1	Revision 1
2	
3	Kinetics of antigorite dehydration: a trigger for lower-plane
4	seismicity in subduction zones
5	
6	
7	
8	
9 10 11 12 13 14 15 16 17	 Tao Liu¹, Duojun Wang¹, Kewei Shen¹, Chuanjiang Liu¹, Li Yi² 1. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 2. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China
18 19 20 21 22 23	Corresponding author email: <u>duojunwang@ucas.ac.cn</u> (D.Wang) <u>yili@cea-ies.ac.cn</u> (L.Yi)
23	
25	
26	
27	
28	
29	

30 31 32 Abstract 33 Antigorite dehydration experiments were performed under ambient pressure 34 using a non-isothermal thermogravimetric analysis. Antigorite, with a grain size of 35 5-10 μ m, was analyzed using heating rates of 10, 15, 20, and 25 K \cdot min⁻¹ at 36 37 temperatures of up to 1260 K. The results show that the progress of the dehydration reaction varies with the heating rate, and the dehydration reaction of antigorite occurs 38 within a temperature range of 800-1050 K. Several models were used to fit the 39 dehydration results, and the double-Gaussian distribution activation energy model 40 (2-DAEM) yielded the best fit to the experimental data. The dehydration kinetics of 41 antigorite follow 2-DAEM, and there is a compensation effect between the 42 43 pre-exponential factor and the average activation energy. The activation energy of the 44 first step of antigorite dehydration stretches out a wide interval, the second step has a significantly higher activation energy, distributed on a narrower interval. We 45 46 determined that the release rate of H_2O is 8.0×10^{-5} and $2.1 \times 10^{-3} m_{fluid}^3 m_{rock}^{-3} s^{-1}$ at 893 K and 973 K, respectively, which 47 are near the onset temperature for the isothermal dehydration reaction. Our results 48 49 indicate that antigorite dehydration is fast enough to induce mechanical instabilities that may trigger seismicity in the lower plane of the double seismic zone. 50

52

53 Introduction

54 In subduction zones aqueous fluids released during the dehydration of hydrous minerals leads to metasomatism and partial melting in the overlying mantle (e.g. 55 56 Scambelluri et al. 2001), which, in turn, induces magmatism (e.g. Hattori and Guillot 2003; Peacock and Wang 1999; Ulmer and Trommsdorff 1995) and triggers 57 earthquakes (e.g. Hacker et al. 2003; Jung et al. 2004; Okazaki and Hirth 2016; 58 Peacock 2001; Yamasaki and Seno 2003). In particular, earthquakes occurring at 59 intermediate depths (50-200 km) in double seismic zones (DSZ; Yamasaki and Seno 60 61 2003) comprising upper and lower Wadati-Benioff planes may be related to dehydration (Ferrand et al. 2017; Hacker et al. 2003; Incel et al. 2017; Peacock 2001). 62 The dehydration process in subducting oceanic slabs induces several geophysical 63 anomalies including low seismic velocity (Ferrand et al. 2017; Hacker et al. 2003; 64 Jung et al. 2004; Peacock 2001; Yamasaki and Seno 2003) and high conductivity 65 66 anomalies (Sover and Unsworth 2006; Wang et al. 2017; Worzewski et al. 2010).

Recent publications have directly addressed antigorite dehydration and its
implications for the seismicity of subducting mantle (e.g. Ferrand et al. 2017; Gasc et
al. 2017). Several experiments have shown that antigorite dehydration is not "seismic"
(Chernak and Hirth 2010, 2011; Gasc et al. 2017; Okazaki and Hirth 2016).
Particularly, it was found that, using a ratio of heating rate to strain rate that is typical
for actual subducting slabs (100-1000 K), antigorite samples deform aseismically
(Chernak and Hirth 2011; Gasc et al. 2017; 2011), whereas antigorite-olivine mixtures

74	undergo seismic events (Ferrand et al. 2017). Most likely, a dehydration-driven stress
75	transfer (DDST) triggers earthquakes in fresh peridotite at the tip of dehydrating faults
76	(Ferrand et al. 2017), as supported by recent field observations (Ferrand et al. 2018;
77	Plümper et al. 2016; Scambelluri et al. 2017). Ferrand et al. (2017) experimentally
78	demonstrated that intermediate-depth earthquakes, particularly those of the lower
79	Wadati-Benioff planes (LWBP), are triggered by the dehydration of very limited
80	amounts of antigorite, both for > 0 and < 0 volume changes, which means that these
81	earthquakes are not a result of aqueous fluid overpressure. Nonetheless, the role of
82	released aqueous fluid by antigorite still needs to be investigated.
83	Serpentine minerals are the most abundant hydrous minerals in altered
84	ultramafic rocks (Hyndman and Peacock 2003) and contain up to approximately 13 wt%
85	H ₂ O (Schmidt and Poli 1998). Serpentine has three main varieties: lizardite, chrysotile
86	and antigorite (Ulmer and Trommsdorff 1995). Antigorite is the only serpentine
87	mineral stable above temperatures of ~875 K in subduction zones (Reynard et al.
88	2007; Shao et al. 2014). Several studies have considered that the limit of the antigorite
89	stability field is near an isotherm that fits the lower plane earthquake hypocenters (e.g.
90	Abers et al. 2013; Peacock 2001; Yamasaki and Seno 2003), i.e., between 1 and 5 GPa.
91	Therefore, antigorite dehydration has been regarded as a candidate to explain the
92	seismicity of the lower plane of the double seismic zone (Dobson et al. 2002; Hilairet
93	et al. 2007; Omori et al. 2004; Peacock 2001).
94	The dehydration of serpentine minerals has been the subject of many previous

studies (Eggler and Ehmann 2010; Gualtieri et al. 2012; Trittschack and Grobéty 2012;

Viti 2010). Recently, synchrotron HP experiments with acoustic recordings (Ferrand 96 et al. 2017) have demonstrated that antigorite dehydration leads to peridotite 97 98 embrittlement through a stress transfer from dehydrating serpentinized faults to fresh peridotite volumes. However, the kinetics of antigorite dehydration still requires 99 100 investigations. Previously, antigorite dehydration was investigated using time-resolved X-ray diffraction (Chollet et al. 2011; Gualtieri et al. 2012; Perrillat et 101 al. 2005), high-temperature infrared microspectroscopy (Sawai et al. 2013) and 102 thermogravimetric analysis (Pérez-Rodríguez et al. 2005; Viti 2010; Weber and Greer 103 1965). These studies have led to quite different conclusions. Dehydration is controlled 104 105 by surface growth processes at the edges of grains, as shown by X-ray diffraction (Perrillat et al. 2005); in contrast, the one-dimensional diffusion process matches well 106 with the experimental data using in situ high-temperature infrared microspectroscopy, 107 which enables the water species to be distinguished (Sawai et al. 2013). A recent 108 thermogravimetric analysis using three heating rates shows that the dehydration 109 110 kinetics follow a three-dimensional phase boundary reaction model (Balucan et al. 111 2011).

In addition, most previous studies of antigorite dehydration kinetics have used isothermal methods. Isothermal methods have some disadvantages that can be overcome by non-isothermal methods. For example, non-isothermal methods can determine changes in the activation energy as the reaction progresses. Each change indicates that either the contribution of an individual parallel step changes or that a new reaction step contributes to the overall rate (Trittschack and Grobéty 2012;

118 Vyazovkin and Wight 1997; Wang et al. 2015).

In this work, our goal was to study the kinetics of antigorite dehydration using non-isothermal experiments to determine the best kinetic model and therefore to understand the constraints on the fluid production rate resulting from serpentine dehydration, which, in turn, should impact intermediate-depth seismicity in subduction zones.

124

125 **Experimental Procedure**

126 Sample Preparation

127 Antigorite starting material was collected from the Nagasaki metamorphic belt in Japan. The pure antigorite crystals were picked to serve as samples. The chemical 128 129 composition of this material was analyzed using an Electron Probe MicroAnalyzer (EPMA) (JXA-8230 at HeFei University of Technology). The chemical composition 130 of the sample is Mg_{2.75}Fe_{0.09}Al_{0.06}Si_{2.03}O₅(OH)₄ (see detail in **Table S1**), which was 131 132 also presented by Wang et al. (2017). The pure antigorite crystals were crushed and ground to obtain powder. Various grain size fractions were separated from the 133 powdered material according to Stokes's law. Particles with diameters ranging from 5 134 135 to 10 µm were selected and stored above 423 K in a vacuum oven for one week, 136 eliminating absorbed molecular H₂O.

137 Experimental methods

138 Dehydration experiments

139 The dehydration experiments were performed using thermogravimetric (TG)

140	analysis with a Q600 SDT device at Peking University. Non-isothermal runs were
141	monitored to study antigorite dehydration with heating rates of 10, 15, 20, and 25
142	$K \cdot min^{-1}$. The powdered samples were placed in corundum sample holders. The
143	sample weights for the non-isothermal experiments were 5.055, 5.024, 5.059 and
144	5.072 mg, respectively. The samples were heated in an N2 inert atmosphere up to a
145	temperature of 1260 K. The data were collected at an interval of 1 second.
146	First-principle calculations
147	Our first-principle calculations were performed with CASTEP (Clark 2005) codes
148	based on the plane wave basis set, the norm-conserving pseudopotentials (Hamann et
149	al. 1979; Lin et al. 1993) for electron-ion interaction and the local density
150	approximation (LDA) for the exchange-correlation interaction. The Brillouin zones

151 were sampled using the Γ -point for antigorite. The cut-off energy was set to 500 eV,

152 and the SCF tolerance was $5 \times 10^{-7} \text{ eV} \cdot \text{atom}^{-1}$.

153

154 Kinetic models

To describe the dehydration progress under non-isothermal conditions, the
mass fraction of the released volatiles (α) is defined as:

157
$$\alpha = \frac{m_0 - m_T}{m_0 - m_f} \tag{1}$$

where m_0 , m_T and m_f are the initial mass, the mass at temperature *T* and the final mass of the sample, respectively.

160 The general rate equation for a non-isotherm reaction is:

161
$$\frac{d\alpha}{dT} = \frac{kf(\alpha)}{\beta}$$
(2)

162 where $f(\alpha)$ is a mechanism function, $\beta = \frac{dT}{dt}$ is the heating rate, k is the rate 163 constant defined as:

$$k = Aexp(-\frac{E}{RT})$$
(3)

165 Combining Eq. 2 and Eq. 3, an integrated form of the general rate equation for a
166 non-isothermal reaction is shown below (Ozawa 1965; Wang et al. 2015).

167
$$G(\alpha) = \int_0^\alpha \frac{d(\alpha)}{f(\alpha)} = \frac{A}{\beta} \int_0^T exp\left(-\frac{E}{RT}\right) dT$$
(4)

168 where $G(\alpha)$ is a mechanism function with an integrated form, *E* is the apparent 169 activation energy, and R is the gas constant. The apparent activation energy is 170 calculated using the Flynn-Wall-Ozawa (FWO) method (Flynn and Wall 1967; Ozawa 171 1965, 1986), which is expressed as:

$$\ln\beta = \ln\frac{AE}{RG(\alpha)} - 5.3308 - 1.052\frac{E}{RT}$$
(5)

172

173 **Results and Discussion**

Fig. 1 shows the thermogravimetric data for natural antigorite with heating rates 174 of 10, 15, 20, and 25 K · min⁻¹. The peak temperature of antigorite dehydration 175 176 increases with increasing heating rate. The dehydration trend of talc shows similar behavior (Wang et al. 2015). Antigorite dehydration is observed within the 177 temperature range of 800 K to 1050 K. The average weight loss is as high as 12.75 178 wt%, which is in agreement with the theoretical structural water content of antigorite 179 180 of ~13 wt% (Mellini et al. 1987; Uehara 1998), and the heating rate does not affect the mass loss. 181

182

2. The activation energy derived from the FWO method changes from 130 to 400

183 kJ \cdot mol⁻¹ as shown in **Fig. 2**. The apparent activation energy increases as the 184 reaction progresses in our experiments. We analyzed the non-isothermal kinetic data 185 using the *n*-th order reaction. The *n*-th order reaction integral forms are as follows 186 (Ozawa 1970):

$$G(\alpha) = \frac{(1 - (1 - \alpha)^{1 - n})}{1 - n} \qquad n \neq 1 \qquad (6)$$

The fitting parameters and errors are listed in **Table 1**. The best-fit value of n187 188 is 2.2. However, the 2.2-order model cannot fit the data well, indicating that our experimental data cannot be interpreted by the *n*-th order reactions, particularly within 189 the temperature range of 800-950 K as shown in Fig. 3. A problem arises: the 190 apparent activation energy (E) is a fixed value in the n-th reactions, but still the 191 192 activation energy of antigorite dehydration determined via the FWO method fluctuates substantially as shown in Fig. 2. Antigorite dehydration may consist of 193 194 several parallel reactions. Therefore, we attempt to find a new model to describe antigorite dehydration using a double-Gaussian distribution activation energy model 195 (2-DAEM). 196

197 The distribution activation energy model (DAEM) assumes that the 198 dehydration mechanism uses an infinite number of irreversible, independent, parallel 199 reactions of different activation energies that reflect variations in the bond strengths of 200 the species (Cai et al. 2014; Navarro et al. 2008; Várhegyi et al. 2011; Zhang et al. 201 2014). The different activation energies are represented by a continuous distribution 202 function. The double-Gaussian distributed activation energy model (2-DAEM) is 203 based on the assumption that two sets of parallel reactions have different distributions 204 of activation energy (de Caprariis et al. 2012; 2015). Their equations can be written

206

$$\begin{cases} \alpha = 1 - \int_0^{+\infty} \left(\exp\left(-\int_0^T \frac{A}{\beta} \exp\left(\frac{-E}{RT}\right) dT \right) \right) G(E) dE & n = 1 \quad (7) \\ \alpha = 1 - \int_0^{+\infty} (1-n) \left(-\int_0^T \frac{A}{\beta} \exp\left(\frac{-E}{RT}\right) dT \right)^{\frac{1}{1-n}} G(E) dE & n \neq 1 \quad (8) \end{cases}$$

207 where

$$G(E) = \frac{\omega}{\sigma_1 \sqrt{2\pi}} exp\left(\frac{-(E-E_1)^2}{2\sigma_1^2}\right) + \frac{1-\omega}{\sigma_2 \sqrt{2\pi}} exp\left(\frac{-(E-E_2)^2}{2\sigma_2^2}\right)$$
(9)

n = 1

(7)

208 In the aforementioned equation, E is the activation energy, A is the pre-exponential 209 factor, R is the gas constant, β is the heating rate, n is the reaction order, T is the absolute temperature, G(E) is the distribution of activation energies, and ω is the 210 211 weighting factor ranging from 0 to 1 that describes the percentage of water that is 212 released during the primary or secondary dehydration steps. $\omega = 1$ if all the water is released during the first step, and $\omega = 0$ if it is completely produced during the 213 214 secondary step. E_1 and E_2 are the mean activation energies of the first and second 215 reactions, respectively, and σ_1 and σ_2 are their standard deviations. In this equation, the seven parameters to be estimated are $n, \omega, E_1, E_2, \sigma_1, \sigma_2$ and A. G(E) satisfies 216 217 the following condition:

$$\int_0^{+\infty} G(E)dE = 1 \qquad (10)$$

218 G(E) has many forms, such as a Gaussian, Weibull or Gamma distribution (Cai et al. 219 2014).

In the antigorite lattice (Uehara 1998), two different environments exist for OH 220 221 groups along the [010] axis (Capitani and Mellini 2004). Thus, the double-Gaussian

model (Eq. 9) is justified for G(E). The O-H1 bond is surrounded by silica tetrahedrons (shown in blue in Fig. 4). We calculated the O-H bond lengths for antigorite using ab initio computational methods and found that the lengths of the O-H1 and O-H2 bonds are 0.970-0.971 Å and 0.974-0.981 Å, respectively. This result implies that the energies required to break these bonds are different, as shown by their different apparent activation energies upon dehydration.

In this work, n = 1 was chosen, and A varied between 10^8 s^{-1} and 10^{16} s^{-1} . To explore antigorite dehydration, a simulated annealing algorithm (van Laarhoven and Aarts 1987) was used to determine ω , E_1 , E_2 , σ_1 , σ_2 and A. Eq. 7 is numerically integrated with the inner integral computed using the Gaussian quadrature and the outer using the Romberg integral algorithm. An objective function Δ determines the accuracy of the six parameters. The lower the Δ , the more accurate the six parameters. This function Δ can be written as follows:

$$\Delta = \sum_{i=1}^{M} \sum_{j=1}^{N} (\alpha_{tij} - \alpha_{eij})^2$$
(11)

where α_{tij} is the α value computed using Eq. 7 when the six parameters are known, α_{eij} is the α value measured via experiments, N is the number of data points in each heating rate, and M is the sum of the heating rates. The six parameters were determined using the simulated annealing algorithm and minimizing the objective function value.

As previously mentioned, the pre-exponential factor is shared by all the reactions in the adopted model. The pre-exponential factor is highly correlated with

the activation energy (Anthony et al. 1975; Du et al. 1991; Miura and Maki 1998), 242 which leads to an unreliable value for the pre-exponential factor from the fit. This 243 finding means that when the value of the pre-exponential factor is fitted together with 244 the other parameters, non-unique values are typically found because of the 245 compensation effect. In other words, different pairs of kinetic parameters provide an 246 equally good fit to the experimental data. Thus, the pre-exponential factor must be 247 fixed. We fixed the pre-exponential factor A within a range of $10^8 - 10^{16} \text{ s}^{-1}$, which 248 is consistent with the transition-state theory (Várhegyi et al. 2011; Zhang et al. 2014) 249 and yields the ranges of $10^8 - 10^{12} \text{ s}^{-1}$, $10^8 - 10^{13} \text{ s}^{-1}$, $10^8 - 10^{14} \text{ s}^{-1}$, 250 $10^8 - 10^{15} \text{ s}^{-1}$, and $10^8 - 10^{16} \text{ s}^{-1}$ for the pre-exponential factor, resulting from 251 the simulated annealing algorithm searching in some ranges. The six parameters can 252 253 be obtained using the simulated annealing algorithm when the pre-exponential factor is within a fixed range and n = 1. The fitting parameters are listed in **Table 2**. log(A)254 is linearly correlated with the average activation energies (Fig. 5); log(A) increases 255 256 with increasing activation energy. The correlation coefficients between log(A) and the average activation energies (E_1 and E_2) are 0.9906 and 0.9986, respectively, which 257 are very high values as expected. As shown in Fig. 5, multiple and interrelated values 258 259 of the kinetic parameters are allowed by the fitting algorithm. The higher the A value, the higher the average activation energy. We show a clear relationship between the 260 pre-exponential factor and the average activation energy, termed the compensation 261 262 effect.

263

Since the atomic vibration frequency is typically on the order of $\sim 10^{13}$ Hz, it is

reasonable to fix the pre-exponential factor on the order of $\sim 10^{13}$ s⁻¹. We adopted the 264 fitting parameters (Table 2) to obtain the dehydration kinetics when the 265 pre-exponential factor is fixed on the order of $\sim 10^{13} \text{ s}^{-1}$. Using these fitting 266 parameters, we calculate the reaction progress at different heating rates and show 267 comparisons with the experimental data as shown in Fig. 6. It seems that the 2-DAEM 268 269 works well with a very small $\Delta = 0.031$ and a correlation coefficient of 0.999 270 between the experimental data and the fitting results. Such a good fit of the 271 experimental results means that the kinetics of antigorite dehydration are well modeled via 2-DEAM. 272

Processes G_1 and G_2 are referred to as the slow and the fast steps of 273 274 dehydration, respectively. The structure of the antigorite crystal lattice (Fig. 4) 275 contains two different local environments for OH groups, and the O-H1 and O-H2 276 bonds have different lengths. In addition, the O-H3 bond is located at the boundary between the O-H1 and O-H2 bonds. Thus, the O-H3 bond is expected to show 277 278 transitional behavior. The O-H1 bonds characterize 25.0% of the total OH groups; considering the O-H3 bonds as O-H1 bonds, their fraction reaches 34.4%. The 279 weighting factor ω (Eq. 7) is equal to 0.336, which is between 25% and 34.4%, 280 281 implying that the O-H3 bond breaks during the transition between the slow and fast 282 steps.

To explain antigorite dehydration kinetics, two sets of parallel dehydration reaction models are illustrated in **2-DAEM**. In our model, parallel dehydration reactions including a slow and fast mechanism occur at the same time. The weighting

factor ω is 0.336, indicating that the fast step is dominant during the dehydration processes. In a previous study, the dehydration kinetics were investigated using time-resolved synchrotron X-ray diffraction in a closed system, showing that the dehydration occurs during two steps (Chollet et al. 2011), which impacts the seismicity (Ferrand et al. 2017).

291 During the first step (Chollet et al. 2011), according to backscattered electron images,

only ~35% of the antigorite produces olivine and talc-like (intermediate hydrous
phase; Perrillat et al. 2005), which is consistent with the weighting factor of 0.336 in

the present study.

The probability densities of the G_1 and G_2 processes are plotted as a function of E (**Fig. 7**). The whole process follows a continuous distribution function. The activation energies that correspond to the slow step of antigorite dehydration (E_1) are widely distributed, yielding a mean activation energy of 268.1 kJ \cdot mol⁻¹, while the energies corresponding to the fast step (E_2) are in a narrow area and have much higher values, yielding a mean activation energy of 299.2 kJ \cdot mol⁻¹.

Recently, Sawai et al. (2013) studied antigorite dehydration using in situ high-temperature infrared microspectroscopy under isothermal conditions and found that the activation energies were 219 kJ \cdot mol⁻¹ for bond 1, 243 kJ \cdot mol⁻¹ for bond 2, and 256 kJ \cdot mol⁻¹ for bond 3. These authors concluded that antigorite dehydration occurred via one-dimensional diffusion. Gualtieri et al. (2012) conducted in situ X-ray powder diffraction to study antigorite dehydration kinetics and combined the results with transmission electron microscopy observations. These authors showed

308	that the apparent activation energy of antigorite dehydration within a temperature
309	range of 885-981 K was 255 kJ \cdot mol ⁻¹ . Weber and Greer (1965) obtained an
310	activation energy of 443-643 $kJ\cdot mol^{-1}$ using the Arrhenius equation and the
311	relationship between the rate of reaction and the concentration. Our average activation
312	energies (268.1 kJ \cdot mol ⁻¹ and 299.2 kJ \cdot mol ⁻¹) obtained from 2-DAEM are higher
313	than those reported by both Sawai et al. (2013) and Gualtieri et al. (2012) but lower
314	than those (443-643 kJ \cdot mol ⁻¹)reported by Weber and Greer (1965). In addition, the
315	activation energy from Weber and Greer (1965) is higher than the maximum value of
316	400 kJ \cdot mol ⁻¹ obtained from the FWO method in this study. In our model, the
317	pre-exponential factor may explain that the different activation energies as $log(A)$ are
318	linearly correlated with the activation energy (Fig. 5). The pre-exponential factor may
319	cause substantial changes to the absolute value of the activation energy.

320

321 Geophysical implications

In many subduction zones, double seismic zones (DSZ) where earthquakes 322 323 occur at different depths have been revealed. Intermediate-depth earthquakes occur 324 along two dipping planes, that is, an upper plane and a lower plane (Hasegawa et al. 1978). The hypothesis of a close link between earthquakes and dehydration events at 325 intermediate depths has been proposed by many researchers (Chollet et al. 2011; 326 Hilairet et al. 2007; Omori et al. 2004; Reynard 2013; Sawai et al. 2013) and is 327 strongly supported by recent experimental results (Ferrand et al. 2017). The upper 328 329 plane is likely related to the dehydration of metabasalts (e.g. Incel et al. 2017); the

seismicity of the lower plane in the subducting serpentinized mantle would be because of a dehydration-driven stress transfer from dehydrating antigorite along faults to fresh peridotite volumes (Ferrand et al. 2017). Whether peridotite embrittlement occurs or not depends on the competition between the dehydration kinetics and the solid matrix deformational rate. Dehydration kinetics are important parameters, and if they are faster than the rate of solid matrix deformation, seismic ruptures nucleate.

The fluid production rate is important, as a high rate may locally induce fluid overpressure along faults, which could explain the observed interplane seismicity (Kita and Katsumata 2015; Kita et al. 2010). The fluid production rate during antigorite dehydration is calculated from kinetic data. To determine the fluid production rate, we consider an isothermal model. Six parameters can be applied in the isothermal model to predict the dehydration rate of antigorite. In equation (7), we substitute βdt for dT; thus, the isothermal model can be written as:

$$\alpha = 1 - \int_{0}^{+\infty} exp\left(-\int_{0}^{t} A \exp\left(\frac{-E}{RT}\right) dt\right)$$

$$\times \left(\frac{\omega}{\sigma_{1}\sqrt{2\pi}} \exp\left(\frac{-(E-E_{1})^{2}}{2\sigma_{1}^{2}}\right)$$

$$+ \frac{1-\omega}{\sigma_{2}\sqrt{2\pi}} \exp\left(\frac{-(E-E_{2})^{2}}{2\sigma_{2}^{2}}\right)\right) dE \qquad (12)$$

We used the six parameters to compute the reaction progress (α) at different
temperatures according to Eq. 12. The results are shown in Fig. 8. The antigorite
dehydration rate increases with increasing temperature. In addition, at higher
temperatures, the rate scarcely varies.

347 Dehydration rates $(V_{1/2})$ can be obtained from the half-life time of the reaction 348 $t_{1/2}$ when half of the antigorite has disappeared (Chollet et al. 2011).

$$V_{1/2} = \frac{c_{\rm H_2O}}{t_{1/2}} \times \frac{\rho}{\rho_{\rm H_2O}}$$
(13)

where $t_{1/2}$ is the half-life time of the reaction when α is equal to 0.5, C_{H_2O} is the 349 water content of the mineral, ρ is its density 2.62 g/cm³ (Bezacier et al. 2010) and 350 351 $\rho_{\rm H_2O}$ is the density of water. The reaction progress (α) can be calculated with time t at a given temperature T. The half-life time $t_{1/2}$ can be obtained from the isothermal 352 353 model as shown in Fig. 8. The fluid production rate $V_{1/2}$ is 8.0×10^{-5} , $1.9 \times$ 10^{-4} , 4.4×10^{-4} , 9.8×10^{-3} , and $2.1 \times 10^{-3} m_{fluid}^3 m_{rock}^{-3} s^{-1}$ for the temperatures 354 355 of 893 K, 913 K, 933 K, 953 K, and 973 K, respectively, near the onset temperature of 356 the isothermal dehydration reaction. This study strongly supports rapid dehydration, which is a key parameter for dehydration-induced seismicity. Sudden stress transfers 357 358 are likely to occur in the vicinity of dehydrating serpentinized faults, as recently demonstrated in laboratory analogs (Ferrand et al. 2017). These rates are faster than 359 the viscous relaxation of antigorite $(3 \times 10^{-7} \text{ to } 3 \times 10^{-12} \text{ s}^{-1})$ reported by Hilairet 360 361 et al. (2007), indicating that antigorite dehydration leads to increased strain 362 localization that is likely to induce mechanical instabilities in serpentinized peridotites. Previous studies also have shown similar results. Chollet et al. (2011) measured the 363 364 kinetics of antigorite dehydration in situ under high-temperature and high-pressure conditions using X-ray diffraction in a closed system and determined that the release 365 of aqueous fluid occurs at $10^{-4} m_{fluid}^3 m_{rock}^{-3} \text{ s}^{-1}$. Perrillat et al. (2005) found that the 366 discharge rate is on the order of 10^{-6} to $10^{-8} m_{fluid}^3 m_{rock}^{-3} s^{-1}$ using a real-time 367

368	X-ray diffraction study. Previous studies have indicated that pressure has no
369	significant effect on kinetics (Perrillat et al. 2005; Rubie and Thompson 1985);
370	therefore, our results under a condition of ambient pressure can be extrapolated to
371	subduction zones. By combining previous results (Chollet et al. 2011; Hilairet et al.
372	2007; Perrillat et al. 2005; Sawai et al. 2013) and those of this study, we found that
373	antigorite dehydration rates are higher than the characteristic relaxation, which is
374	calculated as the inverse of the Maxwell relaxation time, and that brittle failure is
375	likely to occur within dehydrating serpentinized peridotites. Therefore, as described
376	by the dehydration-driven stress transfer model (Ferrand et al. 2017), antigorite
377	dehydration may trigger seismicity in the lower plane of the double seismic zone.
378	
379	
380	
381	
382	References
383	
384	Abers, G.A., Nakajima, J., van Keken, P.E., Kita, S., and Hacker, B.R. (2013) Thermal–
385	petrological controls on the location of earthquakes within subducting plates. Earth
386	and Planetary Science Letters, 369-370, 178-187.
387	Anthony, D.B., Howard, J.B., Hottel, H.C., and Meissner, H.P. (1975) Rapid devolatilization of
388	pulverized coal. Symposium (International) on Combustion, 15(1), 1303-1317.
389	Balucan, R.D., Kennedy, E.M., Mackie, J.F., and Dlugogorski, B.Z. (2011) Optimization of

- 390 antigorite heat pre-treatment via kinetic modeling of the dehydroxylation reaction for
- 391 CO2 mineralization. Greenhouse Gases: Science and Technology, 1(4), 294-304.
- 392 Bezacier, L., Reynard, B., Bass, J.D., Sanchez-Valle, C., and Van de Moortèle, B. (2010)
- 393 Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction
- 394 zones. Earth and Planetary Science Letters, 289(1), 198-208.
- 395 Cai, J., Wu, W., and Liu, R. (2014) An overview of distributed activation energy model and its
- 396 application in the pyrolysis of lignocellulosic biomass. Renewable and Sustainable
- 397 Energy Reviews, 36(Supplement C), 236-246.
- 398 Capitani, G., and Mellini, M. (2004) The modulated crystal structure of antigorite: The m = 17
- 399 polysome. American Mineralogist, 89(1), 147-158.
- 400 Chernak, L.J., and Hirth, G. (2010) Deformation of antigorite serpentinite at high temperature
- 401 and pressure. Earth and Planetary Science Letters, 296(1), 23-33.
- 402 Chernak, L.J., and Hirth, G. (2011) Syndeformational antigorite dehydration produces stable
- 403 fault slip. Geology, 39(9), 847-850.
- 404 Chollet, M., Daniel, I., Koga, K.T., Morard, G., and van de Moortèle, B. (2011) Kinetics and
- 405 mechanism of antigorite dehydration: Implications for subduction zone seismicity.
- 406 Journal of Geophysical Research: Solid Earth, 116(B4), n/a-n/a.
- 407 Clark, S.J. (2005) First principles methods using CASTEP. Z. Kristallogr., 220, 567-570.
- 408 de Caprariis, B., De Filippis, P., Herce, C., and Verdone, N. (2012) Double-Gaussian
- 409 Distributed Activation Energy Model for Coal Devolatilization. Energy & Fuels, 26(10),
- 410 6153-6159.
- 411 de Caprariis, B., Santarelli, M.L., Scarsella, M., Herce, C., Verdone, N., and De Filippis, P.

412	(2015) Kinetic analysis of biomass pyrolysis using a double distributed activation
413	energy model. Journal of Thermal Analysis and Calorimetry, 121(3), 1403-1410.
414	Dobson, D.P., Meredith, P.G., and Boon, S.A. (2002) Simulation of Subduction Zone
415	Seismicity by Dehydration of Serpentine. Science, 298(5597), 1407-1410.
416	Du, Z., F. Sarofim, A., P. Longwell, J., and Mims, C. (1991) Kinetic measurement and
417	modeling of carbon oxidation. Energy & Fuels, 5(1), 214-221.
418	Eggler, D.H., and Ehmann, A.N. (2010) Rate of antigorite dehydration at 2 GPa applied to
419	subduction zones. American Mineralogist, 95(5-6), 761-769.
420	Ferrand, T.P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc, J., Renner, J., Wang,
421	Y., Green li, H.W., and Schubnel, A. (2017) Dehydration-driven stress transfer triggers
422	intermediate-depth earthquakes. Nature Communications, 8, 15247.
423	Ferrand, T.P., Labrousse, L., Eloy, G., Fabbri, O., Hilairet, N., and Schubnel, A. (2018) Energy
424	Balance From a Mantle Pseudotachylyte, Balmuccia, Italy. Journal of Geophysical
425	Research: Solid Earth, 123(5), 3943-3967.
426	Flynn, J.H., and Wall, L.A. (1967) Initial kinetic parameters from thermogravimetric rate and
427	conversion data. Journal of Polymer Science Part B: Polymer Letters, 5(2), 191-196.
428	Gasc, J., Hilairet, N., Yu, T., Ferrand, T., Schubnel, A., and Wang, Y. (2017) Faulting of natural
429	serpentinite: Implications for intermediate-depth seismicity. Earth and Planetary
430	Science Letters, 474, 138-147.
431	Gasc, J., Schubnel, A., Brunet, F., Guillon, S., Mueller, HJ., and Lathe, C. (2011)
432	Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high
433	pressure and temperature: Calibration and application to serpentinite dehydration.

- 434 Physics of the Earth and Planetary Interiors, 189(3), 121-133.
- 435 Gualtieri, A.F., Giacobbe, C., and Viti, C. (2012) The dehydroxylation of serpentine group
- 436 minerals. American Mineralogist, 97(4), 666-680.
- 437 Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S.D. (2003) Subduction factory 2.
- 438 Are intermediate-depth earthquakes in subducting slabs linked to metamorphic
- 439 dehydration reactions? Journal of Geophysical Research: Solid Earth, 108(B1),
- 440 n/a-n/a.
- 441 Hamann, D.R., Schlüter, M., and Chiang, C. (1979) Norm-Conserving Pseudopotentials.
- 442 Physical Review Letters, 43(20), 1494-1497.
- 443 Hasegawa, A., Umino, N., and Takagi, A. (1978) Double-planed structure of the deep seismic

zone in the northeastern Japan arc. Tectonophysics, 47(1), 43-58.

445 Hattori, K., and Guillot, S. (2003) Volcanic fronts form as a consequence of serpentinite

dehydration in the forearc mantle wedge. Geology, 31(6), 525-528.

- 447 Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N., and Petitgirard, S.
- 448 (2007) High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of
- 449 Subduction. Science, 318(5858), 1910-1913.
- 450 Hyndman, R.D., and Peacock, S.M. (2003) Serpentinization of the forearc mantle. Earth and
- 451 Planetary Science Letters, 212(3), 417-432.
- 452 Incel, S., Hilairet, N., Labrousse, L., John, T., Deldicque, D., Ferrand, T., Wang, Y., Renner, J.,
- 453 Morales, L., and Schubnel, A. (2017) Laboratory earthquakes triggered during
- 454 eclogitization of lawsonite-bearing blueschist. Earth and Planetary Science Letters,

455 459, 320-331.

456	Jung, H., Green li, H.W., and Dobrzhinetskaya, L.F. (2004) Intermediate-depth earthquake
457	faulting by dehydration embrittlement with negative volume change. Nature, 428, 545.
458	Kita, S., and Katsumata, K. (2015) Stress drops for intermediate-depth intraslab earthquakes
459	beneath Hokkaido, northern Japan: Differences between the subducting oceanic crust
460	and mantle events. Geochemistry, Geophysics, Geosystems, 16(2), 552-562.
461	Kita, S., Okada, T., Hasegawa, A., Nakajima, J., and Matsuzawa, T. (2010) Existence of
462	interplane earthquakes and neutral stress boundary between the upper and lower
463	planes of the double seismic zone beneath Tohoku and Hokkaido, northeastern Japan.
464	Tectonophysics, 496(1), 68-82.
465	Lin, J.S., Qteish, A., Payne, M.C., and Heine, V. (1993) Optimized and transferable nonlocal
466	separable ab initio pseudopotentials. Physical Review B, 47(8), 4174-4180.
467	Mellini, M., Trommsdorff, V., and Compagnoni, R. (1987) Antigorite polysomatism: behaviour
468	during progressive metamorphism. Contributions to Mineralogy and Petrology, 97(2),
469	147-155.
470	Miura, K., and Maki, T. (1998) A Simple Method for Estimating f(E) and k0(E) in the Distributed
471	Activation Energy Model. Energy & Fuels, 12(5), 864-869.
472	Navarro, M.V., Aranda, A., Garcia, T., Murillo, R., and Mastral, A.M. (2008) Application of the
473	distributed activation energy model to blends devolatilisation. Chemical Engineering
474	Journal, 142(1), 87-94.
475	Okazaki, K., and Hirth, G. (2016) Dehydration of lawsonite could directly trigger earthquakes in
476	subducting oceanic crust. Nature, 530, 81-84.
477	Omori, S., Komabayashi, T., and Maruyama, S. (2004) Dehydration and earthquakes in the

- 478 subducting slab: empirical link in intermediate and deep seismic zones. Physics of the
- 479 Earth and Planetary Interiors, 146(1), 297-311.
- 480 Ozawa, T. (1965) A New Method of Analyzing Thermogravimetric Data. Bulletin of the
- 481 Chemical Society of Japan, 38(11), 1881-1886.
- 482 Ozawa, T. (1970) Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal
- 483 Analysis and Calorimetry, 2(3), 301-324.
- 484 Ozawa, T. (1986) Non-isothermal kinetics and generalized time. Thermochimica Acta, 100(1),
- 485 109-118.
- 486 Peacock, S.M. (2001) Are the lower planes of double seismic zones caused by serpentine

487 dehydration in abducting oceanic mantle? Geology, 29(4), 299-302.

- 488 Peacock, S.M., and Wang, K. (1999) Seismic Consequences of Warm Versus Cool
- 489 Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science,

490 286(5441), 937-939.

- 491 Pérez-Rodríguez, J.L., Franco, F., Ramírez-Valle, V., and Pérez-Maqueda, L.A. (2005)
- 492 Modification of the thermal dehydroxylation of antigorite by ultrasound treatment.
- 493 Journal of Thermal Analysis and Calorimetry, 82(3), 769-774.
- 494 Perrillat, J.-P., Daniel, I., Koga, K.T., Reynard, B., Cardon, H., and Crichton, W.A. (2005)
- 495 Kinetics of antigorite dehydration: A real-time X-ray diffraction study. Earth and
- 496 Planetary Science Letters, 236(3), 899-913.
- 497 Plümper, O., John, T., Podladchikov, Y.Y., Vrijmoed, J.C., and Scambelluri, M. (2016) Fluid
- 498 escape from subduction zones controlled by channel-forming reactive porosity. Nature
- 499 Geoscience, 10, 150.

- 500 Reynard, B. (2013) Serpentine in active subduction zones. Lithos, 178(Supplement C),
- 501 171-185.
- 502 Reynard, B., Hilairet, N., Balan, E., and Lazzeri, M. (2007) Elasticity of serpentines and
- 503 extensive serpentinization in subduction zones. Geophysical Research Letters, 34(13),
- 504 n/a-n/a.
- 505 Rubie, D.C., and Thompson, A.B. (1985) Kinetics of Metamorphic Reactions at Elevated
- 506 Temperatures and Pressures: An Appraisal of Available Experimental Data. In A.B.
- 507 Thompson, and D.C. Rubie, Eds. Metamorphic Reactions: Kinetics, Textures, and

508 Deformation, p. 27-79. Springer New York, New York, NY.

- 509 Sawai, M., Katayama, I., Hamada, A., Maeda, M., and Nakashima, S. (2013) Dehydration
- 510 kinetics of antigorite using in situ high-temperature infrared microspectroscopy.
- 511 Physics and Chemistry of Minerals, 40(4), 319-330.
- 512 Scambelluri, M., Bottazzi, P., Trommsdorff, V., Vannucci, R., Hermann, J., Gòmez-Pugnaire,
- 513 M.T., and Lòpez-Sànchez Vizcaìno, V. (2001) Incompatible element-rich fluids
- 514 released by antigorite breakdown in deeply subducted mantle. Earth and Planetary
- 515 Science Letters, 192(3), 457-470.
- 516 Scambelluri, M., Pennacchioni, G., Gilio, M., Bestmann, M., Plümper, O., and Nestola, F.
- 517 (2017) Fossil intermediate-depth earthquakes in subducting slabs linked to differential
- 518 stress release. Nature Geoscience, 10(12), 960-966.
- 519 Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs
- 520 and consequences for arc magma generation. Earth and Planetary Science Letters,
- 521 163(1), 361-379.

- 522 Shao, T., Ji, S., Kondo, Y., Michibayashi, K., Wang, Q., Xu, Z., Sun, S., Marcotte, D., and
- 523 Salisbury, M.H. (2014) Antigorite-induced seismic anisotropy and implications for
- 524 deformation in subduction zones and the Tibetan Plateau. Journal of Geophysical
- 525 Research: Solid Earth, 119(3), 2068-2099.
- 526 Soyer, W., and Unsworth, M. (2006) Deep electrical structure of the northern Cascadia (British
- 527 Columbia, Canada) subduction zone: Implications for the distribution of fluids.
- 528 Geology, 34(1), 53-56.
- 529 Trittschack, R., and Grobéty, B. (2012) Dehydroxylation kinetics of lizardite. European Journal
- 530 of Mineralogy, 24(1), 47-57.
- 531 Uehara, S. (1998) TEM and XRD study of antigorite superstructures. The Canadian
- 532 Mineralogist, 36(6), 1595-1605.
- 533 Ulmer, P., and Trommsdorff, V. (1995) Serpentine Stability to Mantle Depths and

534 Subduction-Related Magmatism. Science, 268(5212), 858-861.

- van Laarhoven, P.J.M., and Aarts, E.H.L. (1987) Simulated annealing. In P.J.M. van
- 536 Laarhoven, and E.H.L. Aarts, Eds. Simulated Annealing: Theory and Applications, p.
- 537 7-15. Springer Netherlands, Dordrecht.
- 538 Várhegyi, G., Bobály, B., Jakab, E., and Chen, H. (2011) Thermogravimetric Study of Biomass
- 539 Pyrolysis Kinetics. A Distributed Activation Energy Model with Prediction Tests.
- 540 Energy & Fuels, 25(1), 24-32.
- 541 Viti, C. (2010) Serpentine minerals discrimination by thermal analysis. American Mineralogist,
- 542 95(4), 631-638.
- 543 Vyazovkin, S., and Wight, C.A. (1997) KINETICS IN SOLIDS. Annual Review of Physical

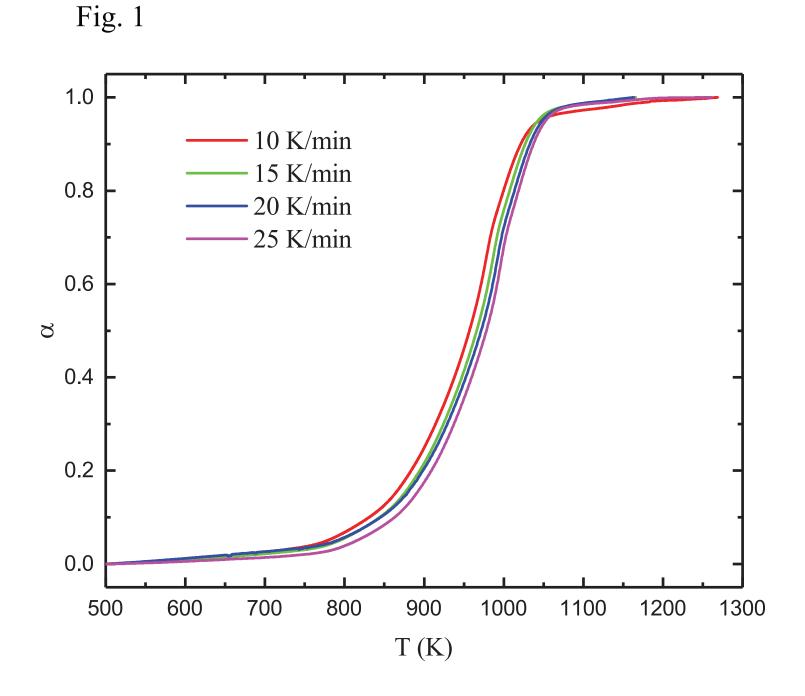
- 544 Chemistry, 48(1), 125-149.
- 545 Wang, D., Liu, X., Liu, T., Shen, K., Welch, D.O., and Li, B. (2017) Constraints from the
- 546 dehydration of antigorite on high-conductivity anomalies in subduction zones.
- 547 Scientific Reports, 7(1), 16893.
- 548 Wang, D., Wang, Y., Yi, L., and Huang, B. (2015) Dehydration Kinetics of Natural Talc. The
- 549 Canadian Mineralogist, 53(4), 643-651.
- 550 Weber, J.N., and Greer, R.T. (1965) Dehydration of serpentine: Heat of reaction and reaction
- 551 kinetics at PH2O = 1 atm. The American Mineralogist, 50, 450-464.
- 552 Worzewski, T., Jegen, M., Kopp, H., Brasse, H., and Taylor Castillo, W. (2010) Magnetotelluric
- image of the fluid cycle in the Costa Rican subduction zone. Nature Geoscience, 4,
- 554 108.
- 555 Yamasaki, T., and Seno, T. (2003) Double seismic zone and dehydration embrittlement of the
- 556 subducting slab. Journal of Geophysical Research: Solid Earth, 108(B4), n/a-n/a.
- 557 Zhang, J., Chen, T., Wu, J., and Wu, J. (2014) Multi-Gaussian-DAEM-reaction model for
- 558 thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and
- 559 CO2 atmosphere. Bioresource Technology, 166(Supplement C), 87-95.
- 560
- 561
- 562

Acknowledgements. We thank Ikuo Katayama for his kindly providing the natural
 antigorite rock sample. We also thank Wen Wen for technical assistance during the
 X-ray diffraction in situ high temperature experiments at BL14B1 of the Shanghai
 Synchrotron Radiation Facility. This study was partially supported by the Natural
 Science Foundation of China (Grant No. 41874104, 41373060 and 41603061) and the
 CAS/CAFEA International Partnership Program for Creative Research Teams (No.

	10 ⁸ ~10 ¹²	$(344 + 017) \times$	$10^9 22+0$	1 2122+	- 10.6	0.22	
	SSA (s ⁻¹)	$A (s^{-1})$ (3.44 ± 0.17) ×	n	E (kJ \cdot n	nol ⁻¹)	Δ	
609							
608	Table 1 Kine	etic triplet and err	ors obtained	l using an <i>n-</i>	th order r	eaction	
607							
606							
605							
604							
603							
602							
601							
600							
599							
598							
597							
596							
595							
594							
593							
592							
590 591							
590							
589							
588							
587							
585 586							
585							
583 584							
583							
582							
580 581							
579 580							
578 570							
577							
576							
575							
574							
573							
572							
571	editorial hand	lling.					
570	reviewer hel	ped to improve t	he manuscri	pt. We than	k Callum	Hetherington	n for
			-			-	

SSA is the search space of <i>A</i> (SSA). <i>A</i> , <i>n</i> and <i>E</i> are three constant parameters termed the kinetic triplet in the n-order model, which are determined from Eq. 4 and Eq. 6. A is an objective function, which was defined to describe the error between experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet.		$\frac{10^8 {\sim} 10^{13}}{10^8 {\sim} 10^{14}}$	(6.41 ± 0.32) (4.54 ± 0.23)				
SSA is the search space of <i>A</i> (SSA). <i>A</i> , <i>n</i> and <i>E</i> are three constant parameters termed the kinetic triplet in the n-order model, which are determined from Eq. 4 and Eq. 6. Δ is an objective function, which was defined to describe the error between experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet.	610			<u> </u>			
the kinetic triplet in the n-order model, which are determined from Eq. 4 and Eq. 6. Δ is an objective function, which was defined to describe the error between experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is an objective function of the lower the Δ , the more accurate the kinetic triplet. Δ is a structure the lower the Δ , the more accurate the kinetic triplet. Δ is a structure the lower the Δ , the more accurate the kinetic triplet. Δ is a structure triplet of the lower the Δ is a structure the lower the Δ is a structure the lower the triplet of the lower triplet of t		SSA is the se	earch space of A	(SSA). A, n and	d E are three co	nstant parameters t	ermed
experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the Δ , the more accurate the kinetic triplet. experimental and fitting data. The lower the triplet data accurate the kinetic triplet. experimental and fitting data. The lower the triplet data accurate the kinetic triplet. experimental accurate the kinetic triplet data accurate the kin	612		-			-	
$ \frac{615}{616} \frac{1}{617} \frac{1}{618} \frac{1}{622} \frac{1}{622} \frac{1}{622} \frac{1}{624} \frac{1}{625} \frac{1}{626} \frac{1}{627} \frac{1}{628} \frac{1}{629} \frac{1}{631} \frac{1}{632} \frac{1}{633} \frac{1}{633} \frac{1}{634} \frac{1}{635} \frac{1}{636} \frac{1}{637} \frac{1}{638} \frac{1}{648} \frac{1}{646} \frac{1}{647} \frac{1}{55A} A E_1 \sigma_1 E_2 \sigma_2 \omega \Delta $	613	Δ is an ob-	jective function,	which was	defined to desc	cribe the error be	tween
$ \frac{616}{617} $ $ \frac{616}{617} $ $ \frac{616}{617} $ $ \frac{616}{617} $ $ \frac{620}{621} $ $ \frac{622}{622} $ $ \frac{624}{625} $ $ \frac{626}{627} $ $ \frac{627}{628} $ $ \frac{629}{630} $ $ \frac{631}{633} $ $ \frac{633}{634} $ $ \frac{634}{635} $ $ \frac{634}{635} $ $ \frac{637}{638} $ $ \frac{638}{639} $ $ \frac{637}{64} $ $ 7able 2 Kinetic parameters and errors obtained using 2-DAEM $ $ \frac{SS\Lambda A E_1 \sigma_1 E_2 \sigma_2 \omega \Delta $	614	experimental	and fitting data.	The lower the	Δ , the more accu	arate the kinetic trip	olet.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	615						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	616						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	617						
$ \frac{620}{621} $ $ \frac{620}{622} $ $ \frac{621}{623} $ $ \frac{620}{627} $ $ \frac{620}{627} $ $ \frac{620}{627} $ $ \frac{620}{627} $ $ \frac{630}{631} $ $ \frac{631}{632} $ $ \frac{631}{632} $ $ \frac{633}{634} $ $ \frac{634}{635} $ $ \frac{636}{637} $ $ \frac{637}{638} $ $ \frac{638}{639} $ $ \frac{640}{641} $ $ \frac{7}{1} te_{2} t$	618						
$ \frac{621}{622} \frac{623}{624} \frac{625}{626} \frac{626}{627} \frac{628}{629} \frac{630}{631} \frac{631}{632} \frac{633}{634} \frac{635}{635} \frac{636}{637} \frac{636}{637} \frac{636}{637} \frac{637}{638} \frac{640}{641} \frac{641}{642} \frac{641}{642} \frac{643}{646} \frac{641}{645} \frac{646}{647} \frac{7 \text{Lbe 2 Kinetic parameters and errors obtained using 2-DAEM}{58\Lambda A E_1 \sigma_1 E_2 \sigma_2 \omega \Delta $	619						
$ \begin{array}{c} 622 \\ 623 \\ 624 \\ 625 \\ 626 \\ 627 \\ 628 \\ 629 \\ 630 \\ 631 \\ 632 \\ 633 \\ 634 \\ 635 \\ 636 \\ 637 \\ 638 \\ 639 \\ 640 \\ 641 \\ 641 \\ 642 \\ 643 \\ 640 \\ 641 \\ 644 \\ 645 \\ 646 \\ 641 \\ 644 \\ 645 \\ 646 \\ 641 \\ 645 \\ 646 \\ 641 \\ 645 \\ 646 \\ 641 \\ 645 \\ 646 \\ 641 \\ 645 \\ 646 \\ 647 \\ 7 \\ \hline { \ \ \ \ \ \ \ \ \ \ \ \ \$							
$ \begin{array}{c} 623 \\ 624 \\ 625 \\ 626 \\ 627 \\ 628 \\ 629 \\ 630 \\ 631 \\ 632 \\ 633 \\ 634 \\ 635 \\ 636 \\ 637 \\ 638 \\ 639 \\ 640 \\ 641 \\ 641 \\ 642 \\ 646 \\ 647 \\ \hline $							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c} 629 \\ 630 \\ 631 \\ 632 \\ 633 \\ 634 \\ 635 \\ 636 \\ 637 \\ 638 \\ 639 \\ 640 \\ 641 \\ 642 \\ 643 \\ 644 \\ 645 \\ 646 \\ 647 \\ 648 \end{array} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} } \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { \mbox{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline { Table $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
635 636 637 638 639 640 641 642 643 644 645 646 647 648 SSA A E1 σ1 E2 σ2 ω							
636 637 638 639 639 640 641 641 642 643 643 644 645 646 646 647 648 SSA A E ₁ σ ₁ E ₂ σ ₂ ω Δ							
637 638 639 640 640 - 641 - 642 - 643 - 644 - 645 - 646 - 647 Table 2 Kinetic parameters and errors obtained using 2-DAEM 58A A E1 σ1 E2 σ2 ω Δ							
638 639 640 641 641 642 643 644 644 645 646 647 648 SSA A E ₁ σ ₁ E ₂ σ ₂ ω Δ							
639 640 641 642 643 644 645 646 647 648 SSA A E1 σ1 E2 σ2 ω							
640 641 642 643 644 645 646 647 648 SSA A E1 σ1 E2 σ2 ω							
$\begin{array}{c} 642 \\ 643 \\ 644 \\ 645 \\ 646 \\ 647 \\ 648 \end{array} + \begin{array}{c} \textbf{Table 2 Kinetic parameters and errors obtained using 2-DAEM} \\ \hline & SSA & A & E_1 & \sigma_1 & E_2 & \sigma_2 & \omega & \Delta \end{array}$							
$\begin{array}{c} 643\\644\\645\\646\\646\\647\\648\\\hline \\ \hline \\ SSA \\ \hline \\ A \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\$	641						
$\begin{array}{c} \begin{tabular}{c} 644 \\ 645 \\ 646 \\ 647 \\ 648 \end{array} & \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	642						
$\begin{array}{c} {}^{645}\\ {}^{646}\\ {}^{647}\\ {}^{648} \end{array} \\ \hline \\ \hline \\ \overline{SSA} \hspace{1.5cm} A \hspace{1.5cm} E_1 \hspace{1.5cm} \sigma_1 \hspace{1.5cm} E_2 \hspace{1.5cm} \sigma_2 \hspace{1.5cm} \omega \hspace{1.5cm} \Delta \end{array} $	643						
$\begin{array}{c} \begin{tabular}{ c c c c } \hline 646\\ \hline 647\\ \hline 648\\ \hline \\ \hline \\ SSA & A & E_1 & \sigma_1 & E_2 & \sigma_2 & \omega & \Delta \end{array}$	644						
$\begin{array}{c} \begin{tabular}{ c c c c } \hline \end{tabular} 647 \\ \hline 648 \end{array} & \hline \hline SSA & A & E_1 & \sigma_1 & E_2 & \sigma_2 & \omega & \Delta \end{array}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
SSA A E_1 σ_1 E_2 σ_2 ω Δ		Table 2 Kine	etic parameters	and errors obt	ained using 2-D	OAEM	
	-	SSA	A	E_1	σ_1	$E_2 \sigma_2$	ω Δ
					-		

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6805


		DO	1. https://doi.org/	10.2 130/d11-201	9-0000			
	$10^8 {\sim} 10^{12}$	$(1.58 \pm 0.16) \times 10^{11}$	227.0±4.5	28.0 ± 5.6	251.4±5.0	3.1±0.2	0.336±0.017	0.040
	$10^8 {\sim} 10^{13}$	$(2.08 \pm 0.21) \times 10^{12}$	249.7±5.0	34.6±6.9	272.2 ± 5.4	4.8±0.2	0.336 ± 0.017	0.033
	$10^8 {\sim} 10^{14}$	$(4.66 \pm 0.47) \times 10^{13}$	268.1±5.4	29.8±6.0	299.2±6.0	8.9±0.5	0.336 ± 0.017	0.031
	$10^8 {\sim} 10^{15}$	$(4.42 \pm 0.44) \times 10^{14}$	298.2 ± 6.0	37.6±7.5	312.3±6.2	10.4±0.5	0.336 ± 0.017	0.030
	10 ⁸ ~10 ¹⁶	$(3.97 \pm 0.40) \times 10^{15}$	307.1±6.1	44.4 <u>+</u> 8.9	330.9±6.6	8.6±0.4	0.336±0.017	0.029
649		search space of A.						
650	-	s an objective funct			ccuracy of th	e six para	meters.	
651	The lower	the Δ , the more accu	rate the six j	parameters.				
652								
653								
654								
655								
656								
657								
658 650								
659 660								
660 661								
662								
663								
664								
665								
666								
667								
668								
669								
670								
671								
672								
673								
674								
675								
676								
677								
678								
679								
680								
681								
682								
683	D •							
684 685	Figure cap	otions						
<u>n85</u>								

685 686

687 Figure 1 Reaction progress curves for antigorite with different heating rates.

<u> </u>	
688	
689	The red, green, blue and violet lines represent the reaction progress with heating rates
690	of 10, 15, 20 and 25 $\text{ K} \cdot \text{min}^{-1}$, respectively. The numbers are the heating rates.
691	
692	
693	Figure 2 Activation energy of antigorite as a function of the reaction progress
694	determined using the FWO method.
695	
696	The FWO method is a model-free method for calculation of activation energy in TG
697	(Eq. 5). FWO is Flynn-Wall-Ozawa.
698	
699	
700	Figure 3 Experimental and theoretical reaction progress curves of the
701	non-isothermal experiments for antigorite derived from the <i>n</i> -th order reaction.
702	
703	a, b, c and d represent the fitting results of 10, 15, 20, and 25 K \cdot min ⁻¹ based on the
704	<i>n</i> -th order model, respectively. The red line and blue line represent the calculated data
705	and experimental data, respectively, of α as a function of temperature, with
706	$A = 3.44 \times 10^9 \text{s}^{-1}; n = 2.2 \text{ and } E = 212.2 \text{kJ} \cdot \text{mol}^{-1}.$
707	$A = 5.44 \times 10^{-5}$, $n = 2.2$ and $L = 212.2$ KJ mol .
708	Figure 4 Structure of the outine rite enceted lettice, showing different less
709	Figure 4 Structure of the antigorite crystal lattice, showing different local
710	environments for OH groups.
711	
712	The red, blue, white and yellow balls represent oxygen, silicon, hydrogen and
713	magnesium atoms, respectively. The structure of the antigorite crystal lattice (Capitani
714	and Mellini 2004) contains two different local environments for OH groups, that is,
715	O-H1 and O-H2. The O-H1 and O-H2 bonds have different lengths. The O-H3 bond is
716	at the boundary between the O-H1 and O-H2 bonds. The lengths of O-H1 and O-H2
717	bonds were determined using first-principle calculations.
718	
719	Figure 5 A compensation effect between the pre-exponential factor (A) and the
720	average activation energy based on 2-DAEM.
721	
722	Logarithm of pre-exponential factor (A) as a function of activation energy (E_1 and E_2)
723	for antigorite dehydration. The red and blue squares represent data points for E_1 and
724	E_2
725	, respectively. The regression equations are $log(A) = 0.0527 \times E_1 - 0.7634$ and
726	$log(A) = 0.0559 \times E_2 - 2.9165$. The correlation coefficients between log(A) and the
727	average activation energies (E_1 and E_2) are 0.9906 and 0.9986, respectively.
728	
729	
730	Figure 6 Comparisons between the calculated data and experimental data of
731	antigorite according to 2-DAEM.

732 a, b, c and d represent the fitting results of 10, 15, 20, and 25 $\text{ K} \cdot \text{min}^{-1}$ based on 733 2-DAEM, respectively. The red and blue lines represent the calculated and 734 experimental data, respectively, of α with temperature. α was calculated according 735 736 to Eq. 7 at a given A, E_i , σ_i and ω are listed in the third row in Table 2 when Δ has the minimum value of 0.014. The correlation coefficients for the heating rates of 737 10, 15, 20, and 25 Kmin⁻¹ are, respectively, 0.9996, 0.9995, 0.9994 and 0.9991. 738 739 740 Figure 7 Distributions of the activation energies in 2-DAEM. 741 742 The green, blue and red lines denote $G_1(E), G_2(E)$ and G(E), respectively, where $G_1(E) = \frac{\omega}{\sigma_1 \sqrt{2\pi}} exp\left(\frac{-(E-E_1)^2}{2\sigma_1^2}\right)$ is the distribution of the activation energy under local 743 environments for the O-H1 bond and $G_2(E) = \frac{1-\omega}{\sigma_0\sqrt{2\pi}} exp\left(\frac{-(E-E_2)^2}{2\sigma_0^2}\right)$ is the 744 distribution of the activation energy under local environments for the O-H2 bond. 745 G(E) is the sum of $G_1(E)$ and $G_2(E)$. 746 747 Figure 8 Isothermal dehvdration kinetic models for antigorite at different 748 749 temperatures derived from the parameters of the non-isothermal experiments. 750 These curves show the calculated reaction progress at certain temperatures according 751 to Eq. 12. The numbers are temperatures. α was calculated according to Eq. 12 at a 752 given temperature with parameters A, E_i and σ_i chosen from the third row of Table 2. 753 754 755 756 757 758 759 760

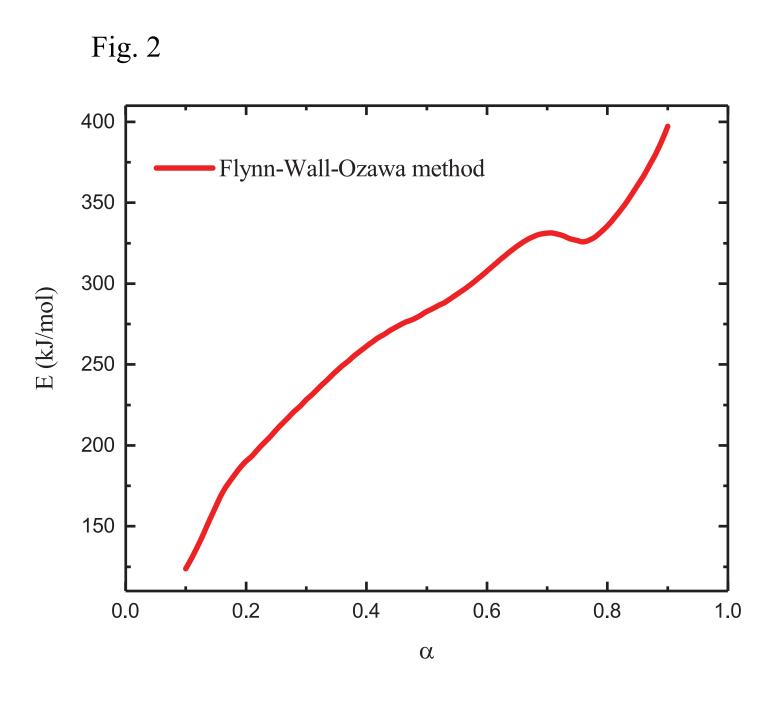
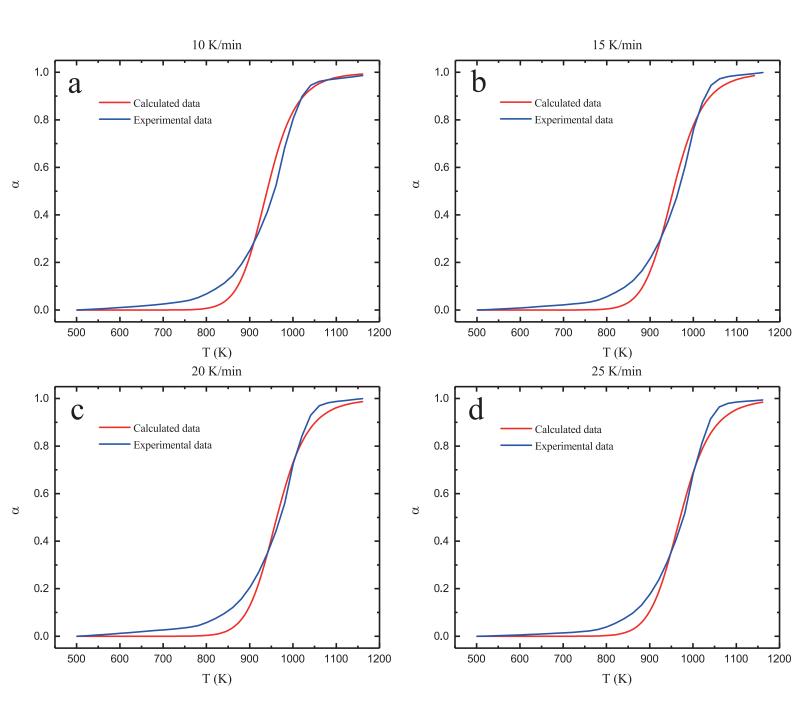
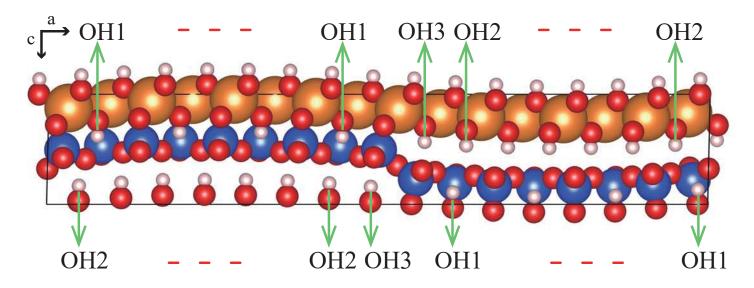
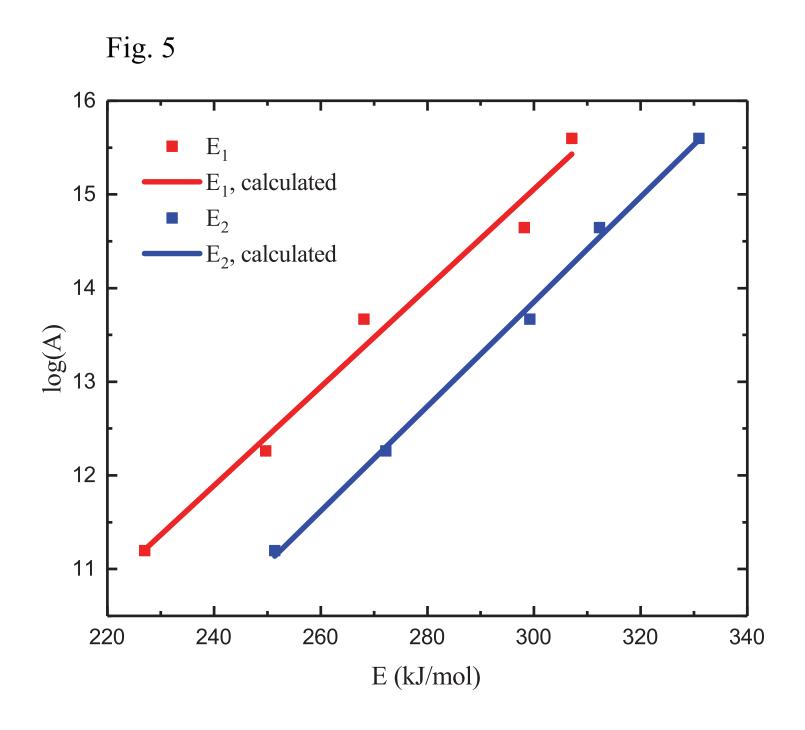





Fig. 3

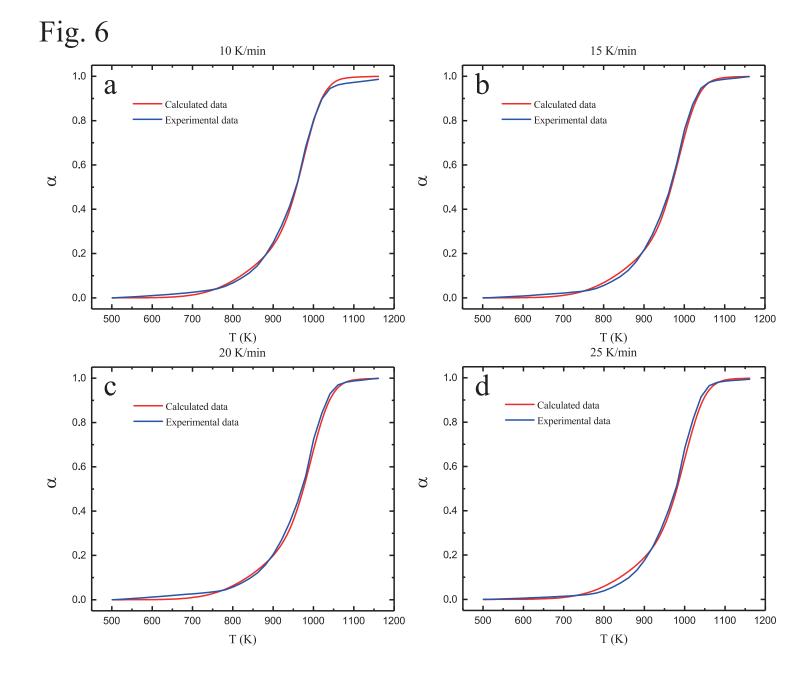


Fig. 7

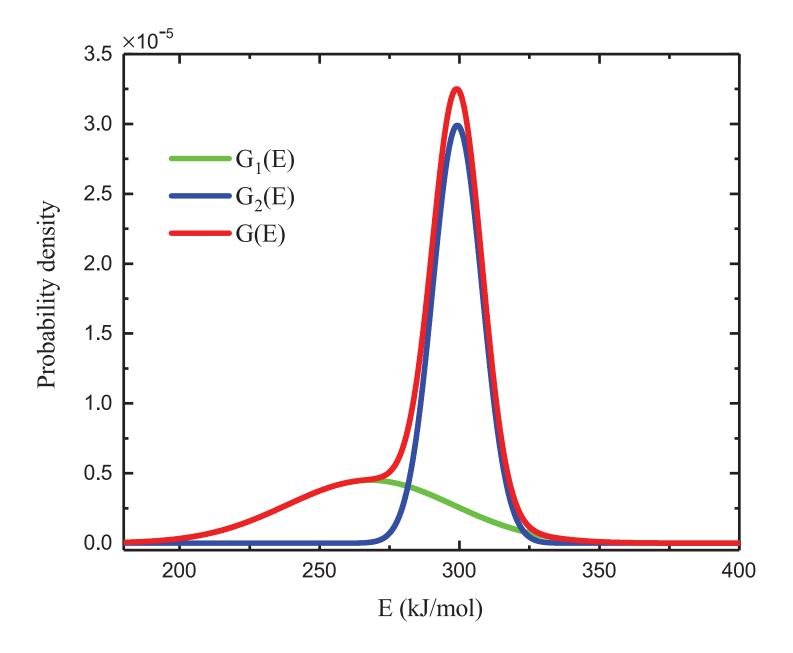
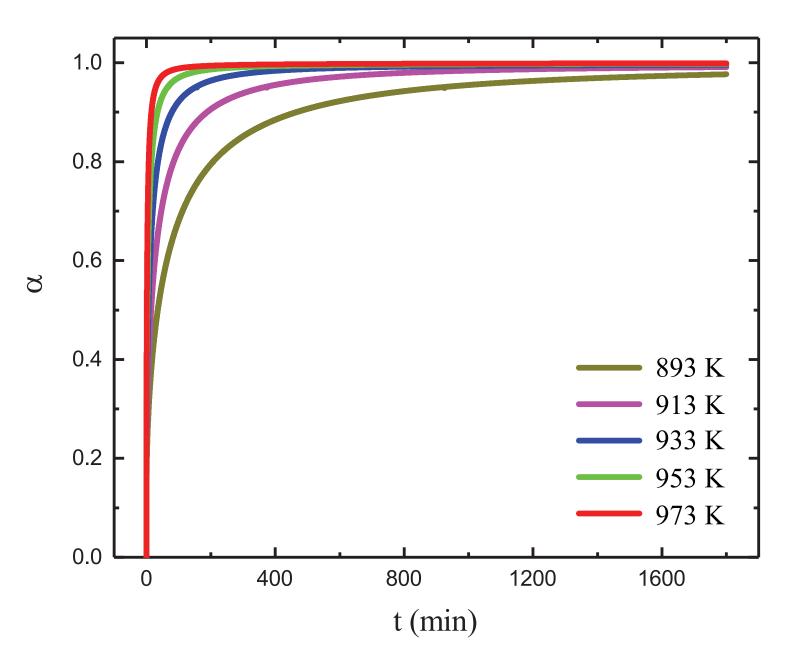



Fig. 8

