This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6587

1 2	Letter (Revision 1)
3 4 5	POLARIO, a computer program for calculating refractive indices from chemical compositions
6	Reinhard X. Fischer, Manfred Burianek
7	Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, D-28359 Bremen (Germany)
8 9	Robert D. Shannon
10	Geological Sciences/ CIRES, University of Colorado, Boulder, Colorado 80309
11	
12	Abstract
13	POLARIO is a computer program to calculate total electronic polarizabilities, refractive
14	energies, and refractive indices of transparent minerals and synthetic crystalline compounds from
15	their chemical composition and molar volume. If measured refractive indices or observed
16	polarizabilities are entered, POLARIO also allows calculation of the deviation between observed
17	and calculated values and determines the compatibility index as a measure of agreement. The
18	density of the compound is calculated from the chemical composition and the molar volume of a
19	formula unit. Atom parameters can be read in cif format to determine possible coordination
20	numbers of cations and to compose the entire input necessary to do the calculations. It displays a
21	table of interatomic distances and angles, and it shows the chemical composition with
22	superscripted coordination numbers and valencies. The program is written in Delphi XE6 for
23	WINDOWS operating systems and contains 5,300 constants and parameters to do the
24	calculations.

25

26	Keywords: Refractive index, total electronic polarizabilities, refractive-index calculation,
27	Anderson-Eggleton relationship, Gladstone-Dale relationship, computer program.
28	Introduction
29	Refractive indices n are routinely used to describe the properties of minerals and other
30	transparent compounds. They are defined as the velocity c of light in vacuum divided by the
31	velocity c_m in the medium according to $n = c / c_m$. If light propagates from a medium with n_1 into
32	a medium with n_2 , it changes its direction according to Snell's law, $n_1 \cdot \sin \alpha = n_2 \cdot \sin \beta$, with the
33	angle α of incidence (= angle between incident beam and normal on interface between the two
34	media) and the angle β of refraction (= angle between refracted beam and normal). Thus, the
35	refractive indices can be simply determined by measuring the angles, most accurately on a prism
36	using the minimum-deviation method (see, e.g., Medenbach and Shannon 1997). Alternatively,
37	immersion methods can be used for small crystals (< about 1 mm) to obtain a match in refraction
38	between the crystal (or other transparent media) and the liquid in which it is embedded.
39	Physically, the effect of refraction is caused by dipole moments p induced by the
40	electromagnetic wave on entering the crystal being proportional to the electric field E according
41	to $p = \alpha \cdot E$, where the polarizability α represents the factor of proportionality between the dipole
42	moment and the electric field. In the visible region of light, the dipole moment originates in the
43	displacement of electrons relative to the protons, and α is called the "electronic polarizability".
44	It was shown independently by Lorenz (1880) and Lorentz (1880) that the polarizabilities are
45	related to the refractive indices according to

46
$$\alpha_{LL} = \frac{1}{b} V_m \cdot \frac{n_\infty^2 - 1}{n_\infty^2 + 2} \tag{1}$$

known as the Lorenz-Lorentz (LL) relation, with the Lorentz factor, $b = 4\pi/3$, for compounds with cubic symmetry, $V_m =$ molar volume in Å³, and $n_\infty =$ the mean static refractive index at $\lambda = \infty$ which means that this equation is strictly valid only for infinite wavelength. However, in common practice, this relation is used in the visible region of light as well, and it is also applied to noncubic crystals (for details see discussion in Shannon and Fischer 2016). In our work, we use a modified equation described in the section for calculating refractive indices from electronic polarizabilities of ions.

Gladstone and Dale (1863) found a relation between the chemical composition of a liquid 54 55 and its refractive index by assigning "specific refractive energies" to its component elements and 56 summing them weighted by the proportional weight contributions of the elements. This concept was applied by Larsen (1921) to minerals and later on refined by Mandarino (1976, 1978, 1979, 57 58 1981, 2006, 2007), providing a comprehensive set of refractive energies for the ions (listed as 59 oxides in the Mandarino publications). The Gladstone-Dale (GD) compatibility index (CI = 1 - 1 (K_p/K_c) , see below) was introduced by Mandarino (1979) as a measure of internal consistency of 60 the mean index of refraction. 61

Here, we introduce POLARIO, a computer program to calculate refractive indices from
electronic polarizabilities of the ions after Shannon and Fischer (2016) and from refractive
energies (Gladstone-Dale constants) after Mandarino (1976, 1981). As listed in Table 5 in
Shannon and Fischer (2016) different electronic polarizabilities are assigned to oxygen in
borates, carbonates, nitrates, sulfates and perchlorates to reflect the more covalent nature of these
compounds.

68

Calculating refractive indices from electronic polarizabilities of ions 69 Using the electronic polarizabilities of cations and anions from Tables 4 and 5 in Shannon and 70 Fischer (2016), the total polarizability of a mineral or compound can be calculated by applying 71 the additivity rule. Thus, the total polarizability α_{tot} is calculated as the sum of the cation and 72 73 anion contributions which can be expressed as $\alpha_{tot} = \sum_{i=1}^{Ncat} m_i \cdot \alpha_{ei}(cation) + \sum_{i=1}^{Nan} n_i \cdot \alpha_{ei}(anion)$ 74 (2) Polarizabilities and refractive indices depend on the coordination numbers (CN) of the cations 75 being higher for low CN and lower for high CN. In general, higher coordinations for calculated 76 polarizabilities seem to be more satisfactory yielding a better fit between observed and calculated 77 polarizabilities (Shannon and Fischer, 2016). Whereas the cation polarizabilities are strictly 78 additive, the anion polarizabilities α_{an} including H₂O molecules are correlated with the volume 79 occupied by the anion expressed by the volume of the formula unit divided by the number of 80 anions. Similar to Shannon and Fischer (2006) for the calculation of polarizabilities at infinite 81 wavelength, we use the relation in Shannon and Fischer (2016): 82 $\alpha_{an} = \alpha_{-}^{o} \cdot 10^{-N_{o}/V_{an}^{1.2}}$ (3)83 with V_{an} = anion molar volume, α_{-}^{o} = free-ion polarizability, and N_{o} is taken from Table 5 in 84 Shannon and Fischer (2016). 85 The mean refractive index $n_{\rm D}$ at $\lambda = 589.3$ nm is then calculated from the total polarizability 86

using the Anderson-Eggleton relationship (Anderson 1975; Eggleton 1991; Shannon and Fischer
2016)

89
$$\alpha_{AE} = \frac{(n^2 - 1)V_m}{4\pi + \left(\frac{4\pi}{3} - 2.26\right)(n^2 - 1)}$$
(4)

90 solved for *n* according to

$$n_{\rm AE} = \sqrt{\frac{4\pi\alpha_{\rm AE}}{\left(2.26 - \frac{4\pi}{3}\right)\alpha_{\rm AE} + V_{\rm m}} + 1}.$$
(5)

This equation is similar to the Lorenz-Lorentz relation but covers a more appropriate range of 92 compounds with interatomic bonds having an intermediate character between covalent and ionic 93 94 bonds as discussed by Shannon and Fischer (2016). Using the example of orthoclase (KAlSi₃O₈) from Shannon et al. (2017), representing a typical 95 example for a silicate, the following results are obtained: 96 Cation polarizabilities are taken from Table 4 in Shannon and Fischer (2016), being α (^[9]K⁺) = 97 1.35 Å³, $\alpha({}^{[4]}A1^{3+}) = 0.533$ Å³, and $\alpha({}^{[4]}Si^{4+}) = 0.284$ Å³. Thus, the total cation contribution is 98 calculated as to $\alpha(K) + \alpha(AI) + 3 \cdot \alpha(Si) = 1.35 + 0.533 + 3 \cdot 0.284 = 2.735 \text{ Å}^3$. Similarly, the 99 anion contribution is calculated using the anion volume V_m =22.51 Å³ and the parameters from 100 Table 5 in Shannon and Fischer (2016) as to $8 \cdot \alpha(0) = 8 \cdot 1.79 \cdot 10^{\frac{-1.776}{22.51^{1.2}}} = 8 \cdot 1.79$. 101 $0.9071 = 12.990 \text{ Å}^3$, summing to $\alpha(\text{tot}) = 2.735 \text{ Å}^3 + 12.990 \text{ Å}^3 = 15.725 \text{ Å}^3$. Using eqn. (5) 102 and the molar volume $V_{\rm m} = 180.10$ Å³ (corresponding to 8 \cdot $V_{\rm an}$) for one formula unit, the mean 103 refractive index is then calculated to be $\langle n_D \rangle = 1.523$, in close agreement with the 104 experimentally determined value of 1.524 (see orthoclase entry in supplemental Table S1 in 105 Shannon et al. 2017). 106

107

108

Calculating refractive indices from refractive energies of ions

Following the approach of Gladstone and Dale (1863), Mandarino (1976, 1981) determined a set of parameters k (Gladstone-Dale constants) to define a specific *chemical* refractivity (cm^{3}/g)

of parameters
$$k_i$$
 (Gladstone-Dale constants) to define a specific *chemical* refractivity (cm³/g)

111
$$K_c = \sum_i \frac{k_i p_i}{100} \tag{6}$$

where p_i = weight percentages of the oxide contents in the respective compounds. This quantity, 112 K_c, is then compared to an experimental *physically* derived value defined as $K_p = \langle n \rangle - 1/D$ with 113 the density D (Mandarino 1979, 1981). The "compatibility" measures the agreement between the 114 two sides of the equation $(n-1)/D = \sum k_i p_i / 100$ where "superior" < 2%; excellent 2% - 4%; good 115 4% - 6%; fair 6% - 8% and poor >8%. Replacing K_c in eqn. (6) by K_p allows the calculation of 116 117 the mean refractive index according to $\langle n_{\rm D} \rangle = \sum_i \frac{k_i p_i}{100} \cdot D + 1$ 118 (7)Using again the example of the orthoclase, the calculation is as follows: 119 120 The chemical refractivity *K*c is calculated using eqn. (6): $K_{c} = \frac{k(K_{2}O) \cdot p(K_{2}O)}{100} + \frac{k(Al_{2}O_{3}) \cdot p(Al_{2}O_{3})}{100} + \frac{k(SiO_{2}) \cdot p(SiO_{2})}{100} = 0.196 \cdot 0.1692 + 0.207 \cdot 0.1832 + 0.208 \cdot 0.208 \cdot 0.1692 + 0.207 \cdot 0.1832 + 0.208 \cdot 0.20$ 121 $0.6476 = 0.2058 \text{ cm}^3/\text{g}.$ 122 123 The mean refractive index is then calculated using eqn. (7) as $< n_{\rm D} > = 0.2058 \text{ cm}^3/\text{g} \cdot 2.566 \text{ g/cm}^3 + 1 = 1.528.$ 124 For compounds other than oxides, e.g. halides, the sum of the molecular weights of the oxides 125 126 plus the sum of the atomic weights of the halides is decreased by the number of halide ions multiplied by half of the atomic weight of oxygen (the charge of half an oxygen ion corresponds 127 to the charge of one halide ion). The weight fractions are then calculated with the reduced sum of 128 molecular weights. The sum of the product $k_i p_i$ of the refractive energies and the weight fractions 129 is decreased by the the number of halide ions multiplied by half of the atomic weight of oxygen 130 131 times the weight fraction of the oxygen equivalent multiplied by the refractive energy of oxygen k(O) = 0.203 (Mandarino 1979, 1981) (for further details see the examples on p. 74 in Mandarino 132 1979). 133

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6587

134

Input data and program handling

The only data necessary to calculate refractive indices from polarizabilities are the chemical 135 composition and the molar volume $V_{\rm m}$. If coordination numbers CN are omitted, mean values for 136 the cation polarizabilities are used. The total polarizability of the compound is calculated using 137 eqn. (2) and the mean refractive index is calculated according to eqn. (5). Similarly the 138 139 corresponding values derived from the Gladstone-Dale refractive energies are calculated using eqns. (6) and (7) where the density is calculated from the molar volume. Input and output 140 handling is shown in Figure 1. Dark fields cannot be edited by hand. Numbers in parentheses in 141 142 the following description refer to the numbers in Figure 1. The chemical composition (23) can be entered up to 32 elements including coordination numbers of cations and valences of ions. After 143 entering the molar volume $V_{\rm m}$ (Å³) (10), the density (14), the anion volume $V_{\rm an}$ (Å³) (11), the 144 total polarizability (16 top), and the refractive energy (16 bottom) are calculated. From these 145 values, the mean refractive index (18), the refractive index (19) calculated from ion 146 polarizabilities averaged over different coordination numbers, and the corresponding n(GD) 147 value (20) using the Gladstone-Dale (GD) constants are calculated (6). It can be chosen (7) if all 148 GD constants are taken from Mandarino (1981) or if a subset for certain silicates is taken from 149 150 Eggleton (1991). The type of silicate can be selected using the pulldown menu (12). If observed values for either total polarizability (15) or refractive index (17) (or both) are entered, POLARIO 151 152 also calculates the deviation between observed and calculated values, and it determines the 153 compatibility index (20) as defined by Mandarino (1979, 1981). Alternatively, atom parameters can be read (1, 2) from cif formatted files allowing for distance calculations (2) with a suggestion 154 for possible coordination numbers. The space-group symbol needed for the calculation is then 155 156 displayed in (9). If present in the cif file, additional information on the compound is displayed in

157	(8, 22). Results, error messages, and warnings are written into field (21) and can be stored using
158	the button in (1). The chemical composition from (23) is formatted with subscripts and
159	superscripts in html format in (24) and can be copied, e.g., into word-processing programs.
160	Additional tools (3, 4, 5) facilitate the program handling. A detailed description of the program
161	can be found in the user manual.
162	
163	Limitations of POLARIO
164	The program does not contain polarizability values for uranyl ions and for ions having lone-pair
165	electrons (Tl ⁺ , Sn ²⁺ , Pb ²⁺ , As ³⁺ , Sb ³⁺ , Bi ³⁺ , S ⁴⁺ , Se ⁴⁺ , Te ⁴⁺ , Cl ⁵⁺ , Br ⁵⁺ , I ⁵⁺) which do not fit the
166	simple additivity scheme of polarizabilities.
167	Calculated values of $< n_D >$ generally deviate from observed $< n_D >$ by less than $\Delta = (n(obs) - n_D) + (n(obs) - n_D) +$
168	n(calc))/n(obs) of 1-2% (Shannon and Fischer 2016; Shannon et al. 2017) with the exception of
169	some groups of compounds showing systematic deviations from this scheme. Compounds that are ion
170	conductors, generally alkali-ion rich, typically show calculated refractive indices, $\langle n_D \rangle$, 0.7-3%
171	larger than observed refractive indices: e.g., for thenardite, Na_2SO_4 , $\langle n_D \rangle$ calc = 1.51 and $\langle n_D \rangle$
172	obs = 1.474 with Δ = -2.4%. Compounds containing edge- and corner-sharing octahedra (M =
173	Fe ³⁺ , In ³⁺ , Y ³⁺ , Ti ⁴⁺ , Nb ⁵⁺ , Ta ⁵⁺ , V ⁵⁺ , Mo ⁶⁺ , and W ⁶⁺) typically show calculated refractive indices,
174	$< n_D > of 5-30\%$ smaller than observed refractive indices: e.g. for CaTiO ₃ $< nD > calc = 2.25$ and
175	$<\!\!n_D\!\!>$ obs = 2.407 with Δ = 6.5% and for elsmoreite, WO_3 \cdot 0.5H2O, $<\!\!n_D\!\!>$ calc = 1.80 and $<\!\!n_D\!\!>$
176	obs = 2.240 with Δ = 19.6%. Similarly, compounds showing steric strain, where incident bond
177	valences show positive or negative deviations from the valence-sum rule, can show calculated
178	refractive indices, <nd> smaller or larger than observed refractive indices, depending on the type</nd>

179	and degree of steric strain (Gagné et al. 2017). An example of a negative deviation is kieserite,
180	MgSO ₄ · H ₂ O where $\langle n_D \rangle$ calc = 1.57 and $\langle n_D \rangle$ obs = 1.551 with Δ = -1.2%.
181	
182	Technical specifications and availability
183	The program is written in DELPHI using the Embarcadero XE6 version running on WINDOWS
184	operating systems. It contains 5,300 constants and parameters taken from Shannon and Fischer
185	(2016) (parameters for 76 cations in various coordinations, H_xO_y species, NH_4^+ , and 4 anions)
186	and from Mandarino (1981) and Eggleton (1991) with values for VO_2 from Mandarino (2005).
187	Atomic weights and molecular weights of the oxides calculated thereof are from Wieser et al.
188	(2013). Symmetry operators are derived from the space-group symbol using a routine from
189	Burzulaff and Hountas (1982) translated to Pascal (Delphi) as implemented in our programs
190	BRASS (Birkenstock et al. 2014) and STRUPLO (Fischer and Messner 2015). The routine
191	reading cif files was written by Thomas Messner also implemented in the two programs
192	mentioned above. POLARIO can be downloaded free of charge from the website
193	www.brass.uni-bremen.de.
194	
195	Implications
196	The calculation of refractive indices from chemical compositions is important for mineralogists
197	and materials scientists. It is required for new-mineral proposals submitted to the International
198	Mineralogical Association (IMA) and it is a valuable tool for designing new materials with
199	specific optical properties. However, it is a tedious procedure if calculated by hand. POLARIO
200	provides two different routes to calculate mean refractive indices, based on electronic
201	polarizabilities and on refractive energies, respectively. It evaluates atom parameters to

202	determine possible coordination numbers, and it calculates densities, total electronic
203	polarizabilities, chemical refractive energies, and the compatibility index. Thus, it represents a
204	fast and easy-to-use tool to determine optical properties from chemical compositions.
205	
206	Acknowledgements
207	We thank the Deutsche Forschungsgemeinschaft for financial support under grant FI442/21-2,
208	Thomas Messner for his valuable support in programming tricky routines, and Tony Kampf and
209	Frank Hawthorne for their valuable suggestions improving this paper.
210	
211	References cited
212	Anderson, O.L. (1975) Optical Properties of rock-forming minerals derived from atomic
213	properties. Fortschritte der Mineralogie, 52, 611-629.
214	Birkenstock, J., Messner, T., and Fischer, R.X. (2014) BRASS 2, Bremen Rietveld Analysis and
215	Structure Suite, Univ. Bremen, Geowissenschaften. www.brass.uni-bremen.de.
216	Burzlaff, H. and Hountas, A. (1982) Computer program for the derivation of symmetry
217	operations from the space-group symbols. Journal of Applied Crystallography, 15, 464-
218	467.
219	Eggleton, R.A. (1991) Gladstone-Dale constants for the major elements in silicates: coordination
220	number, polarizability, and the Lorentz-Lorentz relation. Canadian Mineralogist, 29, 525-
221	532.
222	Fischer, R.X. and Messner, T. (2015) STRUPLO, a new version of the structure drawing
223	program. www.brass.uni-bremen.de

224	Gaoné O	Hawthorne	F	Shannon	RD	and Fischer,	RX	(2017)	Empirical	electronic
224	Oagiic, O.	, mawinome,	I	Shannon,	N.D.,	and rischer.	Λ . Λ .		<i>i</i> Linpinca	

- polarizabilities: deviations from the additivity rule. I. $M^{2+}SO_4 \cdot nH_2O$, blödite
- Na₂ M^{2+} (SO₄)₂·4H₂O, and kieserite-related minerals with sterically strained structures.
- 227 Physics and Chemistry of Minerals 45, 303-310.
- 228 Gladstone, J.H. and Dale, T.P. (1863) Researches on the refraction, dispersion, and sensitiveness
- of liquids. Philosophical Transactions of the Royal Society of London, 153, 317-343.
- Larsen, E.S. (1921) The microscopic determination of the nonopaque minerals. Relation between
- index of refraction, density, and chemical composition. United States Geological Survey
- 232 Bulletin, 679, 30-32.
- Lorentz, H.A. (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des
- Lichtes and der Körperdichte. Annalen der Physik und Chemie, 9, 641-665.
- Lorenz, L. (1880) Ueber die Refractionsconstante. Annalen der Physik und Chemie, 11, 70-103.
- 236 Mandarino, J.A. (1976) The Gladstone-Dale relationship. Part I: Derivation of new constants.
- 237 Canadian Mineralogist, 14, 498-502.
- -- (1978) The Gladstone-Dale relationship. Part II. Trends among constants. Canadian
- 239 Mineralogist, 16, 169-174.
- -- (1979) The Gladstone-Dale relationship. Part III. Some general applications.
- 241 Canadian Mineralogist, 17, 71-76.
- -- (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its
- application. Canadian Mineralogist, 19, 441-450.
- -- (2006) The Gladstone-Dale compatibility of arsenate minerals. Periodico di
- 245 Mineralogia,75,167-174.

- -- (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species
- for further study. Canadian Mineralogist, 45,1307-1324.
- 248 Medenbach, O., and Shannon, R.D. (1997) Refractive indices and optical dispersion of 103
- synthetic and mineral oxides and silicates measured by a small-prism technique. Journal of
- the Optical Society of America, B14, 3299-3318.
- 251 Shannon, R.D., and Fischer, R.X. (2006) Empirical electronic polarizabilities in oxides,
- hydroxides, oxyfluorides, and oxychlorides. Physical Review B73, 235111/1-28.
- 253 -- (2016) Empirical electronic polarizabilities of ions for the prediction and interpretation of
- refractive indices: Oxides and oxysalts, American Mineralogist, 101, 2288-2300.
- Shannon, R.C., Lafuente, B., Shannon, R.D., Downs, R.T., and Fischer, R.X. (2017) Refractive
- indices of minerals and synthetic compounds. American Mineralogist, 102, 1906-1914.
- 257 Wieser, M.E., Holden, N., Coplen, T.B., Böhlke, J.K., Berglund, M., Brand, W.A., De Bièvre,
- 258 P., Gröning, M., Loss, R.D., Meija, J., Hirata, T., Prohaska, T., Schoenberg, R., O'Connor,
- G., Walczyk, T., Yoneda, S., and Zhu, X.-K. (2013) Atomic weights of the elements 2011
- 260 (IUPAC Technical Report). Pure and Applied Chemistry, 85, 1047-1078.

261

262

			nm (7	Mandarino Mandarino/Eggleton	
$\begin{array}{c} 5 \\ \text{obs} [\mathbb{A}^3] \end{array} \begin{array}{c} (16) \\ \text{alpha(calc)} [\mathbb{A}^3] \end{array}$	(17)	(18) n SF	(19) n mean SF	(20) n GD	
a(calc) refract.energy	nx obs	n(obs)-n(SF)	n(obs)-n(mSF)	n(obs)-n(GD)	(21)
pha [%]	ny obs	dev n(SF) [%]	dev n(mSF) [%]	dev n(GD) [%]	(21)
	nz obs			GD compatibility index	
(22)					
al no. kind CN elm (val no. kind	CN elm val no	o. kind CN el	m val no. kind CN elm	nval no. kind CN elm
	(23)				
	ha(caic) refract energy	ha(calc) refract energy nx obs ny obs nz obs (22)	elcaic) refract.energy recobs n(obs)-n(SF) pha [X] ny obs dev n(SF) [X] nz obs (22) el no. kind CN elm val no. kind CN elm val n	ka(caic) refract.energy nx obs n(obs)-n(SF) n(obs)-n(mSF) pha [X] ny obs dev n(SF) [X] dev n(mSF) [X] nz obs (22) al no. kind CN elm val no. kind CN elm val no. kind CN elm	ka(caic) refract.energy nx obs n(obs)-n(SF) n(obs)-n(mSF) n(obs)-n(GD) pha [X] ny obs dev n(SF) [X] dev n(mSF) [X] dev n(GD) [X] nz obs GD compatibility index (22) al no. kind CN elm val no. kind CN elm val no. kind CN elm val no. kind CN elm

Figure 1. POLARIO form. For explanations see text.