
42	FE-SEM with those from SR-XCT to evaluate the accuracy of 3D aspect ratios and CSDs
43	estimated from 2D data.
44	The L-plot SEM-CSDs from the sub-Plinian pumice sample showed significant
45	inconsistencies with the CT-CSD, a result of the difficulty in estimating representative 3D
46	aspect ratios from 2D observations for fairly elongated groundmass crystals. In contrast, the
47	S- and I-plot SEM-CSDs kept the effect of aspect ratio to a minimum and preserved their
48	actual slopes, except for a vertical discrepancy between the CSDs. Moreover, the slopes of
49	S- and I-plot CSDs of the nanolites differed more markedly between the two eruptive styles
50	(by ~20% more) than those of L-plot CSDs. For estimating magma ascent dynamics, we

51	propose that the optimum method for acquiring SEM-CSDs is to measure the
52	cross-sectional widths of crystals and convert the resulting 2D dataset into S-plot CSDs.
53	Our new finding that the 3D shapes and CSDs of pyroxene nanolites differ
54	according to eruptive style means that nanolites indicate distinct differences in ascent
55	histories at the shallow conduit: increasing ΔT_{eff} just before sub-Plinian eruptions and
56	decreasing ΔT_{eff} before Vulcanian eruptions. Given the similarity in CSDs of microlites, our
57	results suggest that eruptive style was determined in the shallow conduit. Monitoring the
58	condition of the shallow conduit may contribute to predicting the time evolution of eruptive
59	activity.
60	Keywords: Crystal size distribution, Morphology, Nanolite, X-ray computed tomography,
61	Pyroxene, Magma ascent
62	
63	INTRODUCTION
64	Eruptive phenomena are controlled by the conditions of magma ascent through the
65	conduit (e.g., Cassidy et al. 2018). Recent studies have argued that the subaerial explosivity
66	of volcanic eruptions can be determined by conditions in shallow conduits (e.g., Wadsworth
67	et al. 2020). Magma ascent histories are thus important for understanding how eruptive

68	styles change in conduits, and these histories are recorded by groundmass crystals, which
69	crystallize mainly as a result of decompression-induced dehydration (e.g., Cashman and
70	Blundy 2000). In particular, nanolites, crystals smaller than 1 μ m in width (Mujin et al.
71	2017), are considered to reflect magmatic conditions in the shallow conduit (Mujin and
72	Nakamura 2014). Furthermore, the presence of nanolites can affect eruptive styles by
73	increasing magma viscosity and enhancing bubble nucleation (e.g., Di Genova et al. 2017,
74	2020; Hajimirza et al. 2021). The crystallization kinetics of nanolites are reflected in crystal
75	size distributions (CSDs; Cashman and Marsh 1988; Marsh 1988); therefore, CSD analyses
76	enable us to investigate the histories of magma ascent in conduits (e.g., Armienti et al.
77	1994; Marsh 1998; Mujin and Nakamura 2014).
78	CSDs are generally expressed as the natural logarithm of crystal population
79	density (mm ⁻⁴ , the number of crystals in a given size interval per unit volume) as a function
80	of crystal size, and their slopes allow the estimation of crystallization kinetics and magma
81	ascent dynamics (Marsh 1988, 1998). If an open system where nucleation and growth rates
82	are fixed is considered, CSDs are used to quantify growth rates or magma residence times
83	(Marsh 1988). However, the syneruptive ascent of magma in the conduit involves changes
84	in nucleation and growth rates over time. In such a closed non-steady system, CSD slopes

85	reflect the balance between nucleation and growth rates (Marsh 1998). According to Marsh
86	(1998), log-linear CSDs generally represent an exponential increase in nucleation rate with
87	time under steady growth, and an increase of the nucleation exponent steepens the slope of
88	the CSD. Therefore, a CSD with a break in slope probably indicates a change in
89	crystallization conditions, such as a magmatic event involving a drastic change in the
90	degree of effective undercooling (ΔT_{eff}), which responds to decompression-induced
91	dehydration.
92	Although CSDs are based on three-dimensional (3D) quantities, they are most
93	often estimated from two-dimensional (2D) observations using stereological corrections
94	(Fig. 1). Since its development, the program CSDCorrections (Higgins 2000) has been used
95	to calculate almost all reported CSDs. CSDCorrections yields stereologically corrected
96	CSDs from datasets of crystal cross-sectional width (w) or length (l) , the area analyzed, a
97	representative 3D crystal shape, and fabric (crystal orientation). The stereological
98	corrections are based on the principle that w and l tend to be close to the lengths of the 3D
99	short (S) and intermediate (I) axes, respectively, when there is no dominant lineation or
100	foliation (Higgins 1994). Assuming that all crystals are similarly shaped in terms of their
101	3D aspect ratios $S : I : L$, the program converts the scale of size intervals from w or l into

102 the 3D long-axis length (*L*) as (Equation 6 in Higgins 2000):

$$103 L = w \times A (1a)$$

$$L = l \times B \tag{1b}$$

105	where the constants A and B are L/S and L/I ratios for a representative 3D crystal shape,
106	respectively. The representative 3D aspect ratio $S : I : L$ used for the corrections is also
107	estimated from a histogram of the w/l ratios of crystal cross sections obtained from 2D
108	observations (Higgins 1994; Morgan and Jerram 2006). Because CSDCorrections converts
109	cross-sectional size data into L , most reported CSDs are expressed as a function of L
110	(hereafter referred to as "L-plot CSDs"), except in a few recent studies (Taddeucci et al.
111	2004; Mujin and Nakamura 2014) and in those published before 2000 (e.g., Cashman and
112	Marsh 1988; Armienti et al. 1994). However, the use of L as the representative size for
113	CSDs may not be optimal; its use may stem from the fact that stereological corrections
114	applied to non-spherical shapes are based on the diameter of a sphere circumscribed about a
115	crystal (i.e., its maximum length; e.g., Peterson 1996).
116	Although CSDs were originally used to estimate crystal residence times or growth
117	rates during static (near equilibrium) processes in steady open systems such as magma
118	stagnation (e.g., Marsh 1988; Cashman and Marsh 1988; Hammer et al. 1999; Witter et al.

119	2016), they have been increasingly used to infer conditions during the syneruptive ascent of
120	magma (e.g., Castro and Gardner 2008; Preece et al. 2013; Mujin et al. 2017; Suzuki et al.
121	2018). Because such non-steady closed systems should yield variable ΔT_{eff} , CSD analyses
122	to infer syneruptive ascent dynamics must take into consideration the anisotropic kinetics of
123	crystal growth. In this context, L-plot CSDs have two significant problems: (1) errors
124	owing to the conversion from 2D to 3D and (2) relatively low sensitivity to changes in
125	$\Delta T_{e\!f\!f}$.
126	(1) The 2D to 3D conversion in <i>CSDCorrections</i> derives L from w or l on the
127	assumption that all crystals have the same 3D aspect ratio (Fig. 1). However, Castro et al.
128	(2003) has shown that the aspect ratios of groundmass crystals may vary greatly and yield
129	inaccurate L-plot CSDs from 2D observations. In addition, it is inherently difficult to
130	estimate representative 3D aspect ratios of groundmass crystals from 2D data because of
131	their elongated shapes (Morgan and Jerram 2006), and errors in the aspect ratio can
132	significantly distort the resultant CSD (Muir et al. 2012). However, if CSDs can be
133	obtained as a function of S or I (i.e., S -plot or I -plot CSDs) without the conversion into L
134	via Equations 1, the error related to aspect ratios should be reduced (see Appendix 1).
135	(2) Because rock-forming minerals tend to be elongated with increasing ΔT_{eff} (e.g.,

136	Kouchi et al. 1983; Hammer and Rutherford 2002; Shea and Hammer 2013), the lo	ong
137	dimension L of a crystal should be considered as the direction in which its growth r	rate
138	varies most significantly with ΔT_{eff} . With increasing ΔT_{eff} , the slope of CSDs is steepen	ned
139	by an accelerated increase in nucleation rate (Marsh 1998); however, the increase in grow	wth
140	rate, which makes the slope gentler, can offset this effect (Fig. 2). Figure 2 shows simula	ted
141	CSDs based on the equations in Marsh (1998) (see Appendix 2). Marsh (1998) formula	ted
142	crystal population densities (N) with the assumption that nucleation (J) and growth rates	ites
143	(<i>G</i>) are exponential functions of time as (Equations 7, 8, and 23 in Marsh 1998):	
144	$J = J_0 \exp(ax) \tag{2}$	
145	$G = G_{\rm o} \exp(bx) \tag{3}$	
146	$\ln\left[\frac{N(x)}{N_{0}}\right] = \ln[1 - \varphi(x)] + (a - b)x $ (4)	
147	where <i>a</i> and <i>b</i> are constants, φ is the crystal fraction, <i>x</i> is dimensionless time (0–1), and	the
148	subscript o for the parameters indicates the initial values (i.e., at time $x = 0$). The slope	e of
149	CSD is approximately given by $(a - b)/L_m$, where L_m is the maximum crystal size. We	hen
150	the growth rate is nearly constant (i.e., $b \sim 0$; Fig. 2c), the slope of CSD responds primar	rily
151	to the nucleation rate (i.e., a) (Marsh 1998). In contrast, because increases in growth n	rate
152	and its dependence on ΔT_{eff} (i.e., G_0 and b) decrease the slope of CSD, rapid crystallizat	ion

153	associated with accelerated growth can produce a CSD resembling one resulting from
154	slower nucleation and growth (Fig. 2d). Hence, it is possible that the slopes of L-plot CSDs
155	insufficiently reflect changes in ΔT_{eff} . On the other hand, if the growth rate along the short
156	axis (S) is the least affected by ΔT_{eff} , S-plot CSDs should reflect temporal changes in
157	nucleation rate most clearly and be more sensitive to magma ascent conditions.
158	These problems in the prevalent L-plot CSDs can result in false interpretations of
159	magma ascent dynamics; however, there has been little discussion of the influence of size
160	criteria on CSDs. Instead of L plots, we propose the use of S-plot CSDs for the
161	investigation of magma ascent histories. S-plot CSDs are transformed from the L-plot CSDs
162	that CSDCorrections calculates from 2D datasets (Fig. 1). In this study, we acquired CSDs
163	estimated from 2D scanning electron microscope (SEM) observations (SEM-CSDs), and
164	here we discuss their optimum representation among L , I , and S plots from two
165	perspectives: (1) conformity with the actual distributions and (2) sensitivity of CSD slopes
166	to magma ascent conditions in the conduit. Because nanolites probably reflect the
167	difference in magma conditions among different eruptive styles most strongly (Mujin and
168	Nakamura 2014), we focus on the kinetics of nanolites.
169	To obtain accurate CSDs of nanolites directly, we used synchrotron radiation-

170	based X-ray computed nanotomography (SR-XCT) with spatial resolutions on the order of
171	100 nm (e.g., Uesugi et al. 2006; Takeuchi et al. 2009; Tsuchiyama et al. 2011). These 3D
172	observations yielded detailed 3D shapes of very small groundmass crystals (less than
173	several μ m in width) and reliable CSDs free of stereological errors (CT-CSDs) that enabled
174	us to evaluate the accuracy of the SEM-CSDs for each size criterion.
175	To verify the sensitivity of CSD slopes, we analyzed pumice samples from
176	sub-Plinian and Vulcanian eruptions during the 2011 activity of Shinmoedake, an andesitic
177	volcano in Japan, which represent two distinct ascent histories. CSDs of plagioclase have
178	shown that the magma ascent conditions in the shallow conduit differed between the
179	sub-Plinian and Vulcanian eruptions (Mujin and Nakamura 2014; Mujin et al. 2017; Suzuki
180	et al. 2018); however, the CSDs of pyroxene were similar (Mujin and Nakamura 2014;
181	Mujin et al. 2017; note that Figure 3 of Mujin et al. 2017 displays L-plot CSDs). Pyroxene
182	is an important phase that indicates magma conditions (e.g., Ubide and Kamber 2018;
183	Arzilli et al. 2019; Masotta et al. 2020); therefore, pyroxene CSDs should reflect the same
184	differences in ascent paths that plagioclase recorded. A possible reason for the discrepancy
185	between plagioclase and pyroxene is the selection of samples analyzed. Mujin and
186	Nakamura (2020) noted that the pyroclasts from the Shinmoedake 2011 eruption previously

187	analyzed by Mujin and Nakamura (2014) and Mujin et al. (2017) are classified into two
188	types based on their glass chemical composition and that one of the five Vulcanian pumice
189	clasts they analyzed belonged to the same group as the sub-Plinian pumice. Because the
190	Vulcanian pumice samples of Mujin and Nakamura (2014) and Mujin et al. (2017) included
191	both types, we selected the characteristic pumice for each eruptive style for reanalysis in
192	this study. Here, we reexamine whether the kinetics of pyroxene nanolites reflect the
193	different ascent histories.
194	
195	SAMPLE DESCRIPTION
196	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic
196 197	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption
196 197 198	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption included various eruptive styles, pumice samples from different phases of the eruption
196 197 198 199	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption included various eruptive styles, pumice samples from different phases of the eruption allowed investigation of the effects of ascent dynamics on the observed CSDs. The
196 197 198 199 200	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption included various eruptive styles, pumice samples from different phases of the eruption allowed investigation of the effects of ascent dynamics on the observed CSDs. The chronology of the 2011 Shinmoedake eruption is well documented by various observations
196 197 198 199 200 201	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption included various eruptive styles, pumice samples from different phases of the eruption allowed investigation of the effects of ascent dynamics on the observed CSDs. The chronology of the 2011 Shinmoedake eruption is well documented by various observations (Kozono et al. 2013; Nakada et al. 2013; Kato and Yamasato 2013). The climactic phase of
196 197 198 199 200 201 202	We selected pumice samples from the 2011 eruption of Shinmoedake, an andesitic volcano in the Kirishima volcano group, southern Kyushu, Japan. Since this eruption included various eruptive styles, pumice samples from different phases of the eruption allowed investigation of the effects of ascent dynamics on the observed CSDs. The chronology of the 2011 Shinmoedake eruption is well documented by various observations (Kozono et al. 2013; Nakada et al. 2013; Kato and Yamasato 2013). The climactic phase of the eruption (26–31 January 2011) was characterized by three sub-Plinian eruptions and the

204	Vulcanian eruptions; this activity was followed by repeated Vulcanian eruptions and
205	explosive events from 1 February to 13 March 2011. In this study, we examined two gray
206	pumice clasts: one from a sub-Plinian eruption and the other from a Vulcanian explosion.
207	These samples were collected on 24 July 2011 at Takachihogawara, 3 km south of
208	Shinmoedake crater. The sub-Plinian pumice was collected from a well-sorted pumice fall
209	deposit emplaced during the first and second sub-Plinian events (layers 2-4 of Nakada et al.
210	2013). The Vulcanian pumice was collected from the topmost surface of the pumice
211	deposits emplaced by the three sub-Plinian eruption columns (layer 5 of Nakada et al. 2013;
212	unit 3U of Miyabuchi et al. 2013). Although the precise explosion that produced the
213	Vulcanian pumice has not been determined, it most likely occurred on 1 or 11 February or
214	13 March (Mujin et al. 2017). Nonetheless, the pumice clasts are distinct because the
215	Vulcanian explosions produced larger pumice than the sub-Plinian eruption. Sample
216	collection details are reported in Mujin and Nakamura (2014).
217	Suzuki et al. (2013) reported that the products of the sub-Plinian and Vulcanian
218	eruptive phases are similar in bulk chemical composition (57-58 wt% SiO ₂), except for
219	white pumice (62–63 wt% SiO ₂). However, interstitial glass compositions vary according to
220	eruption style: those of Vulcanian products tend to be more evolved than those of

221	sub-Plinian pumice, probably due to magma stagnation in the conduit preceding the
222	Vulcanian explosions (Suzuki et al. 2018; Mujin and Nakamura 2020). Mujin and
223	Nakamura (2020) divided the Shinmoedake pyroclasts into two groups based on the glass
224	compositions: less silicic group 1 with $SiO_2 < 71$ wt% and silicic group 2 with $SiO_2 > 71$
225	wt%. The sub-Plinian pumice clasts belong to group 1, whereas four of five Vulcanian
226	pumice clasts belong to group 2. Although the Vulcanian pumice samples of previous
227	studies (Mujin and Nakamura 2014; Mujin et al. 2017) included some from group 1, we
228	selected a group 2 Vulcanian pumice and a group 1 sub-Plinian pumice as representative
229	samples of each eruptive style (Table 1). Therefore, we assume that these two pumice
230	samples experienced distinct ascent dynamics.
231	Gray pumice clasts from the 2011 Shinmoedake eruption contain phenocrysts (>
232	100 μ m) of plagioclase, clinopyroxene (Cpx), orthopyroxene (Opx), olivine, magnetite, and
233	ilmenite, some of which show reaction rims indicating the intrusion of a higher-temperature
234	magma (Suzuki et al. 2013). Their groundmass is charged with crystals of plagioclase,
235	pyroxenes, and Fe-Ti oxides. Backscattered electron (BSE) images of both samples used in
236	this study are shown in Figure 3. The pumice samples do not contain crystals smaller than
237	30 nm, referred to as ultrananolites (Mujin et al. 2017). This study analyzed groundmass

238	pyroxene crystals smaller than several micrometers in width, and focused particularly on
239	pyroxene nanolites (ranging from a few hundred nanometers to 1 μ m in width) to
240	reinvestigate their crystallization kinetics. Because they are considered to form in the
241	shallow conduit before magma fragmentation, their kinetics should reveal magma ascent
242	dynamics at shallow depths. As mentioned in Mujin et al. (2017), most groundmass
243	pyroxene crystals wider than about 100 nm show parallel intergrowths of Opx and Cpx. We
244	therefore treated them as a single pyroxene phase.
245	
246	ANALYTICAL PROCEDURE
246 247	ANALYTICAL PROCEDURE FE-SEM-EDS analyses
246 247 248	ANALYTICAL PROCEDURE FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an
246 247 248 249	ANALYTICAL PROCEDURE FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV, a 10-mm working distance, and an image resolution of ca. 25
246247248249250	ANALYTICAL PROCEDURE FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV, a 10-mm working distance, and an image resolution of ca. 25 nm/pixel using a JEOL JSM-7001F field-emission SEM (FE-SEM) at Kyoto University
 246 247 248 249 250 251 	FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV, a 10-mm working distance, and an image resolution of ca. 25 nm/pixel using a JEOL JSM-7001F field-emission SEM (FE-SEM) at Kyoto University (Fig. 3). Quantitative compositional analyses of interstitial glasses were performed using
 246 247 248 249 250 251 252 	FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV, a 10-mm working distance, and an image resolution of ca. 25 nm/pixel using a JEOL JSM-7001F field-emission SEM (FE-SEM) at Kyoto University (Fig. 3). Quantitative compositional analyses of interstitial glasses were performed using the FE-SEM coupled with an Oxford Instruments X-Max ^N 150 mm ² energy dispersive
 246 247 248 249 250 251 252 253 	FE-SEM-EDS analyses BSE images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV, a 10-mm working distance, and an image resolution of ca. 25 nm/pixel using a JEOL JSM-7001F field-emission SEM (FE-SEM) at Kyoto University (Fig. 3). Quantitative compositional analyses of interstitial glasses were performed using the FE-SEM coupled with an Oxford Instruments X-Max ^N 150 mm ² energy dispersive X-ray spectrometer (EDS) and its associated analytical software <i>AZtec</i> . We analyzed 50

and a beam current of about 0.3 nA. The averaged compositions of each sample arereported in Table 1.

257 SR-XCT observation

258	We acquired the 3D shapes of groundmass pyroxene crystals by SR-XCT at
259	beamline BL47XU of the SPring-8 synchrotron facility (Hyogo, Japan; Uesugi et al. 2006;
260	Takeuchi et al. 2009), which permits the nondestructive acquisition of 3D structures at high
261	signal-to-noise ratios and high spatial resolution (~200 nm; e.g., Matsumoto et al. 2019).
262	We extracted two equant microscale specimens about 20–25 μ m wide from each pumice
263	sample (sP_1 and sP_2 from the sub-Plinian pumice and Vul_1 and Vul_2 from the
264	Vulcanian pumice; Table 2) using a FEI Quanta 200 3DS focused ion beam (FIB) system at
265	Kyoto University (the extracted regions differed from those observed by SEM). In the FIB
266	system, a Ga ⁺ ion gun was used at an acceleration voltage of 30 kV and a beam current of
267	0.03-65 nA. Each specimen was then mounted on a tungsten needle for SR-XCT analysis.
268	SR-XCT observations were performed in absorption-contrast mode using an
269	optical imaging system with a Fresnel zone plate and the sample-to-detector distance set at
270	ca. 7.6 m, at a single X-ray energy of 7.35 keV. This system provided a voxel size of 25-40
271	nm (Table 2) for an effective resolution of ~200 nm. Projection images were acquired every

272	0.1° during a total sample rotation of 180°, resulting in 1800 projections per specimen. The
273	3D CT images were reconstructed from the projection images using a convolution
274	back-projection algorithm (Nakano et al. 2000). Details of the sample preparation and CT
275	imaging procedures are reported in Miyake et al. (2014) and Matsumoto et al. (2019),
276	respectively.

277	The obtained CT images show X-ray absorption contrasts (Fig. 4a), providing the
278	spatial distribution of the X-ray linear attenuation coefficients of the constituent materials.
279	The linear attenuation coefficient of an object is a function of its chemical composition and
280	density and the X-ray energy (Koch and MacGillavry 1962; Hubbel and Seltzer 2004), and
281	thus can be used to identify minerals and roughly estimate their chemical compositions
282	(e.g., Tsuchiyama et al. 2012). Thus, we discriminated pyroxenes from the other minerals
283	on the basis of pixel values (Fig. 4a). We then binarized the images with thresholds based
284	on visual inspection, denoised the binary images by erosion and dilation by 1 pixel, and
285	extracted the 3D data of the pyroxene crystals using the software package Slice (Nakano et
286	al. 2006). Due to the low signal-to-noise ratio, CT images of specimen Vul_2 were
287	denoised using iterative nonlocal means (Bruns et al. 2017) before binarization: this process
288	reduced the effort involved in binarization by smoothing the inside of crystals but did not

affect the quality of the extracted 3D data.

290	We determined the triaxial lengths $(S, I, and L)$ and directions of elongation of the
291	pyroxenes by ellipsoid fitting in <i>Slice</i> (e.g., Tsuchiyama et al. 2011). These measurements
292	were restricted to crystals entirely contained within the specimens, effectively limiting the
293	size range of measurable crystals to 100 nm to 20 μ m in length. Pyroxene population
294	densities were calculated from all the measured crystals for comparison with the values
295	estimated from the SEM observations, whereas 3D aspect ratios were not calculated for
296	crystals smaller than 5 pixels wide because of the low reliability of shapes comprising such
297	few pixels.
298	Acquisition of crystal size distributions
299	CSDs from SR-XCT (CT-CSDs). The triaxial lengths of the crystals measured by

SR-XCT yielded CSDs as a function of *S*, *I*, or *L*. CSDs are plotted based on logarithmic size intervals with five intervals per decade above 100 nm (i.e., each interval is $10^{0.2}$ times as large as the next smaller interval: $10^{2.0}-10^{2.2}$ nm, $10^{2.2}-10^{2.4}$ nm, $10^{2.4}-10^{2.6}$ nm ...). The number of crystals in each interval was counted and divided by the volume of the CT specimens, excluding vesicles. If the number of crystals counted within an interval was less than three, the data in that interval were excluded. Then, the number density per unit 306 volume in each interval was divided by the interval width to obtain population density (N), 307 and $\ln(N)$ was plotted against crystal size interval. Counting errors are taken as the square 308 root of the number of crystals within an interval. 309 CSDs from FE-SEM images (SEM-CSDs). The program CSDslice (Morgan and 310 Jerram 2006) estimates a representative 3D aspect ratio of crystals in a sample from 2D data. Most recent CSD analyses have used some combination of CSDslice and 311 CSDCorrections (e.g., Jerram et al. 2009; Brugger and Hammer 2010; Preece et al. 2013; 312 313 Witter et al. 2016; Mujin et al. 2017; Suzuki et al. 2018). Assuming that all the observed 314 crystals have similar 2D shapes and no preferred orientation, CSDslice compares the 315 histogram of observed cross-sectional aspect ratios (i.e., w/l) to a database comprising w/l316 histograms for 703 different 3D aspect ratios, and estimates the most plausible shape on the 317 basis of least-squares fitting. 318 In the present study, we analyzed square regions with side lengths of about 0.2 mm 319 in both the sub-Plinian and Vulcanian pumice samples. We made mosaic images of the 320 analyzed regions from the multiple BSE images obtained by FE-SEM (ca. 25 nm per pixel). 321 Using ImageJ software, we measured the area of the sample examined (groundmass 322 crystals and glass, but excluding vesicles) and the widths (w), lengths (l), and angles of the

323	best-fit ellipses to the cross sections of pyroxene crystals. We then obtained L-plot
324	SEM-CSDs from the datasets of cross-sectional sizes (w, l) using CSDCorrections version
325	1.6 (Table 3). As with the CT-CSDs, if the number of counted cross sections within a size
326	interval was less than three, the data in that interval were excluded. For the stereological
327	conversions, we used estimated values from the 2D data obtained using CSDslice (S' _{2D}
328	I'_{2D} : L'_{2D} , where ' denotes estimated values). In addition, the SEM-CSDs corrected with the
329	XCT average values instead of the estimates are also considered in the discussion and
330	implications sections and Appendix 3. We refer to SEM-CSDs converted from w datasets as
331	SEM(w)-CSDs, and those converted from l as SEM(l)-CSDs.
332	After using CSDCorrections to obtain L-plot SEM(w)-CSDs and SEM(l)-CSDs
333	we converted them into S-plot SEM(w)-CSDs and I-plot SEM(l)-CSDs, respectively. This
334	procedure avoids the shape correction on the size scale in Equation 1. For this reason, fewer
335	stereological corrections are required to produce S- and I-plot CSDs than L-plot CSDs (see
336	Appendix 1). These conversions are expressed as:
337	$S_i = L_i / A \tag{5a}$
338	$I_i = L_i / B \tag{5b}$

339
$$\ln N_i(S) = \ln N_i(L) + \ln A \tag{6a}$$

20

340
$$\ln N_i(I) = \ln N_i(L) + \ln B$$
(6b)

341	where the constants A and B are L'_{2D}/S'_{2D} and L'_{2D}/I'_{2D} ratios, respectively, and N_i is the
342	population density in the <i>i</i> th size interval and the plot type is indicated in parentheses. In
343	Equations 5, S_i , I_i , and L_i are the center of the <i>i</i> th size interval for each plot type. We
344	obtained S-plot CSDs by plotting $\ln N_i(S)$ against S_i , and the same applies to I-plot CSDs.
345	We thus obtained seven types of CSDs: S-plot CT-CSDs and SEM (w) -CSDs, I-plot
346	CT-CSDs and SEM(<i>l</i>)-CSDs, and <i>L</i> -plot CT-CSDs, SEM(<i>w</i>)-CSDs, and SEM(<i>l</i>)-CSDs.
347	<i>L</i> -plot SEM(<i>w</i>)-CSDs and <i>L</i> -plot SEM(<i>l</i>)-CSDs are the most prevalent in the literature.
348	
349	RESULTS
350	CT-CSDs
351	We analyzed the 3D shapes of groundmass pyroxene crystals 0.1 μm to several
352	micrometers wide and shorter than 20 μ m. Figure 4a shows representative individual CT
353	images of each specimen and Figure 5 shows 3D reconstructions of the groundmass
354	pyroxenes. Pyroxene crystals are acicular (Fig. 5) and appear to be aligned along a plane,
355	especially in specimens sP 1 and sP 2 (Fig. 4b), although they do not form any obvious

356 lineation. This apparent alignment arises from the presence of large tabular plagioclase

357	microlites (>10 μ m; Fig. 4a): acicular pyroxene crystals near those plagioclases are aligned
358	along their faces. Pyroxene morphologies differ according to eruption style (Fig. 5):
359	pyroxenes in the sub-Plinian pumice are elongate prisms with swallowtail textures (Fig. 5b),
360	whereas those in the Vulcanian pumice are slightly thicker prisms with flat ends (Fig. 5d).
361	The 3D aspect ratios of the pyroxenes varied considerably in both pumice samples (Fig. 6a).
362	Figure 6b shows the relationship between the short-axis length (S) and the degree of
363	elongation (L/S) of the pyroxenes. Of the smaller pyroxenes (S < 600 nm), some are
364	significantly elongated ($L/S > 20$), especially in the sub-Plinian pumice. However, this
365	tendency may result from the limited volume of the CT specimens (ca. 20–25 μ m on a side)
366	because some longer crystals may have been truncated and thus excluded from our analysis.
367	Indeed, the distributions in Figure 6b are restricted to within the $L = 20 \ \mu m$ contour, which
368	corresponds to the size of the CT specimens. Figure 5 shows the distributions of pyroxene
369	aspect ratios (L/S) in each pumice. The average 3D aspect ratio was higher in the
370	sub-Plinian $(1.0 : 1.4 : 9.4)$ than in the Vulcanian pumice $(1.0 : 1.3 : 5.1;$ Table 4).
371	Figure 8 shows CT-CSDs measured directly in 3D as functions of S, I, and L. The
372	CT-CSDs show log-linear trends with downturns at small sizes (S, $I < 0.5 \mu m$; $L < 3 \mu m$),
373	although the Vulcanian L-plot CSD shows an exceptional increase in the smallest size

374 fraction (Fig. 8c). Because these downturns occur at sizes larger than the minimum size at 375 which crystals can clearly be distinguished in the images (0.2 μ m), they are likely true, 376 rather than apparent. In each pumice, the slopes of the CSDs become steeper from L- to I-377 to S-plot CSDs (Table 4). The slopes of the CSDs are consistently steeper in the sub-Plinian 378 than in the Vulcanian pumice, but this difference is markedly less distinct in the L-plot 379 CSDs (Fig. 8). The number density of pyroxenes per unit volume was higher in the sub-Plinian $(7.62 \times 10^6 \text{ mm}^{-3})$ than in the Vulcanian pumice $(5.75 \times 10^6 \text{ mm}^{-3})$; Table 4). 380 381 382 **SEM-CSDs** 383 We estimated the representative 3D aspect ratios of groundmass pyroxenes in each 384 pumice from the histograms of their w/l ratios using CSDslice. Figure 9 compares the

385 normalized histogram of w/l measured by SEM with those simulated by CSDslice.

386 Compared to the w/l histograms simulated for the crystal shape closest to the XCT average

in the CSDslice database (1.0 : 1.4 : 9.0 for sub-Plinian, 1.0 : 1.3 : 5.0 for Vulcanian), the

388 measured histograms in each pumice are enriched in more equant crystal cross sections (i.e.,

higher w/l values) and lacking in more elongated cross sections (i.e., lower w/l values). The

390 3D aspect ratios estimated using CSDslice $(S'_{2D} : I'_{2D} : L'_{2D})$ were 1.0 : 1.4 : 2.3 for the

391	sub-Plinian pumice and 1.0 : 1.1 : 4.5 for the Vulcanian one (Table 4). This estimate is
392	similar to the XCT average for the Vulcanian pumice (1.0 : 1.3 : 5.1; Fig. 7b), but markedly
393	different for the sub-Plinian pumice (1.0 : 1.4 : 9.4; Fig. 7a).
394	CSDCorrections can quantitatively evaluate the degree of preferred crystal
395	orientation as the alignment factor (where 0.00 indicates no foliation and 1.00 indicates
396	perfectly foliated rocks) from a dataset of angles defined by the long-axis directions of their
397	cross sections. The alignment factors of the datasets used to compile the SEM-CSDs
398	(parameters provided in Table 3) are 0.13 and 0.06 for the sub-Plinian and Vulcanian
399	pumice, respectively, consistent with our SR-XCT observations (Fig. 4b); we therefore
400	conclude that there is no preferred lineation in the pumice samples.
401	Figure 10 shows the S-, I-, and L-plot SEM-CSDs of each pumice sample. Each
402	sample exhibits concave upward curvature, as reported by Mujin et al. (2017). In addition,
403	the slopes of the nanolite distributions are steeper for the sub-Plinian than for the Vulcanian
404	pumice. Furthermore, the shapes of the $SEM(w)$ -CSDs and $SEM(l)$ -CSDs differ slightly,
405	especially in the Vulcanian L plot (Fig. 10c). Unlike the other CSDs, the sub-Plinian
406	SEM(w)-CSDs do not exhibit a downturn at very small sizes (Fig. 10a and 10c), only a
407	roll-off. The number densities per unit volume calculated by CSDCorrections based on l are

408 similar to the XCT values (Table 4), whereas those based on *w* are twice as high.

409

- 410 **DISCUSSION**
- 411 Anisotropic kinetics of crystal growth and its effect on CSDs

412	The degree of elongation of pyroxene nanolites is higher in the sub-Plinian than in
413	the Vulcanian pumice (Figs. 6b and 7). Considering the similarities in their bulk chemical
414	compositions (Suzuki et al. 2013) and microlite CSDs (Fig. 12b and Figs. S2d-f in
415	Appendix 3; Mujin et al. 2017), there should have been little difference between the
416	sub-Plinian and Vulcanian magmas before nanolite crystallization (Mujin and Nakamura
417	2020). Because rock-forming minerals tend to be more elongated with increasing ΔT (e.g.,
418	Shea and Hammer 2013), this difference in the degree of crystal elongation indicates that
419	the sub-Plinian magma experienced greater effective undercooling during its ascent through
420	the conduit than the Vulcanian magma. Consistently, the pyroxene nanolites in the
421	sub-Plinian pumice show swallowtail textures (Fig. 5b) and have steeper CT-CSDs slopes
422	than those in the Vulcanian pumice (Fig. 8; Table 4), both also suggesting a greater degree
423	of effective undercooling. Because Shea and Hammer (2013) found that the dominant
424	morphology of clinopyroxene was euhedral at $\Delta T < 112$ K in a hydrous basaltic-andesite

425 magma, the sub-Plinian magma might have experienced $\Delta T_{eff} > 112$ K at the shallow 426 conduit.

427	It is notable that the difference in the CT-CSD slopes between the pumice samples
428	is more pronounced in the S and I plots than in the L plot (by ~20%; Table 4), indicating
429	that the L-plot slopes are relatively insensitive to magma ascent conditions. In conjunction
430	with the difference in the degree of crystal elongation, this result confirms our assumption
431	that anisotropic crystal growth is an important factor in CSDs and that the prevalent L-plot
432	CSDs are not the most suitable CSD for investigating magma ascent dynamics in conduits
433	(Fig. 2).

434

435 Consistency of SEM-CSDs with CT-CSDs

Assuming that CT-CSDs reflect true CSDs, we compared the SEM-CSDs with the CT-CSDs for each plot type (Fig. 11). Although the SEM-CSDs were similar to the CT-CSDs for the Vulcanian sample, they were markedly different for the sub-Plinian one. We attributed the several discrepancies between these two types of CSDs to two main factors: (1) the fundamental nature of XCT vs. SEM observation methods, and (2) the estimation of the 3D aspect ratio to construct the SEM-CSDs. Because of the limited size of

442	the CT specimen, the size range of the crystals measured by SR-XCT was restricted (Fig.
443	11). Moreover, the SR-XCT data were greatly affected by local textures in the pumice
444	samples: population densities of the sub-Plinian CT-CSDs are likely underestimated
445	because the large plagioclase microlites in the CT specimens (Fig. 4a) reduced the
446	volumetric proportion of regions containing pyroxene crystals compared to the entire
447	pumice. However, we attributed the large vertical discrepancies in the sub-Plinian CSDs
448	(Figs. 11a and 11b) mainly to the error induced by estimating the representative 3D aspect
449	ratio to build the SEM-CSDs. Indeed, using the actual XCT average 3D aspect ratio instead
450	of one estimated from 2D measurements reduced the discrepancies (see Appendix 3, Fig.
451	S2).
452	Despite the large gaps between them, the slopes of the SEM-CSDs were similar to

those of the CT-CSDs in the *S* and *I* plots (Figs. 11a and 11b; Table 4). However, the sub-Plinian *L*-plot SEM-CSDs showed significantly steeper slopes, and were thus quite different from the CT-CSD (Fig. 11c). These results indicate that although *w* and *l* were appropriately converted to *S* and *I*, the conversion from *S* and *I* into *L* involved a large error. Accordingly, we attributed the distorted shapes of the sub-Plinian *L*-plot SEM-CSDs to the inappropriate value of the estimated 3D aspect ratio used ($S'_{2D} : I'_{2D} : L'_{2D}$). Again, using the

459 XCT average value produced sub-Plinian *L*-plot SEM-CSDs with similar slopes to the
460 CT-CSD (Table 4; Appendix 3, Fig. S2).

461	The misestimated 3D aspect ratio in the sub-Plinian pumice (1.0 : 1.4 : 2.3; Fig.
462	7a) arose from the small proportion of elongated pyroxene cross sections in 2D (Fig. 9a).
463	Although this might indicate that the crystals were preferentially oriented perpendicular to
464	the polished sample surface, no such lineation was observed by SEM with CSDCorrections
465	or by SR-XCT (Fig. 4b). Instead, this underestimation may be attributed to the nature of the
466	2D estimation itself. Because acicular crystals are less likely to show their elongate cross
467	sections, an accurate 2D estimation of their 3D aspect ratio requires analyzing a larger
468	number of cross sections. Nonetheless, our analysis of the sub-Plinian pumice (793 cross
469	sections; Table 3) satisfied the number required for a reliable estimation of phenocrysts
470	(>200; Morgan and Jerram 2006). Thus, this underestimation suggests that the varied and
471	considerably elongated ($L/S > 10$) shapes of groundmass crystals make 2D estimation
472	difficult.
473	Although Mujin et al. (2017) used 2D measurements to successfully estimate the

475 eruption (e.g., S'_{2D} : I'_{2D} : L'_{2D} = 1.0 : 1.0 : 8.0), our results highlight the possibility that 2D

474

3D aspect ratios of groundmass pyroxene crystals in ejecta from the Shinmoedake 2011

476	estimations fail to capture the 3D shape of groundmass crystals. In that case, L-plot
477	SEM-CSDs are significantly distorted by the misestimated aspect ratio, which could lead to
478	false inferences of magma ascent histories. Importantly, S-plot and I-plot SEM-CSDs
479	preserve the true slopes even when a misestimated 3D aspect ratio is used because fewer
480	stereological corrections are applied to construct them (Figs. 11 and S1; Table 4; see
481	Appendixes 1 and 3). Therefore, they represent differences in magma ascent conditions
482	with higher reliability.
483	Our investigation showed that S-plot and I-plot SEM-CSDs have higher reliability
484	and sensitivity to changes in syneruptive ascent conditions of magma than L-plot CSDs.
485	Additionally, because w datasets yield more accurate SEM-CSDs than l datasets (Higgins
486	1994, 2000), S plots are probably more reliable than I plots. In conclusion, we recommend
487	S-plot SEM(w)-CSDs as the optimum type of SEM-CSDs for investigations of magma
488	ascent histories.
489	
490	IMPLICATIONS
491	Previous studies of the Shinmoedake 2011 eruption (Mujin and Nakamura 2014;
492	Mujin et al. 2017) have reported that the CSDs of groundmass pyroxene crystals in
	29

493	Vulcanian pumice clasts were almost the same as those in sub-Plinian pumice clasts. This
494	study has revealed instead that there are differences in the CSDs of pyroxene nanolites
495	between the sub-Plinian and Vulcanian pumice samples (Fig. 12b). We identify two reasons
496	for these different results. First, we disregarded Vulcanian pumice clasts that were similar
497	to the sub-Plinian ones and selected representative pumice samples of each eruptive style.
498	Second, we expressed the CSDs as a function of 3D short-axis length (i.e., S-plot CSDs).
499	Figure 12 shows the CT-CSDs and the $SEM(w)$ -CSDs that were corrected with the XCT
500	average 3D aspect ratios instead of the 2D-estimated values. Even when the SEM-CSDs
501	were corrected with the appropriate values of 3D aspect ratio, the <i>L</i> -plot CSDs did not show
502	a clear difference between the eruptive styles (Fig. 12a; Table 4). In contrast, the S-plot
503	CSDs allowed the crystallization kinetics of pyroxene nanolites in the two eruption styles to
504	be clearly distinguished (Fig. 12b; Table 4). As shown in the S-plot CSDs of nanolites (Fig.
505	12b inset), the slopes are steeper in the sub-Plinian pumice, whereas gentler slopes and a
506	larger size range of the roll-off and downturn (S < 0.8 μ m) characterize the Vulcanian
507	pumice. Because the slopes of S-plot CSDs reflect the change in nucleation rate during
508	magma ascent, these CSDs show that the crystallization kinetics of sub-Plinian and
509	Vulcanian pumice were nucleation-dominant and growth-dominant, respectively. These

510	results indicate distinct ascent histories in the shallow conduit: the magma ascent rate and
511	resultant ΔT_{eff} were increasing just before the sub-Plinian eruption and decreasing before
512	the Vulcanian eruption. This inference is consistent with the features of crystal morphology
513	as discussed above. Given the similarity in the distribution of microlites in the two pumice
514	samples (Fig. 12b), the nanolite evidence suggests that the magma ascent conditions
515	bifurcated crucially in the shallow conduit.
516	Kozono et al. (2013) determined from geodetic observations during the
517	Shinmoedake 2011 eruption that the Vulcanian explosions did not involve deflation of a
518	magma chamber. Therefore, the Vulcanian pumice clasts appear to have originated in the
519	magma batch that had ascended during the preceding lava extrusion phase and had
520	stagnated in the conduit until the Vulcanian explosions. For this reason, our comparison of
521	the sub-Plinian and Vulcanian pumice samples is effectively a comparison between the
522	explosive and effusive phases. Kozono et al. (2013) also indicated that the Shinmoedake
523	2011 eruption was in a critical state between explosive and effusive because the magma
524	discharge rates for the sub-Plinian eruptions and the lava extrusion phase were near the
525	boundary between those for historic Plinian and lava-dome eruptions of other global
526	volcanoes. Although conditions of the magma chamber, such as overpressure, are an

527	important factor (e.g., Jaupart and Allègre 1991; Woods and Koyaguchi 1994; Degruyter et
528	al. 2016), our results suggest that the condition of the shallow conduit conclusively
529	determined the eruptive explosiveness. One plausible explanation is that the shallow
530	conduit was occluded during the period between the third sub-Plinian eruption and the lava
531	extrusion phase. Wadsworth et al. (2020) proposed a model in which sintering of
532	fragmented magma on the conduit wall results in occlusion of the shallowest part of the
533	conduit and triggers the transition from explosive into effusive eruptions. This model
534	explains the similarity in microlite CSDs between explosive and effusive products (e.g.,
535	Castro and Gardner 2008). Consistent with that proposal, Mujin and Nakamura (2020)
536	suggested the welding of pyroclasts; additionally, a study based on the one-dimensional
537	steady flow model (Tanaka and Hashimoto 2013) found that a narrow conduit prevented
538	magma fragmentation (i.e., sub-Plinian eruption) in the Shinmoedake 2011 eruption. These
539	considerations suggest that monitoring the diameter of the shallow conduit can contribute to
540	predicting the time evolution of eruptive activity.

- 541
- 542 ACKNOWLEDGMENTS
- 543

The authors thank Kentaro Uesugi, Akihisa Takeuchi, Masahiro Yasutake, and

32

544	Tsukasa Nakano for supporting the SR-XCT experiments and Junya Matsuno for
545	supporting the image processing. We thank the anonymous reviewer, Fabio Arzilli, and
546	Maurizio Petrelli for many constructive comments that significantly improved our
547	manuscript. The SR-XCT experiments at SPring-8 in this study were conducted under the
548	proposal nos. 2018A1373, 2018B1298, 2019A0166, and 2019B0166. This work was
549	supported by the Sasakawa Scientific Research Grant from the Japan Science Society.
550	Funding was provided to AM by a Grant-in-Aid for Scientific Research by the Japan
551	Society for the Promotion of Science (JP16H06348).
552	
553	REFERENCES
553 554	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma
553 554 555	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy
553 554 555 556	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy and Petrology, 115, 402–414.
553 554 555 556 557	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy and Petrology, 115, 402–414. Arzilli, F., La Spina, G., Burton, M.R., Polacci, M., Le Gall, N., Hartley, M.E., Di Genova,
553 554 555 556 557 558	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy and Petrology, 115, 402–414. Arzilli, F., La Spina, G., Burton, M.R., Polacci, M., Le Gall, N., Hartley, M.E., Di Genova, D., Cai, B., Vo, N.T., Bamber, E.C., and others. (2019) Magma fragmentation in
553 554 555 556 557 558 559	REFERENCES Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy and Petrology, 115, 402–414. Arzilli, F., La Spina, G., Burton, M.R., Polacci, M., Le Gall, N., Hartley, M.E., Di Genova, D., Cai, B., Vo, N.T., Bamber, E.C., and others. (2019) Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization. Nature

561	Brugger, C.R., and Hammer, J.E. (2010) Crystal size distribution analysis of plagioclase in
562	experimentally decompressed hydrous rhyodacite magma. Earth and Planetary
563	Science Letters, 300, 246–254.
564	Bruns, S., Stipp, S.L.S., and Sørensen, H.O. (2017) Looking for the signal: A guide to
565	iterative noise and artefact removal in X-ray tomographic reconstructions of porous
566	geomaterials. Advances in water resources, 105, 96-107.
567	Cashman, K., and Blundy, J. (2000) Degassing and crystallization of ascending andesite
568	and dacite. Philosophical Transactions of the Royal Society of London A:
569	Mathematical, Physical and Engineering Sciences, 358, 1487–1513.
570	Cashman, K.V., and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the
571	kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contributions to
572	Mineralogy and Petrology, 99, 292–305.
573	Cassidy, M., Manga, M., Cashman, K., and Bachmann, O. (2018) Controls on
574	explosive-effusive volcanic eruption styles. Nature communications, 9, 2839.
575	Castro, J.M., and Gardner, J.E. (2008) Did magma ascent rate control the
576	explosive-effusive transition at the Inyo volcanic chain, California? Geology, 36,
577	279–282.

578	Castro, J.M., Cashman, K.V., and Manga, M. (2003) A technique for measuring 3D
579	crystal-size distributions of prismatic microlites in obsidian. American
580	Mineralogist, 88, 1230–1240.
581	Degruyter, W., Huber, C., Bachmann, O., Cooper, K.M., and Kent, A.J.R. (2016) Magma
582	reservoir response to transient recharge events: The case of Santorini volcano
583	(Greece). Geology, 44, 23–26.
584	Di Genova, D., Kolzenburg, S., Wiesmaier, S., Dallanave, E., Neuville, D.R., Hess, K.U.,
585	and Dingwell, D.B. (2017) A compositional tipping point governing the
586	mobilization and eruption style of rhyolitic magma. Nature, 552, 235–238.
587	Di Genova, D., Brooker, R.A., Mader, H.M., Drewitt, J.W.E., Longo, A., Deubener, J.,
588	Neuville, D.R., Fanara, S., Shebanova, O., Anzellini, S., and others. (2020) In situ
589	observation of nanolite growth in volcanic melt: A driving force for explosive
590	eruptions. Science advances, 6, eabb0413.
591	Hajimirza, S., Gonnermann, H.M., and Gardner, J.E. (2021) Reconciling bubble nucleation
592	in explosive eruptions with geospeedometers. Nature Communications, 12, 283.
593	Hammer, J.E., and Rutherford, M.J. (2002) An experimental study of the kinetics of
594	decompression-induced crystallization in silicic melt. Journal of Geophysical

|--|

596	Hammer, J.E., Cashman, K.V., Hoblitt, R.P., and Newman, S. (1999) Degassing and
597	microlite crystallization during pre-climactic events of the 1991 eruption of Mt.
598	Pinatubo, Philippines. Bulletin of Volcanology, 60, 355–380.
599	Higgins, M.D. (1994) Numerical modeling of crystal shapes in thin sections: estimation of
600	crystal habit and true size. American Mineralogist, 79, 113–119.
601	Higgins, M.D. (2000) Measurement of crystal size distributions. American Mineralogist, 85,
602	1105–1116.
603	Hubbell, J.H., and Seltzer, S.M. (2004) Tables of X-Ray Mass Attenuation Coefficients and
604	Mass Energy-Absorption Coefficients (ver. 1.4) [Online]. Available:
605	http://physics.nist.gov/xaamdi [accessed 2020, April 21]. National Institute of
606	Standards and Technology, Gaithersburg, Maryland.
607	Jaupart, C., and Allègre, C.J. (1991) Gas content, eruption rate and instabilities of eruption
608	regime in silicic volcanoes. Earth and Planetary Science Letters, 102, 413-429.
609	Jerram, D.A., and Higgins, M.D. (2007) 3D analysis of rock textures: quantifying igneous
610	microstructures. Elements, 3, 239–245.
611	Jerram, D.A., Mock, A., Davis, G.R., Field, M., and Brown, R.J. (2009) 3D crystal size
612	distributions: A case study on quantifying olivine populations in kimberlites. Lithos,
-----	--
613	112, 223–235.
614	Jerram, D.A., Dobson, K.J., Morgan, D.J., and Pankhurst, M.J. (2018) The petrogenesis of
615	magmatic systems: Using igneous textures to understand magmatic processes. In S.
616	Burchardt, Ed., Volcanic and Igneous Plumbing Systems, p. 191-229. Elsevier.
617	Kato, K., and Yamasato, H. (2013) The 2011 eruptive activity of Shinmoedake volcano,
618	Kirishimayama, Kyushu, Japan-overview of activity and volcanic alert level of the
619	Japan meteorological agency—. Earth, Planets and Space, 65, 489–504.
620	Koch, B., and MacGillavry, C.H. (1962) X-ray Absorption. In C.H. MacGillavry and G.D.
621	Rieck, Eds., International Tables for X-ray Crystallography, Vol. III, p. 157–160.
622	The Kynoch Press, Birmingham, England.
623	Kouchi, A., Sugawara, Y., Kashima, K., and Sunagawa, I. (1983) Laboratory growth of
624	sector zoned clinopyroxenes in the system CaMgSi2O6-CaTiAl2O6. Contributions
625	to Mineralogy and Petrology, 83, 177-184.
626	Kozono, T., Ueda, H., Ozawa, T., Koyaguchi, T., Fujita, E., Tomiya, A., and Suzuki, Y.J.
627	(2013) Magma discharge variations during the 2011 eruptions of Shinmoe-dake
628	volcano, Japan, revealed by geodetic and satellite observations. Bulletin of

629 volcanology, 75, 695.

630	Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics
631	of crystallization I: Theory. Contributions to Mineralogy and Petrology, 99, 277-
632	291.
633	Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic
634	systems. Journal of Petrology, 39, 553-599.
635	Masotta, M., Pontesilli, A., Mollo, S., Armienti, P., Ubide, T., Nazzari, M., and Scarlato, P.
636	(2020) The role of undercooling during clinopyroxene growth in trachybasaltic
637	magmas: Insights on magma decompression and cooling at Mt. Etna volcano.
638	Geochimica et Cosmochimica Acta, 268, 258–276.
639	Matsumoto, M., Tsuchiyama, A., Nakato, A., Matsuno, J., Miyake, A., Kataoka, A., Ito, M.,
640	Tomioka, N., Kodama, Y., Uesugi, K., Takeuchi, A., Nakano, T., and Vaccaro, E.
641	(2019) Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Science
642	Advances, 5, eaax5078.
643	Miyabuchi, Y., Hanada, D., Niimi, H., and Kobayashi, T. (2013) Stratigraphy, grain-size
644	and component characteristics of the 2011 Shinmoedake eruption deposits,
645	Kirishima Volcano, Japan. Journal of Volcanology and Geothermal Research, 258,

647	Miyake, A., Matsuno, J., and Toh, S. (2014) Sample preparation toward seamless 3D
648	imaging technique from micrometer to nanometer scale. Microscopy, 63, i24-i25.
649	Mock, A., and Jerram, D.A. (2005) Crystal size distributions (CSD) in three dimensions:
650	insights from the 3D reconstruction of a highly porphyritic rhyolite. Journal of
651	Petrology, 46, 1525–1541.
652	Morgan, D.J., and Jerram, D.A. (2006) On estimating crystal shape for crystal size
653	distribution analysis. Journal of Volcanology and Geothermal Research, 154, 1–7.
654	Muir, D.D., Blundy, J.D., and Rust, A.C. (2012) Multiphase petrography of volcanic rocks
655	using element maps: a method applied to Mount St. Helens, 1980–2005. Bulletin of
656	volcanology, 74, 1101–1120.
657	Mujin, M., and Nakamura, M. (2014) A nanolite record of eruption style transition.
658	Geology, 42, 661–614.
659	Mujin, M., and Nakamura, M. (2020) Late-stage groundmass differentiation as a record of
660	magma stagnation, fragmentation, and rewelding. Bulletin of Volcanology, 82.
661	https://doi.org/10.1007/s00445-020-01389-1
662	Mujin, M., Nakamura, M., and Miyake, A. (2017) Eruption style and crystal size

663	distributions: Crystallization of groundmass nanolites in the 2011 Shinmoedake
664	eruption. American Mineralogist, 102, 2367–2380.
665	Nakada, S., Nagai, M., Kaneko, T., Suzuki, Y., and Maeno, F. (2013) The outline of the
666	2011 eruption at Shinmoe-dake (Kirishima), Japan. Earth, planets and space, 65,
667	475–488.
668	Nakano, T., Nakashima, Y., Nakamura, K., and Ikeda, S. (2000) Observation and analysis
669	of internal structure of rock using X-ray CT. Journal of Geological Society of Japan,
670	106, 363–378 (in Japanese).
671	Nakano, T., Tsuchiyama, A., Uesugi, K., Uesugi, M., and Shinohara, K. (2006) "Slice"
672	-Softwares for basic 3-D analysis Available: http://www-bl20.spring8.or.jp/slice/.
673	Japan Synchrotron Radiation Research Institute (JASRI), Hyogo.
674	Peterson, T.D. (1996) A refined technique for measuring crystal size distributions in thin
675	section. Contributions to Mineralogy and Petrology, 124, 395-405.
676	Preece, K., Barclay, J., Gertisser, R., and Herd, R.A. (2013) Textural and micro-petrological
677	variations in the eruptive products of the 2006 dome-forming eruption of Merapi
678	volcano, Indonesia: implications for sub-surface processes. Journal of Volcanology
679	and Geothermal Research, 261, 98–120.

680	Shea '	T and Han	nmer JE	(2013)) Kinetics	of cooling	- and	decom	pression	-induced
000	Direa,	I., und Inun		(2015) 1211100100	or cooming	, una	4000111	010001011	maacca

- 681 crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and
- 682 Geothermal research, 260, 127–145.
- 683 Shoji, T. (2002) Drawing of a Wulff Net and Stereographic Projection by MS-Excel/VBA.
- 684 Geoinformatics, 13, 3–8 (in Japanese).
- 685 Suzuki, Y., Yasuda, A., Hokanishi, N., Kaneko, T., Nakada, S., and Fujii, T. (2013)
- 686 Syneruptive deep magma transfer and shallow magma remobilization during the
- 687 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase
- 688 equilibria experiments. Journal of Volcanology and Geothermal Research, 257, 184–
- 689 204.
- 690 Suzuki, Y., Maeno, F., Nagai, M., Shibutani, H., Shimizu, S., and Nakada, S. (2018)
- 691 Conduit processes during the climactic phase of the Shinmoe-dake 2011 eruption
- 692 (Japan): Insights into intermittent explosive activity and transition in eruption style
- 693 of andesitic magma. Journal of Volcanology and Geothermal Research, 358, 87–
- 694 104.
- Taddeucci, J., Pompilio, M., and Scarlato, P. (2004) Conduit processes during the July-
- August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry

697	and crystal size distribution of ash particles. Journal of Volcanology and Geothermal
698	Research, 137, 33–54.
699	Takeuchi, A., Uesugi, K., and Suzuki, Y. (2009) Zernike phase-contrast x-ray microscope
700	with pseudo-Kohler illumination generated by sectored (polygon) condenser plate.
701	Journal of Physics: Conference Series, 186, 012020.
702	Tanaka, R., and Hashimoto, T. (2013) Transition in eruption style during the 2011 eruption
703	of Shinmoe-dake, in the Kirishima volcanic group: Implications from a steady
704	conduit flow model. Earth, Planets and Space, 65, 645-655.
705	Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T.,
706	Uesugi, K., Nakano, T., Sandford, S.A., Noguchi, R., and others. (2011)
707	Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa
708	regolith. Science, 333, 1125–1128.
709	Tsuchiyama, A., Nakano, T., Uesugi, K., Uesugi, M., Takeuchi, A., Suzuki, Y., Noguchi, R.,
710	Matsumoto, T., Matsuno, J., Nagano, T., and others. (2012) Analytical dual-energy
711	microtomography: A new method for obtaining three-dimensional phase images and
712	its application to Hayabusa samples. Geochimica et Cosmochimica Acta, 116, 5–16.
713	Ubide, T., and Kamber, B.S. (2018) Volcanic crystals as time capsules of eruption history.

714	Nature Comm	unications,	9,	326.
-----	-------------	-------------	----	------

715	Uesugi, K., Takeuchi, A., and Suzuki, Y. (2006) Development of micro-tomography system
716	with Fresnel zone plate optics at SPring-8. In U. Bonse, Ed., Proceedings of SPIE
717	OPTICS + PHOTONICS, 6318, 63181F. International Society for Optics and
718	Photonics, Bellingham, Washington.
719	Wadsworth, F.B., Llewellin, E.W., Vasseur, J., Gardner, J.E., and Tuffen, H. (2020)
720	Explosive-effusive volcanic eruption transitions caused by sintering. Science
721	Advances, 6, eaba7940.
722	Witter, M., Furman, T., LaFemina, P., and Feineman, M. (2016) Understanding magmatic
723	processes at Telica volcano, Nicaragua: Crystal size distribution and textural
724	analysis. American Mineralogist, 101, 1052–1060.
725	Woods, A.W., and Koyaguchi, T. (1994) Transitions between explosive and effusive
726	eruptions of silicic magmas. Nature, 370, 641-644.
727	Zingg, T. (1935) Beitrag zur Schotteranalyse. Schweizerische Mineralogische und
728	Petrographische Mitteilungen, 15, 39–140 (in German).
729	

730	Figure captions

- 731 **Figure 1.** Analytical procedures in this study.
- 732 The shaded part on the left represents the prevalent procedure to acquire CSDs. In this
- study, we additionally obtained S-plot and I-plot SEM-CSDs from the estimated L-plot ones,
- and CT-CSDs and 3D aspect ratios by SR-XCT analyses directly.
- 735
- 736 **Figure 2.** Simulation of CSDs for different growth kinetics.

737 Considering non-steady (a) nucleation rates and (b) growth rates, we simulate (c, d) the

resultant CSDs based on the equations in Marsh (1998). Detailed descriptions are included

in Appendix 2. Gray lines represent slow ascent with low ΔT_{eff} , and black lines represent

- fast ascent with high ΔT_{eff} . Dashed lines in (c) represent the case of relatively constant
- rates, whereas solid lines in (d) represent the simulation with the assumption that
- 742 growth rates increase significantly with ΔT_{eff} . Because dashed and solid lines are
- representative of S-plot and L-plot CSDs, respectively, the values of G_0 and b for the solid
- 744 lines are set higher than those for the dashed lines.

745

746 Figure 3. Backscattered electron (BSE) images of the groundmass of pumice clasts from

747	the 2011 Shinmoedake eruption. (a) The gray pumice from the sub-Plinian eruption. (b)
748	The gray pumice from the Vulcanian explosion. Groundmass crystal phases are Fe-Ti
749	oxides, pyroxene, and plagioclase (in order of decreasing brightness). The brightness of the
750	groundmass glass is similar to that of plagioclase. The regions shown here were included in
751	the area analyzed for acquisition of the SEM-CSDs. Abbreviations: Pl, plagioclase; Px,
752	pyroxene; Ox, Fe-Ti oxides.
753	
754	Figure 4. (a) CT images and (b) orientations of pyroxene long axes (L). (a) Representative
755	CT images of the four CT specimens. The image of Vul_2 was denoised using the iterative
756	nonlocal means filter (Bruns et al. 2017). Abbreviations: Pl, plagioclase; Px, pyroxene; Ox,
757	Fe-Ti oxides; Gl, glass. (b) Pole figures showing the elongation directions of groundmass
758	pyroxenes in each CT specimen. Crystals smaller than 5 pixels in short-axis length (S) were
759	excluded. The orientations of the pyroxenes were constrained by plagioclase microlites and
760	vesicles, but no lineation was observed. The pole figures were drawn using the program
761	VBAWulff (Shoji 2002).
762	

763 Figure 5. 3D reconstructions of groundmass pyroxene crystals. (a, b) The sub-Plinian

764	pumice (specimen sP_1), and (\mathbf{c} , \mathbf{d}) the Vulcanian pumice (Vul_2). Only crystals included
765	in the CT-CSDs are shown; crystals truncated by the edge of the specimen are excluded.
766	Crystals exhibit swallowtail textures in the sub-Plinian pumice (b), but have flat ends in the
767	Vulcanian pumice (d).
768	
769	Figure 6. 3D shape variations of groundmass pyroxenes. (a) Zingg diagram (Zingg, 1935)
770	of the 3D shape distribution in both pumice samples. Stars indicate the average 3D shape in
771	each pumice. Most crystals are acicular, though their shapes vary widely. (b) Elongation
772	(<i>L/S</i>) vs. crystal short-axis size (<i>S</i>). We were unable to measure crystals longer than $25\sqrt{3}$
773	μm owing to the restricted size of the CT specimens (dark shaded area at upper right). The
774	dotted lines indicate contours of specific long-axis lengths (<i>L</i>). Note that crystals with $S < 5$
775	pixels were excluded from both (a) and (b).
776	
777	Figure 7. Histograms of the L/S aspect ratios of groundmass pyroxenes in (a) the
778	sub-Plinian pumice and (b) the Vulcanian pumice. The dashed lines indicate the
779	representative values estimated from 2D SEM images by CSDslice (i.e., L'_{2D}/S'_{2D}).

781	Figure 8. CT-CSDs plotted based on different size criteria. The 3D CSDs of groundmass
782	pyroxenes were calculated from XCT measurements of (a) short-axis length (S) , (b)
783	intermediate-axis length (I) , and (c) long-axis length (L) . Gray symbols represent size
784	intervals that include crystals smaller than 5 pixels in length. Regression lines are not
785	shown for the downturned parts of the distributions at the smallest size fractions.
786	
787	Figure 9. Distributions of crystal cross-sectional aspect ratios (w/l) from SEM
788	measurements and simulations by CSDslice. (a) The sub-Plinian pumice, and (b) the
789	Vulcanian pumice. Distributions of w/l measured from the SEM images are shown in gray.
790	Solid lines indicate distributions for the 3D aspect ratios estimated from the 2D data by
791	<i>CSDslice</i> (i.e., S'_{2D} : I'_{2D} : $L'_{2D} = 1.0$: 1.4 : 2.3 for the sub-Plinian pumice and 1.0 : 1.1 : 4.5
792	for the Vulcanian one). Dashed lines represent the distributions simulated for the 3D aspect
793	ratios of the crystal shapes in the CSDslice database (1.0 : 1.4 : 9.0 and 1.0 : 1.3 : 5.0)
794	closest to the XCT-averages for the sub-Plinian and Vulcanian pumice samples (1.0 : 1.4 :
795	9.4 and 1.0 : 1.3 : 5.1, respectively).
796	

797 Figure 10. SEM-CSDs of groundmass pyroxene crystals in the sub-Plinian ('sP') and

798 Vulcanian ('Vul') pumice samples plotted against (**a**) *S*, (**b**) *I*, and (**c**) *L*.

799

- **Figure 11.** Comparison of CT-CSDs and SEM-CSDs for (**a**–**c**) the sub-Plinian pumice and
- 801 (**d**-**f**) the Vulcanian pumice. The SEM-CSDs are the same as those in Figure 10, and the
- 802 CT-CSDs are shown in black. Gray symbols in the CT-CSDs indicate size intervals
- 803 including crystals smaller than 5 pixels in length.
- 804

Figure 12. Difference in CSDs between the sub-Plinian and Vulcanian pumice samples.

806 CT-CSDs (solid lines) and SEM(w)-CSDs (dashed lines) are shown as (**a**) L plot and (**b**) S

807 plot. Note that the SEM(*w*)-CSDs in this figure were corrected with the XCT average 3D

808 aspect ratio instead of the 2D-estimated value. The enlarged view of CSDs in small size

range is shown at the upper right in each panel.

- 810
- 811 **Figure S1.** Effect of 3D aspect ratio on SEM(*w*)-CSDs.
- 812 The sub-Plinian SEM(w)-CSDs corrected with various 3D shapes are shown as (a) L plots
- and (b) S plots. (a) The shapes of L-plot CSDs significantly depend on the 3D aspect ratio,
- 814 whereas (b) S-plot CSDs preserve almost the same shape with vertical displacement due to

815	the ratio.
010	the ratio.

816

817	Figure S2. Comparison of CT-CSDs, SEM(2D)-CSDs, and SEM(3D)-CSDs for (a–c) the
818	sub-Plinian pumice and (d - f) the Vulcanian pumice. The leftmost panels (a , d) are plotted
819	against S, the center panels (b , e) against I, and the rightmost panels (c , f) against L. The
820	CT-CSDs (black) include gray symbols indicating size intervals including crystals smaller
821	than 5 pixels in length.
822	
823	Figure S3. Differences in SEM-CSDs according to eruption style and plot type.
824	SEM(2D)-CSDs and SEM(3D)-CSDs are shown in the upper (a - c) and lower rows (d - f),
825	respectively. In each panel, the CSDs of the sub-Plinian pumice ('sP') are shown in black,
826	and those of the Vulcanian pumice ('Vul') in gray. In the L plot (c , f), solid and dotted lines
827	represent SEM(w)-CSDs and SEM(l)-CSDs, respectively.
828	
829	Appendix
830	1. Aspect ratio dependence of SEM-CSDs
831	CSDCorrections (Higgins 2000) addresses two stereological problems of the

conversion from 2D to 3D: the cut-section effect and the intersection-probability effect. The stereological corrections are applied sequentially from the largest size interval (i.e., the first interval) to smaller intervals. The number of crystals per unit volume in the *i*th interval, n_{Vi} , is converted stereologically from the number of crystal cross sections per unit area, n_{Ai} , as (modified from Equations 5 and 8 of Higgins 2000 and Equation 7 of Sahagian and Proussevitch 1998):

$$n_{Vi} = \left(n_{Ai} - \sum_{j=1}^{i-1} n_{Vj} P_{ji} \overline{H}_j \right) \cdot \frac{1}{P_{ii} \overline{H}_i} = n_{Ai} \cdot \frac{1 - \sum_{j=1}^{i-1} \frac{n_{Vj} P_{ji} \overline{H}_j}{n_{Ai}}}{P_{ii}} \cdot \frac{1}{\overline{H}_i}$$

$$n_{Vi} = n_{Ai} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{\ln(y_i/x_i)}{y_i(L) - x_i(L)}$$
(A1)

838

839 where $x_i(L)$ and $y_i(L)$ are the lower and upper limits of the *i*th interval of L, P_{ii} is the 840 probability that a crystal with a true (i.e., determined in 3D) size in the *j*th interval will have 841 a cross-sectional length in the *i*th interval, and CF_i is a correction factor representing the 842 proportion of crystals with true sizes larger than the *i*th interval among the cross sections 843 within that interval. - H_i {note to typesetting, this minus sign is the overbar on top of the H} 844 is the Mean Projected Height defined by Tuffen (1998) and the Equation 8 of Higgins 845 (2000). Regarding the Equation (A1), the first term, n_{Ai} , is obtained by dividing the number 846 of crystal cross sections by the area analyzed. The second and third terms are correction terms for the effects of sectioning and the probability of intersection, respectively. Note that

- the interval width as a function of L is calculated from Equation (1). More specifically, in
- 849 the case of conversion from *w*, the interval width is:

850
$$y_i(L) - x_i(L) = A \cdot (y_i(S) - x_i(S))$$
 (A2a)

and in the case of conversion from l, it is:

852
$$y_i(L) - x_i(L) = B \cdot (y_i(I) - x_i(I)).$$
 (A2b)

853 The population density in the *i*th interval, N_i , is obtained by dividing n_{Vi} (cf. Equation A1)

by the interval width (Equation 10 of Higgins 2000). Consequently, *CSDCorrections*

855 calculates the *L*-plot population density as:

856
$$N_i(L) = \frac{n_{Vi}}{y_i(L) - x_i(L)} = n_{Ai} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{\ln(y_i/x_i)}{(y_i(L) - x_i(L))^2}$$

857
$$N_i(L) = \frac{1}{A^2} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{n_{Ai} \ln(y_i/x_i)}{(y_i(S) - x_i(S))^2}$$
(A3a)

858 or

859
$$N_i(L) = \frac{1}{B^2} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{n_{Ai} \ln(y_i/x_i)}{(y_i(l) - x_i(l))^2}.$$
 (A3b)

860 To obtain S-plot and I-plot CSDs, we converted the L-plot population densities output by

861 *CSDCorrections*, $N_i(L)$, as:

862
$$N_i(S) = \frac{n_{Vi}}{y_i(S) - x_i(S)} = \frac{y_i(L) - x_i(L)}{y_i(S) - x_i(S)} \cdot N_i(L) = A \cdot N_i(L)$$
(A4a)

863
$$N_i(I) = \frac{n_{Vi}}{y_i(I) - x_i(I)} = \frac{y_i(L) - x_i(L)}{y_i(I) - x_i(I)} \cdot N_i(L) = B \cdot N_i(L).$$
(A4b)

864 Substituting Equation (A3) into Equation (A4) gives:

865
$$N_i(S) = \frac{1}{A} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{n_{Ai} \ln(y_i/x_i)}{(y_i(S) - x_i(S))^2}$$
(A5a)

866
$$N_i(I) = \frac{1}{B} \cdot \frac{1 - CF_i}{P_{ii}} \cdot \frac{n_{Ai} \ln(y_i/x_i)}{(y_i(I) - x_i(I))^2}.$$
 (A5b)

867 The third terms of Equations (A3) and (A5) are independent from the 3D aspect 868 ratio used for the 2D-3D conversion. As shown by the first right-hand terms of the 869 equations, $N_i(L)$ depends more strongly on the aspect ratio than do $N_i(S)$ and $N_i(I)$. In 870 addition to the aspect ratio dependence of the population densities, the L-plot SEM-CSDs 871 require an additional correction in which their horizontal axes are enlarged by A or B times. 872 This procedure softens the slopes of L-plot CSDs by A or B times those in S- or I-plot CSDs, 873 respectively. Therefore, L-plot CSDs are more strongly changed by the aspect ratio (A or B) 874 than are S- and I-plot CSDs (Fig. S1). 875

876 2. Simulation of CSDs based on Marsh (1998)

Marsh (1998) formulated CSDs in the non-steady closed systems by employing the Johnson-Mehl-Avrami equation for crystallinity related to time-variant nucleation and growth rates. Considering the exponential variations in time of nucleation (*J*) and growth (*G*) rates, their functions are

881
$$J(x) = J_0 \exp(ax)$$
(A6)

882
$$G(x) = G_0 \exp(bx)$$
(A7)

where *a* and *b* are constants, and *x* is the dimensionless time (0-1). The dimensionless time

x is normalized by the crystallization duration, τ (i.e., $x = t/\tau$). The subscript o for the parameters indicates the initial values (i.e., at time x = 0). The final size (i.e., at x = 1) of a crystal which nucleated at a certain time x, R(x), is expressed as follows (cf. Equation 5 in

887 Marsh 1998).

888
$$R(x) = \frac{G_0 \tau}{b} \{ \exp(b) - \exp(bx) \}$$
(A8)

889 The natural logarithm of population density of crystals which nucleated at the certain time x,

890 Ln N(x), is expressed as (modified from Equations 3, 12, and 26 in Marsh 1998):

891
$$\operatorname{Ln} N(x) = \operatorname{Ln}(J_0/G_0) - \frac{4\pi}{3}G_0^3 J_0 \tau^4 f(x, a, b) + (a - b)x$$
(A9)

892 where the function f(x, a, b) is defined as the Equation 10 in Marsh (1998):

893
$$f(x, a, b) = \int_0^x \exp(ax') \{\int_{x'}^x \exp(bx) \, dx\}^3 dx'.$$
(A10)

From the Equations (A8) and (A9), we obtain the simulated CSDs for specified kinetic conditions (a, b, J_0 , G_0 , and τ) by plotting Ln N(x) against R(x) for x = [0, 1]. To investigate the effect of increasing growth rate on CSDs under different ascent paths, we simulated four sets of conditions as shown in Table S1. The ranges of the kinetic parameters (Figs 2c and 2d) are realistic (cf. Marsh 1998; Shea and Hammer 2013).

899

900 3. SEM-CSDs converted using XCT average aspect ratios

901	For the stereological conversions, we used two distinct 3D aspect ratios to assess
902	the effect of the estimation error on the CSD shapes: the value estimated from the 2D data
903	by CSDslice (Morgan and Jerram 2006) and the average value determined by SR-XCT
904	(Table 4). Here, we refer to the SEM-CSDs converted from the datasets of w and l and
905	corrected with the ratio estimated from the 2D data as SEM(w-2D)-CSDs and
906	SEM(1-2D)-CSDs, respectively, and those corrected with the average ratio from the
907	SR-XCT data as SEM(w-3D)-CSDs and SEM(l-3D)-CSDs, respectively. In addition to the
908	seven types of CSDs presented in the main text, we thus obtained 11 types of CSDs.
909	Figure S2 compares CT-CSDs, SEM(2D)-CSDs, and SEM(3D)-CSDs. We
910	observed obvious discrepancies between the SEM(2D)-CSDs and the SEM(3D)-CSDs for
911	the sub-Plinian pumice that resulted from the 3D aspect ratio used. The S- and I-plot
912	SEM-CSDs are vertically displaced but have similar shapes, and the SEM(3D)-CSDs were
913	closer to (i.e., less vertically displaced from) the CT-CSDs (Figs. S2a and S2b; Table 4).
914	Although the SEM(3D)-CSDs were almost consistent with the L-plot CT-CSD, the

915	SEM(2D)-CSDs were considerably distorted (Fig. S2c). In the Vulcanian L plot (Fig. S2f),
916	the slopes of the $SEM(w)$ -CSDs differed slightly from that of the CT-CSD, irrespective of
917	the 3D aspect ratio used, whereas the $SEM(l)$ -CSDs were similar to the CT-CSD. This
918	discrepancy may reflect the non-equivalence between the w and l datasets (Higgins 1994;
919	Muir et al. 2012), or may indicate that both of the L/S ratios (A) differed from an
920	appropriate value, which is possibly associated with the large variation in the ratios (Castro
921	et al. 2003).
922	Comparing the sub-Plinian and Vulcanian pumice samples, the SEM(3D)-CSDs
923	were similar in the L plot (Fig. S3f), but different in the S and I plots, especially at the size
924	range of nanolites (Figs. S3d and S3e). Consequently, the SEM(3D)-CSDs more clearly
925	reflected the difference in magma ascent conditions in the S and I plots than in the L plot
926	(Table 4), consistent with the CT-CSDs (Fig. 8).
927	
928	REFERENCES
929	Castro, J.M., Cashman, K.V., and Manga, M. (2003) A technique for measuring 3D
930	crystal-size distributions of prismatic microlites in obsidian. American
931	Mineralogist, 88, 1230–1240.

932	Higgins, M.D. (1994) Numerical modeling of crystal shapes in thin sections: estimation of
933	crystal habit and true size. American Mineralogist, 79, 113–119.
934	Higgins, M.D. (2000) Measurement of crystal size distributions. American Mineralogist, 85,
935	1105–1116.
936	Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic
937	systems. Journal of Petrology, 39, 553–599.
938	Morgan, D.J., and Jerram, D.A. (2006) On estimating crystal shape for crystal size
939	distribution analysis. Journal of Volcanology and Geothermal Research, 154, 1–7.
940	Muir, D.D., Blundy, J.D., and Rust, A.C. (2012) Multiphase petrography of volcanic rocks
941	using element maps: a method applied to Mount St. Helens, 1980–2005. Bulletin of
942	volcanology, 74, 1101–1120.
943	Sahagian, D.L., and Proussevitch, A.A. (1998) 3D particle size distributions from 2D
944	observations: stereology for natural applications. Journal of Volcanology and
945	Geothermal Research, 84, 173–196.
946	Shea, T., and Hammer, J.E. (2013) Kinetics of cooling- and decompression-induced
947	crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and
948	Geothermal research, 260, 127–145.

- 949 Tuffen, H. (1998) L'origine des cristaux dans le chambre magmatique de Santorin (Grèce),
- 950 p. 45. Université Blaise-Pascal, Clermont-Ferrand, France (not seen; extracted from
- 951 American Mineralogist, 85, 1112, 2000).

	sub-Plinian	Vulcanian	
	(wt%)	(wt%)	
SiO ₂	67.61 (41)	71.99 (21)	
TiO ₂	0.89 (6)	0.74 (5)	
Al_2O_3	14.21 (26)	12.72 (9)	
FeO	5.77 (26)	4.26 (13)	
MnO	0.11 (5)	0.09 (5)	
MgO	1.13 (9)	0.64 (4)	
CaO	3.93 (19)	2.57 (9)	
Na ₂ O	3.04 (9)	2.95 (12)	
K ₂ O	3.21 (9)	3.88 (5)	
P_2O_5	0.11 (5)	0.16 (5)	
Total	100	100	
Notes:	Each sample was a regions.	analyzed over 50 distinct	
	Oxide concentrations were recalculated to total 100% by cation balance.		

Table 1. Average chemical compositions of groundmass glasses.

Eruptive style	CT specimen	Volume ^a	pixel size	Number of	Number of crystals	
		(μm^3)	(nm)	for aspect ratio ^b	for CSD ^c	
sub-Plinia	n sP_1	6797	40.00	74	83	
	sP_2	17,614	24.70	103	103	
Vulcanian	Vul_1	8073	33.86	47	48	
	Vul_2	15,223	34.70	86	86	

Table 2. SR-XCT analytical conditions.

^a Excluding vesicles.

^b Crystals with S < 5 pixels were excluded.

^c Crystals smaller than 5 pixels were included.

Eruptive style	Analyzed area, excluding vesicles		Number of analyzed crystals	3D aspect ratio	Round ness	Size scale length
	(µm ²)	(vesicle%) ^a		$S'_{2D}: I'_{2D}: L'_{2D}$ (XCT average)		Number of bins per decade ^b
sub-Plinian	20,077	57.3	793	1.0 : 1.4 : 2.3	0.8	5
				(1.0:1.4:9.4)		
Vulcanian	19,791	54.5	381	1.0 : 1.1 : 4.5	0.8	5
				(1.0:1.3:5.1)		
^a The percentage of	f vesicles ir	the analyzed re	ctangular area.			

^b Logarithmic base-10 size scale.

Table 4.	Results	of XCT	and SEM	analyses.
----------	---------	--------	---------	-----------

	3D aspect ratio					
Eruptive	XCT average		erage	2D estimate by CSDslice	СТ	SI
style	S	Ι	L	$S'_{\rm 2D} I'_{\rm 2D} L'_{\rm 2D} R^2$	Slope Intercept R^2	Slope
sub-Plinian	1.0	1.4 (6)	9.4 (56)	1.0 1.4 2.3 0.842	-3656 24.8 0.997	-3685
Vulcanian	1.0	1.3 (4)	5.1 (39)	1.0 1.1 4.5 0.662	-2237 23.9 0.997	-2096
ratio (sP/Vul)					1.63	1.76

^a The size ranges used to calculate regression lines correspond largely to those of CT-CSDs (Fig. 8). The unit of

 $^{\rm b}$ The SEM-CSDs which were corrected with the average 3D aspect ratio from the XCT data.

^c The SEM-CSDs which were corrected with the 3D aspect ratio estimated from the 2D data.

^d The exceptionally deviated part ($L < 3 \mu m$; Fig. 11) is included.

^e Estimates from the datasets of cross-sectional widths or lengths using the XCT average 3D aspect ratios.

-plot CSDs			<i>I</i> -plot CSDs		
$EM(w-3D)^{b}$ SEM $(w-2D)^{c}$		СТ	SEM(<i>l</i> -3D) ^b		
Intercept R^2	Slope Intercept R^2	Slope Intercept R^2	Slope Intercept R^2		
25.6 0.994	-3611 26.9 0.991	-2697 24.5 0.997	-2044 24.4 0.996		
24.3 0.957	-2004 24.1 0.938	-1426 23.2 0.98	-1230 23.1 0.996		
	1.80	1.89	1.66		

Regression line of CSD ^a											
									L	-plot CS	SDs
SEM(<i>l</i> -2D) ^c			СТ		$SEM(w-3D)^{b}$		SEM(<i>l</i> -3D) ^b				
Slope In	ntercept	R^2	Slope I	ntercep	$t R^2$	Slope 1	Intercep	$t R^2$	Slope	Intercep	$t R^2$
-1983	25.6	0.993	-372	22.3	0.998	-392	23.4	0.994	-304	22.5	0.996
-1226	23.1	0.995	-277	21.3	0.993	-391	22.6	0.981	-314	21.7	0.996
1.62			1.34			1.00			0.97		

		Number density per unit volume (mm		
 $SEM(w-2D)^{c}$	SEM(<i>l</i> -2D) ^c	XCT	CSDCorrections ^e	
Slope Intercept R^2	Slope Intercept R^2		w l	
-817 ^d 24.5 ^d 0.913	-662 ^d 23.9 ^d 0.959	7.62×10^6	$1.85 \times 10^7 \ 9.99 \times 10^6$	
-441 22.8 0.981	-300 21.6 0.995	5.75×10^6	$9.03 \times 10^{6} 5.25 \times 10^{6}$	
 1.85 ^d	2.21 ^d			

Figure 4a

SP_2

Figure 4b

Figure 8

Figure 9 0.10 sub-Plinian (a) 0.08 □1.0 1.4 2.3 51.0 1.4 9.0 0.06 normalized frequency 0.04 0.02 0.00 0.10 Vulcanian (b) 0.08 □ 1.0 1.1 4.5 51.0 1.3 5.0 0.06 0.04 0.02 0.00 0.04 0.12 0.28 0.28 0.36 0.44 0.44 0.52 0.60 0.60 0.68 0.76 0.92 8 w/l

Figure 10

Figure 11

