1				Revis	<u>ion 2</u>		
2	Dating	phosphates	of	the	strongly	shocked	Suizhou
3	chondri	te					
4		Shac	olin L	i ^{1,2} and	l Weibiao Hs	u ^{3*}	
5							
6		¹ Purple Mountai	n Obse	ervatory	7		
7		Chinese Academ	y of S	ciences			
8		Nanjing 210034					
9		China					
10		² School of Astro	nomy	and Spa	ace Sciences		
11		Nanjing Univers	ity				
12		Nanjing 210093					
13		China					
14		³ Space Science Ir	nstitute	е,			
15		Macau University	of Sc	eience a	nd Technology		
16		Macau					
17							
18		*Correspond	ling at	uthor's e	e-mail: wbxu@j	pmo.ac.cn	

Dating phosphates of the strongly shocked Suizhou chondrite

21

ABSTRACT

22 Impacts on undifferentiated asteroidal bodies provide invaluable information for understanding 23 the Solar System evolution. Nevertheless, dating early and small-scale impact events is technically challenging. Uranium-lead (U-Pb) systematics of U-bearing phases within shock-induced melt veins 24 25 (SMVs) of chondrites may be significantly disturbed by localized heating, thus providing opportunities to date these impact events. As one of the major U hosts in chondrites, apatite in the 26 27 Suizhou (L6) chondrite has been compositionally and structurally modified to varying degrees by 28 shock metamorphism. Apatite grains in the host remained largely intact during the impact and have 29 recorded the initial thermal cooling time (~4550 Ma) on their parent body. Apatite grains in regions less than 100 µm bordering the SMVs or in relatively "cold" regions within the SMVs were partly 30 31 decomposed to tuite, driven by the localized transient heating within the SMVs. Their U-Pb 32 systematics have been disrupted to varying extents. Apatite in regions close to the center of the SMVs 33 has been completely transformed to tuite, which yields an age of 4481 ± 30 Ma (2σ), providing an 34 upper limit to the impact event. This study clearly demonstrates that by integrating in situ U-Pb 35 isotope analysis with detailed microstructural and compositional analysis of phosphates, it is possible 36 to deduce the timing of early and small-scale celestial impact events, hence a more comprehensive understanding of the impact history of the Solar System. 37

38 Key words Apatite, tuite, L chondrite, in situ U-Pb dating, early impacts in the Solar System

2 / 39

INTRODUCTION

40	Impacts occur during all stages of planet formation and evolution, from the initial accretion of
41	chondritic materials in the nebula, to differentiation and secondary alteration on planetary bodies
42	(Scott, 2002). Due to impact-induced heating, isotopic chronometers of target rocks can be reset and
43	record the timing of these impact events (Deutsch and Schärer, 1994; Bogard, 1995; Jourdan et al.,
44	2009). However, impact ages are not always straightforward to be interpreted, largely due to the lack
45	of knowledge about how shock metamorphism affects isotopic systematics in specific minerals and in
46	whole rocks (e.g., Deutsch and Schärer, 1994; Niihara et al., 2012; El Goresy et al., 2013; Bloch and
47	Ganguly, 2014; Darling et al., 2016).
48	One fundamental question is whether the isotopic chronometer is disturbed during shock
49	compression or the prolonged post-shock annealing (Deutsch and Schärer, 1994; El Goresy et al.,
50	2013). Laboratory shock recovery experiments have been performed, followed by isotopic analysis, to
51	decipher the relationship between the degree of shock metamorphism and isotopic disturbance since
52	1960s (e.g., Fredriksson and De Carli, 1964; Bogard et al., 1987; Deutsch and Schärer, 1990; Gaffney
53	et al., 2011; Niihara et al., 2012). Shock compression, up to ~60 GPa, can hardly disturb a series of
54	isotopic chronometers (e.g., Sm-Nd, Rb-Sr, U-Pb and K-Ar), although slight ⁴⁰ Ar loss was observed
55	for higher shock pressures (Bogard, 1995). The general conclusion drawn from these experiments is
56	that post-shock annealing plays the most important role in resetting isotopic chronometers, and
57	naturally shocked and unannealed samples are unlikely to record the timing of the impact event
58	(Deutsch and Schärer, 1994). However, the duration of the high-pressure regime in laboratory

59	recovery experiments is several orders of magnitude shorter than shock pulse in natural impact events
60	(Sharp and DeCarli, 2006). This casts doubt on whether the results obtained from recovery
61	experiments are readily applicable to natural impact events on planetary bodies (El Goresy et al.,
62	2013).
63	Natural impacts can induce localized melting by shear stress along the grain boundaries of
64	minerals with different shock impedance, frictional heating along shear zones, and collapse of pores
65	during shock compression (Sharp and DeCarli, 2006). Shock melt veins (SMVs) generated in these
66	processes could reach temperatures and pressures in excess of 2500 °C and 26 GPa (Langenhorst and
67	Poirier, 2000; Sharp and DeCarli, 2006; Gillet and El Goresy, 2013). Various high-pressure phases can
68	form in these SMVs under the extreme $P-T-t$ conditions, either through solid-state transformation or
69	crystallization from the dense silicate melt. Tuite, with the structure of trigonal γ -Ca ₃ (PO ₄) ₂ , was first
70	identified in the SMVs of the Suizhou L6 chondrite (Xie et al., 2002) as a high-pressure polymorph of
71	merrillite and later in other meteorites, such as Martian and iron meteorites (e.g., Fritz and Greshake,
72	2009; Litasov and Podgornykh, 2017). It was also suggested that tuite could be formed by
73	decomposition of apatite through the reaction: $2Ca_5(PO_4)_3X \rightarrow 3\gamma$ - $Ca_3(PO_4)_2 + CaX_2$ (Murayama et al.,
74	1986; Xie et al., 2013), where X represents monovalent anions that are dominated by Cl^{-} in
75	equilibrated L chondrites (Lewis and Jones, 2016). Because phosphates are the major U hosts in
76	chondrites (Göpel et al., 1994), tuite formed during impact events has great potential to date these
77	processes. In this contribution, we present in situ U-Pb dating of tuite and apatite in the strongly
78	shocked Suizhou chondrite. This is the first report of U-Pb dating on a high-pressure phase of
79	phosphates. The U–Pb systematics of tuite provides insights into whether and to what extent it could $4/39$

80 be affected by the extreme P-T-t regime during natural impacts.

81 SAMPLE AND ANALYTICAL METHODS

82 Sample

83	The sample used in this study is a witnessed fall, the Suizhou chondrite (L6), which fell in
84	Suizhou, China in 1986. It was strongly shocked (S4-S5; Xie et al., 2001), with olivine and pyroxene
85	exhibiting weak mosaic textures and plagioclase being partly (~30 vol%) transformed to maskelynite.
86	The meteorite contains a few thin black SMVs (mostly 0.02-0.09 mm in width). Up to 12
87	high-pressure phases were identified in the SMVs, including ringwoodite, bridgmanite (vitrified),
88	majorite, majorite-pyrope garnet, akimotoite, hemleyite, magnesiowüstite, lingunite, wangdaodeite,
89	xieite and a CaFe ₂ O ₄ -polymorph of chromite and tuite (Xie and Chen, 2016 and references therein).
90	The assemblage of majoritic garnet + ringwoodite + magnesiowüstite in the SMVs suggests
91	crystallization temperature about 1800–2000 °C under pressure of 20–22 GPa (Xie et al., 2001). The
92	presence of akimotoite, devitrified perovskite and xieite inside and directly adjacent to the SMVs
93	suggests that the maximum pressure and temperature developed in the Suizhou SMVs could reach
94	about 24 GPa and 2200 °C (Xie and Chen, 2016). Under the estimated $P-T$ condition, tuite in Suizhou
95	could have been transformed from both merrillite and apatite (Xie et al., 2013).

96 Analytical methods

97 Five polished sections are carbon-coated before petrographic investigation using scanning
 98 electron microscope (SEM). Phosphates in the vicinity of the SMVs of Suizhou were identified using
 99 X-ray mapping with the Oxford X-Max energy-dispersive spectrometer equipped on the Hitachi
 5/39

100	S-3400N SEM at Purple Mountain Observatory (PMO), Chinese Academy of Sciences.
101	Cathodoluminescence (CL) images of the phosphates were obtained using a MonoCL4 system
102	attached to the SEM with a 15 kV accelerating voltage.
103	Raman spectra of phosphates were collected at PMO, using a Thermo Scientific DXR confocal
104	laser Raman spectrometer. The 532 nm wavelength solid laser was focused on a spot less than 1 μ m to
105	excite the Raman signal. The laser power was limited to 1-3 mW to avoid deterioration of minerals
106	due to laser heating. Accumulations of 200-300 seconds were made for each measurement. A step size
107	of 1 μ m and an accumulation time of 4 s were utilized for point-by-point Raman mapping. During the
108	Raman mapping, fluorescence interferences in the background were very low and basically negligible.
109	Major- and minor- element compositions of phosphates were determined with a JEOL 8230
110	electron microprobe analysis (EPMA) at PMO. An acceleration voltage of 15 kV and a probe current
111	of 20 nA were used during each analysis. Both standards and samples were analyzed with a beam
112	diameter of 5 μ m to minimize volatilization of halogens in apatite. Counting duration was 20 s for all
113	elements. The following standards were used for calibration: fluorapatite for Ca, P, and F; olivine for
114	Mg and Fe; tugtupite for Cl; albite for Na; rhodonite for Mn; synthetic cerium fluoride (CeF ₃) for Ce.
115	The detection limit(s) for F and Cl were 0.04 and 0.01 wt%, respectively; for Ce ₂ O ₃ was 0.06 wt% and
116	for all other oxides were 0.01–0.03 wt%.
117	In situ U-Pb isotopic analysis of phosphates in Suizhou was performed on a large-geometry,
118	double-focusing CAMECA ims-1280 HR secondary ion mass spectrometer (SIMS) at the institute of
119	Geology and Geophysics, Chinese Academy of Sciences in Beijing. The detailed analytical procedure

120 for U–Pb dating of phosphates was described in Li et al. (2012). It has been successfully applied to 6/39

121	meteoritic phosphates (e.g., Popova et al., 2013; Zhou et al., 2013; Yin et al., 2014; Li and Hsu, 2018a;
122	2018b; 2018). To minimize potential Pb contamination during sample preparation, all sections were
123	cleaned with ethanol and de-ionized water in an ultrasonic bath after removing previously-coated
124	carbon films, and were re-coated with carbon before SIMS analysis. Because phosphates in the SMVs
125	are mostly small in size (mostly < 20 μ m), O ⁻ was chosen over O ₂ ⁻ as the primary ion beam as it has
126	higher density hence a smaller beam diameter (Liu et al., 2011). For the same reason, the Gaussian
127	illumination mode of the primary beam was used with a 200 μm diameter aperture. A focused primary
128	beam (10 \times 15 $\mu m^2)$ was finally obtained. The O^- primary ion beam was accelerated at –14 kV with an
129	intensity of 5-7 nA. The stimulated secondary ions were accelerated at a potential of +10 kV. The
130	dynamic multi-collector analysis technique was used to acquire high-precision ²⁰⁷ Pb/ ²⁰⁶ Pb ratios as in
131	the static multi-collector mode without trade off in the analytical precision of the ${}^{238}\text{U}/{}^{206}\text{Pb}$ ratio of
132	the conventional peak-hopping mono-collector mode (Liu et al., 2015). ${}^{40}Ca_2{}^{31}P^{16}O^{3+}$ was used as a
133	reference peak at mass resolution of 8000 (defined at 50% height) for tuning of secondary ions, energy
134	and mass adjustments. Each spot was pre-sputtered on a square area (35 \times 35 $\mu m)$ for 120 s to remove
135	the surface contamination and to enhance the secondary ion yields. Each measurement consists of 15
136	cycles, with the total analytical time of about 26 min.
137	Calculation of the U-Pb ages of the samples requires consideration for matrix effects resulting
138	from differences in mineral chemistry and crystal structure between samples and standards. Although

the matrix effects would be less significant in our apatite analyses, the lack of a suitable tuite standard
means that the tuite analyses were necessarily corrected with the apatite standard NW-1 (1160 Ma; Li
et al., 2012). Due to insufficient number of SIMS analyses on tuite, the uncertainty induced by matrix 7/39

142	effects in tuite U-Pb age is difficult to be quantified. The uranium concentrations were calibrated
143	relative to the Durango apatite, which contains approximately 9 ppm of U (Trotter and Eggins, 2006).
144	The U–Pb and Pb–Pb ages were calculated with the revised $^{238}U/^{235}U$ ratio (137.79; Goldmann et al.,
145	2015) using Isoplot/Ex ver. 3.75 (Ludwig, 2012). Compared with the canonical $^{238}U/^{235}U$ value of
146	137.88, the Pb-Pb ages of phosphates in Suizhou were reduced by ~0.95 My. The uncertainty for the
147	U-Pb and Pb-Pb ages are given at the 95% confidence level unless otherwise specified.

RESULTS

149 Texture and chemistry of phosphates

a enemisery of phosphaces

Apatite in the host of Suizhou (H-ap) contains three sets of planar fractures. But in most cases, only one or two sets are visible (Figs. 1a–c). H-ap is homogenous and has an average Cl content of 5.61 wt%, with minor Na₂O (~0.42 wt%), and is nearly free of MgO (< 0.01 wt%) (Fig. 2; Table 1; please see the supplementary material for complete results of EPMA analysis). The Raman spectrum of H-ap is characterized by an intense peak at 960 cm⁻¹, three less intense peaks at 427, 589, and 1038 cm⁻¹, and two weak peaks at 612 and 1077 cm⁻¹ (Fig. 3), which are typical for unshocked chlorapatite (Xie et al., 2013).

Apatite grains adjacent to the wall of the SMVs (W-ap) exhibit two distinctive (dark and bright) parts on their BSE images with a sharp boundary roughly parallel to the edge of the SMVs (Figs. 1d and 1f, Fig. 4a). The dark part consists of submicron-scale polycrystalline aggregates (herein termed 'polycrystalline domains'), whereas the bright part is similar to H-ap in texture (herein termed 'apatite domains'). Two domains can be more readily distinguished from their CL images, where the **8/39**

162	polycrystalline domains have a bright, cloudy texture and the apatite domains have a relatively dark
163	and homogeneous texture (Fig. 4b). The compositions and Raman spectra are correlated with textural
164	variations observed between the two domains. Cl content in the apatite domains is similar to that of
165	H-ap (~5.7 wt%) but drops down to 2.4 wt% in the polycrystalline domains. Meanwhile, Na ₂ O content
166	decreases from ~0.42 wt% to 0.07 wt%, and MgO content increases from less than 0.01 wt% to 0.4 wt%
167	(Table 1, Fig. 2). The Raman spectra for the polycrystalline domains show that the peaks for apatite
168	have been substantially weakened and replaced by tuite peaks, including an intense peak at 977 cm ⁻¹ ,
169	three less intense peaks at 412, 578, and 1096 cm^{-1} , and two weak peaks at 641 and 1002 cm^{-1} (Fig. 3;
170	Xie et al., 2002). The Raman spectra for the apatite domains largely retain features for apatite,
171	although they may also contain weak tuite peaks (e.g., the 977 cm^{-1} peak) at regions $<100\ \mu m$
172	bordering the SMVs (Fig. 3). The high-resolution BSE images show that patches of residual apatite
173	are surrounded by sub-micron tuite crystallites in the porous polycrystalline domains (Fig. 5), whereas
174	the apatite domains largely retain a texture similar to that of H-ap.
175	As indicated by the BSE and CL images, the width of the polycrystalline domains of W-ap in
176	Suizhou is generally less than 10 μ m. However, even on such a small scale, the phase transformation
177	is heterogeneous as visualized from the Raman mapping. Raman mapping of a W-ap grain displays
178	intensity distributions of main Raman peaks at 977 cm ⁻¹ for tuite (Fig. 4c) and at 960 cm ⁻¹ for apatite
179	(Fig. 4d), respectively. For the polycrystalline domain, the intensity of 977 cm ⁻¹ peak decreases
180	significantly from the middle part (convex into the SMVs center) to the two ends (depart from the
181	SMVs center), and the reverse is true for the intensity distribution of the 960 cm^{-1} peak.
182	Corresponding to the Raman features, Cl content increases \sim 30% from the middle part to the both 9/39

ends (from 2.4 to 3.4 wt%), whereas MgO content substantially decreases (from 0.4 to 0.06 wt%).

184	Apatite in the SMVs (S-ap) has decomposed to polycrystalline aggregates without planar
185	fractures as shown on BSE images (Figs 1g and 1h). Compared to the polycrystalline domains of
186	W-ap, S-ap generally contains less residual Cl (Fig. 2; Table 1), and hence a smaller amount of relict
187	apatite. This is also revealed by its Raman spectra that all the Raman peaks are characteristic for tuite
188	except a residual weak peak at 960 cm ⁻¹ for apatite (Fig. 3; Xie et al., 2002). The decomposition of
189	S-ap is also heterogeneous, with the residual Cl content ranging from 2.9 wt% to 0.2 wt%. S-ap
190	located close to the center of the SMVs (i.e., S-ap12) has been most thoroughly transformed to tuite.

. . .

191

U-Pb dating of phosphates

Six *in situ* SIMS analyses were performed on H-ap, seven on W-ap and three on S-ap (Fig. 1; Table 2). Because mineral grains in the SMVs have largely been fragmented, only two relatively large tuite "grains" (30–40 μ m) were found (Figs. 1g and 1h) after careful search of five polished sections (a total exposed area of 45 cm²). Two analyses of S-ap were on a tuite inclusion in a fragment of majorite (Fig. 1g) and the other was on an individual tuite grain close to the center of the SMVs (Fig. 1h). Of the seven analyses of W-ap, six are on mixing areas with variable proportions of apatite and tuite; the other (W-ap17@3) is on an area containing exclusively apatite (Figs. 1d–f).

Apatite from large planets (e.g., Earth and Mars) could incorporate significant amounts of initial Pb (e.g., Li et al., 2012; Zhou et al., 2013), but chondritic Ca-phosphates were reported to contain negligible level of initial Pb (Göpel et al., 1994; Yin et al., 2014). This is true for Suizhou phosphates that they usually reflect very radiogenic nature with minimal evidence of an initial Pb component (most ${}^{206}Pb/{}^{204}Pb > 1000$) (Table 2). Only five analyses yield relatively high ${}^{206}Pb/{}^{204}Pb$ ratios in the **10**/**39**

204	range of 170-450. Of these 5 analyses (except W-ap9@2), the ²⁰⁴ Pb signal intensity gradually
205	decreased until it was constant after about 7 scans (Fig. 6), suggesting a surface-related terrestrial Pb
206	contamination probably introduced during sample preparation. For those analyses with a low level of
207	common Pb (206 Pb/ 204 Pb > 1000), the 204 Pb signal intensity is low and relatively constant from scan to
208	scan (generally lower than 0.1 c/s; Fig. 6). The ²⁰⁴ Pb signal intensity in W-ap9@2 is constant (0.3 c/s)
209	during analysis but significantly higher than other analyses on the same grain (e.g., < 0.1 c/s for
210	W-ap9@1; Fig. 6). This is probably due to contaminations from microcracks or non-phosphate phases.
211	Therefore, the common Pb was corrected using the modern terrestrial Pb compositions (Stacey and
212	Kramers, 1975), as well as CDT (Tatsumoto et al., 1973) as a limiting case for comparison (Table 2).
213	Two different common Pb corrections result in negligible difference in calculated ages (less than
214	1.5%) (Table 2). We also extracted the last 8 scans of the analyses with high common-Pb levels and
215	recalculated their ages, but the refined ages are basically unchanged (differences less than 1‰).
216	Analyses of H-ap yield a concordia U–Pb age of 4547 ± 19 Ma (MSWD = 0.61, P = 0.43) on the
217	U–Pb concordia diagram and a weighted average 207 Pb/ 206 Pb age of 4545 ± 17 Ma (MSWD = 1.5, P =
218	0.2) (Figs. 7a and 7d). If only analyses with relatively low common Pb (206 Pb/ 204 Pb > 1000) are
219	considered, the data yield a concordia U–Pb age of 4559 ± 26 Ma and a 207 Pb/ 206 Pb age of 4558 ± 14
220	Ma. The U–Pb data of W-ap plot on a discordia line with an upper intercept age of 4525 ± 14 Ma and
221	a lower intercept going through the original point (Fig. 7b). The apparent ²⁰⁷ Pb/ ²⁰⁶ Pb ages of W-ap
222	vary from 4534 to 4503 Ma if W-ap17@3 is excluded (it contains exclusively apatite; Table 2). Three
223	analyses of S-ap yield a poorly-defined discordia line with an upper intercept age of 4513 ± 260 Ma
224	and a lower intercept through the coordinate origin (Fig. 7c). Among the three analyses, one spot $11/39$

225	(S-ap12@1), which is close to the center of the SMVs and essentially consists of tuite, yields the
226	youngest ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ age of 4481 ± 30 Ma (2 σ) and a comparable concordant U–Pb age of 4481 ± 30
227	Ma (2 σ). The apparent ²⁰⁷ Pb/ ²⁰⁶ Pb ages of S-ap range from 4527 to 4481 Ma.
228	U-Pb analyses of partly decomposed apatite show slight normal or reverse discordance (Figs. 7b
229	and 7c) that is not correlated with the extent of apatite decomposition, thus they are probably not due
230	to matrix effects. For example, two analyses on one partly decomposed apatite (S-ap8) show both
231	notable normal and reverse discordance; while one analyse on a compeletely decomposed apatite
232	(S-ap12) yield a nearly concordant U-Pb age. We argue this could be related to several factors. First,
233	our SIMS analyses were made using a beam size of $10\times15~\mu m$ on very small irregular shaped grains
234	(e.g., S-ap8). Although care has been taken before each measurement, the possibility of sampling
235	metal-sulfide veinlets and neighboring non-phosphate phases during SIMS analysis cannot be totally
236	excluded. This may result in calibration problems leading to uncontrolled apparent normal and reverse
237	discordance (e.g., Liu et al., 2012), and it was probably aggravated by minor contribution of
238	unsupported Pb from these non-phosphate phases (Fig. 1g). Second, the discordance may result from
239	surface imperfections of the sample due to polycrystalline nature of tuite or/and from comparing
240	samples and standards in different mounts (e.g., Liu et al., 2012). Third, the discordance may be a
241	result of residual instrumental elemental fractionation after correction to standards (e.g., Shaulis et al.,
242	2017). Forth, it is also possible that some normal discordance of partly decomposed apatite is due to
243	recent Pb loss, because the high surface area to volume ratios of these sub-micron polycrystalline
244	aggregates would facilitate surface-related Pb loss (Kamo et al., 1996). Due to these analytical
245	uncertainties and potential matrix effects, the 207 Pb/ 206 Pb ages are considered to be more reliable, as 12 / 39

they are not affected by the calibration of U/Pb ratio and are not sensitive to recent Pb loss (Misawa etal., 2005).

248

DISCUSSION

249 Variable response of apatite to shock metamorphism in the Suizhou chondrite

250 Apatite is a common phosphate phase present in terrestrial and extraterrestrial rocks. Because 251 apatite contains a relatively high U content and has a low closure temperature for U-Pb system, it is 252 now increasingly used for dating impact events (e.g., Grange et al., 2013; Merle et al., 2014; 253 Norman and Nemchin, 2014; Yin et al., 2014; Snape et al., 2016; Li and Hsu, 2018a; 2018b). Nevertheless, there are few studies focused on the shock metamorphic features of apatite, which 254 255 would have an important implication for the interpretation of chronological data. Our study shows a 256 remarkable variation of chemical and structural modifications of apatite in the Suizhou chondrite that 257 corresponds to different degrees of shock metamorphism.

258 H-ap in Suizhou remains essentially intact and its Raman spectra resemble those of unshocked 259 chlorapatite (Fig. 3; Xie et al., 2013). Planar fractures observed in H-ap also exist in neighboring 260 olivine and low-Ca pyroxene grains (Figs. 1a-c), which are typical shock effects for weak to moderate 261 shock metamorphism (Stöffler et al., 1991). H-ap in Suizhou is chemically similar to apatite from other weakly shocked equilibrated L chondrites, which have a Cl content of 4.43-5.68 wt%, Na₂O of 262 263 0.33-0.49 wt% and MgO less than 0.1 wt% (Fig. 2; Lewis and Jones, 2016). The H-ap grains in 264 Suizhou appear to have largely preserved their original structural and chemical features produced 265 during the parent-body thermal metamorphism (Jones et al., 2014).

266	Both chemical composition and Raman spectra indicate that W-ap grains adjacent to the SMVs
267	were partly transformed to tuite (Figs. 2 and 3). This can also be seen on their high-resolution BSE
268	images, where patches of residual apatite are surrounded by tuite crystallites (Fig. 5). Tuite could be
269	formed by decomposition of apatite at 1100–2300 °C and 10–15 GPa (Murayama et al., 1986). It can
270	be stable up to 20 GPa or higher (Xie et al., 2013). This $P-T$ condition is compatible with that
271	estimated from the high-pressure mineral inventory in the SMVs of Suizhou (Xie et al., 2001; Xie and
272	Chen, 2016). The neo-crystallized tuite is distinguished by its polycrystalline texture (Fig. 5), which
273	can be readily identified by its cloudy appearance on the CL images (Fig. 4b). Polycrystalline (or
274	granular) textures were also observed in zircon, baddeleyite and monazite that have been extensively
275	shocked in natural impact events (Krogh et al., 1993; Kamo et al., 1996; Krogh et al., 1996; Moser,
276	1997; Zhang et al., 2011; Darling et al., 2016). In contrast to the polycrystalline textures previously
277	observed in these U-bearing minerals, the polycrystalline aggregates reported here consist of a
278	high-pressure phase, probably because the rapid cooling of the SMVs prohibited its back
279	transformation to the low-pressure polymorph. The polycrystalline domains of W-ap are located
280	exclusively adjacent to the SMVs and parallel to the edge of the SMVs (Figs. 1d and 1f). This strongly
281	indicates their formation is induced by the localized transient heating within the SMVs, which was
282	achieved by localized shear-friction stress (Xie and Chen, 2016). However, only restricted regions
283	(generally less than 10 μ m) of apatite can be extensively transformed (i.e., polycrystalline domains;
284	Figs. 1d and 1f) and the phase transformation is highly heterogeneous even on such small regions (Fig.
285	4). It could be due to fact that the temperature gradient is very steep from the SMVs to the
286	neighboring host in Suizhou, which is also indicated by the presence of three different polymorphs of $14/39$

287	chromite within a single grain adjacent to the SMVs (Chen et al., 2003). As a result, at regions > 100
288	μm bordering the SMVs, the temperature was too low to overcome the kinetic barriers for nucleation
289	and growth of tuite, and the apatite domains at these regions remain relatively intact.
290	Compared to W-ap, S-ap of Suizhou generally has a lower chlorine content and a weaker Raman
291	peak at 960 cm ⁻¹ . S-ap would be more thoroughly transformed to polycrystalline tuite, but the phase
292	transition of S-ap is also heterogeneous (Figs. 2 and 3). This is probably because only a small amount
293	of shock-induced melt was generated in the relatively thin SMVs of Suizhou, and it could not generate
294	enough heat to increase the temperature sufficiently throughout the SMVs in a short period of time
295	(Chen et al., 2004). Therefore, at the relatively "cold" regions, such as those included in and shielded
296	by other entrained mineral fragments in the SMVs, the decomposition of apatite is incomplete. The
297	remnant Cl contents in these grains are up to 2.9 wt%, which are similar to those of W-ap
298	polycrystalline domains (2.0-3.4 wt%). Whereas for portions close to the center of SMVs, the apatite
299	could experience a higher degree of transformation (Fig. 2), which was also observed by Xie et al.
300	(2013).

301 On the basis of these observations, a sequence of increasing degrees of shock metamorphism for 302 apatite in Suizhou can be established. (1) In regions > 100 μ m bordering the SMVs, including H-ap 303 and parts of the apatite domains in W-ap, apatite was only regularly fractured and retains 304 well-preserved chemical compositions and crystallinity. (2) In regions < 100 μ m bordering the SMVs 305 (especially within the polycrystalline domains of W-ap) or in relatively "cold" regions within the 306 SMVs, apatite could be partly decomposed to tuite with variable amounts of apatite relics. (3) In 307 regions close to the center of SMVs, apatite was completely transformed to polycrystalline tuite. 307 308 These different shock effects are closely related to the temperature conditions prevailing during the

309 impact.

310 Correlated impact features with the degree of isotopic disturbance in phosphates 311 and the age of the SMVs in Suizhou

312 Merrillite and apatite are the major phosphates in ordinary chondrites, with a total abundance of 313 about 0.4–0.6 vol% (Gastineau-Lyons et al., 2002). Although merrillite is much more abundant than 314 apatite in Suizhou, U concentrations in merrillite are too low to provide meaningful U-Pb ages in our 315 SIMS analysis. As a result, only apatite and associated tuite were investigated in this study. By 316 integrating *in situ* chemical, microstructural and isotopic analysis of phosphates in Suizhou, it is 317 possible to establish a correlation between the extents of isotopic disturbance with varying degrees of 318 shock metamorphism. 319 H-ap grains, which have well-preserved chemical compositions and crystallinity, yield the oldest, concordia U–Pb age (4547 \pm 19 Ma) that agrees well with the weighted average ²⁰⁷Pb/²⁰⁶Pb age (4545 320 \pm 17 Ma). If only analyses with relatively low common Pb (206 Pb/ 204 Pb > 1000) are considered, they 321 yield a slightly older U–Pb (4559 ± 26 Ma) and 207 Pb/ 206 Pb (4558 ± 14 Ma) ages. The age of H-ap in 322 323 Suizhou is consistent with the U-Pb ages of phosphates previously determined with thermal ionization 324 mass spectrometry in other unshocked L chondrites (4511 to 4543 Ma; Göpel et al., 1994). Due to the 325 large difference in condensation temperatures for Ca and P, the apatite in ordinary chondrites were 326 thought to have formed by fluid-assistant thermal metamorphism on their parent body (Jones et al., 327 2014). Therefore, the U–Pb and Pb–Pb ages of H-ap most likely record the time when apatite cooled 328 down below its closure temperature from the peak thermal metamorphic temperature on its parent

329 body.

330	The apatite grain located in the center of SMVs (S-ap12) was most thoroughly decomposed to
331	polycrystalline tuite and its chemical compositions have been altered to the greatest extent (Fig. 2).
332	The SIMS analysis on this "grain" yields a concordia U–Pb age of 4481 \pm 30 Ma (2 σ) and a
333	207 Pb/ 206 Pb age of 4481 ± 30 Ma (2 σ). These ages are the youngest for all the analyzed phosphates and
334	can be readily distinguished from the U-Pb and weighted average ²⁰⁷ Pb/ ²⁰⁶ Pb ages of H-ap well
335	beyond the 2-sigma level. Other analyses of W-ap and partly decomposed S-ap, which are mixtures of
336	apatite and tuite, yield intermediate apparent ²⁰⁷ Pb/ ²⁰⁶ Pb ages from 4534 to 4503 Ma (Figs. 7b–d).
337	Our data clearly demonstrate that the disturbance of apatite U-Pb systematics in Suizhou strongly
338	correlated with the compositional and structural changes induced by shock metamorphism. The most
339	thoroughly decomposed apatite (S-ap12), which consists essentially polycrystalline tuite aggregates,
340	yields the youngest, "concordant" age of 4481 ± 30 Ma (Fig. 7c). Nevertheless, the concordia line is
341	nearly linear for this time interval (Fig. 7), making it difficult to identify possible slight discordance
342	with the precision of current SIMS analysis. This is further aggravated by the potential SIMS
343	analytical issues as mentioned earlier. As a result, the possibility of inheriting radiogenic Pb from the
344	minor residual apatite cannot be completely ruled out, and this age is best regarded as the maximum
345	age for the impact event.
346	The prevalence of ~4.48 Ga impact events in the primordial asteroid belt
347	Several lines of evidence indicate that major impact events occurred > 4.4 Ga on the L chondrite
348	parent body (Keil et al., 1994; Scott, 2002). For example, the cooling rates of individual metal grains

349 from the matrices of L regolith breccias exhibit a wide range (1–1000 °C/My), which indicates their 17/39

350	parent bodies may have been broken up and reassembled sometime between the end of slow cooling
351	around 4.4 Ga (Taylor et al., 1987). Chronological records for very early collisional events in the solar
352	system history are rare and sometimes ambiguous, as old impact ages could be overprinted by the
353	contemporary or subsequent thermal metamorphism on the parent body (e.g., Weirich et al., 2010).
354	The U-Pb systematics of phosphates in unshocked ordinary chondrites implies that the parent
355	asteroids experienced a protracted period (~60 My) of thermal metamorphism (Göpel et al., 1994),
356	and the phosphate U-Pb ages less than 4.5 Ga are often interpreted as impact-reset ages (Bogard, 2011;
357	Bottke et al., 2015). The U-Pb systematics of apatite grains in Novato (L6), which define a well
358	regressed upper intercept age of 4472 \pm 31 Ma and lower intercept age of 473 \pm 38 Ma, were
359	suggested to record two impact events on the L chondrite parent body (Yin et al., 2014). A similar
360	result was found in the phosphates of the L-impact melt breccia NWA 7251 (two impact ages at 4457
361	\pm 56 Ma and 574 \pm 82 Ma; Li and Hsu, 2018b). The phosphates in Sahara 98222 (L6), with a total
362	Pb/U isochron age of 4467 ± 22 Ma, were also interpreted to record an early impact event (Ozawa et
363	al., 2008). In addition, ³⁹ Ar- ⁴⁰ Ar dating of the impact-melt L chondrite PAT 91501 yields a similar
364	impact age (4461 ± 8 Ma; Benedix et al., 2008). The U–Pb ages Novato, NWA 7251 and Sahara 98222,
365	as well as the ${}^{39}\text{Ar}-{}^{40}\text{Ar}$ age of PAT 91501, coupled with the estimated impact age of Suizhou, all
366	point to a fact that early impact events (> 4.4 Ga) occurred on the parent body of L chondrite (Fig. 8).
367	Our study provides additional robust mineralogical evidence for such impact events. In addition to L
368	chondrites, comparable impact ages are also observed in other types of meteorite, such as H and LL
369	groups, enstatite chondrites and HED (howardite-eucrite-diogenite) meteorites (Bogard, 2011;
370	Popova et al., 2013; Swindle et al., 2014). These coeval impact events occurred on a variety of parent 18/39

asteroids presumably reflect a high collision rate as the accretion of planets was finishing, or
speculatively result from the peak arrival time of ejecta debris from the Moon-forming giant impact at
the primordial main belt (Bottke et al., 2015).

374 The effects of natural shock on U–Pb isotopic systematics of apatite

375 Shock recovery experiments suggest that post-shock annealing plays the most important role in 376 resetting isotopic clocks, and naturally shocked and unannealed samples are unlikely to record the 377 timing of impact events (e.g., Fredriksson and De Carli, 1964; Bogard et al., 1987; Deutsch and 378 Schärer, 1990; Gaffney et al., 2011; Niihara et al., 2012). However, our results clearly point to the 379 other direction. The preservation of various metastable high-pressure phases in Suzhou indicates it 380 could not have experienced extensive post-impact annealing after pressure release, otherwise these 381 high-pressure phases would revert readily to their more stable low-pressure polymorphs. For example, 382 ringwoodite in Suizhou would have totally back transformed to olivine within 1.5 hours at post shock 383 temperature of 760 °C (Ming et al., 1991); while akimotoite would have completely decomposed at 384 700 °C within 1 hour at most (Ito and Navrotsky, 1985). Our observations strongly indicate a localized 385 high-temperature pulse during shock compression is essential for disturbance of the U-Pb isotopic 386 systematics of phosphates in Suizhou. This was also observed in the Sixiangkou L6 chondrite (Li and 387 Hsu, 2018a).

We suggest the disparity could be mainly attributed to the different shock durations and temperature conditions between natural impact events and laboratory shock experiments. The shock-pulse duration in shock-recovery experiments is usually less than 10 µs, which is 4–6 orders of magnitudes shorter than those of natural shock events (Sharp and DeCarli, 2006; El Goresy et al., **19/39**

392	2013). Furthermore, most shock experiments were done on dense non-porous target, and the peak
393	temperature was mostly along the principal Hugoniot of those minerals, which is significantly lower
394	than the temperature experienced by the SMVs in meteorites which were naturally shocked to S4-S6
395	levels (Sharp and DeCarli, 2006). Under these extreme $P-T-t$ conditions, Pb loss in apatite (and tuite)
396	appears to be more efficiently achieved. The porous texture of the decomposed apatite (Fig. 5) in
397	Suizhou implies Pb volatilization as a possible mechanism. Porous textures have been observed on the
398	shocked terrestrial zircon from K/T boundary ejecta (Bohor et al., 1993) and the fallback breccia of
399	Sudbury impact structure (Krogh et al., 1996), as well as shocked lunar zircon (Zhang et al., 2011). All
400	these shocked zircons have experienced substantial Pb loss, although zircons in the first two examples
401	have only experienced flash heating like S-ap and W-ap in Suizhou. Similar textures were also
402	reported on zircon grains experimentally heated to 1400-1650 °C under vacuum (Ansdell and Kyser,
403	1993). During the heating, Pb loss was detected with concomitant breakdown of zircon to porous
404	baddeleyite (Ansdell and Kyser, 1993). Considering the temperature in the SMVs of Suizhou could
405	have readily exceeded 2000 °C, which is much higher than the temperature required for Pb
406	evaporation in the experiment of Ansdell and Kyser (1993), we suggest volatilization could account
407	for the rapid Pb loss occurred in the phosphates of Suizhou. Alternatively, Pb loss may be achieved by
408	substantial partitioning into the newly formed chloride through the possible decomposition reaction
409	$2Ca_5(PO_4)_3Cl \rightarrow 3\gamma$ - $Ca_3(PO_4)_2$ + $CaCl_2$ (Murayama et al., 1986; Xie et al., 2013). Under the <i>P</i> - <i>T</i>
410	conditions experienced by the SMVs of Suizhou during the impact, CaCl ₂ would have a PbCl ₂ -type
411	structure (Léger et al., 1998). However, despite an intensive search for chloride phases, they were
412	neither detected in natural samples, nor in the products of high-pressure experiments (Murayama et al., 20 / 39

413	1986; Xie et al., 2013). A counterpart (i.e., CaF ₂) was also not identified in the experimental
414	decomposition of fluorapatite by X-ray diffraction (Murayama et al., 1986). It may be possible that the
415	fractions of these components are too small (< 10 wt%) and too widely dispersed in the polycrystalline
416	tuite (Murayama et al., 1986); or they have been leached during the preparation of polished thin
417	sections (Xie et al., 2013). Nevertheless, this mechanism is feasible, and it could provide an additional
418	pathway for Pb loss from the system.

IMPLICATIONS

420 Dating the high-pressure phosphates in the SMVs of Suizhou opens a new window for a comprehensive study of impact history of the Solar System. Impact dating using isotope systems is 421 422 generally applied to lithologies that were almost completely molten or minerals newly crystallized 423 from such melt, because their radioactive clocks tend to have been reset (Jourdan et al., 2009). Only 424 relatively large parent bodies, like the Moon and Vesta, could sustain such a large impact (Bogard, 425 2011). Undifferentiated meteorites are most likely derived from small asteroidal bodies, on which large impacts would completely destroy their parent bodies; small impacts, on the other hand, would 426 427 not be able to generate sufficient heat to reset their isotopic chronometer on a whole-rock scale 428 (Bogard, 2011). However, small impacts could induce localized melting during shock compression. 429 From this study, it is apparent that phosphates in the SMVs or shock melt pockets of undifferentiated 430 meteorites could be able to record the timing of these small-scale impact events.

ACKNOWLEDGEMENTS

432	We thank Xian-Hua Li, Qiu-Li Li, Yu Liu, and Guo-Qiang Tang for their assistance with the
433	SIMS analyses. The paper benefitted from constructive reviews by Joshua Snape, Sergio Speziale,
434	Audrey Bouvier, and an anonymous referee as well as the editorial handling of Steven Simon. This
435	work was supported by the National Natural Science Foundation of China (Grant No. 41573059 and
436	4173059), the Macau FDCT (119/2017/A3, 005/2017/A1), the Minor Planet Foundation of China, and
437	the China Postdoctoral Science Foundation (Grant No. 2017M621704).

438

REFERENCES

- Ansdell, K.M., and Kyser, T.K. (1993) Textural and chemical changes undergone by zircon during the
 Pb-evaporation technique. American Mineralogist, 78, 36–41.
- Benedix, G.K., Ketcham, R.A., Wilson, L., McCoy, T.J., Bogard, D.D., Garrison, D.H., Herzog, G.F., Xue,
 S., Klein, J., and Middleton, R. (2008) The formation and chronology of the PAT 91501
 impact-melt L chondrite with vesicle-metal-sulfide assemblages. Geochimica et Cosmochimica
 Acta, 72(9), 2417–2428.
- Bloch, E., and Ganguly, J. (2014) ¹⁷⁶Lu-¹⁷⁶Hf and ¹⁴⁷Sm-¹⁴³Nd ages of the Martian shergottites: Evaluation
 of the shock-resetting hypothesis through diffusion kinetic experiments and modeling, and
 petrological observations. Earth and Planetary Science Letters, 395, 173–183.
- 448 Bogard, D.D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30(3), 244–268.
- 449 —. (2011) K–Ar ages of meteorites: Clues to parent-body thermal histories. Chemie der
 450 Erde-Geochemistry, 71(3), 207–226.
- Bogard, D.D., Hörz, F., and Johnson, P. (1987) Shock effects and argon loss in samples of the Leedey L6
 chondrite experimentally shocked to 29–70 GPa pressures. Geochimica et Cosmochimica Acta,
 51(7), 2035–2044.
- Bohor, B.F., Betterton, W.J., and Krogh, T.E. (1993) Impact-shocked zircons: Discovery of shock-induced
 textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters,
 119(3), 419–424.
- Bottke, W.F., Vokrouhlický, D., Marchi, S., Swindle, T., Scott, E.R.D., Weirich, J.R., and Levison, H. (2015)
 Dating the Moon-forming impact event with asteroidal meteorites. Science, 348(6232), 321–323.
- Chen, M., Shu, J.-F., Mao, H.-k., Xie, X.-D., and Hemley, R.J. (2003) Natural occurrence and synthesis of
 two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences,
 100(25), 14651–14654.

22 / 39

- 462 Chen, M., Xie, X.-D., and Goresy, A.E. (2004) A shock-produced (Mg, Fe)SiO₃ glass in the Suizhou
 463 meteorite. Meteoritics & Planetary Science, 39(11), 1797–1808.
- 464 Darling, J.R., Moser, D.E., Barker, I.R., Tait, K.T., Chamberlain, K.R., Schmitt, A.K., and Hyde, B.C.
 465 (2016) Variable microstructural response of baddeleyite to shock metamorphism in young basaltic
 466 shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth and Planetary
 467 Science Letters, 444(15), 1–12.
- 468 Deutsch, A., and Schärer, U. (1990) Isotope systematics and shock-wave metamorphism: I. U–Pb in zircon,
 469 titanite and monazite, shocked experimentally up to 59 GPa. Geochimica et Cosmochimica Acta,
 470 54(12), 3427–3434.
- 471 Deutsch, A., and Schärer, U. (1994) Dating terrestrial impact events. Meteoritics, 29(3), 301–322.
- 472 El Goresy, A., Gillet, P., Miyahara, M., Ohtani, E., Ozawa, S., Beck, P., and Montagnac, G. (2013)
 473 Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages
 474 on Mars. Geochimica et Cosmochimica Acta, 101(15), 233–262.
- Fredriksson, K., and De Carli, P. (1964) Shock emplaced argon in a stony meteorite: 1. Shock experiment
 and petrology of sample. Journal of Geophysical Research, 69(7), 1403–1406.
- Fritz, J., and Greshake, A. (2009) High-pressure phases in an ultramafic rock from Mars. Earth and
 Planetary Science Letters, 288(3), 619–623.
- Gaffney, A.M., Borg, L.E., Asmerom, Y., Shearer, C.K., and Burger, P.V. (2011) Disturbance of isotope
 systematics during experimental shock and thermal metamorphism of a lunar basalt with
 implications for Martian meteorite chronology. Meteoritics & Planetary Science, 46(1), 35–52.
- Gastineau-Lyons, H.K., McSween, H.Y., and Gaffey, M.J. (2002) A critical evaluation of oxidation versus
 reduction during metamorphism of L and LL group chondrites, and implications for asteroid
 spectroscopy. Meteoritics & Planetary Science, 37(1), 75–89.
- 485 Gillet, P., and El Goresy, A. (2013) Shock events in the solar system: The message from minerals in
 486 terrestrial planets and asteroids. Annual Review of Earth and Planetary Sciences, 41, 257–285.
- Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., and Wadhwa, M. (2015) The uranium isotopic
 composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, 148, 145–158.
- Göpel, C., Manhes, G., and Allegre, C.J. (1994) U–Pb systematics of phosphates from equilibrated ordinary
 chondrites. Earth and Planetary Science Letters, 121(1–2), 153–171.
- Grange, M.L., Nemchin, A.A., and Pidgeon, R.T. (2013) The effect of 1.9 and 1.4 Ga impact events on 4.3
 Ga zircon and phosphate from an Apollo 15 melt breccia. Journal of Geophysical Research:
 Planets, 118(10), 2180–2197.
- Ito, E., and Navrotsky, A. (1985) MgSiO₃ ilmenite: Calorimetry, phase equilibria, and decomposition at
 atmospheric pressure. American Mineralogist, 70(9–10), 1020–1026.
- Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014) Phosphate
 minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary
 chondrite parent bodies. Geochimica et Cosmochimica Acta, 132(1), 120–140.
- Jourdan, F., Renne, P.R., and Reimold, W.U. (2009) An appraisal of the ages of terrestrial impact structures.
 Earth and Planetary Science Letters, 286(1), 1–13.
- Kamo, S.L., Reimold, W.U., Krogh, T.E., and Colliston, W.P. (1996) A 2.023 Ga age for the Vredefort
 impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and

503 granophyre. Earth and Planetary Science Letters, 144(3), 369-387. 504 Keil, K., Haack, H., and Scott, E. (1994) Catastrophic fragmentation of asteroids: Evidence from meteorites. 505 Planetary and Space Science, 42(12), 1109–1122. Krogh, T.E., Kamo, S.L., and Bohor, B.F. (1993) Fingerprinting the K/T impact site and determining the 506 507 time of impact by U-Pb dating of single shocked zircons from distal ejecta. Earth and Planetary 508 Science Letters, 119(3), 425–429. 509 ----. (1996) Shock Metamorphosed Zircons With Correlated U-Pb Discordance and Melt Rocks With 510 Concordant Protolith Ages Indicate an Impact Origin for the Sudbury Structure. In A. Basu, and S. 511 Hart, Eds. Earth Processes: Reading the Isotopic Code, p. 343-353. American Geophysical Union. 512 Langenhorst, F., and Poirier, J.-P. (2000) Anatomy of black veins in Zagami: Clues to the formation of 513 high-pressure phases. Earth and Planetary Science Letters, 184(1), 37–55. Léger, J.-M., Haines, J., and Danneels, C. (1998) Phase transition sequence induced by high-pressure in 514 CaCl₂. Journal of Physics and Chemistry of Solids, 59(8), 1199–1204. 515 516 Lewis, J.A., and Jones, R.H. (2016) Phosphate and feldspar mineralogy of equilibrated L chondrites: The 517 record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteoritics & Planetary Science, 51(10), 1886–1913. 518 519 Li, Q.-L., Li, X.-H., Wu, F.-Y., Yin, Q.-Z., Ye, H.-M., Liu, Y., Tang, G.-Q., and Zhang, C.-L. (2012) In-situ 520 SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Research, 521 21(4), 745-756. 522 Li, S.-L., and Hsu, W.-B. (2018a) The nature of the L chondrite parent body's disruption as deduced from 523 high-pressure phases in the Sixiangkou L6 chondrite. Meteoritics & Planetary Science, DOI: 524 10.1111/maps.13110. 525 Li, Y., and Hsu, W.-B. (2018b) Multiple impact events on the L-chondritic parent body: Insights from SIMS 526 U-Pb dating of Ca-phosphates in the NWA 7251 L-melt breccia. Meteoritics & Planetary Science, 527 DOI: 10.1111/maps.13061. 528 Litasov, K.D., and Podgornykh, N.M. (2017) Raman spectroscopy of various phosphate minerals and 529 occurrence of tuite in the Elga IIE iron meteorite. Journal of Raman Spectroscopy, 48(11), 1518-530 1527. 531 Liu, D.-Y., Jolliff, B.L., Zeigler, R.A., Korotev, R.L., Wan, Y.-S., Xie, H.-Q., Zhang, Y.-H., Dong, C.-Y., 532 and Wang, W. (2012) Comparative zircon U-Pb geochronology of impact melt breccias from 533 Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth 534 and Planetary Science Letters, 319, 277-286. Liu, Y., Li, Q.-L., Tang, G.-Q., Li, X.-H., and Yin, Q.-Z. (2015) Towards higher precision SIMS U-Pb 535 zircon geochronology via dynamic multi-collector analysis. Journal of Analytical Atomic 536 537 Spectrometry, 30(4), 979–985. 538 Liu, Y., Li, X.-H., Li, Q.-L., Tang, G.-Q., and Yin, Q.-Z. (2011) Precise U–Pb zircon dating at a scale of < 5 539 micron by the CAMECA 1280 SIMS using a Gaussian illumination probe. Journal of Analytical 540 Atomic Spectrometry, 26(4), 845–851. 541 Ludwig, K.R. (2012) Isoplot 3.75, a geochronological toolkit for Microsoft Excel. Special Publication No. 542 5. Berkeley Geochronology Center, California. 543 Merle, R.E., Nemchin, A.A., Grange, M.L., Whitehouse, M.J., and Pidgeon, R.T. (2014) High resolution

- 544 U-Pb ages of Ca-phosphates in Apollo 14 breccias: Implications for the age of the Imbrium 545 impact. Meteoritics & Planetary Science, 49(12), 2241–2251.
- 546 Ming, L.-C., Kim, Y.-H., Manghnani, M.H., Usha-Devi, S., Ito, E., and Xie, H.-S. (1991) Back
 547 transformation and oxidation of (Mg, Fe)₂SiO₄ spinels at high temperatures. Physics and
 548 Chemistry of Minerals, 18(3), 171–179.
- 549 Misawa, K., Yamaguchi, A., and Kaiden, H. (2005) U–Pb and ²⁰⁷Pb–²⁰⁶Pb ages of zircons from basaltic
 550 eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochimica et
 551 cosmochimica acta, 69(24), 5847–5861.
- Moser, D.E. (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa.
 Geology, 25(1), 7–10.
- Murayama, J.K., Nakai, S., Kato, M., and Kumazawa, M. (1986) A dense polymorph of Ca₃(PO₄)₂: A high
 pressure phase of apatite decomposition and its geochemical significance. Physics of the Earth and
 Planetary Interiors, 44(4), 293–303.
- Niihara, T., Kaiden, H., Misawa, K., Sekine, T., and Mikouchi, T. (2012) U–Pb isotopic systematics of
 shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite
 shergottites. Earth and Planetary Science Letters, 341–344, 195–210.
- Norman, M.D., and Nemchin, A.A. (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of
 zirconolite and apatite in lunar melt rock 67955. Earth and Planetary Science Letters, 388(15),
 387–398.
- 563 Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., and Kimura, M. (2008) Pressure-temperature
 564 conditions and U–Pb ages of shock melt veins in L6 chondrites (abstract #5042). 71st Annual
 565 Meeting of the Meteoritical Society, Matsue.
- 566 Popova, O.P., Jenniskens, P., Emel'yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., Grokhovsky, V.I., Badyukov, D.D., Yin, Q.-Z., Gural, P.S., 567 Albers, J., Granvik, M., Evers, L.G., Kuiper, J., Kharlamov, V., Solovyov, A., Rusakov, Y.S., 568 569 Korotkiy, S., Serdyuk, I., Korochantsev, A.V., Larionov, M.Y., Glazachev, D., Mayer, A.E., Gisler, 570 G., Gladkovsky, S.V., Wimpenny, J., Sanborn, M.E., Yamakawa, A., Verosub, K.L., Rowland, D.J., 571 Roeske, S., Botto, N.W., Friedrich, J.M., Zolensky, M.E., Le, L., Ross, D., Ziegler, K., Nakamura, 572 T., Ahn, I., Lee, J.I., Zhou, Q., Li, X.-H., Li, Q.-L., Liu, Y., Tang, G.-Q., Hiroi, T., Sears, D., 573 Weinstein, I.A., Vokhmintsev, A.S., Ishchenko, A.V., Schmitt-Kopplin, P., Hertkorn, N., Nagao, K., 574 Haba, M.K., Komatsu, M., and Mikouchi, T. (2013) Chelyabinsk Airburst, Damage Assessment,
- 575 Meteorite Recovery, and Characterization. Science, 342(6162), 1069–1073.
- Scott, E.R.D. (2002) Meteorite evidence for the accretion and collisional evolution of asteroids. In W.F.
 Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, Eds. Asteroids III, p. 697–709. University of
 Arizona Press, Tucson.
- Sharp, T.G., and DeCarli, P.S. (2006) Shock effects in meteorites. In D.S. Lauretta, H.Y. McSween, and R.P.
 Binzel, Eds. Meteorites and the Early Solar System II, p. 653–677. University of Arizona Press,
 Tucson.
- Shaulis, B.J., Righter, M., Lapen, T.J., Jolliff, B.L., and Irving, A.J. (2017) 3.1 Ga crystallization age for
 magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites.
 Geochimica et Cosmochimica Acta, 213, 435–456.

- Snape, J.F., Nemchin, A.A., Grange, M.L., Bellucci, J.J., Thiessen, F., and Whitehouse, M.J. (2016)
 Phosphate ages in Apollo 14 breccias: Resolving multiple impact events with high precision U–Pb
 SIMS analyses. Geochimica et Cosmochimica Acta, 174, 13–29.
- 588 Stacey, J.S., and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage 589 model. Earth and Planetary Science Letters, 26(2), 207–221.
- Stöffler, D., Keil, K., and Scott, E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et
 Cosmochimica Acta, 55(12), 3845–3867.
- Swindle, T.D., Kring, D.A., and Weirich, J.R. (2014) ⁴⁰Ar/³⁹Ar ages of impacts involving ordinary
 chondrite meteorites. Geological Society, London, Special Publications, 378(1), 333–347.
- Tatsumoto, M., Knight, R.J., and Allegre, C.J. (1973) Time differences in the formation of meteorites as
 determined from the ratio of lead-207 to lead-206. Science, 180(4092), 1279–1283.
- Taylor, G.J., Maggiore, P., Scott, E.R., Rubin, A.E., and Keil, K. (1987) Original structures, and
 fragmentation and reassembly histories of asteroids: Evidence from meteorites. Icarus, 69(1), 1–
 13.
- Trotter, J.A., and Eggins, S.M. (2006) Chemical systematics of conodont apatite determined by laser
 ablation ICPMS. Chemical Geology, 233(3), 196–216.
- Weirich, J.R., Wittmann, A., Isachsen, C.E., Rumble, D., Swindle, T.D., and Kring, D.A. (2010) The Ar–Ar
 age and petrology of Miller Range 05029: Evidence for a large impact in the very early solar
 system. Meteoritics & Planetary Science, 45(12), 1868–1888.
- Kie, X.-D., and Chen, M. (2016) Suizhou Meteorite: Mineralogy and Shock Metamorphism. 258 p.
 Springer Berlin Heidelberg Press, Heidelberg, Germany.
- Kie, X.-D., Chen, M., and Wang, D.-Q. (2001) Shock-related mineralogical features and P–T history of the
 Suizhou L6 chondrite. European Journal of Mineralogy, 13(6), 1177–1190.
- Kie, X.-D., Minitti, M.E., Chen, M., Mao, H.-k., Wang, D.-Q., Shu, J.-F., and Fei, Y.-W. (2002) Natural
 high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochimica et
 Cosmochimica Acta, 66(13), 2439–2444.
- Kie, X.-D., Zhai, S.-M., Chen, M., and Yang, H.-X. (2013) Tuite, γ-Ca₃(PO₄)₂, formed by chlorapatite
 decomposition in a shock vein of the Suizhou L6 chondrite. Meteoritics & Planetary Science, 48
 (8), 1515–1523.
- 614 Yin, Q.-Z., Zhou, Q., Li, Q.-L., Li, X.-H., Liu, Y., Tang, G.-Q., Krot, A.N., and Jenniskens, P. (2014)
 615 Records of the Moon-forming impact and the 470 Ma disruption of the L chondrite parent body in
 616 the asteroid belt from U–Pb apatite ages of Novato (L6). Meteoritics & Planetary Science, 49(8),
 617 1426–1439.
- 618 Zhang, A.-C., Hsu, W.-B., Li, X.-H., Ming, H.-L., Li, Q.-L., Liu, Y., and Tang, G.-Q. (2011) Impact melting
 619 of lunar meteorite Dhofar 458: Evidence from polycrystalline texture and decomposition of zircon.
 620 Meteoritics & Planetary Science, 46(1), 103–115.
- Zhou, Q., Herd, C.D., Yin, Q.-Z., Li, X.-H., Wu, F.-Y., Li, Q.-L., Liu, Y., Tang, G.-Q., and McCoy, T.J.
 (2013) Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of
 accessory minerals. Earth and Planetary Science Letters, 374, 156–163.
- Zhou, Q., Yin, Q.Z., Shearer, C.K., Li, X.H., Li, Q.L., Liu, Y., Tang, G.Q., and Li, C.L. (2018) U–Pb and
 Pb–Pb apatite ages for Antarctic achondrite Graves Nunataks 06129. Meteoritics & Planetary

26 / 39

626 Science, 53(3), 448–466.

627	Figure captions
628	Fig. 1 BSE images of apatite and associated tuite in Suizhou. (a)-(c) Apatite in the host. (d)-(f)
629	Apatite and tuite in the vicinity of the SMVs, and the polycrystalline domains of W-ap in (d) and (f)
630	delineated by dashed lines. (g) Tuite included in a majorite fragment of the SMVs and (h) an
631	individual tuite "grain" in the SMVs. The ellipses with digits in panels (a)-(h) mark the SIMS
632	analysis locations, corresponding to the data in Table 2. Ap = apatite, $Ol = olivine$, $Pyx = low-Ca$
633	pyroxene, Pl = plagioclase, Mer = merrillite, Fe-Ni = Fe-Ni metal, Msk = maskelynite, Rwd =
634	ringwoodite, Maj = majorite, Lgt = lingunite, Grt = garnet, Mws = magnesiowüstite, Tu = tuite.
635	
636	Fig. 2 Compositions of phosphates in Suizhou. Different colors used here as well as those in Figs. 3, 4
637	and 7 represent "grains" of H-ap (blue), W-ap (green), and S-ap (red), respectively. Decreasing scales
638	of grey fields represent Cl, Na ₂ O, and MgO contents of apatite from other unbrecciated L chondrites
639	from Lewis and Jones (2016), respectively.
640	
641	Fig. 3 Representative Raman spectra of phosphates from different locations of Suizhou. The sampling
642	sites of W-ap are marked by the red spots in Fig. 4a. Vertical dashed lines represent Raman peaks for
643	tuite.
644	
645	Fig. 4 The structure of one apatite grain (W-ap9) adjacent to the SMVs in Suizhou, as revealed by
646	BSE image (a), CL image (b) and the intensity distributions of main Raman peak of tuite at 977 cm^{-1}
647	(c) and apatite at 960 cm ^{-1} (d).

28 / 39

648 Fig. 5 High-magnification image of the polycrystalline domains in a W-ap grain.

649

650 Fig. 6²⁰⁴Pb intensity variation during SIMS analysis.

651

- Fig. 7 U–Pb analyses of phosphates in different locations of Suizhou, including H-ap (a), W-ap (b)
- and S-ap (c); (d) 207 Pb/ 206 Pb ages of phosphates in different locations, which are marked by different
- 654 colors; analyses with high common Pb (206 Pb/ 204 Pb < 1000) are indicated by slashes. The gray bands
- in panel (d) show the error at the 95% confidence level of the weighted average 207 Pb/ 206 Pb ages.

- Fig. 8 Comparison of the nearly coeval impact ages of Suizhou and other meteorites. Data for other
- meteorites are from Bogard (2011), Popova et al. (2013), Swindle et al. (2014) and references therein.

	H-	-ap	apatite o	domains	polycrystall	ine domains	S-ap			
CaO	53.3(1)	52.8(1)	53.5(1)	53.4(1)	52.9(1)	52.8(1)	53.0(1)	52.7(1)		
Na ₂ O	0.43(2)	0.40(2)	0.50(2)	0.40(2)	0.11(1)	0.07(1)	0.08(1)	0.12(1)		
FeO	0.06(1)	0.15(1)	0.28(2)	0.21(2)	1.08(5)	1.27(5)	1.17(5)	1.36(6)		
MnO	0.03(1)	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.		
MgO	b.d.	b.d.	b.d.	b.d.	0.04(1)	0.05(1)	0.12(1)	0.85(8)		
Ce_2O_3	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.		
P_2O_5	41.0(1)	40.7(1)	41.6(1)	41.3(1)	41.7(1)	41.3(1)	42.3(1)	42.8(1)		
Cl	5.93(3)	5.59(3)	5.64(3)	5.63(3)	3.13(2)	3.41(2)	2.19(2)	0.23(2)		
F	0.43(4)	0.37(4)	0.39(4)	0.34(3)	0.42(4)	0.22(3)	0.16(2)	b.d.		
-O=F,Cl	1.52	1.42	1.43	1.41	0.88	0.86	0.56	0.05		
Total	99.67	98.64	100.44	99.82	98.45	98.2	98.47	98.02		

Table 1. Representative electron microprobe analyses of phosphates in Suizhou (data in wt%).

660 Notes: H-, W- and S-ap represent apatite (or precursor) located in the chondrite host, on the wall of SMVs,

and in the SMVs, respectively. b.d. = below detection limit. Numbers inside of parentheses correspond to

absolute uncertainties (1σ) for the last digit.

663	Table 2. SIMS	U-Pb isotop	ic data of	phosphates	in Suizhou.
-----	---------------	-------------	------------	------------	-------------

Analytical	U	Th	701 /II	²⁰⁴ Pb	206 01 /204 01	$\pm 1\sigma$	207 1 /206 1	$\pm 1\sigma$	207 1 */2351 1	$\pm 1\sigma$	206 1 */2381	$\pm 1\sigma$	207 1 */206 1 *	$\pm 1\sigma$	Discordance	$^{207}\text{Pb}^{*}/^{206}\text{Pb}^{*}$	$\pm 1\sigma$	$^{207}\text{Pb}^{*}/^{206}\text{Pb}^{*}$	±lσ
spot	(ppm)	(ppm)	Th/U	(c/s)	Pb/Pb	(%)	Pb/ Pb	(%)	Рб /О	(%)	Pb /U	(%)	Pb /Pb	(%)	(%)	date (Ma)	(Ma)	date (Ma) #	(Ma)
H-ap1@1	7.2	7.2	1.00	0.022	1235	26	0.6284	1.0	82.7	4.3	0.960	4.2	0.6252	1.1	-6.9	4567	15	4566	15
H-ap1@2	6.0	6.6	1.11	0.039	1166	23	0.6237	0.8	90.3	3.8	1.056	3.7	0.6203	0.8	2.8	4555	12	4554	12
H-ap1@3	5.5	6.1	1.12	0.121	355	18	0.6217	0.9	88.6	3.8	1.054	3.7	0.6098	1.0	3.3	4531	14	4528	14
H-ap2@1	5.7	6.3	1.10	0.094	361	16	0.6208	0.9	83.6	3.9	0.996	3.8	0.6091	1.0	-2.3	4529	15	4526	15
H-ap2@2	5.8	5.8	1.00	0.076	446	17	0.6173	0.9	92.1	3.9	1.099	3.8	0.6078	1.0	8.0	4526	15	4524	15
H-ap3@1	6.4	7.0	1.09	0.031	1658	22	0.6228	0.8	98.2	5.6	1.149	5.6	0.6200	0.8	11.8	4555	12	4554	12
W-ap9@1	7.0	7.1	1.02	n.d.	> 10000	-	0.5983	0.8	86.9	3.9	1.054	3.8	0.5982	0.8	4.2	4503	12	4503	12
W-ap9@2	6.8	6.6	0.98	0.319	173	6	0.6336	0.8	88.0	3.8	1.048	3.7	0.6091	1.0	2.8	4529	15	4523	14
W-ap9@3	7.0	6.5	0.92	n.d.	> 10000	-	0.6052	1.2	86.5	3.9	1.037	3.7	0.6051	1.2	2.0	4519	17	4519	17
W-ap17@1	6.6	6.3	0.95	0.014	3236	25	0.6126	0.9	95.2	3.9	1.130	3.7	0.6113	0.9	10.7	4534	14	4534	14
W-ap17@3	5.4	5.8	1.08	0.132	310	13	0.6359	0.9	94.1	3.8	1.095	3.6	0.6231	1.1	6.4	4562	15	4558	15
W-ap22@1	9.3	9.3	1.00	n.d.	> 10000	-	0.6042	1.0	71.8	4.4	0.862	4.3	0.6042	1.0	-15.1	4517	14	4517	14
W-ap22@2	6.1	5.7	0.94	0.006	4421	19	0.6095	1.1	90.3	4.1	1.076	3.9	0.6085	1.1	5.6	4527	16	4527	16
S-ap8@1	6.6	6.5	0.98	0.044	1007	15	0.6117	1.2	100.4	6.2	1.199	6.1	0.6074	1.2	17.8	4525	17	4524	17
S-ap8@2	6.0	7.2	1.19	0.014	1825	14	0.6108	1.1	66.0	4.6	0.787	4.5	0.6085	1.1	-22.8	4527	16	4527	16
S-ap12@1	5.8	6.4	1.10	0.004	6543	18	0.5901	1.0	80.1	3.9	0.986	3.7	0.5894	1.0	-1.9	4481	15	4481	15

664 Notes: * denotes radiogenic, i.e., common Pb corrected. The common Pb was corrected using the modern terrestrial Pb compositions (Stacey and Kramers, 1975) except the apparent ²⁰⁷Pb/²⁰⁶Pb ages in

665 the last two columns (superscript by #), which were corrected using Pb compositions of Cañon Diablo Troilite (Tatsumoto et al., 1973). U concentrations are determined by corresponding variations of $UO_2^{+/40}Ca_2^{-31}P^{16}O_3^{+}$ ratios of Durango apatite with average 9 ppm U. $^{206}Pb/^{204}Pb > 10000$ means no ^{204}Pb was detected.

668

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6582

Fig. 2

671

674 675

676

678

Fig. 4

Fig. 5

683

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6582

690

Fig. 8