1	Revision 2
2	
3	Quantitative analysis of H-species in anisotropic minerals by
4	unpolarized infrared spectroscopy: an experimental evaluation
5	
6	Yangyang Qiu ¹ , Haotian Jiang ¹ , Kovács István ² , Qun-ke Xia ³ , and Xiaozhi Yang ^{1, *}
7	
8	¹ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and
9	Engineering, Nanjing University, Nanjing 210023, PR China
10	² Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences,
11	H-1112 Budapest, Hungary
12	³ Institute of Geology and Geophysics, School of Earth Sciences, Zhejiang University,
13	Hangzhou 310027, PR China
14	*: corresponding author (xzyang@nju.edu.cn)
15	
16	ABSTRACT
17	Appreciated attempts have been devoted to use a simple unpolarized infrared analysis on
18	unoriented anisotropic crystals of nominally anhydrous minerals to determine the content
19	of H-species, rather than using the more demanding polarized techniques which determine
20	the true contents of H-species (given that a reliable calibration coefficient is available). In
21	this context, different approaches have been either empirically or theoretically proposed for
22	the quantification; however, the involved accuracy has not been systematically documented

by experimental work of both polarized and unpolarized analyses. In this study, we present 23 a careful evaluation of this issue by conducting experimental measurements on a series of 24 gem-quality OH-bearing olivine, clinopyroxene and orthopyroxene single crystals. The 25 samples were carefully prepared for polarized and unpolarized infrared analyses, and the 26 obtained spectra were used to estimate the H₂O contents. We show that, regardless the 27 applied protocol, a single unpolarized determination is inadequate for quantitative analysis 28 and the uncertainty could be up to $\sim 80\%$. The unpolarized method of Paterson (1982), by 29 30 considering the linear absorbance intensity either through a single analysis or by averaging the data from multi-grain analyses, commonly underestimates the H₂O content, by a factor 31 of up to ~6. The other unpolarized calibration method by using the averages of integrated 32 absorbances of unoriented grains is in general of good accuracy, mostly within $\pm 25\%$ even 33 for analyses on 2 grains (with perpendicular indicatrix sections), and the accuracy is even 34 better if as many as 10 gains of random orientations are involved, e.g., within $\pm 10\%$. 35 36 Therefore, the latter method may be safely applied to quantify H in anisotropic minerals if a reasonable number of randomly oriented grains are chosen for the analyses. However, the 37 uncertainty is non-systematic, in that it could underestimate but could also overestimate the 38 contents depending on the orientations of the studied unoriented grains. The results lay a 39 solid basis for quantifying H-species in anisotropic minerals and for documenting the 40 quantitative effect of H on the physical properties of the host phases. 41

42

43 Keywords:

44 OH groups; Quantitative analysis; Unpolarized spectroscopy; Infrared spectroscopy;

	ЪТ ' 1	1	1 1	•	1
45	Nominal	IV a	nhvdra	ms mr	nerals
10	1 (Olliniai	iy u		Jub IIII	noraib

47

INTRODUCTION

The importance of water for the origin and evolution and life on Earth and even the Earth 48 itself makes it an intriguing topic in Earth Sciences. Water in the Earth is rarely present as 49 H₂O molecules (e.g., as seen in the oceans), but is most abundant in the form of hydrogen 50 (H) incorporated in the lattice of various minerals of the planet's interior. In the past 51 decades, H in nominally anhydrous minerals, the dominant constituents of the crust and 52 mantle, has received increasing interest, due to the widespread recognition of the 53 disproportionate importance of even trace amounts of H in governing Earth's geochemical 54 evolution, geophysical properties and geodynamics (Keppler and Smyth 2006; Yang et al. 55 2014a; Demouchy and Bolfan-Casanova, 2016; Peslier et al., 2017; Xia et al., 2017). In 56 particular, partial melting, element partitioning, ionic diffusion, mechanical strength and 57 electrical conductivity could be affected by small amounts of H in the host minerals (e.g., 58 Inoue 1994; Righter and Drake 1999; Mei and Kohlstedt 2000; Regenauer-Lieb et al. 2001; 59 Hier-Majumder et al. 2005; Huang et al. 2005; Green et al., 2010; Kovács et al., 2012; 60 Yang et al. 2011, 2012; Yang 2012). The effect of H on these aspects, as well as the 61 partitioning, distribution and storage of water inside the Earth, is closely linked to its 62 amount and speciation types, of which the latter is related to the incorporation mechanism. 63 H is structurally present in several forms such as OH groups, molecular H₂O and molecular 64 H₂ (Keppler and Smyth 2006; Yang et al. 2016), and OH groups in nominally anhydrous 65 minerals have attracted particular interest, because the formation involves modification of 66

silicate matrix of the host structure (e.g., by breaking strong Si-O bond and/or creating
vacancies). Therefore, the key in many cases is to determine accurately the concentration
and species of H.

70

Fourier-transform infrared (FTIR) spectroscopy is a very powerful technique, and remains 71 the most widely applied method, for probing H in nominally anhydrous minerals, because 72 of its extreme sensitivity to H, inexpensive costs and non-destructive analyses. Also, it can 73 be easily carried out in situ on very small sample domains, and distinguishes readily 74 different types of H-species such as OH groups, inclusion H₂O, molecular H₂ and organic 75 hydrogen. Moreover, information on the orientations of H in the host structure and on the 76 lengths of hydrogen bond could be deduced if polarized radiation is used, and the exact 77 amount of H can be calculated if an externally determined mineral-specific IR calibration 78 coefficient is available. Accordingly, considerable effort in the past decades has been 79 devoted to develop a simple yet accurate method for measuring the concentration of H in 80 nominally anhydrous minerals with FTIR spectroscopy (e.g., Dowty 1978; Paterson 1982; 81 Libowitzky and Rossman 1996; Asimow et al. 2006; Kovács et al. 2008; Withers 2013; 82 Shuai and Yang 2017). The difficulty involves mainly optically anisotropic minerals and 83 very small grains, where particular attention has been focused on the measurements using 84 polarized or unpolarized analyses. In general, polarized analysis is more demanding than 85 unpolarized work, concerning both sample preparation and FTIR determinations. The 86 general principle of unpolarized FTIR spectroscopy has been theoretically documented, 87 with some key assumptions made in the mathematical deductions (e.g., Kovács et al. 2008; 88

89	Sambridge et al. 2008; Withers 2013). Some preliminary studies have been conducted on
90	testing the accuracy of the unpolarized methodology (e.g., Bali et al. 2008; Kovács et al.
91	2008; Sambridge et al. 2008; Férot and Bolfan-Casanova 2012; Sokol et al. 2013; Withers
92	2013; Padron-Navarta et al. 2014; Bizimis and Peslier 2015). However, it should be
93	pointed out that the available work has been conducted with only one or just a few samples
94	and/or under the assumption that calculated absorbance with numerical approximations is
95	reliable in reflecting sample true H content. A detailed and comprehensive experimental
96	test of the unpolarized methodology, in particular how accurate the result could be, has not
97	yet been reported.
98	
99	In this work, we have carried out a detailed experimental evaluation for the quantification
100	of H-species in anisotropic minerals by both polarized and unpolarized FTIR spectrometry.
101	The work is based on a direct comparison between the measured true contents by polarized
102	method and the determined values by unpolarized method, differing from some available
103	studies where the true contents were produced for example by synthesizing the axis-related
104	polarized spectra or by matching the spectra of silicate overtone bands of the samples with
105	those of reported oriented samples (e.g., Bali et al., 2008; Férot and Bolfan-Casanova 2012;
106	Padron-Navarta et al. 2014), and this would make the evaluation more straightforward. The
107	studied samples include a series of gem-quality olivine (Ol), clinopyroxene (Cpx) and
108	orthopyroxene (Opx) single crystals. These crystals, naturally derived and experimentally
109	H-annealed, are characterized by a range of H ₂ O contents from less than 30 to more than
110	400 ppm H ₂ O. We first present a brief technical introduction of the polarized and

unpolarized methods, and then report a careful evaluation of the H quantification byunpolarized analyses.

113

114

BACKGROUND

The quantitative measurements of H concentration by FTIR spectroscopy are based on themodified version of the Beer-Lambert law:

$$c = \frac{Abs}{\varepsilon \cdot t} \tag{1}$$

where *c* is the content of H-species (usually expressed as the equivalent content of H₂O by weight), *Abs* is the integrated absorbance in the interested region (cm⁻¹, e.g., usually 3700 to 2800 cm⁻¹ for OH groups), ε is the calibration coefficient, and *t* is the thickness of the sample in cm. Therefore, the H content is simply a function of the integrated absorbance normalized to 1 cm thickness (*Abs*_{total}), given that the calibration coefficient is already known, and Eq (1) becomes

$$c = \frac{Abs_{total}}{\varepsilon}$$
(2)

123

For optically anisotropic minerals, the determined intensity of H-species depends strongly on the orientation of the infrared-active dipole relative to the incident radiation, and Abs_{total} is then the sum of the thickness-normalized integrated absorbance along the three principal axes (*X*, *Y* and *Z*), which are obtained by three polarized FTIR spectra with incident light polarized along the three axes, respectively:

$$Abs_{\text{total}} = Abs_X + Abs_Y + Abs_Z \tag{3}$$

129 This requires orienting single crystals along some fundamental planes, so that the principal

130	axes can be determined. However, performing such a procedure on small crystals, either
131	natural or synthetic, is usually hard and time-exhausting, and is sometimes impossible for
132	minerals with low symmetry. To reduce the involved difficulty, Dowty (1978) proposed
133	that <i>Abs</i> _{total} can be produced by polarized analyses along six vibration directions on any
134	three orthogonal planes of a given sample, and subsequently Libowitzky and Rossman
135	(1996) have theoretically and experimentally evaluated this approach.

Empirically, *Abs*_{total} may be obtained from the thickness-normalized integrated absorbance

along any three mutually perpendicular directions (X', Y' and Z'):

$$Abs_{\text{total}} = Abs_{\mathcal{X}} + Abs_{\mathcal{Y}} + Abs_{\mathcal{Z}} \tag{4}$$

Johnson and Rossman (2003) have experimentally tested this approach using one anorthite 139 sample (GRR 1968), and their measured *Abs*_{total} agreed with that from the three principal 140 axes to within 5% relative. A re-examination of that sample by a later work from the same 141 group (Mosenfelder et al. 2015), however, argued that the method yielded overestimated 142 Abs_{total} by >30%, which may have been caused by heterogeneity of H-species in the sample 143 (Mosenfelder et al. 2015). In a recent report by Shuai and Yang (2017), the validity of Eq 144 (4) has been carefully evaluated with a large number of well-characterized samples and 145 also theoretical approach. The results show that Eq (4) works for samples even at extreme 146 cases, where the absorption bands are both intense (e.g., samples up to ~4 mm thick) and 147 strongly anisotropic, and has the same accuracy as Eq (3) for samples with a reasonable 148 thickness (e.g., up to ~ 1 mm as what we commonly work with). The method of Eq (4) 149 requires preparing the sample by double-polishing a crystal along any two perpendicular 150

- 151 planes only, without the necessarity to orient it. This greatly simplifies the quantification of H-species in anisotropic minerals by polarized FTIR spectroscopy.
- 153

154 Still, however, there are circumstances where the sample crystals are too small to be prepared for polarized FTIR analyses along different directions. In this case, the frequently 155 adopted alternative is the less demanding unpolarized measurements, which require the 156 157 preparation of a double-polished section only and are commonly easy to achieve. Two approaches are available here. One is the frequency-dependent calibration of Paterson 158 (1982), which is based on an empirical correlation between the OH stretching frequency 159 and the molar absorption coefficient of quartz and silicate glass: 160

$$c = \frac{X_i}{150 \cdot \gamma} \int \frac{A(\nu)}{3780 - \nu} d\nu \tag{5}$$

where X_i is a density-dependent factor, γ is an orientation factor, and $A(\nu)$ is the 161 162 thickness-normalized absorbance for a given wavenumber v (e.g., for a unit thickness of 1 cm). This calibration (labeled as Method 1 in this study) was the first generic method 163 specifically designed for determining the concentration of H in minerals and glasses. An 164 165 apparent merit is that it does not require an externally determined calibration coefficient, and this makes it frequently employed. A critical assumption made for Method 1 is that 166 both the absorption frequency and intensity of a unit amount of H are constants, which are 167 168 unfortunately not correct for minerals (and glasses). . It should also be pointed out that the γ of 1/3 was proposed by Paterson (1982) under the assumption that the orientation 169 distribution of the OH groups is isotropic (see Table 1 in Paterson 1982), which is certainly 170

not the case for anisotropic minerals, and that the γ was initially used to relate an 171 unpolarized measurement from a particular direction to Abstotal, different from the value of 172 1/3 proposed in later work which relates the average unpolarized absorbance on unoriented 173 174 grains to Abstotal (Kovács et al. 2008; Withers 2013). The uncertainty of Method 1 was usually assumed to be \sim 30-50%, although it has been argued that it might be much larger 175 (e.g., Libowitzky and Rossman 1996; Bell et al. 2003). The other approach can be viewed 176 177 as modified after Eqs (2) and (5), by combining the orientation factor and externally determined calibration coefficients: 178

$$c = \frac{Abs_{unpol,avg}}{\varepsilon \cdot \gamma} \tag{6}$$

where Abs_{unpol,avg} is the thickness-normalized integrated absorbance averaged over a large 179 number of randomly oriented crystals, and γ is taken as 1/3. This calibration (labeled as 180 Method 2 in this study) has also been widely used (e.g., Katayama and Nakashima 2003; 181 Koga et al. 2003; Xia et al. 2006; Grant et al. 2007; Yang et al. 2008), although the 182 background had not been strictly established. Later, theoretical and empirical work has 183 been carried out, and an equation in the similar form (by replacing γ with 1/3 directly) has 184 been deduced, which explains why a factor 1/3 is required (Kovács et al. 2008; Withers 185 2013). In principle, Method 2 works for samples where the absorption bands are less 186 intense or weakly anisotropic, e.g., the maximum linear absorbance is <0.3 or the ratio of 187 maximum and minimum absorbance is ~1 (Kovács et al. 2008; Withers 2013). Also, it 188 requires measurements on a statistically meaningful number of randomly oriented grains 189 (e.g., 10 or even more), where caution must be taken for thin sections cut from untreated 190

191	samples directly since lattice-preferred orientations (LPO) are usually developed in natural
192	and synthetic materials (that is, the sample grains are actually not perfectly unoriented).
193	The uncertainty of Method 2 was usually assumed within ~20-30%. Sometimes, this
194	method has also been applied to samples with only a few grains (e.g., <5) or even for a
195	single grain (e.g., Koga et al. 2003), but the uncertainty has not been evaluated directly.
196	
197	SAMPLES AND METHODS
198	Samples for the measurements are H-annealed and natural Ol, Cpx and Opx single crystals.
199	The annealed OI samples are from our previous work (Yang et al. 2014b; Yang 2015, 2016;
200	Shuai and Yang 2017), and the annealed Cpx and Opx samples were from the present work,
201	following the method reported in our previous studies (Yang et al. 2014b; Yang 2015, 2016;
202	Shuai and Yang 2017). A summary of the samples is given in Table 1 and in the Appendix,
203	note that these samples are from three same starting crystals: Ol from Dak Lak (Vietnam),
204	Cpx from Asku (China), and Opx from Tanzania, of which the former two and crystals
205	from the same area as the latter one have been used in our H incorporation experiments
206	(Yang et al. 2014b, 2016; Yang 2015, 2016; Shuai and Yang 2017). In general, the crystals
207	are of gem-quality, although fractures were sometimes developed in the annealed crystals
208	due to stress-related compression and/or decompression during the H-annealing runs at
209	elevated conditions. For each sample, a single crystal was prepared by double-polishing
210	along two perpendicular planes, where polarized FTIR spectra were recorded along three
211	mutually perpendicular directions, following the method of Shuai and Yang (2017), and
212	unpolarized FTIR spectra were taken on the two perpendicular planes. On the other hand,

double-polished randomly oriented grains of the natural Cpx and Opx crystals, 10 grains
for each, were prepared for unpolarized analyses. Thickness of the prepared samples is
usually about 150-900 µm as measured by a Mitutoyo digital micrometer.

217	FTIR spectra were obtained with a Bruker Vertex 70V FTIR spectrometer coupled with a
218	Hyperion 2000 microscope at the School of Earth Sciences and Engineering, Nanjing
219	University. A total of 128 or 256 scans were accumulated for each spectrum with a globar
220	source, a KBr/Ge beam-splitter, a mid-band MCT detector, an aperture of ${\sim}60{\times}60~\mu m$ and
221	a resolution of 4 cm ⁻¹ . A Zn-Se wire-grid polarizer was used for polarized radiation, and
222	polarized spectra were measured with the electric field vector (E) parallel to three mutually
223	perpendicular directions. Optically clean and inclusion- and crack-free areas were chosen
224	for the analyses. During the measurements, the optics of the spectrometer were always kept
225	under vacuum, and the optics of the microscope were continuously purged by purified,
226	H ₂ O- and CO ₂ -free air. Baseline corrections of the spectra were carried out by performing
227	a spline fit method defined by points outside the integrated region (Fig. 1). Several baseline
228	corrections were conducted on representative spectra, and the variation of the integrated
229	absorbance of each spectrum, i.e. the arbitrary uncertainty, is usually <10% (mostly <5%).
230	This is normally the best what could be achieved in the community for processing the
231	baseline corrections of any FTIR spectra, either polarized or unpolarized. The integral
232	mineral-specific FTIR absorption coefficients of Bell et al. (1995) for Cpx and Opx and of
233	Bell et al. (2003) for Ol were used for calibrating the H_2O contents. However, adoption of
234	the coefficients does not affect the evaluation of the present study, and in particular, the test

235	of the accuracy of Method 2 is independent of the choice of coefficient (since the same
236	calibration coefficient is used for both polarized and unpolarized work).
237	
238	R ESULTS AND D ISCUSSION
239	Profile FTIR analyses demonstrate no zoned patterns in the studied crystals (Fig. 2), as also
240	documented in our available reports (Yang et al. 2014b; Yang 2015, 2016). Representative
241	polarized and unpolarized FTIR spectra are shown in Figs. 3 and 4. H_2O contents of the
242	samples are given in Tables 1 and 2, and are plotted in Figs. 5 and 6. A summary of the
243	linear absorbance and H ₂ O contents of the samples are also given in the Appendix.
244	
245	H-species in the samples
246	Significant absorption bands in the wavenumber range 3700-2800 cm ⁻¹ are observed for all
247	the samples (Figs. 2-4). The bands centered at ~ 3610, 3597, 3573, 3566, 3543, 3524, 3510,
248	3483, 3448, 3407, 3392, 3353, 3325 and 3179 cm ⁻¹ for the OI samples, which are typical
249	for OH groups in many mantle-derived olivines (Matsyuk and Langer 2004; Demouchy et
250	al. 2006) and H-annealed Fe-bearing olivines (Demouchy and Mackwell 2006; Yang and
251	Keppler 2011; Yang 2012, 2015, 2016; Kovács et al. 2012; Yang et al. 2014b; Shuai and
252	Yang 2017; Demouchy et al. 2017). The bands centered at ~3646, 3600, 3558, 3528, 3460
253	and 3355 cm^{-1} for the Cpx samples and at ~3685, 3600, 3544, 3514, 3415, 3370 and 3065
254	cm^{-1} for the Opx samples, which are nearly the same as those reported for OH groups in
255	the corresponding minerals, either natural or H-annealed (e.g., Ingrin et al. 1989; Skogby et
256	al. 1990; Rauch and Keppler 2002; Stalder et al. 2015; Turner et al. 2015; Yang et al. 2016;

257 Shuai and Yang 2017; Demouchy et al. 2017).

258

259	It should be noted, however, that the OH bands are actually different between the natural
260	and H-annealed pyroxene samples, although their peak frequencies show some similarity
261	(Figs. 3 and 4). For Cpx, the H-annealed samples demonstrate the most significant band at
262	\sim 3646 cm ⁻¹ , with very weak bands at \sim 3600-3300 cm ⁻¹ , while the starting natural samples
263	are characterized by intense bands at \sim 3600-3300 cm ⁻¹ , with relatively weak band at \sim 3646
264	$\rm cm^{-1}$ (Figs 3b and 4a). For Opx, the H-annealed samples show the most profound bands at
265	\sim 3600, 3415 and 3370 cm ⁻¹ , in obvious contrast to the starting natural samples where the
266	most intense bands are observed at ~3513 and 3063 cm^{-1} ; in particular, the sharp band at
267	\sim 3600 cm ⁻¹ of the H-annealed samples appears absent in the natural Opx, the sharp band at
268	\sim 3513 cm ⁻¹ of the natural Opx is greatly weakened in the H-annealed Opx, and the small
269	band at \sim 3415 cm ⁻¹ of the natural Opx is broadened and enhanced in the H-annealed Opx
270	(Figs. 3c and 4b). Similar features have also been reported for Cpx and Opx (Rauch and
271	Keppler 2002; Yang et al. 2016; Shuai and Yang 2017). Because the pyroxenes in this work
272	are from the same starting materials and the chemistry of major- and minor-elements is
273	broadly the same for either the Cpx or Opx samples, the observed differences between the
274	qualitative and quantitative spectral characteristics of natural and H-annealed crystals may
275	reflect different types and populations of defects involved in them. Very likely, the
276	annealings at elevated conditions changed the defect population of the samples, which
277	have in turn affected the incorporation of OH groups (Shuai and Yang, 2017).

279 Quantification of H-species with unpolarized analyses

280	The H ₂ O contents of the samples, by polarized analyses along three mutually perpendicular
281	directions of each crystal, are ~25 to 420 ppm H ₂ O for Ol, 50 to 280 ppm H ₂ O for Cpx,
282	and 30 to 170 ppm H_2O for Opx (Table 1). The contents of the H-annealed samples
283	reprocessed in this study agree well with those produced in our available work (Yang et al.
284	2014b; Yang 2015, 2016; Shuai and Yang 2017), and the slight difference, commonly
285	within 10% and mostly within 5% relative, is caused by the arbitrary uncertainty involved
286	in the spectral baseline corrections by different operators. These values, representing the
287	true H ₂ O contents of the samples by considering the "Background" Section above, are used
288	to evaluate the quantification of OH groups with the two frequently adopted unpolarized
289	analyses, namely the Method 1 and Method 2.
290	
291	Method 1. The H ₂ O contents estimated by this approach, either obtained on a single grain

292 (or on one of the two planes of each prepared crystal) or the average value of multi-grains (or of the two planes of each prepared crystal), differ clearly from those by polarized 293 analyses (Fig. 3a, 3c and 3e). In general, the content determined by a single unpolarized 294 analysis is apparently lower, and could be underestimated by a factor of up to ~6 for Oli, 3 295 for Cpx and 2 for Opx. The average content of unpolarized analyses on 2 or 10 randomly 296 297 oriented grains (or planes) demonstrates smaller deviation from the true one, but is still 298 lower by a factor of ~2.5-5.0 (on average 3.2) for Ol, 1.1-2.4 (on average 1.7) for Cpx and 1.2-1.4 (on average 1.3) for Opx (according to the data in Table 1). Broadly speaking, this 299 method works better for Cpx and Opx than for Ol, and clearly a general upward revision is 300

301	needed for the estimated H ₂ O content. The observation that the H ₂ O content of Ol
302	calibrated by this method is \sim 3 times lower is in excellent agreement with that of Bell et al.
303	(2003), where the same conclusion has been reached for H_2O in natural olivines. This
304	would mean that the method is actually inadequate for precise OH quantification. In case
305	very rough information of sample H ₂ O content is required only or an externally determined
306	calibration coefficient is not available for the target mineral, this method could be applied;
307	however, the uncertainty could be up to \sim 80%, even when the average value of analyses on
308	multi-grains is considered.
309	
310	Method 2. The H ₂ O contents estimated by this approach, either obtained on a single grain
311	(or on one of the two planes of each prepared crystal) or the average value of multi-grains
312	(or of the two planes of each prepared crystal), also show a variable but generally low
313	degree of deviation from those determined by polarized measurements (Fig. 3b, 3d and 3f).
314	In general, the value by a single unpolarized analysis ranges from $\sim 40\%$ lower to 70%
315	higher than the true content for all the studied samples and minerals, although the data
316	mostly cluster around the 1:1 reference line. The average contents of unpolarized analyses
317	on 2 or 10 randomly oriented grains (or planes) fall mostly within $\pm 25\%$ of the true ones,
318	although the deviation can in some cases be ~40%. Therefore, the H_2O content in optically
319	anisotropic minerals estimated by Method 2 is generally more accurate that that by Method
320	1. The accuracy of a single unpolarized analysis is relatively poor, as argued theoretically
321	(Kovács et al. 2008; Withers 2013). The average contents from two unpolarized analyses
322	on two different planes of the samples, in other words two grains of different orientations,

are usually acceptable given an accuracy level of $\pm 25\%$. However, it does not mean that 323 unpolarized measurements on two randomly-chosen unoriented grains of a given sample 324 could always yield a similar accuracy in H₂Ocontent, because the two planes in this study 325 are not arbitrary but mutually perpendicular (meaning that the orientations of the OH 326 vectors are spatially relevant) which could affect the measured spectra and thus the H₂O 327 content. This is actually obvious from our measured data on the natural cpx and opx, where 328 the content of a single unpolarized analysis could be $\sim 60\%$ higher or 40% lower than the 329 true value (Fig. 5d and 5f) and the average of two analyses on two grains could deviate by 330 ~40-60% in the extreme cases. For both the natural cpx and opx samples, the average H_2O 331 contents from unpolarized analyses on 10 unoriented grains of random orientations are 332 essentially the same as those determined by polarized measurements, consistent with each 333 other within $\sim 7\%$ (Fig. 5 and Table 2). 334

335

In summary, Method 2 has apparent advantage over Method 1 in the context of accuracy in 336 the quantification, as the uncertainty could be $\sim 25\%$ or smaller even only two unpolarized 337 measurements from two unoriented grains are considered. For a given sample, the relative 338 variation of H₂O contents estimated by a single unpolarized analysis is usually larger for 339 cpx and opx than for oli (demonstrated by both Method 1 and Method 2: Fig. 5), which 340 could be reasonably accounted for by the more anisotropic absorption bands in the former 341 than in the latter (Figs. 3 and 4 and Appendix). However, it appears clear that the average 342 value produced by Method 2 is acceptable mostly with an accuracy within $\pm 25\%$ (Fig. 5d 343 and 5f), even for samples whose absorption bands are both strong and strongly anisotropic 344

345	(Figs. 3 and 4 and Appendix). A regression processing of all the data demonstrates that the
346	average contents by Method 2 are globally in excellent agreement with the true values by
347	polarized work (Fig. 6). Thus, it would be usually fine to apply Method 2 to both natural
348	and synthetic samples where the information of H_2O contents is to be determined. In some
349	studies, a particularly high level of accuracy is required for quantifying the H content, e.g.,
350	for documenting the quantitative effect of OH on some physical properties of the host
351	minerals such as ionic diffusivity and electrical conductivity. Concerning these studies, the
352	application of Method 2 may yield H_2O contents of acceptable accuracy (within ±25%)
353	even only from two unpolarized measurements on two unoriented grains), but it may cause
354	large uncertainty to H-related physical parameters because the uncertainty is
355	non-systematic, in that it could underestimate but could also overestimate the contents
356	(Figs. 5 and 6). For example, electrical conductivity is sensitive to OH in nominally
357	anhydrous minerals, and the large variation of the experimentally determined OH-related
358	exponential factor, r in the Arrhenius equation which is linked to the nature of the charged
359	H and ranges from ~0.6 to 1.5 in available reports (e.g., Huang et al. 2005; Yang et al. 2011,
360	2012; Yang 2012; and references therein), is very likely caused by the non-systematic error
361	in characterizing the H ₂ O contents of the involved samples (Yang et al. 2012; Li et al.,
362	2017).

Finally, the experimental test demonstrates that Method 2 works even for samples whose bands are both intense and strongly anisotropic (Fig. 5 and Appendix). This, in fact, differs from the theory in available reports that the method works in principle for samples with

either less anisotropic bands or the maximum linear intensity is relatively small (i.e. <0.3: 367 Kovács et al. 2008; Withers 2013). In particular, Withers (2013) has shown by numerical 368 simulation that, for unpolarized measurements on randomly oriented grains with a number 369 of up to 10, the yielded average values always underestimate the H₂O content, although the 370 convergence toward the true content is apparent with increasing the number of studied 371 grains (see Fig. 5 in that paper). This is not supported by our experimental work where the 372 average values of unpolarized analyses on randomly oriented grains, 2-10 for each sample, 373 374 could either overestimate or underestimate the contents (i.e. non-systematic patterns: Fig. 5b, 5d and 5f). The difference might be caused by some assumptions or approximations 375 made in the theoretical deductions of previous work, concerning for example the complex 376 relationship between spectral absorbance and transmittance and the simplification in the 377 mathematical processing including the numerical integration of some complex equations 378 (see more details in: Kovács et al. 2008; Withers 2013). This means that the requirements 379 for applying Method 2 is actually not that strict as those established theoretically (Kovács 380 et al. 2008; Withers 2013), and the data of this work may provide a basis for reevaluating 381 the theoretical background in early work. Further studies on the theoretical background of 382 Kovács et al. (2008) and Withers (2013) would reconcile the difference between theoretical 383 and experimental approaches. 384

385

386

IMPLICATIONS

By carrying out a careful experimental work on a series of H-bearing Ol, Cpx and Opx
with both polarized and unpolarized measurements, the results of this study provide by far

the first systematic evaluation for quantifying H-species in anisotropic minerals by 389 unpolarized infrared spectroscopy. Our data demonstrate clearly that the H₂O content 390 estimated by a single unpolarized analysis could be inaccurate if the polarized absorbance 391 indicatrix is highly anisotropic, and the uncertainty could be up to $\sim 80\%$ in extreme cases. 392 Moreover, unpolarized Method 1 commonly underestimate the H₂O content by a factor of 393 up to \sim 6, even when the average of multi-grain measurements is taken into account, and 394 unpolarized Method 2 is in general more precise, with an accuracy mostly within $\pm 25\%$. 395 396 Method 1 could be employed to estimate the H₂O content of samples when externally determined mineral-specific calibration coefficients are not available, but the very large 397 uncertainty must be considered. Method 2 could be applied safely to samples where only 398 rough information is required for the amount of H-species, but particular caution must be 399 paid to the random orientation of the involved grains because of the development of LPO 400 in natural and synthesized samples. For example, unpolarized analyses on 10-20 or even 401 402 more unoriented grains in a rock section with strong LPO of the studied mineral may be physically equivalent to work on only one or just a few grains. 403

404

Accepting the uncertainties, unpolarized FTIR determinations could be used to quantify the amount of H in optically anisotropic minerals. This can be readily conducted, because the required procedure of sample preparation is pretty simple (when compared to polarized work). Our results provide a solid basis for evaluating the accuracy of the yielded data and for future studies on measuring H_2O contents in anisotropic minerals and on a quantitative understanding of the effect of water on physical properties of the host minerals. In case the

411	mineral grains in a sample section are randomly oriented, analyses of 10 grains by Method
412	2 could yield H_2O contents of nearly the same accuracy as the polarized measurements, but
413	the prerequisite might not be easily reached for simply-prepared sample sections (e.g., the
414	grains are not perfectly randomly oriented). It should be further noted that the protocols for
415	calculating water contents are actually different between Method 1 and Method 2 (See the
416	Background Section). Therefore, the contents of H-species estimated by Method 1 can only
417	be recalculated to Method 2 if the original spectra are provided, and a simple conversion of
418	the concentrations by a simple factor would introduce large non-systematic uncertainty. At
419	last, we would like to emphasize that, for very precise work, polarized FTIR analyses
420	along the three principal axes (the standard approach) or along any three random but
421	orthogonal directions (the modified method: Shuai and Yang (2017)) should be considered
422	first if the samples allow the preparation (e.g., with a suitable grain size).
423	
424	ACKNOWLEDGEMENTS
425	Q.Y. thanks Hanyong Liu and Hongzhan Fei for assistance with sample preparation, FTIR
426	analyses and data processing. We thank the constructive comments by George Rossman

427 and one anonymous reviewer and the editorial handling by Melinda Dyar. This study was

- 428 supported by grants to X.Y. from the National Basic Research Program of China
- 429 (2014CB845904), the National Science Foundation of China (41590622, 41725008 and
- 430 41372041), and the Fundamental Research Funds for the Central Universities (P.R. China),
- and partly by grant to I.K. from the funding scheme of the National Innovation, Research
- and Developments Office (Hungary, K128122).

433	
434	R EFERENCES CITED
435 436 437	Asimow, P.D., Stein, L.C., Mosenfelder, J.L., and Rossman, G.R. (2006) Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains. American Mineralogist, 91, 278–284.
438	Bali, E., Bolfan-Casanova, N., and Koga, K. T. (2008) Pressure and temperature dependence of h solubility in forstorite: an implication to water activity in the earth interior. Forth and Planetary Science Letters
440	268, 354-363.
441 442	Bell, D.R., Ihinger, P.D., and Rossman, G.R. (1995) Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist, 80, 465–474.
443	Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., and Rauch, F. (2003) Hydroxide in olivine: a
444 445	Geophysical Research: Solid Earth, 108, B2, 2105, doi: 10.1029/2001JB000679.
446 447	Bizimis, M., and Peslier, A. H. (2015) Water in hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle. Chemical Geology 397, 61-75
448	Demouchy, S., and Mackwell, S. (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing
449	Dowty, E. (1978) Absorption optics of low-symmetry crystals-application to titanian clinopyroxene spectra.
451 452	Physics and Chemistry of Minerals, 3, 173-181. Férot, A., and Bolfan-Casanova, N. (2012) Water storage capacity in olivine and pyroxene to 14 GPa:
453 454	implications for the water content of the earth's upper mantle and nature of seismic discontinuities. Earth and Planetary Science Letters, 349-350, 218-230.
455 456	Grant, K.J., Ingrin, J., Lorand, J.P., and Dumas, P. (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contributions to Mineralogy and Petrology, 154, 15-34.
457 458	Hier-Majumder, S., Mei, S., and Kohlstedt, D. L. (2005) Water weakening of clinopyroxene in diffusion creep. Journal of Geophysical Research Atmospheres. 110. doi: 10.1029/2004JB003414
459 460	Huang, X., Xu, Y., and Karato, S.I. (2005) Water content in the transition zone from electrical conductivity of wadslevite and ringwoodite. Nature 434, 746-749
461	Ingrin, J., Latrous, K., Doukhan, J. C., and Doukhan, N. (1989) Water in diopside: an electron microscopy
462 463	and infrared spectroscopy study. European Journal of Mineralogy, 1, 327-341. Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the
464	Mg_2SiO_4 -MgSiO ₃ -H ₂ O system up to 15 GPa. Physics of the Earth and Planetary Interiors, 85, 237-263.
465 466	Johnson, E.A., and Rossman, G.R. (2003) The concentration and speciation of hydrogen in feldspars using FTIR and ¹ H MAS NMR spectroscopy. American Mineralogist, 88, 901-911.
467 468	Katayama, I., and Nakashima, S. (2003) Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H ₂ O transport into the mantle. American Mineralogist 88, 229-234
469	Keppler, H., and Smyth, J.R. (2006) Water in nominally anhydrous minerals. Mineralogical Society of
470 471	America, Washington, pp. 478. Koga, K., Hauri, E., Hirschmann, M., and Bell, D. (2003) Hydrogen concentration analyses using SIMS and
472 473	FTIR: Comparison and calibration for nominally anhydrous minerals. Geochemistry Geophysics Geosystems 4, 1019, doi: 10.1029/2002GC000378
474	Kovács, I., Hermann, J., O'Neill, H. S. C., Gerald, J. F., Sambridge, M., and Horvath, G. (2008) Quantitative

- 475 absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a
- 476 protocol for quantitative analysis of mineral IR spectra. American Mineralogist, 93, 765–778.
- Libowitzky, E., and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic
 crystals. Physics and Chemistry of Minerals, 23, 319–327.
- 479 Matsyuk, S.S., and Langer, K. (2004) Hydroxyl in olivines from mantle xenoliths in kimberlites of the
 480 Siberian platform. Contributions to Mineralogy and Petrology, 147, 413–437.
- Mei, S., and Kohlstedt, D.L. (2000) Influence of water on plastic deformation of olivine aggregates: 2.
 Dislocation creep regime. Journal of Geophysical Research: Solid Earth, 105, 21471–21481.
- Mosenfelder, J.L., Rossman, G.R., and Johnson, E.A. (2015) Hydrous species in feldspars: a reassessment
 based on FTIR and SIMS. American Mineralogist, 100, 1209-1221.
- Padrón-Navarta, J. A., Hermann, J., and O'Neill, H. S. C. (2014) Site-specific hydrogen diffusion rates in
 forsterite. Earth and Planetary Science Letters, 392(392), 100-112.
- Paterson, M. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and
 similar materials. Bulletin de Mineralogie, 105, 20-29.
- Rauch, M., and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to Mineralogy and
 Petrology, 143, 525–536.
- 491 Regenauer-Lieb, K., Yuen, D.A., and Branlund, J. (2001) The initiation of subduction: criticality by addition
 492 of water? Science, 294, 578–580.
- Righter, K., and Drake, M. J. (1999) Effect of water on metal-silicate partitioning of siderophile elements: a
 high pressure and temperature terrestrial magma ocean and core formation. Earth and Planetary Science
 Letters, 171, 383-399.
- 496 Sambridge, M., Gerald, J. F., Kovács, I., O'Neill, H. S. C., and Hermann, J. (2008) Quantitative absorbance
 497 spectroscopy with unpolarized light: part I. physical and mathematical development. American
 498 Mineralogist, 93, 751-764.
- Shuai, K., and Yang, X. (2017) Quantitative analysis of H-species in anisotropic minerals by polarized
 infrared spectroscopy along three orthogonal directions. Contributions to Mineralogy and Petrology, 172,
 14, doi: 10.1007/s00410-017-1336-2.
- 502 Skogby, H, Bell, D.R., and Rossman, G.R. (1990) Hydroxide in pyroxene: variations in the natural
 503 environment. American Mineralogist, 75, 764–774.
- Sokol, A. G., Kupriyanov, I. N., and Palyanov, Y. N. (2013) Partitioning of H₂O between olivine and
 carbonate–silicate melts at 6.3 Gpa and 1400 °C: implications for kimberlite formation. Earth and
 Planetary Sciences Letters, 383, 58-67.
- Stalder, R., Karimova, A., and Konzett, J. (2015) OH-defects in multiple-doped orthoenstatite at 4-8 GPa:
 filling the gap between pure and natural systems. Contributions to Mineralogy and Petrology, 169, 38,
 doi: 10.1007/s00410-015-1133-8.
- 510 Turner, M., Ireland, T., Hermann, J., Holden, P., Padrón-Navarta, J. A., Hauri, E.H., Turner, S. (2015)
 511 Sensitive high resolution ion microprobe-stable isotope (SHRIMP-SI) analysis of water in silicate glasses
- and nominally anhydrous reference minerals. Journal of Analytical Atomic Spectrometry, 30, 1706-1722.
- Withers, A. C. (2013) On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing
 species in birefringent crystals. American Mineralogist, 98, 689–697.
- Xia, Q.K., Yang, X.Z., Deloule, E., Sheng, Y.M., and Hao, Y.T. (2006) Water in the lower crustal granulite
 xenoliths from Nushan, eastern China. Journal of Geophysical Research: Solid Earth, 111, doi:
 10.1029/2006JB004296.
- 518 Yang, X.Z., Xia, Q.K., Deloule, E., Dallai, L., Fan, Q.C., and Feng, M. (2008) Water in minerals of

- continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite
 xenoliths from the North China Craton. Chemical Geology, 256, 33-45.
- Yang, X., and Keppler, H. (2011) In-situ infrared spectra of OH in olivine to 1100 °C. American Mineralogist,
 96, 451–454.
- Yang, X., Keppler, H., McCammon, C., Ni, H., Xia, Q., and Fan, Q. (2011) The effect of water on the
 electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research: Solid Earth, 116,
 B04208, doi: 10.1029/2010JB008010
- 526 Yang, X. (2012a) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and
- plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth
 and Planetary Science Letters, 317–318, 241–250.
- Yang, X. (2012b) An experimental study of H solubility in feldspars: effect of composition, oxygen fugacity,
 temperature and pressure and implications for crustal processes. Geochimica et Cosmochimica Acta, 97,
 46–57.
- Yang, X., Keppler, H., McCammon, C., and Ni, H. (2012) Electrical conductivity of orthopyroxene and
 plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163, 33-48.
- Yang, X., Keppler, H., Dubrovinsky, L., and Kurnosov, A. (2014a) In-situ infrared spectra of hydroxyl in
 wadsleyite and ringwoodite at high pressure and high temperature. American Mineralogist, 99, 724–729.
- Yang, X., Liu, D., and Xia, Q. (2014b) CO₂-induced small water solubility in olivine and implications for
 properties of the shallow mantle. Earth and Planetary Science Letters, 403, 37–47.
- Yang, X. (2015) OH solubility in olivine in the peridotite-COH system under reducing conditions and
 implications for water storage and hydrous melting in the reducing upper mantle. Earth and Planetary
 Science Letters, 432, 199–209.
- Yang, X. (2016) Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions:
 an experimental study at 1.5–7 GPa and 1100–1300 °C. Geochimica et Cosmochimica Acta, 173, 319–
 336.
- Yang, X., Keppler, H., and Li, Y. (2016) Molecular hydrogen in mantle minerals. Geochemical Perspectives
 Letters, 2, 160-168.

547	FIGURE CAPTIONS
548	Fig. 1 Representative spectra of olivine (a), clinopyroxene (b) and orthopyroxene (c)
549	for baseline correction. Uncorrected, baseline and corrected spectra are shown from top to
550	bottom by black, blue and red lines, respectively. The spectra were normalized to 1 cm
551	thickness and vertically offset.
552	Fig. 2 Representative profile FTIR spectra of H-species in olivine (a), clinopyroxene (b)
553	and orthopyroxene (c). Numbers above each spectrum show the integrated absorbance
554	(cm^{-2}) , with an uncertainty of <10%, mostly <5%, due to baseline correction) and the
555	estimated distance from crystal center (μm in parentheses). The spectra were normalized to
556	1 cm thickness and vertically offset.
557	Fig. 3 Representative polarized and unpolarized FTIR spectra of H-species in
558	H-annealed olivine (a), clinopyroxene (b) and orthopyroxene (c). The bottom polarized
559	spectra were taken along three random but orthogonal directions, and the top unpolarized
560	spectra were taken over two perpendicular planes. Conditions for the H-annealing of the
561	samples are shown in the figures. The spectra were normalized to 1 cm thickness and
562	vertically offset.
563	Fig. 4 Polarized and unpolarized FTIR spectra of H-species in natural clinopyroxene (a)
564	and orthopyroxene (b). The bottom polarized spectra were taken along three random but
565	orthogonal directions, and the top unpolarized spectra were taken on 10 randomly oriented
566	grains. The spectra were normalized to 1 cm thickness and vertically offset.
567	Fig. 5 Plots of H ₂ O contents determined by polarized measurements and by unpolarized

568	Method 1 (a) and unpolarized Method 2 (b). Data points were taken from Tables 1 and 2.
569	Open symbol represents a single unpolarized analysis, and solid symbol represents the
570	average value of multi-grain analyses (purple, by averaging 2 unpolarized spectra from 2
571	perpendicular planes of a crystal; red, by averaging 10 unpolarized spectra from 10
572	randomly oriented grains). Dashed lines are for reference only. Error bars were assumed 10%
573	relative (note that the uncertainty of our data was usually $<10\%$ and mostly $<5\%$ relative:
574	see text)
575	Fig. 6 Plot of H_2O contents by polarized analyses and by unpolarized Method 2. The
576	average contents of Tables 1 and 2, shown also in Fig. 5, are plotted together for a global
577	linear regression. The fitting was forced to pass through the zero point, and the yielded
578	slope is 1.02±0.03 (r^2 =0.95). Error bars were assumed 10% relative (note that the
579	uncertainty of our data was usually <10% and mostly <5% relative: see text)

. a	ppm H ₂ O (polarized) ^b		ppm H ₂ O (unpolarized, Method 1) ^c			ppm H_2O (unpolarized, Method 2) ^d			summary of samples ^e				
No.	(reported)	(reprocessed)	(plane 1)	(plane 2)	(mean)	(plane 1)	(plane 2)	(mean)	P (GPa)	<i>T</i> (°C)	fO ₂ buffer	Reference	
oli(PC11)	240	237	68	91	79.5	230	310	270	3.5	1100	NNO	Yang et al. (2014b)	
oli(1)	90	97	29	30	29.5	82	86	84	1	1100	IW	Yang (2015)	
oli(4)	43	38	16	16	16	32	67	49	1	1100	IW	Yang (2015)	
oli(6)	195	184	100	37	68.5	248	155	201	3	1100	IW	Yang (2015)	
oli(15)	175	165	46	76	61	153	231	192	3	1100	IW	Yang (2015)	
oli(5)	200	212	77	51	64	233	173	203	3	1100	IW	Yang (2015)	
oli(11)	200	190	64	52	58	191	130	161	2.5	1100	NNO	Yang (2016)	
oli(12)	254	262	55	56	55.5	233	217	225	2.5	1100	HM	Yang (2016)	
oli(9)	138	127	26	25	25.5	88	74	81	1.5	1300	NNO	Yang (2016)	
oli(18)	400	422	175	157	166	561	454	508	5	1100	NNO	Yang (2016)	
oli(oli-0)	436	423	133	154	143.5	404	449	426	7	1100	NNO	Shuai and Yang (2017)	
oli(oli-1)	23	26	9	7	8	33	30	31	1	900	NNO	Shuai and Yang (2017)	
oli(oli-3)	70	75	28	23	25.5	94	76	85	2.5	1200	NNO	Shuai and Yang (2017)	
oli(oli-6)	61	66	12	44	28	58	58	58	1	1100	NNO	Shuai and Yang (2017)	
cpx(natural)		48	19	20	20	38	41	39	-	this stu		this study	
cpx(A67)		279	140	207	174	235	278	257	3	1100	00 IW this study		
cpx(A69)		146	156	103	129	186	148	167	2	1100	HM	this study	
opx(natural)		31	25	21	23	36	29	33	-	-	- this study		
opx(A85)		173	104	144	124	119	141	130	2	2 1100 IW this stud		this study	
opx(A60)		65	69	38	54	88	47	67	1	1000	NNO	this study	

580 Table 1 Summary of olivine, clinopyroxene and orthopyroxene samples and H₂O contents

^a Labels in the parentheses are the sample as used in the referred literatures.

^b Values labeled as 'reported' are taken from the referred literatures directly, and values labeled as 'reprocessed' are the recalculated data from

- the re-measured FTIR spectra of this study. The slight differences are caused by the arbitrary uncertainty due to performing baseline
- corrections by different operators, but are generally within 10% relatively (mostly <5%). All the data are calculated from three polarized FTIR
- spectra along three mutually perpendicular directions of each sample crystal (see text for more details). oli samples are from the same starting
- 586 crystal from Dak Lak, Vietnam, cpx samples are from the same starting crystal from Asku, China, and opx samples are from the same starting
- 587 crystal from Tanzania (see text for details).
- ^c Values for the spectra taken along two perpendicular planes by the unpolarized Method 1 and the average data (see text for details).
- ^d Values for the spectra taken along two perpendicular planes by the unpolarized Method 2 and the average data (see text for details).
- ^d Abbreviations of fO_2 buffers: NNO, Ni-NiO; IW, Fe-FeO; HM, Fe₂O₃-Fe₃O₄.
- 591 Uncertainty of H_2O contents is usually <10% relative (see text).

593 Table 2 H₂O contents of clinopyroxene and orthopyroxene samples by unpolarized

	1	10	1 1	• • • •	•
591	analyses of	n 1() ·	randomly	oriented	oraing
JJ -	analyses of	<u>110</u>	andoniny	offented	Siams

	ppm H ₂ O ^a										
NO.	(randomly oriented grains)										(mean)
Cpx(natural)		48*									
unpolarizd, Method 1	14	24	21	29	36	22	36	34	22	25	26
unpolarizd, Method 2	28	50	47	58	75	36	76	72	30	35	51
Opx(natural)	31*										
unpolarizd, Method 1	23	25	21	21	15	18	18	21	21	26	21
unpolarizd, Method 2	34	34	30	29	18	24	27	26	33	41	30

^a Values for the unpolarized spectra taken from randomly oriented grains and the average

596 data.

 * H₂O contents by polarized analyses are shown for reference (the values are also given

599 Uncertainty of H_2O contents is usually <10% relative (see text).

⁵⁹⁸ in Table 1).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

b а OI OI 0.0 0.65 0.35 0.2:1 ppm H₂O (unpolarized, Method 1) ppm H₂O (unpolarized, Method 2) С d Срх Срх 0.75 0.3 : 1 f е 240 Opx Орх 0.75 .6 0.4 . 0 <u>-</u> 0 0⊾ 0 ppm H₂O (polarized) ppm H₂O (polarized)

Open symbols, single grain; Solid symbols, mean value

Fig. 5

Fig. 6