1	Revision 1
2	Quantifying the proportions of relict igneous and metamorphic minerals in orthogneiss:
3	linking metamorphic efficiency to deformation
4	Timothy Chapman ¹ *, Geoffrey L. Clarke ¹ , Sandra Piazolo ²⁺ and Nathan R. Daczko ² .
5	¹ School of Geosciences, The University of Sydney, NSW, 2006, Australia
6	² ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department of
7	Earth and Planetary Sciences, Macquarie University, NSW, 2109, Australia
8	⁺ Current address: School of Earth and Environment, University of Leeds, United Kingdom
9	*Corresponding author: t.chapman@sydney.edu.au
10	ABSTRACT
11	A novel method utilising crystallographic orientation and mineral chemistry data, based on
12	large-scale electron back-scatter diffraction (EBSD) and microbeam analysis, quantifies the
13	proportion of relict igneous and neoblastic minerals forming variably deformed high-grade
14	orthogneiss. The Cretaceous orthogneiss from Fiordland, New Zealand, comprises
15	intermediate omphacite granulite interlayered with basic eclogite, which were
16	metamorphosed and deformed at $T \approx 850^{\circ}$ C and $P \approx 1.8$ GPa after protolith cooling. Detailed
17	mapping of microstructural and physiochemical relations in two strain profiles through subtly
18	distinct intermediate protoliths indicates that up to 32% of the orthogneiss mineralogy is
19	igneous, with the remainder being metamorphic. Domains dominated by igneous minerals
20	occur preferentially in strain shadows to eclogite pods. Distinct metamorphic stages can be
21	identified by texture and chemistry, and were at least partially controlled by strain magnitude.
22	At the grain-scale, the coupling of metamorphism and crystal plastic deformation appears to
23	have permitted efficient transformation of an originally igneous assemblage. The effective
24	distinction between igneous and metamorphic paragenesis and their links to deformation

25	history enables greater clarity in interpretations of the make-up of the crust and their causal
26	influence on lithospheric scale processes.
27	Keywords: neoblasts, EBSD, recrystallization, strain, tectonometamorphism, microstructure
28	INTRODUCTION
29	It is generally considered that elevated temperature conditions in Earth's crust (e.g. >750°C)
30	are accompanied by widespread metamorphic equilibration, on account of elemental
31	diffusion distances being comparable to, or larger than the grain-scale (Powell et al., 2005).
32	Typically, metamorphic transformation is aided by pervasive deformation and the abundance
33	of fluid (H ₂ O or melt: Štipská & Powell, 2005; Powell et al., 2005). However, the persistence
34	of high proportions of metastable minerals in orthogneiss exhumed from the lower crust is
35	common (e.g. Austrheim et al., 1997, Štipská & Powell, 2005; Racek et al., 2008). In
36	circumstances involving inhibited metamorphism, parts of a given rock can be incompletely
37	equilibrated (Vernon et al., 2008, 2012). The efficiency and scale of metamorphic
38	equilibration must be queried in the context of results from analogue experiments and mineral
39	equilibria modelling to provide a robust understanding of the inferred petrogenesis (Powell et
40	al., 2005; Štípská & Powell, 2005). In turn, mineral chemistry and texture can be used to
41	recover dynamic changes in extrinsic conditions that can be extrapolated to make
42	geodynamic inferences (Marmo et al., 2002; Chapman et al., 2017).
43	In circumstances of inefficient metamorphism, sites of mineral reaction can be highly
44	localised (e.g. Austrheim et al., 1997; Jamtveit et al., 2000) and can contribute to the
45	partitioning of strain during deformation (Williams et al., 2014). A dynamic feedback
46	between reaction kinetics and recrystallization mechanisms can accentuate reaction
47	localisation and mechanical differentiation (Yund & Tullis, 1991; Stünitz, 1998; Piazolo et
48	al., 2016). Most studies of inhibited metamorphism focus on linking mineralogical change to
49	brittle failure and/or fluid ingress (e.g. Jamtveit et al., 2000); there are few studies that assess

50	the role of dynamic recrystallization during ductile deformation (e.g. Svahnberg & Piazolo,
51	2010; Satsukawa et al., 2015). Changes in mineralogy have a direct bearing on the rheology
52	and density of the lithosphere (Jackson et al., 2004; Bürgmann & Dresen, 2008; Chapman et
53	al., 2017). It is commonly assumed in the application of geodynamic models that
54	metamorphism in the lower crust is highly efficient, yet this is an over simplification.
55	Inefficient metamorphism is commonly associated with low heat- and/or fluid-flux
56	environments, as occurs in cratons, but can also occur in orogenic settings due to changes in
57	key extrinsic variables (Štípská & Powell, 2005; Racek et al., 2008; Daczko et al., 2009).
58	There is a need to establish a method to calculate the proportions of igneous material in
59	partially metamorphosed and deformed granitoids from such settings.
60	In this paper, we quantify the proportions of igneous and metamorphic minerals in a
61	case study of rocks that show partial to complete metamorphic transformation at high-T and
62	high- <i>P</i> conditions ($T \approx 850^{\circ}$ C and $P \approx 1.8$ GPa). We use unique exposures of rocks exhumed
63	from lower crustal conditions in Fiordland, New Zealand, that preserve composite layered
64	plutons, patchily deformed and transformed to granulite and eclogite (De Paoli et al., 2009,
65	2012). Metamorphism and deformation occurred immediately after, and plausibly
66	concurrently with, the high-pressure emplacement of the plutons, but was spatially restricted.
67	This example conflicts with most of the generalisations of lower crust behaviour through: (1)
68	preserving igneous minerals and textures that metastably persisted at high- T conditions;
69	largely because of (2) strain localization. A method to quantify the proportions of igneous
70	relicts and the degree of metamorphic growth is established using mineral structural timing
71	relationships, quantitative crystallographic orientation analysis coupled with mineral
72	chemistry. Mineralogy outlined by the technique includes: (1) phenocrystal relicts, that have
73	distinctive orientation and highly distributed lattice strain; (2) neoblastic grains associated
74	with deformation structures that can be distinguished from igneous reactants by chemistry,

75 crystallographic orientation characteristics and grain size: and (3) partially modified igneous 76 grains, that underwent chemical change in localised (micron to mm-scale) regions associated 77 with deformation structure. The primary focus of this study is to distinguish neoblasts from 78 igneous (protolith) material. It is shown that, despite PT conditions considered amenable to 79 metamorphic conversion and crystal plastic deformation, metamorphic transformation and 80 neocrystallization was inhibited in up to 32% of the rock volume. 81 THE BREAKSEA ORTHOGNEISS 82 The Fiordland region on the South Island of New Zealand preserves a disrupted section of the 83 Late Cretaceous palaeo-Pacific Gondwanan margin. Mafic to intermediate rocks of the 84 Western Fiordland Orthogneiss (WFO) are parts of a larger Cretaceous arc batholith (c. 125-111 Ma: Bradshaw, 1989; Allibone et al., 2009; Milan et al., 2016, 2017). The Breaksea 85 86 Orthogneiss is the highest-pressure unit in the WFO (Fig. 1a), preserving omphacite granulite 87 and eclogite ($T \approx 850^{\circ}$ C and $P \approx 1.8$ GPa: De Paoli et al., 2009). It is composite, being 88 formed mostly of monzodioritic to monzogabbroic omphacite granulite (c. 60-65%), cognate monzodioritic omphacite-orthopyroxene granulite (c. 5-10%), and cumulate basite (now 89 90 eclogite; c. 25%), clinopyroxenite and garnetite (c. 5%) (De Paoli et al., 2009; Clarke et al., 91 2013; Chapman et al., 2015). 92 This layered protolith is inferred to have been emplaced at high-P conditions (1.8–2.0 93 GPa) between c. 124 and 115 Ma (Milan et al., 2016; Stowell et al., 2017). It was 94 incompletely metamorphosed and deformed (D_1) during cooling, initially at the emplacement 95 depth (Table 1: Chapman et al., 2017). The presence of mutually cross-cutting igneous veins 96 and S₁ folia are consistent with the D₁ event having occurred late in the protolith 97 crystallization. The S₁ foliation commonly includes steep S-L fabrics that transpose planar 98 igneous layering (Chapman et al., 2017) and is deformed into metre to km-scale concentric 99 domes (Betka & Klepeis, 2013). Post-S₁ decompression to lower grade conditions ($P \approx 1.0$ -

100	1.4 GPa and $T \approx 650-750^{\circ}$ C) is recorded by diopside and albite symplectite that
101	pseudomorph S_1 omphacite (De Paoli et al., 2009) and corresponds to a period of extensional
102	dome formation (Klepeis et al., 2016; Chapman et al., 2017). Localized D ₂ amphibolite facies
103	shear zones cut igneous layering and S_1 folia, and are thought to have formed during orogenic
104	collapse possibly coupled with root foundering (Fig. 1a; Klepeis et al., 2007; Chapman et al.,
105	2017).
106	The spectrum of whole-rock compositions in the main rock types of the Breaksea
107	Orthogneiss define linear first-order trends in Harker plots from peridotgabbro to
108	monzodiorite (De Paoli et al., 2009, 2012). These compositional variations are mostly
109	attributed to cumulate processes and magma redox conditions that preceded high-grade
110	deformation (Clarke et al., 2013; Chapman et al., 2015; Cyprych et al., 2017). Interlayered
111	near-monomineralic garnetite and clinopyroxenite retain delicate cumulate microstructure
112	and unique crystallographic fabrics (Fig. S1: Clarke et al., 2013; Cyprych et al., 2017).
113	Igneous clinopyroxene and garnet are well preserved in these ultra-basic cumulate layers;
114	they have rare earth element (REE) chemistry that overlap with that of clinopyroxene and
115	garnet in basic and intermediate protoliths (Clarke et al., 2013). A commonality in mineral
116	REE chemistry coupled with the preservation of igneous microstructure supports the
117	interpretation of the basic and ultrabasic components being cumulates of basic to
118	intermediate magmatism (Fig. S1: Clarke et al., 2013).
119	Mineral chemical relationships identified in ultrabasic components of the Breaksea
120	Orthogneiss can be partially extended into its felsic components. However, metamorphism
121	was more pervasive in felsic portions of the orthogneiss, presumably because of rheological
122	distinctions (Chapman et al., 2015; Miranda & Klepeis, 2016). Igneous and metamorphic
123	(neoblastic) garnet can be distinguished by the following textural and chemical features (after
124	Clarke et al., 2013). Large igneous garnet and omphacite occur as euhedral grains in cm-scale

125 clusters, with garnet heavy-REE-enriched patterns overlapping with those of igneous garnet 126 in eclogite and garnetite. Garnet phenocrysts also have rutile exsolution and lack positive Eu 127 anomalies, consistent with their growth from a high-*T* liquid (>1000°C: Chapman et al., 2017) and inconsistent with peritectic growth from prograde incongruent partial melting 128 129 (Clarke et al., 2013). Idioblastic metamorphic garnet is commonly symplectic with quartz, 130 forms coronae to omphacite and plagioclase, is heavy-REE depleted and has a positive Eu anomaly. Other rock-forming minerals have relationships that are ambiguous, but are likely 131 132 to have involved a combination of igneous and metamorphic histories dependent on strain 133 intensity. Foliated assemblages of omphacite, garnet, plagioclase, kvanite and rutile are consistent with metamorphism at conditions of the omphacite granulite sub-facies (De Paoli 134 et al., 2012; Clarke et al., 2013). Other portions of the felsic rocks, typically in low-strain 135 136 domains, have igneous grain shapes with compositions that are consistent with a parental 137 magma crystallising Ca-Na clinopyroxene with or without garnet or orthopyroxene 138 (Chapman et al., 2015). The extent of neocrystallization in the felsic lower crustal rocks is the

139 focus of this study.

140 Field Relationships

141 The primary igneous fabric at Breaksea Tops involves both gradational and sharp contacts 142 between distinct layers in the intermediate rocks and the decimetre-scale cumulate pods, that are defined by variations in the proportions of garnet, clinopyroxene, orthopyroxene and 143 144 plagioclase. The layering is locally transposed into a moderately dipping (>65°), north-west-145 striking gneissic foliation (S₁) with an associated L₁ mineral stretching lineation plunging 146 towards the southeast (Fig. 1a). The gneissic fabric is defined by elongate and aligned cm-147 scale garnet-pyroxene grain clusters in intermediate gneiss ("mafic clusters"). Deformation of S₁ folia into concentric domes is not observed at the Breaksea Tops and appear to be 148 149 spatially related to the extensional D₂ Resolution Island Shear Zone (RISZ) in Breaksea

Sound (Fig. 1a: Betka & Klepeis, 2013; Klepeis et al., 2016). At Breaksea Tops, S_1 folia are deflected around competent basite pods, with the intensity of the lineation increasing away from the pods (Fig. 1b). Decimetre- to decametre-scale low-strain domains commonly occur in strain shadows of the basic components (Fig. 1b), where igneous layering that lacks a penetrative mineral lineation is cut by S_1 .

155 Fifteen orientated samples were collected from the layered parts of the monzogabbroic to monzodioritic gneiss from a ridge transect at the Breaksea Tops (Fig. 1a). 156 157 The sample suite includes a transition from rocks with shallowly-dipping igneous layering, to those with well-developed moderately-dipping S_1-L_1 fabrics (Fig. 2a). The distinction of 158 magmatic and tectonic fabrics, and in particular the aspect ratio of minerals defining L₁, was 159 160 used to assess strain (Fig. 2b; Flinn, 1965). Modal layering resulted in the preservation of two strain series across subtly distinct protoliths: (1) a monzogabbro that records low to 161 intermediate strain; and (2) a monzodiorite that records intermediate to high strain. Detailed 162 mapping of the samples was used to determine the area percentage of each protolith and 163 164 strain type across the Breaksea Top transect (Fig. 2b). Approximately 27% of the outcrop 165 involved monzogabbroic gneiss that records largely low strain magnitude. It transitions into 166 intermediate L_1-S_1 fabrics in ~ 40% of the outcrop area. High-strain monzodioritic gneiss, marked by linear $(L_1 > S_1)$ fabrics and coronitic garnet development, covers ~ 20% of the 167 168 outcrop area. Protoliths to these zones are preserved as intermediate strain layers in only 13% of the outcrop. A series of four samples were selected for detailed petrographic and 169 170 microstructural investigation (Fig. 2a). 171 **METHODS**

Optical petrographic and microstructural observations were coupled with focused (areas of *c*.
2 x 2 mm) and large-scale (areas of 1 x 1.5 cm) quantitative crystallographic orientation
mapping using the electron back-scatter diffraction (EBSD) technique (Prior et al. 1999).

175 Mineral chemical analysis was undertaken on the same samples and within the region of EBSD mapping. All thin sections were prepared perpendicular to the foliation (XY plane) 176 and parallel to the lineation (Z direction). Aspect ratios (AR = long/short axes) of mafic grain 177 clusters on planes parallel to the lineation (XZ plane) were used to quantify strain intensity 178 together with $D = \sqrt{\left[\ln(X/Y)^2 + \ln(Y/Z)^2\right]}$ (Fig. 2b) following Flinn (1965). 179 180 Quantitative crystallographic orientation analysis Electron back-scatter diffraction (EBSD) investigation was performed using a Zeiss EVO Ma 181 182 15 scanning electron microscope (SEM) housed at Macquarie Geoanalytical at Macquarie University, Sydney. Additional data was also collected on a Zeiss Ultra Plus SEM at the 183 184 Australian Centre for Microscopy and Microanalysis (ACMM) at the University of Sydney. 185 Etched polished thick sections (c. 100 µm) were analysed at an accelerating voltage of 20-30 kV, with a beam current of 8 nA and a working distance of \sim 9–14 mm. Electron 186 backscatter diffraction patterns were automatically acquired and indexed using Oxford 187 Instruments AzTEC software (https://www.oxford-instruments.com/). The EBSD patterns 188 were collected in regular grids where the sampling step size varied from 2 to 8 µm for 189 190 detailed microstructural areas and 15 to 18 um for whole thin-section mapping. For each data 191 point the crystallographic orientation of the mineral was determined based on Kikuchi 192 diffraction patterns (Prior et al., 1999). Post-processing was undertaken in the Channel 5 193 TANGO software (Oxford Instruments) following procedures described by Prior et al. (2002) 194 and Piazolo et al. (2006). The post-processing methods are designed to remove false data (misidentified during scanning) and to enhance data continuity over the microstructures in 195 196 relation to the overall scan index rate. Modal abundances were determined using volume calculations on thin-section scale EBSD maps in Channel 5 (Table 2). The calculations were 197 compared to mineral equilibria modelling results of Chapman et al. (2017) to assess the 198 199 potential extent of equilibration.

200	In the following analysis, grains are defined as areas enclosed by boundaries of
201	greater than 10° of misorientation, referring to the distortion of the crystalline lattice;
202	boundaries with misorientations less than 10° but greater than 2° are referred to as low-angle
203	boundaries. If the low-angle boundaries have crystallographic rotational characteristics and
204	lattice distortions consistent with recovery they are defined as subgrain boundaries (sgb).
205	Grain internal strain was estimated following Piazolo et al. (2006), where a grain with an
206	average internal misorientation of $<1^{\circ}$ is denoted as substructure-free.

We utilize the strength of the crystallographic preferred orientation (CPO) as an additional measure of strain intensity. This has been evaluated by calculating the texture index (*J*: after Bunge, 1982) in the MTEX software package (Mainprice et al. 2011) for omphacite and plagioclase. The texture index has a value of one for a random distribution and an infinite value for a single crystal (Bunge, 1982).

212 Mineral chemistry

214

213 Mineral chemical data for the studied samples and specific microstructures presented here

215 Breaksea Orthogneiss (De Paoli et al., 2009; Clarke et al., 2013; Chapman et al., 2015). The

(Table 3) complements detail mineral chemical relationships already published on the

216 major element content of the rock-forming minerals was determined using the same polished

thin/thick sections as those for EBSD and a CAMEBAX SX100 electron microprobe (EMP)

218 housed at Macquarie Geoanalytical. Operating conditions for the EMP involved 15 kV

accelerating voltage and a beam current of 20 nA. Energy-dispersive spectrometry X-ray

220 maps collected simultaneously during EBSD acquisition on the Zeiss SEMs housed at both

221 Macquarie Geoanalytical and ACMM provided additional information on spatially resolved

222 chemical differences for the larger scale microstructural assessment. Garnet stoichiometry

and ferric iron correction was applied after Droop (1987), whereas clinopyroxene end-

224 member calculations follow Morimoto (1989).

225

226 Timing of mineral growth

227 We use the timing relationships of mineral growth relative to S₁ crystal-plastic deformation to 228 distinguish between different crystal growth periods namely pre-D₁ igneous, syn-, and post-229 D₁ metamorphic. To distinguish between igneous relicts and syn-deformational growth we 230 designated grain as neoblastic if they exhibit (i) low internal misorientation ($<3^\circ$), (ii) a small grain size (<500 µm), (iii) a pronounced crystallographic preferred orientation (CPO) that 231 232 matches a collective maximum and (iv) a chemical distinction that matches predicted 233 metamorphic mineral equilibria (e.g. jadeite-rich omphacite, grossular-rich garnet and albitic 234 plagioclase) as identified by Chapman et al. (2017). All other grains that do not fit these criteria are considered to be igneous relicts. The relicts additionally preserve their own 235 236 weaker igneous CPO together with igneous microstructures (e.g. Vernon et al., 2012). 237 Igneous relicts and neoblastic volumes were calculated via the combination of these criteria 238 from large EBSD combined with the simultaneously acquired EDS maps within the TANGO software. Diffusive modification of the igneous relicts was not accounted for in the volume 239 240 calculations due the delicate scale of these features. In generally, the method biases towards 241 larger features, as any feature smaller than 2 times the analysis step size cannot be resolved. 242 However, optical analysis shows that very few features are at this range (cf. Fig. 3). Furthermore, the slow igneous cooling times of the orthogneiss (c. 8–9 Myr) suggested by U– 243 244 Pb zircon and Sm-Nd garnet ages greatly minimises these limitations (e.g. Stowell et al., 245 2017). Although, occurrences of late magma injections could partially obscure the structural 246 relationships (Clarke et al., 2013), thus these areas were purposely avoided during sampling. 247 RESULTS **Crystallographic preferred orientations (CPO)** 248

249	Crystallographic preferred orientations for omphacite and plagioclase are shown in Figures 4
250	and 5. Omphacite CPO is defined by a $<001>$ point maxima contained within the foliation
251	plane and $<010>$ and $\{110\}$ maximums forming a girdle normal to the foliation (Fig. 4).
252	Omphacite grains with orientations distinct from this dominant CPO include porphyroclasts,
253	coarse grain fractions (>300 μ m), small euhedral grains in the matrix and mineral inclusions
254	in garnet cores (Fig. 3). The principle axes of these grains do not coincide with the D_1 fabric
255	trajectories (Fig. 6h), instead matching the CPO preserved in the cumulate layers (Fig. S1).
256	The strength (J) of the CPO increases from 1.62 to 1.81 between low and intermediate-strain
257	monzogabbroic gneiss, and from 4.10 to 7.17 between intermediate and high-strain
258	monzodioritic gneiss. The change is consistent with the variation in cluster aspect ratios (Figs
259	2b & 4). Plagioclase CPO involves a <001> point maxima parallel to the lineation and <010>
260	axis and (010) poles normal to the foliation (Fig. 5). The plagioclase fabric progressively
261	strengthens from low- to intermediate-strain monzogabbroic gneiss ($J = 2.94$ to 5.74) and
262	from intermediate to high-strain monzodioritic gneiss (3.14 to 6.05). Both these CPO are
263	consistent with large data compilations of the WFO from distinct structural levels (Cyprych
264	et al., 2017).

265 Microstructures and quantitative orientation analysis

According to the finite strain analysis (Fig. 2) and increasing J-index of plagioclase and

267 omphacite (Figs 2–4) we describe the microstructures in the order of increasing strain. Low-

strain samples as those that exhibit an average AR of < 2 (D = 0.45-0.54), intermediate strain

samples show $2 \le \text{average } AR \le 3 \ (D = 0.74 - 1.19)$, while high-strain samples are

270 characterized by average AR > 3 (D = 1.31-1.75) (Fig. 2b & 3).

271 Low strain: monzogabbroic gneiss (0904D)

272 Low-strain samples of monzogabbroic gneiss are generally coarse grained (400–1000 μm)

with equant to elongate mafic grain clusters of garnet and omphacite (AR = 1-4). Large

274	omphacite (500–1000 μ m) in most grain clusters has intracrystalline lattice distortions of 5–
275	8° and is surrounded by smaller neoblasts with serrated grain boundaries and low internal
276	deformation (Figs 3a, 6a & b). The large omphacite cores have facetted inclusions of
277	plagioclase (Fig. 3b). Tabular omphacite grain shapes, with straight coincident faces and low
278	apparent dihedral angles can be present in some clusters and locally intergrown with
279	plagioclase laths in strain shadows (Fig. 3a). Grain cores of large garnet have rutile
280	exsolution lamellae and euhedral inclusions of antiperthite feldspar and omphacite (Fig. 3c).
281	Garnet porphyroclasts are generally substructure free, though low-angle boundaries with up
282	to 4° of misorientation can be present (Fig. 6a). The distribution of crystallographic
283	orientations across these garnet boundaries define rotational characteristics consistent with
284	subgrain arrays (Fig. 6c). The plagioclase-rich matrix away from strain shadows or mafic
285	cluster margins is generally granoblastic (200–300 μ m) with texturally equilibrated triple
286	junctions (120°) (Fig. 3d). At the margins of mafic clusters plagioclase grain size is
287	appreciably reduced (<150 μ m) and core-and-mantle microstructures are more common (Fig.
288	3d). The plagioclase porphyroclasts (>300 μ m) exhibit undulose extinction, tapered
289	deformation twins and irregular or sutured grain boundaries with minor bulging. The primary
290	grain form is consistent with coincidental dihedral angles being partially overprinted during
291	recrystallization (Fig. 3d). The porphyroclasts exhibit internal misorientation of up to 8°
292	along the entire diameter of the grain. Surrounding the porphyroclasts are fine (<150 μ m)
293	plagioclase neoblasts (Fig. 3d).

294

Intermediate strain: monzogabbroic gneiss (0905B)

Gneissic layering is pronounced in intermediately strained monzogabbroic gneiss (1-3 mm: Fig. 2a). The attenuated and asymmetric mafic clusters (AR = 2-6) distinctively anastomose around large garnet porphyroclasts (>1000 µm) (Figs 2a & 6c). Omphacite porphyroclasts

298 (400–1000 μ m) in cluster interiors are equant to weakly elongate (AR = 2-3). The

299 porphyroclasts display significant intracrystalline lattice distortion $(6-15^{\circ})$ and variable 300 degrees of low-angle boundary development (Figs 6e & f). Smaller omphacite grains form 301 tails to mafic clusters (50–400 μ m) and generally have less internal lattice distortion (<3°), 302 though some exhibit low-angle boundary arrays (Figs 6e & g). All omphacite grains maintain 303 close to 120° mutual junctions. Porphyroclastic garnet generally has limited crystal lattice 304 distortion ranging up to 3° across the grains. Although, some grains have low-angle boundaries with up to $\sim 8^{\circ}$ of distortion. Facetted inclusions of substructure-free omphacite 305 306 are present in the garnet cores. Coronate garnet surrounds some mafic clusters. Plagioclase 307 exhibits less prevalent core-and-mantle microstructures than present in the lower-strain 308 samples, although when present they occur in the centre of feldspar-rich domains (Fig. 3f). 309 Plagioclase porphyroclasts (200-600 µm) exhibit intracrystalline lattice distortion of ~8° and 310 have developed subgrain regions similar in size to mantled grains (50–150 μ m; Fig. 3f). 311 Outside of these domains granoblastic habit predominates the feldspar-rich matrix. Highly 312 deformed omphacite fish (up to 700 µm) occur occasionally in the feldspar-rich matrix (Fig. 313 7).

314 Intermediate strain: monzodioritic gneiss (1203T)

315 Asymmetric gneissic layering and stretching is extremely pronounced in intermediate-strain 316 monzodioritic gneiss (AR = 2-6). Elongate omphacite grain shapes are apparent for large crystals (2500 µm) that define irregular habits (Figs 3g & 8a). Large tabular omphacite grains 317 318 have titano-hematite exsolution lamellae in grain cores. The omphacite porphyroclasts have significant internal lattice distortion (up to 15°), localised along curved low-angle boundaries 319 320 (>2°: Figs 8b & d). The rotation of the crystallographic axes across the low-angle boundaries is consistent with them representing subgrain arrays (Fig. 8f). The size of the areas enclosed 321 by the subgrains boundaries (~400 µm) match the sizes of equant finer grains that form the 322 323 flaser tails. The grains forming the tails have low internal misorientation ($<3^\circ$) or are

324 substructure-free (Figs 8c & e). The plagioclase matrix is typically granoblastic with prevalent equilibrium triple junctions. Large plagioclase grains (>500 µm) have an 325 326 abundance of tapered albite twins, which accommodate most of the lattice distortion (3°) . Although, some plagioclase grains have misorientation of up to 9° accommodated along 327 328 subgrain boundary arrays. Distinct intergrowths (~300 µm) of K-feldspar and plagioclase 329 occur in the strain shadows and around the margins of elongate grain clusters. The intergrowths show similarity in the crystallographic orientations between both feldspar 330 331 minerals. Plagioclase grains within the intergrowths has deformation focussed on albite twins 332 whereas K-feldspar has intracrystalline lattice distortions of up to 5°.

333

High strain: monzodioritic gneiss (1203C)

Mafic grain clusters in high-strain monzodioritic gneiss are extremely stretched (*AR* of up to
7). The clusters are enveloped entirely by garnet necklaces intergrown with quartz and rutile

336 (Fig. 3g). Garnet in these structures has vermicular to tabulate quartz inclusions commonly

337 aligned sub-parallel to its crystal faces. Omphacite and feldspar are granoblastic and

338 generally equant, though elongated omphacite can occur in cluster interiors (AR of up to 6).

These elongated omphacite grains are large (500–1000 μ m) and surrounded by smaller

equant omphacite grains (100–400 μm: Fig. 8g). All omphacite has most internal

341 misorientation (9°) completely localised in low-angle boundaries together with triple

342 junctions approaching 120° (Figs 8g & i). The omphacite grains adjacent to garnet coronae

343 are free of substructure (Figs 81 & k). The neighbouring garnet grains also generally lack any

344 substructure. Most of the garnet grains have similar crystallographic orientations and are

separated from adjacent grains by a series of low-angles boundaries $(2-5^{\circ})$ (Fig. 8g). All the

346 grains have crystallographic orientation relationships mimicking neighbouring omphacite

- 347 (Fig. 81). The matrix of the gneiss comprises coarse plagioclase (200–700 μ m) with most
- 348 preserving tapered deformation twins (Fig. 3h). The plagioclase grains have well-defined

349 subgrain boundaries, where crystal lattice misorientation (up to 10°) is localised. Minor 350 proportions of fine-grained plagioclase (100 µm) occur at the triple junctions of the larger grains. K-feldspar (<125 µm) occurs exclusively in an enveloping texture around garnet 351 352 coronae, defining elongated and irregular shapes that are orientated within the foliation plane 353 (Fig. 8f). 354 **Mineral chemistry** Clinopyroxene is omphacite with jadeite contents (Jd = 355 $100[(2Na/(2Na+Ca+Mg+Fe^{2+}))(Al_{M1}/(Al_{M1}+Fe^{3+}_{M1}))])$ varying throughout the felsic portions 356 357 of the orthogneiss. Omphacite grain cores in low-strain monzogabbroic gneiss have lower 358 jadeite content (Jd_{26-27}) than rims or neoblasts (Jd_{30-31}) (Fig. 7). An equivalent, though slightly more pronounced microstructural variation in jadeite content is present in 359 360 intermediate-strain monzogabbroic and monzodioritic gneisses with lower absolute values; porphyroclasts have core to rim zoning of Jd_{17-24} , whereas grains in cluster tails are Jd_{24-33} . 361 (Fig. 9). Omphacite in high-strain samples has a tight compositional range of Jd_{24–28} (Fig. S2). 362 Garnet end-member proportions were calculated as follows: Alm = 363 $100Fe^{2+}/(Fe^{2+}+Mn+Mg+Ca)$, Pyp = $100Mg/(Fe^{2+}+Mn+Mg+Ca)$, Grs = 364 $100Ca/(Fe^{2+}+Mn+Mg+Ca)$ and Sps = $100Mn/(Fe^{2+}+Mn+Mg+Ca)$. Garnet cores in 365 366 monzogabbroic gneiss have the lowest grossular and highest pyrope content (Alm₃₈₋₃₉Pyp₄₂₋ 43Grs₆₋₈Sps₁₋₂), enclosed by comparatively grossular enriched rims (Alm₃₈₋₃₉Pyp₃₇₋₄₀Grs₈₋ 367 368 13Sps₁₋₂: Fig. 9). Garnet in intermediate-strain monzodioritic gneiss has core compositions of 369 Alm_{42–44}Pyp_{35–38}Grs_{12–14}Sps_{1–2} zoning to rims that are richer in grossular (Grs_{18–25}) but with 370 lower pyrope (Pyp₃₀₋₃₅) content (Fig. 9). Garnet compositions in high-strain monzodioritic gneiss broadly match that of garnet rims in intermediate-strain samples (Alm₃₇₋₄₄Pyp₃₁₋ 371 ₃₈Grs_{12–18}Sps_{1–2}: Fig. 9). 372

15

373	End-member proportions of feldspars were calculated as follows: An =
374	100Ca/(Ca+Na+K), Ab = $100Na/(Ca+Na+K)$ and Or = $100K/(Ca+Na+K)$. The cores of large
375	plagioclase porphyroclasts in monzogabbroic gneiss are comparatively enriched in anorthite
376	$(An_{34-35}Ab_{63-64}Or_{1-2})$ and enclosed by less anorthitic rims $(An_{18-22}Ab_{78-79}Or_1: Fig. 9)$. Core
377	compositions of plagioclase from intermediate-strain monzogabbroic gneiss are less
378	anorthitic $(An_{26}Ab_{73}Or_1)$ than rims $(An_{24-27}Ab_{71-73}Or_{1-3}$: Fig. 9). Similar plagioclase core–rim
379	relationship occurs in intermediate-strain monzodioritic gneiss (core: An ₂₈ Ab ₇₀ Or ₂ and rim:
380	$An_{20-25}Ab_{73-77}Or_{1-3}$: Fig. 9). Plagioclase grain cores in high-strain monzodioritic gneiss have
381	compositions (An_{23-25}) that match those of rims from intermediate-strain monzodioritic
382	gneiss, whilst rims are more albitic (An ₁₈₋₂₄ Ab ₇₆₋₇₉ Or ₁₋₃). Orthoclase (An ₁₀₋₁₂ Ab ₁₋₃ Or ₈₇₋₈₈)
383	occurs intergrown with albitic plagioclase ($An_{20}Ab_{80}$: Fig. 9).
384	DISCUSSION
385	The lower continental crust is commonly envisaged to be pervasively deformed (Bürgmann
386	& Dresen, 2008), but features in many exposed sections are consistent with grossly
387	heterogeneous strain (Austrheim et al., 1997; White & Clarke, 1997). In such examples,
388	strong links can be established between regions of deformation and enhanced metamorphic
389	transformation (Austrheim et al., 1997; White & Clarke, 1997; Jamtveit et al., 2000;
390	Williams et al., 2014; Satsukawa et al., 2015). The Breaksea Orthogneiss is one such
391	instance, where variations in plane-strain magnitude are strongly coupled with the extent of
392	high-P Cretaceous metamorphism (Figs 1b & 2b; Clarke et al., 2013; Chapman et al., 2015,
393	2017). Detailed mineral chemical studies have distinguished igneous from metamorphic
394	garnet in the orthogneiss and correlated their broad distribution in relation to strain (Clarke et
395	al., 2013). A similar spatial distribution is apparent for the other rock-forming minerals: there
396	is a strong association between recrystallization and metamorphic equilibration. This
397	coincidence presents the opportunity to quantify the proportions of igneous and neoblastic

16

398 materials (summarised in Fig. 10). Causal links established in two-dimensions at the grain-

scale can be extended to the rock volume and the outcrop-scale based on field mapping (Figs

- 400 1–2). These data reveal the efficiency of metamorphism and its links to crystal plastic
- 401 deformation that seems common in lower crustal rocks.

402 Quantifying igneous vs. metamorphic growth: a tool to assess metamorphic efficiency

- 403 Rock microstructure can include features that distinguish periods of mineral growth in
- 404 addition to the effects of external stress. In a simple sense, differences should be observable
- 405 between minerals that have largely crystallized from a silicate liquid (igneous) and those
- 406 related to growth in the solid-state (metamorphic) (Vernon et al., 2012; Holness et al., 2018).
- 407 Some relevant igneous microstructural features include (after Vernon et al., 2012): euhedral
- 408 crystal form, facetted inclusions and dihedral angles consistent with mutual impingement
- 409 (Paterson et al., 1989; Holness et al., 2006, 2018). Typically, these features are overprinted
- 410 during microstructural maturation (recovery) as a consquence of prolonged heating or
- 411 progressive deformation (e.g. Vernon et al., 2012; Holness et al., 2018). However, the effects
- 412 of strain partitioning can leave areas that partially preserve igneous microstructure in
- 413 mechanically strong grains such as pyroxene or garnet, including faceted euhedral inclusions,
- 414 low apparent dihedral angles and delicate exsolution textures (Chapman et al., 2015). The
- 415 additional use of crystal orientation data, lattice distortion and mineral chemistry expands the
- 416 criteria that can be used to quantify the proportions of igneous *versus* metamorphic minerals.
- Plastic strain in the Breaksea Orthogneiss during D₁ resulted in a well defined
 crystallographic fabric that developed concurrently with a general reduction in grain size (e.g.
- 419 Urai et al., 1986; Yund & Tullis, 1991; Stünitz 1998). The effects of heterogenous
- 420 deformation are most pronounced in domains that experienced low-strain intensity, leaving
- 421 mm to cm gradations in the recrystallization of igneous grains and inefficient recovery (e.g.
- 422 Svahnberg & Piazolo, 2010). Porphyroclasts of omphacite and plagioclase in low-strain

423	domians have appreciable, but patchy, areas with lattice distortion $(3-20^\circ)$ that are spatially
424	related to the development of a series of low-angle boundaries (2-10°: Figs 6i & 8d) or
425	deformation twins (Fig. 3). Mechanically strong garnet has comparatively limited lattice
426	distortion, and grain areas with low-angle boundary development occur where there is higher
427	strain. Other parts of the orthogneiss that experienced higher strain have attenuated
428	omphacite clusters and smaller grain sizes (Figs 6 & 8); the effects D_1 strain were more
429	pervasive. In these instances, metamorphic garnet is mostly interpreted to have
430	heterogeneously nucleated on phenocrystal clusters of garnet and omphacite, resulting in
431	prominent necklace microstructures (Figs 6 & 8).
432	Microstructure in the Breaksea Orthogneiss preserves an S_1 CPO that developed
433	during high-P cooling, imposed on an earlier CPO developed during crystallization of the
434	protolith (Fig. S1; Cyprych et al., 2017). The high- <i>T</i> conditions (~850°C) inferred to have
435	accompanied D_1 deformation and the persistence of abundant lattice distortion (Figs 6a, h &
436	8f) texture in garnet, pyroxene and plagioclase support an interpretation that S_1 developed via
437	dislocation creep (after Prior et al., 2002; Brenker et al., 2002; Kruse et al., 2001). Neoblastic
438	grains in low- and high-strain samples are crystallographically aligned with $S_{1,.}$ The
439	orientation of neoblastic omphacite and plagioclase is consistent with active creep along
440	common slip systems: {110}[001] and (100)[001]) in omphacite (after Brenker et al., 2002),
441	and (010)[001] in plagioclase (after Kruse et al., 2001). Although less distinct, the
442	crystallographic alignment of garnet neoblasts is controlled by epitaxial growth on omphacite
443	$({110}_{Grt} < 001 >_{Omp}: Fig. 81)$. Any deviation from the dominant S ₁ CPO is thus considered to
444	be part of an earlier igneous fabric (Figs 3, 6d & h), marked by coarse-grained
445	porphyroclastic material (Fig 10).
446	The interpretation of igneous and neoblastic microstructures requires validation

through the characterisation of mineral mode and chemistry, through mineral equilibria

448	modelling (Table 2: after De Paoli et al., 2012; Chapman et al., 2017). The high-variance
449	breakdown and removal of plagioclase to form omphacite-bearing assemblages in the
450	Breaksea Orthogneiss is a consequence of the high-P cooling (Green & Ringwood, 1967; De
451	Paoli et al., 2012; Chapman et al., 2017). Pervasively recrystallised domains have low modes
452	of comparatively albitic plagioclase, jadeite-rich omphacite, K-feldspar, kyanite and
453	grossular-rich garnet. The mineral assemblages correspond to $T = 850^{\circ}$ C and $P = 1.8$ GPa
454	(Fig. 9: Chapman et al., 2017). Parts of the Orthogneiss that experienced low D_1 strain have
455	appreciably higher modes of more calcic plagioclase (~50%) than is predicted by the
456	equilibria modelling for the inferred peak conditions (~30%, Table 2; De Paoli et al., 2012:
457	Chapman et al., 2017). The higher mode of calcic plagioclase is consistent with that predicted
458	for the crystallisation of a dry monzodioritic liquid at 2.0 GPa (~50%: Clarke et al., 2013). In
459	addition, porphyroclastic omphacite and garnet have chemical compositions distinct to that
460	the metamorphic neoblasts grown during recrystallization; the former closely match the
461	predicted phenocryst compositions (Figs 9 & 10: Clarke et al., 2013).
462	The combination of these petrologic criteria enable the prediction that igneous grains
463	account for between 60 and 29% of the volume in low to intermediate-strain monzogabbroic
464	and monzodioritic gneiss, with the remainder being neoblasts (Fig. 11). Highly strained
465	samples comprise completely neoblastic mineral assemblages. Placing these variations in the
466	context of observed field strain intensities (Fig. 2b) indicates that 32% of the felsic
467	proportions Breaksea Orthogneiss can be considered to comprise igneous material. Some of
468	this was partially modified by changes in the chemical composition of the minerals due to the
469	effects of the high-P metamorphism. Heterogeneous strain conditions largely accounted for
470	the conversion of the remainder to omphacite granulite.
471	Implications: Metamorphic efficiency in the lithosphere

471 Implications: Metamorphic efficiency in the lithosphere

472	A knowledge of phase stability at distinct P and T conditions provides the basis to extrapolate
473	experimental results and predict lithospheric behaviour (Powell et al., 2005; Bürgmann &
474	Dresen, 2008). In examples such as the Breaksea Orthogneiss, the efficiency of
475	metamorphism inherently controlled the proportions of mechanical strong and weak material,
476	and it can thus result in substantial changes to lower crustal rheology (e.g. Austrheim et al.,
477	1997; Jackson et al., 2004; Bürgmann & Dresen, 2008). The preservation of large proportions
478	of phenocrystal material (32% in this case study) in lower crustal rocks reflects strain
479	partitioning at the microscopic to macroscopic scales (e.g. Williams et al., 2014). This one-
480	third extent of metastable persistence was common, and plausibly higher, throughout much
481	the Cretaceous Gondwana margin now exposed in Fiordland (Bradshaw et al., 1989; Daczko
482	& Halpin, 2009; Chapman et al., 2016). It is also common in other exposures of lower crustal
483	material (Austrheim et al., 1997; White & Clarke, 1997). It seems reasonable to assume that
484	the effects of incomplete metamorphism are likely to be more prevalent than commonly
485	considered for circumstances of patchy deformation, fluid-poor and short-lived metamorphic
486	events (~10 Myr: Austrheim et al., 1997; Jamtveit et al., 2000; Štipská & Powell, 2005;
487	Racek et al., 2008).

488 Quantifying the volume proportions of metastably persisting phases is therefore of 489 practical importance in assessing the behaviour of the lower crust. Lithospheric geodynamic 490 models should evaluate the effect of mineral mode variations beyond simplistic predictions 491 for highly efficient metamorphism, and evaluate its influence on lithospheric dynamics. A metastable and thus mechanically strong lower crust has been considered to control 492 493 exhumation dynamics and topographic expression in thickened crustal sequences (e.g. Jackson et al., 2004). In Fiordland, incomplete metamorphism in the Breaksea Orthogneiss 494 495 plausibly maintained positive buoyancy in lower crust that might otherwise have been 496 capable of foundering (Chapman et al., 2017).

497	CONCLUSIONS
498	A novel method utilising mineral orientation relationships, lattice strain and mineral
499	chemistry collected via large-scale EBSD and EDS/WDS analysis can be used to quantify the
500	proportion of metastable igneous minerals within a patchily deformed high-grade
501	orthogneiss. Detailed mapping of microstructural and physiochemical relations indicates that
502	up to 32% of the Breaksea Orthogneiss mineralogy is igneous, the remainder being
503	metamorphic. The heterogeneous nature of the deformation facilitated the preservation of
504	igneous mineralogy in intermediate protoliths, best developed in strain shadows to more
505	competent material such as eclogite. The greater intensity of strain in less competent portions
506	of the orthogneiss assisted metamorphic transformation. Metamorphic transformation at the
507	grain scale was coincident with dynamic recrystallization, consistent with a causal role for
508	strain in assisting reaction progress in water-poor rocks. The method highlights how
509	inefficient metamorphism can be, even at the high-grade conditions commonly considered
510	amenable to complete crustal transformation.
511	ACKNOWLEDGMENTS
512	TC was supported by an Australian Postgraduate Award from the University of Sydney.
513	Logistical and analytical funding was provided by the School of Geosciences, the University

514of Sydney (GLC) and through the ARC Discovery Project and Future Fellowship

515 (DP120102060 to SP and NRD; FT1101100070 to SP). D. Cyprych and P. Trimby are

thanked for help with data collection, and the Department of Conservation in Te Anau for

517 permission to visit and sample localities at Breaksea Sound, Fiordland National Park. The

518 authors acknowledge the facilities, scientific and technical assistance of the Australian

519 Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy &

520 Microanalysis at the University of Sydney. The manuscript was improved after reviews from

521 A. Indares and editorial handling of P. Cordier. This is contribution XX from the ARC Centre

- 522 of Excellence for Core to Crust Fluid Systems (http://<u>www.CCFS.mq.edu.au</u>) and XX from
- 523 GEMOC (http://www.GEMOC.mq.edu.au). The analytical data were obtained using
- 524 instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS,
- 525 industry partners and Macquarie University.

526

527 Allibone, A.H., Jongens, R., Turnbull, I.M., Milan, L.A., Daczko, N.R., De Paoli, M.C., &

REFERENCES CITED

- 528 Tulloch, A.J. (2009a). Plutonic rocks of western Fiordland, New Zealand: field
- 529 relations, geochemistry, correlation and nomenclature. New Zealand Journal of
- 530 Geology and Geophysics, 52, 379–415.
- 531 Austrheim, H., Erambert, M., & Engvik, A.K. (1997). Processing of crust in the root of the
- 532 Caledonian contientnal collision zone: the role of eclogitization. Tectonophysics, 273,
 533 129–153.
- Betka, P.M., & Klepeis, K.A. (2013). Three-stage evolution of lower crustal gneiss domes at
 Breaksea Entrance, Fiordland, New Zealand. Tectonics, 32, 1084–1106.
- 536 Bradshaw, J.Y. (1989). Origin and metamorphic history of an Early Cretaceous polybaric
- 537 granulite terrain, Fiordland, southwest New Zealand. Contributions to Mineralogy and
 538 Petrology, 103, 346–360.
- 539 Bunge, H.J. (1982). Texture analysis in materials science. Butterworths, London.
- 540 Bürgmann, R., & Dresen, G. (2008). Rheology of the lower crust and upper mantle: evidence
 541 from rock mechanics, geodesy, and field observations. Annual Reviews of Earth and
 542 Planetary Sciences, 36, 531–567.
- 543 Brenker, F.E., Prior, D.J., & Müller, W.F. (2002). Cation ordering in omphacite and effect on
- deformation mechanism and lattice preferred orientation (LPO). Journal of Structural
 Geology, 24, 1991–2005.
- 546 Chapman, T., Clarke, G.L., Daczko, N.R., Piazolo, S., & Rajkumar, A. (2015).

- 547 Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages,
- 548 Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-*P* oxide
- 549 fractionation. Lithos, 216–217, 1–16.
- Chapman, T., Clarke, G.L., & Daczko, N.R. (2016). Crustal differentiation in a thickened arc
 evaluating depth dependencies. Journal of Petrology, 57, 595–620.
- 552 Chapman, T., Clarke, G.L., Piazolo, S., & Daczko, N.R. (2017). Evaluating the importance of
- metamorphism in the foundering of continental crust. Scientific Reports 7,
- 554 DOI:10.1038/s41598-017-13221-6.
- 555 Clarke, G.L., Daczko, N.R., & Miescher, D. (2013). Identifying relict igneous garnet and
- clinopyroxene in eclogite and granulite, Breaksea Orthogneiss, New Zealand. Journal
 of Petrology, 54, 1921–1938.
- Cyprych, D., Piazolo, S., & Almqvist, B.S.G. (2017). Seismic anisotropy from compositional
 banding in granulites from the deep magmatic arc of Fiordland, New Zealand. Earth
 and Planetary Science Letters, 477, 156–167.
- 561 Daczko, N.R., & Halpin, J.A. (2009). Evidence for melt migration enhancing recrystallization
- of metastable assemblages in mafic lower crust, Fiordland, New Zealand. Journal of
 Metamorphic Geology, 27, 167–185.
- 564 De Paoli, M.C., Clarke, G.L., Klepeis, K.A., Allibone, A.H., & Turnbull, I.M. (2009). The
- 565 eclogite–granulite transition: mafic and intermediate assemblages at Breaksea Sound,
 566 New Zealand. Journal of Petrology, 50, 2307–2343.
- 567 De Paoli, M.C., Clarke, G.L., & Daczko, N.R. (2012). Mineral equilibria modeling of the
- 568 granulite–eclogite transition: effects of whole-rock composition on metamorphic
- facies type-assemblages. Journal of Petrology, 53, 949–970.

570	Droop, G.T.R. (1987). A general equation for estimating Fe ³⁺ concentrations in
571	ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric
572	criteria. Mineralogical Magazine, 51, 431–435.
573	Flinn, D. (1965). On the symmetry principle and the deformation ellipsoid. Geological
574	Magazine, 102, 36–45.
575	Green, D.H., & Ringwood, A.E. (1967). An experimental investigation of the gabbro to
576	eclogite transformation and its petrological applications. Geochimica et
577	Cosmochimica Acta, 31, 767–833.
578	Holness, M.B. (2006). Melt-solid dihedral angles of common minerals in natural rocks.
579	Journal of Petrology, 47, 791–800.
580	Holness, M.B., Vukmanovic, Z., & Mariani, E. (2017). Assessing the role of compaction in
581	the formation of adcumulates: a microstructural perspective. Journal of Petrology, 58,
582	643–674.
583	Holness, M.B., Clemens, J.D. & Vernon, R. H. (2018). How deceptive are microstructures in
584	granitic rocks? Answers from integrated physical theoru, phase equilibrium, and
585	direct observations. Contributions to Mineralogy and Petrology, 173, 2-18.
586	Jackson, J.A., Austrheim, H., McKenzie, D., & Priestley, K. (2004). Metastability,
587	mechanical strength, and the support of mountain belts. Geology, 32, 625-628.
588	Jamtveit, B., Austrheim, H., & Malthe-Sørenssen, A. (2000). Accelerated hydration of the
589	Earth's deep crust induced by stress perturbations. Nature, 408, 75–78.
590	Klepeis, K.A., King, D., De Paoli, M., Clarke, G.L. & Gehrels, G. (2007). Interaction of
591	strong lower and weak middle crust during lithospheric extension in western New
592	Zealand. Tectonics, 26, 1–27.

593	Klepeis, K.A., Schwartz, J., Stowell, H., & Tulloch, A.J. (2016). Gneiss domes, vertical and
594	horizontal mass transfer, and the initiation of extension in the hot lower-crustal root of
595	a continental arc, Fiordland, New Zealand. Lithosphere, 8, 116-140.
596	Kruse, R., Stünitz, H., & Kunze, K. (2001). Dynamic recrystallization processes in
597	plagioclase porphyroclasts. Journal of Structural Geology, 23, 1111-1115.
598	Marmo, B.A., Clarke, G.L., & Powell, R. (2002). Fractionation of bulk rock composition due
599	to porphyroblast growth: effects of eclogite facies mineral equilibria, Pam Peninsula,
600	New Caledonia. Journal of Metamorphic Geology, 20, 151–165.
601	Mainprice, D., Hielscher, R., & Schaeben, H. (2011). Calculating anisotropic physical
602	properties from texture data using the MTEX open-source package. In Prior, D. J.,
603	Rutter, E. H., Tatham, D. J. (Eds.) Deformation mechanisms, rheology and tectonics:
604	microstructures, mechanics and anisotropy. Geological Society of London Special
605	Publication 360, 175–192.
606	Milan, L.A., Daczko, N.R., Clarke, G.L., & Allibone, A.H. (2016). Complexity of in situ U
607	Pb-Hf isotope systematics during arc magma genesis at the roots of a Cretaceous arc,
608	Fiordland, New Zealand. Lithos, 264, 296–314.
609	Milan, L.A., Daczko, N.R. & Clarke, G.L. (2017). Cordillera Zealandia: A Mesozoic arc
610	flare-up on the palaeo-Pacific Gondwana margin. Scientific Reports,
611	doi:10.1038/s41598-017-00347-w.
612	Miranda, E.A., & Klepeis, K.A. (2016). The interplay and effects of deformation and
613	crystallized melt on the rheology of the lower continental crust, Fiordland, New
614	Zealand. Journal of Structural Geology, 93, 91-105.
615	Morimoto, N. (1989). Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143-156.

616	Paterson	SR	Vernon	RΗ	& Tobisch,	OT ((1989)	A A	review	of crite	ria	for the
010	I atorson,	D.N.,	v criton,	IX.11.,		0.1.1	1707). A			<i>i</i> ia	ior the

- 617 identification of magmatic and tectonic foliations in granitoids. Journal of Structural618 Geology, 11, 349–363.
- Piazolo, S., Bestmann, M., Prior, D.J., & Spiers, C.J. (2006). Temperature dependent grain
 boundary migration in deformed-then-annealed material: observations from
- 621 experimentally deformed synthetic rocksalt. Tectonophysics, 427, 55–71.
- 622 Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., & Cairney, J.
- 623 (2016). Deformation-induced trace element redistribution in zircon revealed using
 624 atom probe tomography. Nature Communications, DOI: 10.1038/ncomms10490.
- 625 Powell, R. Guiraud, M., & White, R.W. (2005). Truth and beauty in metamorphic phase
- equilibria: conjugate variables and phase diagrams. The Canadian Mineralogist, 43,
 21–33.
- 628 Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts,
- 629 G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J., & Zetterström, L.
- 630 (1999). The application of electron backscatter diffraction and orientation contrast
- 631 imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 1741–632 1759.
- 633 Prior, D.J., Wheeler, J., Peruzzo, L., Spiess, R., & Storey, C. (2002). Some garnet
- microstructures: an illustration of the potential of orientation maps and misorientation
 analysis in microstructural studies. Journal of Structural Geology, 24, 999–1011.
- 636 Racek, M., Štípská, P., & Powell, R. (2008). Garnet–clinopyroxene intermediate granulites in
- 637 the St. Leonhard massif of the Bohemian Massif: ultrahigh-temperature
- 638 metamorphism at high pressure or not? Journal of Metamorphic Geology, 26, 253–
- 639 271.

640	Satsukawa, T., Piazolo, S., González-Jiménez, J.M., Colás, V., Griffin, W.L., O'Reilly, S.Y.,
641	Gervilla, F., Fanlo, I., & Kerestedjian, T.N. (2015). Fluid-present deformation aids
642	chemical modification of chromite: insights from chromites from Golyamo
643	Kamenyane, SE Bulgaria. Lithos, 228–229, 78–89.
644	Smith, J.R., Piazolo, S., Daczko, N.R., & Evans, L. (2015). The effect of pre-tectonic
645	reaction and annealing extent on behaviour during subsequent deformation: Insights
646	from paired shear zones in the lower crust of Fiordland, New Zealand. Journal of
647	Metamorphic Geology, 33, 557–577.
648	Štípská, P., & Powell, R. (2005). Does ternary feldspar constrain the metamorphic conditions
649	of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites,
650	Bohemian Massif. Journal of Metamorphic Geology, 23, 627-647.
651	Stowell, H.H., Schwartz, J.J., Klepeis, K.A., Hout, C., Tulloch, A.J., & Koenig, A. (2017).
652	Sm-Nd garnet ages for granulite and eclogite in the Breaksea Orthogneiss and
653	widespread granulite facies metamorphism of the lower crust, Fiordland magmatic
654	arc, New Zealand. Lithosphere, DOI: 10.1130/L662.1.
655	Stünitz, H. (1998). Syndeformational recrystallization — dynamic or compositionally
656	induced? Contributions to Mineralogy and Petrology, 131, 219-236.
657	Stüwe, K. (1997). Effective bulk composition changes due to cooling: a model predicting
658	complexities in retrograde reaction textures. Contributions to Mineralogy and
659	Petrology, 129, 43–52.
660	Svahnberg, H., & Piazolo, S., 2010. The initiation of strain localization in plagioclase-rich
661	rocks: insights from detailed microstructural analyses. Journal of Structural Geology,
662	32, 1404–1416.

27

663	Urai IL	Means	WD	& Lister	GS	(1986)	Dy	vnamic recr	vstallization	of mir	nerals 1	In
005	Ului, J.L.,	ivicalis,	···.D.,	a Lister,	U.D.	(1700)	· •	y manne i cei	ystanization	OI IIIII	iorais.	

- Hobbs, B.E., Heard, H.C. (Eds.). Mineral and rock deformation (laboratory studies).
- 665 Geophysical monograph of the American Geophysical Union, 36, pp. 161–200.
- 666 White, R.W., & Clarke, G.L. (1997). The role of deformation in aiding recrystallization: an
- example from a high-pressure shear zone, Central Australia. Journal of Petrology, 38,
 1307–1329.
- 669 Williams, M.L., Dumond, G., Mahan, K., Regan, S., & Holland, M. (2014). Garnet-forming
- 670 reactions in felsic orthogneiss: implications for densification and strengthening the
 671 lower crust. Earth and Planetary Science Letters, 405, 207–219.
- 672 Vernon, R.H. (2004). A practical guide to rock microstructure. Cambridge University Press,
- 673 Cambridge, UK.
- 674 Vernon, R.H., White, R.W., & Clarke, G.L. (2008). False metamorphic events inferred from
 675 misinterpretation of microstructural evidence and *P*–*T* data. Journal of Metamorphic
- 676 Geology, *26*, 437–449.
- 677 Vernon, R.H & Paterson, S.R. (2008). How extensive are subsolidus grain-sahpe changes in
 678 cooling granites? Lithos, 105, 42–50.
- 679 Vernon, R.H., Collins, W.J., & Cook, N.D.J. (2012). Metamorphism and deformation of
- 680 mafic and felsic rocks in a magma transfer zone, Stewart Island, New Zealand.
- 581 Journal of Metamorphic Geology, 30, 473–488.
- 682 Yund, R.A., & Tullis, J. (1991). Compositional changes of minerals associated with dynamic
- recrystallization. Contributions to Mineralogy and Petrology, 108, 346–355.
- 684 Figure captions
- **Figure 1a** Simplified geological map of the Breaksea Sound area between northern
- 686 Resolution Island and Coal River. Circles show sample locations and inset shows the
- 687 structure at Breaksea Tops. Structural relationships in red and foliation trajectories are from

688 Klepeis et al. (2016). **b** Detailed outcrop relationships showing distribution of strain

surrounding an eclogite pod, near sample location 0904D.

Figure 2a Hand specimens of the monzogabbroic to monzodioritic gneiss showing typical

691 variation in mineral assemblages and strain. Boxes represent approximate locations of studied

692 samples, MG = monzogabbroic and MD = monzodioritic. **b** Flinn diagram of mafic cluster

693 shapes. Values of *D* represent the intensity of strain defined as the distance from the origin,

and *K* the slope defines the type of strain symmetry.

695 Figure 3a Mafic grain cluster in low-strain monzogabbroic gneiss comprising intergrown

igneous garnet and omphacite (see Fig. 6). Omphacite grains in places have coincidental

697 crystal form. **b** Deformed omphacite phenocryst with facetted and euhedral plagioclase

698 inclusions (arrow). c Large Igneous garnet with crystallographically aligned rutile exsolution

699 (arrow) and facetted plagioclase inclusion displaying a perfect growth twin (arrow). **d** Large

interlocking plagioclase grains in low-strain monzogabbroic gneiss. Note the low apparent

701 dihedral angles, undulose extinction, sutured grain boundaries (arrows) and small neoblasts. e

702 Large omphacite porphyroclasts in intermediate-strain monzodioritic gneiss, with internal

703 titano-hematite exsolution. f Variably recrystallised feldspar-rich matrix in an intermediately-

strained monzogabbroic gneiss. Large plagioclase porphyroclasts are present in the top right,

neoblasts occur closer to the cluster margins. **g** Attenuated mafic grain clusters in high-strain

706 monzodioritic gneiss, surrounded by necklaces of neoblastic garnet, quartz, rutile and K-

707 feldspar. h Granoblastic feldspar-rich matrix from high-strain monzodioritic gneiss. Grain

708 triple junctions are close to 120° (arrow).

Figure 4 Lower hemisphere pole figures displaying omphacite CPO (one point per grain) for the studied strain gradients. J = texture index, MUD refers to maximum mean uniform

711 distribution values, n is the number of grains and AR (X/Y) is the mean aspect ratio of grain

712 cluster from the samples. Int. = intermediate. Top to the right sense of shear. Maps

accompanying the pole figures are shown in Figure 9.

714 Figure 5 Lower hemisphere pole figures displaying plagioclase (one point per grain) CPO for 715 the studied strain gradients. J = texture index, max refers to mean uniform distribution values 716 and *n* is the number of grains. Maps accompanying the pole figures are shown in Figure 9. 717 Figure 6 Microstructures from two samples of monzogabbroic gneiss. a EBSD mineral map of grain cluster in low-strain monzogabbroic gneiss (0904D: Fig. 3a), low angle (2–10°) 718 subgrain boundaries (sgb) shown in yellow and grain boundaries (>10°: gb) in black. Black 719 720 arrows point to small neoblasts and white arrows to porphyroclasts. **b** Crystal misorientation profile showing gradual lattice distortion in porphyroclast marked in **a**. **c** Misorientation axis 721 722 distribution (crystal coordinate reference frame) across a low-angle boundary (2–10°) in 723 garnet shown in **a**. **d** Lower hemisphere pole figures utilising the XYZ structural reference frame (one point per grain) of omphacite grains in the cluster shown in **a**. MUD refers to the 724 725 maximum mean uniform distribution and *n* is the number of grains. e Orientation contrast forescatter image of omphacite grain cluster in the intermediate-strain monzogabbroic gneiss 726 727 (0905B). f-g Crystallographic misorientation from specific reference point (red cross) in 728 porphyroclast (rainbow; f) and neoblast (green; g). h Lower hemisphere pole figures of 729 omphacite grains across the microstructure (shown by circle and squares in e). Rotation from porphyroclast orientations to those of grains in the tails is apparent. i-i Crystal misorientation 730 731 profiles showing gradual lattice distortion in porphyroclast (f) and neoblast (g). 732 Figure 7 Crystallographic misorientation from specific reference point (red cross: a) and 733 associated profile (white line) showing lattice distortion and subgrain orientation and mineral 734 jadeite content in omphacite fish from the intermediate-strain monzodioritic gneiss (b). Figure 8 Microstructures from two samples of monzodioritic gneiss. a Backscatter electron 735 736 image of grain cluster in intermediate strain monzodioritic gneiss (1203T: Fig. 3e). b-e

737	Crystallographic misorientation from specific reference point (red cross) and associated
738	profiles showing gradual lattice distortion and subgrain orientation in omphacite
739	porphyroclast (rainbow; b & d) and neoblast (green; c & e). f Misorientation axis distribution
740	(crystal coordinate reference frame) across a low-angle boundary (2–10°) shown in b . g
741	Backscatter electron image of omphacite grain cluster in high-strain monzodioritic gneiss
742	(1203C: Fig. 3g). h-k Crystallographic misorientation from specific reference point (red
743	cross) and associated profiles showing gradual lattice distortion and subgrain orientation in
744	omphacite porphyroclast (rainbow; $h \& j$) and neoblast (green; $i \& k$). I Pole figures of
745	adjacent omphacite and garnet grains (red & black dots in a).
746	Figure 9 Composite ternary plot of feldspar, garnet and clinopyroxene microprobe analyses,
747	respectively with apices Ab–Or–An, Jd–Aeg–Q and Pyp–Alm–Grs+Sps for strain
748	proportions of monzogabbro (MG) and monzodiorite (MD) in the Breaksea Orthogneiss.
749	Figure 10 Schematic of the microstructural and chemical distinctions across microstructures.
750	Chemical variation diagram of plagioclase anorthite content (An), garnet grossular content
751	(Grs) and omphacite jadeite (Jd) content across the profile, arrows represent within sample
752	variability that changes across igneous and neoblasts (arrow head), subordinate to overall
753	changes across the strain gradient. Simple pole figure displays igneous omphacite CPO.
754	Figure 11 Large-scale EBSD maps of (a – b) low- and intermediate-strain monzogabbroic and
755	(c-d) intermediate- and high-strain monzodioritic gneisses. Highlighted grains represent
756	material interpreted as igneous relicts based on location, grain size and internal deformation,
757	transparent grains are neoblasts.
758	Supplementary Figure 1 Lower hemisphere pole figures displaying clinopyroxene CPO
759	(one point per grain) for cumulate clinopyroxenite and eclogite in the Breaksea Orthogneiss.

760 MUD refers to maximum mean uniform distribution values and n is the number of grains.

761	Supplementary Figure 2 WDS X-ray maps from intermediate-strain monzodioritic gneiss
762	(0905B) a phase map with grain boundaries in black and subgrain boundaries in yellow of Al
763	(b), Ca (c) and Na (d) proportions in omphacite, Ca (e) and Mg (f) proportions in garnet and
764	Ca proportions in plagioclase (g). Zoning in omphacite overprints all grains. Garnet zoning is
765	asymmetrical towards mineral boundaries with plagioclase. Plagioclase albite content is
766	zoned towards omphacite. Image size is c . 2 x 2 cm.
767	
768	
769	
770	
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	

 Table 1 Summary of the tectonometamorphic history of the Breaksea Orthogneiss.

	Т	Р	Т	D	assemblages	tectonometamorphic event	ref.
	(Ma)	(GPa)	(°C)				
	124–	1.8	950-	Ign	Grt–Omp–	Pluton emplacement, layering	1, 2, 3,
	115		1200		Pl–Opx	and accumulation	4, 8
	124–	1.8	800-	D_1	Grt–Omp–	Metamorphism and S_1-L_1	1, 2, 5,
	115		950		P1	fabric	6, 8
	115–	10-1.4	650-	Post-D ₁	Di–Ab and	Near-isothermal	1, 5, 6
	105		750		Hb–Pl	decompression, decimetre	
						dome formation	
	105-	0.9–1.4	650-	D_2	Hb–Pl	Extensional shear zones,	1, 6, 7,
	90		750			collapse and foundering	8
796 797 798	(2009),		, ,	,	al. (2007); 8 Stow		
799							
800							
801							
802							
803							
804							
805							

Table 2 Observed mineral modes across the two strain profiles and predicted modes from mineral equilibria modelling of a monzodiorite and monzogabbro at T = 850 °C and P = 1.8 GPa after Chapman et al. (2017).

		monzogabbi	ro		monzodio	rite
	low-	intermediate		intermediate	high-	
	strain	-strain	modelled	-strain	strain	modelled
	0904D	0905B		1203T	1203C	
$\operatorname{grt}_{\operatorname{Ig}}$	24	16		3		
grt_N		4	28		24	25
omp	25	21	32	24	24	29
pl	45	49	22	60	31	27
kfs	0.5	3.5	0.5	10	9	2
ky	1	2	6	0.5	3	3
rt	1	2	1	1	1	1
qtz	1.5	0.5	3.5	1	6	6
ap	0.5	1	na	0.5	1	na
hbl	1.5	1			1	
mu			5*			7*

*models overestimate mu on account of small proportions of H₂O, partially reducing kfs mode

low-strain MG 0904D	omp _{Ig} core	omp _{Ig} rim	grt _{ig} core	grt _{ıg} rim	pl_{Ig}	pl_{N}
SiO ₂	51.69	52.25	39.44	39.46	63.08	63.98
TiO ₂	0.54	0.49	0.06	0.06	0.00	0.00
Al_2O_3	11.27	11.47	21.34	21.23	22.74	22.57
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00
FeO	7.51	7.14	21.33	21.30	0.08	0.06
MnO	0.00	0.00	0.49	0.53	0.00	0.00
MgO	8.43	8.10	11.21	11.23	0.00	0.00
CaO	16.14	15.40	6.47	6.66	3.87	3.86
Na ₂ O	4.91	5.40	0.05	0.04	9.30	9.47
K_2O	0.00	0.00	0.00	0.00	0.66	0.43
Total	100.49	100.25	100.39	100.51	99.73	100.37

Table 3 Representative electron microprobe analysis of minerals from the two strain profiles.

Table 3 cont.

intstrain MG 0905B	omp_{Ig}	omp _N	grt _{Ig} core	grt _{ıg} rim	pl_{Ig}	pl_{N}
SiO ₂	49.92	61.07	38.79	38.83	62.28	61.76
TiO ₂	1.00	0.00	0.08	0.07	0.00	0.00
Al_2O_3	9.42	24.38	21.84	21.71	23.52	23.74
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00
FeO	8.65	0.34	21.27	20.56	0.10	0.09
MnO	0.06	0.00	0.54	0.41	0.00	0.00
MgO	9.22	0.07	9.91	9.16	0.00	0.00
CaO	18.21	6.40	7.91	9.40	5.20	5.24
Na ₂ O	3.50	7.80	0.04	0.03	8.42	8.35
K_2O	0.00	0.34	0.00	0.00	0.49	0.70
Total	99.98	100.40	100.46	100.17	100.01	99.88
Table 3 cont.						
-------------------	-------------------	---------	--	--	-----------------------------	----------
Intstrain MD	omp _{Ig}	omp_N	$\operatorname{grt}_{\operatorname{Ig}}$	$\operatorname{grt}_{\operatorname{Ig}}$	$\mathrm{pl}_{\mathrm{Ig}}$	pl_{N}
1203T			core	rim		
SiO ₂	51.19	49.99	39.35	39.65	61.00	61.42
TiO ₂	0.32	0.58	0.04	0.09	0.00	0.00
Al_2O_3	6.07	13.06	22.11	22.20	23.82	24.04
Cr_2O_3	0.01	0.00	-0.01	0.02	0.00	0.00
FeO	8.56	8.61	21.38	21.87	0.07	0.05
MnO	0.06	0.05	0.66	0.63	0.00	0.00
MgO	11.36	7.32	9.83	10.17	0.00	0.00
CaO	19.90	15.49	7.38	6.29	4.89	4.98
Na ₂ O	2.35	4.94	0.03	0.01	8.56	8.43
K_2O	0.00	0.01	0.01	0.00	0.52	0.50
Total	100.08	100.28	100.92	101.03	98.95	99.49

Table 3 cont.

high-strain						
MD	omp_{N}	omp_{N}	grt_{N}	grt_{N}	pl_{RN}	pl_N
1203C	core	rim	core	rim	core	rim
SiO ₂	50.95	52.04	38.74	38.77	62.02	62.45
TiO ₂	0.74	0.63	0.05	0.03	0.00	0.00
Al_2O_3	10.28	10.04	21.78	21.96	23.34	23.38
Cr_2O_3	0.05	0.00	0.00	0.00	0.00	0.00
FeO	8.26	8.00	21.70	21.19	0.00	0.00
MnO	0.04	0.00	0.57	0.45	0.00	0.00
MgO	8.46	8.51	10.11	9.51	0.00	0.00
CaO	16.67	16.36	6.83	8.24	5.06	5.02
Na_2O	4.27	4.55	0.02	0.00	8.60	8.89
K_2O	0.00	0.00	0.00	0.00	0.48	0.47
Total	99.72	100.13	99.80	100.15	99.50	100.21

Chapman et al. Figure 2

Chapman et al. Figure 4

Chapman et al. Figure 5

Chapman et al. Figure 6

Chapman et al. Figure 8

