Revision 2 1 Stracherite, BaCa₆(SiO₄)₂[(PO₄)(CO₃)]F, the first CO₃-bearing intercalated 2 hexagonal antiperovskite from Negev Desert, Israel 3 4 EVGENY V. GALUSKIN¹*, BILJANA KRÜGER², IRINA O. GALUSKINA¹, HANNES KRÜGER², 5 YEVGENY VAPNIK³, ANUSCHKA PAULUHN⁴ AND VINCENT OLIERIC⁴ 6 7 ¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, 8 9 University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 10 *E-mail: evgeny.galuskin@us.edu.pl ²Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 11 Innsbruck. Austria 12 ³Department of Geological and Environmental Sciences, Ben-Gurion University of the 13 Negev, POB 653, Beer-Sheva 84105, Israel 14 ⁴Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland 15 16 17 ABSTRACT The new mineral stracherite, BaCa₆(SiO₄)₂[(PO₄)(CO₃)]F ($R\bar{3}m$, a = 7.0877(5) Å, c =18 19 25.201(2) Å, V = 1096.4(1) Å³, Z = 3), belongs to the zadovite group, which also includes zadovite, $BaCa_{6}[(SiO_{4})(PO_{4})](PO_{4})_{2}F$; aradite, $BaCa_{6}[(SiO_{4})(VO_{4})](VO_{4})_{2}F$ and gazeevite, 20 $BaCa_6(SiO_4)_2(SO_4)_2O$. All minerals of this group exhibit single-layer antiperovskite modules, 21 which are intercalated with tetrahedral layers. In stracherite, the first CO₃-bearing intercalated 22 hexagonal antiperovskite, about 38% of the $(PO_4)^{3-}$ tetrahedra are randomly substituted by 23 planar $(CO_3)^{2-}$ groups. The mineral was discovered in spurrite rocks of the Hatrurim Complex 24 in the Negev Desert near Arad, Israel. Associated minerals are spurrite, calcite, 25

26 brownmillerite, shulamitite, CO₃-bearing fluorapatite, fluormayenite-fluorkyuygenite, ariegilatite, periclase, brucite, barytocalcite, baryte, garnets of the elbrusite-kerimasite series, 27 Ca-Fe and K-Fe sulphides. Stracherite is colorless with vitreous luster, its streak is white. The 28 mineral is optically uniaxial and positive: $\omega = 1.635(2)$, $\varepsilon = 1.659(2)$ ($\lambda = 589$ nm). The 29 microhardness was determined to VHN₅₀ = 510(12) kg \cdot mm⁻² with a range of 490-540 kg \cdot mm⁻² 30 2 . The Mohs hardness is ca. 5. Cleavage is imperfect on (001), parting is not observed, and the 31 fracture is irregular. Calculated density = $3.365 \text{ g} \cdot \text{cm}^{-3}$. The empirical formula of stracherite is 32 as follows: $(Ba_{0.96}K_{0.02}Na_{0.01})_{\Sigma 0.99}Ca_{6.01}[(SiO_4)_{1.86}(PO_4)_{0.12}(AlO_4)_{0.01}(TiO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{1.05}]_{\Sigma 2}[(PO_4)_{1.0$ 33 34 $(CO_3)_{0.75}(SO_4)_{0.18}(VO_4)_{0.02}]_{\Sigma 2}(F_{0.95}O_{0.03})_{\Sigma 0.98}.$ The Raman spectrum of stracherite exhibits strong bands (cm⁻¹): 1069 $v_1(CO_3)^2$: 1036 35 $v_3(PO_4)^{3-}$; 995 $v_1(SO_4)^{2}$; 952 $v_1(PO_4)^{3-}$; 858 $v_1(SiO_4)^{4-}$; 431 $v_2(PO_4)^{3-}$; 399 $v_2(SiO_4)^{4-}$; 210 36 (lattice mode, Ca-O, Ba-O vibrations). The X-ray powder diffraction pattern shows strong 37 lines at (d_{hkl}/I_{rel}) : 2.709/100, 3.047/82, 3.544/66, 1.772/54, 3.105/43, 2.800/42, 3.265/39, and 38 1.948/36. Poikilitic crystals of stracherite are up to 0.5 mm in size and are confined to re-39 crystallization zones of spurrite marbles under the influence of by-products (gases, fluids) of 40 41 combustion metamorphism. 42 **Keywords:** stracherite, zadovite group, new mineral, intercalated hexagonal antiperovskites, 43 44 CO₃, Raman, pyrometamorphic rocks, Hatrurim Complex 45 INTRODUCTION 46 Stracherite, BaCa₆(SiO₄)₂[(PO₄)(CO₃)]F [$R\bar{3}m$, a = 7.0877(5) Å, c = 25.201(2) Å, V =47 1096.4(1) Å³, Z = 3], was discovered in spurrite rocks of the Hatrurim Complex in the Negev 48 Desert near Arad, Israel. It is the fourth mineral isotypic with zadovite (see Table 1 in 49

50 Galuskina et al. 2018). Minerals with zadovite-type structure can be considered as intercalated

51 hexagonal antiperovskites with a general formula of $AB_6(TO_4)_2(TO_4)_2W$, where A = Ba, K...B = Ca, Na; T = Si, P, V⁵⁺, S⁶⁺, Al...; $W = O^{2-}$, F⁻, and antiperovskite layers $\{(WB_6)(TO_4)_2\}^{e^+}$ 52 and $A(TO_4)_2^{e}$ layers occur in a ratio of 1:1. There are three zadovite-group minerals: zadovite, 53 $BaCa_{6}[(SiO_{4})(PO_{4})](PO_{4})_{2}F$; aradite $BaCa_{6}[(SiO_{4})(VO_{4})](VO_{4})_{2}F$ and gazeevite, 54 BaCa₆(SiO₄)₂(SO₄)₂O (Galuskin et al. 2015a, 2017). Stracherite is the first mineral of this 55 group which exhibits a substitution of $(PO_4)^{3-}$ tetrahedra by planar $(CO_3)^{2-}$ groups. 56 Consequently, tetrahedral modules $Ba[(PO_4)(CO_2)]^{3-}$ alternate with $\{FCa_6(SiO_4)_2\}^{3+}$ 57 antiperovskite modules. 58

59 Minerals of the nabimusaite group can also be considered as intercalated hexagonal antiperovskites, but with a general formula of the form $AB_{12}(TO_4)_4(TO_4)_2W_3$ (A, B, T, W – as 60 indicated above). However, in this structure type, single tetrahedral layers $A(TO_4)_2^{e}$ are 61 intercalated with triple antiperovskite layers $\{(W_3B_{12})(TO_4)_4\}^{e^+}$ resulting in a 3:1 ratio of the 62 structural modules. The mineral nabimusaite, $KCa_{12}(SiO_4)_4(SO_4)_2O_2F$ ($R\bar{3}m$, a = 7.1905(4), c 63 = 41.251(3) Å, V = 1847.1(2) Å3, Z = 3), was the first intercalated hexagonal antiperovskite 64 detected in pyrometamorphic rocks of the Hatrurim Complex (Galuskin et al. 2015b). 65 Nabimusaite is an isotype of arctite, Ba(Ca₇Na₅)(PO₄)₄ (PO₄)₂F₃ ($R\bar{3}m$, a= 7.094 Å, c = 66 41.320 Å; Sokolova et al. 1984). Later, dargaite, BaCa₁₂(SiO₄)₄(SO₄)₂O₃, and ariegilatite, 67 $BaCa_{12}(SiO_4)_4(PO_4)_2OF_2$, were found and confirmed to be members of the nabimusaite group 68 (Krüger et al. 2017; Galuskin et al. 2018; Galuskina et al. 2018). Triple antiperovskite layers 69 in minerals of this group resemble triple antiperovskite layers in the structure of hatrurite – 70 framework hexagonal antiperovskite (Jeffery 1952; Krivovichev 2008; Galuskin et al. 2015b). 71 The name stracherite is given in honor of the well-known American geologist, Glenn 72 Blair Stracher (aka "The Firewalker", born March 31, 1949 in Albany, New York), Professor 73 Emeritus of Geology at East Georgia State College in Swainsboro, Georgia, USA. Dr. 74 Stracher is the author and editor of numerous scientific works on coal combustion and 75

3

76	chemical thermodynamics. He also authored books, including the GSA Engineering Geology
77	Book and the five volumes of Coal and Peat Fire Elsevier books. Glenn Stracher edited and
78	supported the publication of our earliest works related to the study of the Hatrurim Complex
79	in Israel (Vapnik et al. 2007). He is the co-author of our recent study related to the fascinating
80	discovery of stone tool workshops utilizing pyrometamorphic rocks of the Hatrurim Basin
81	(Vapnik et al. 2015).
82	The mineral and name (IMA2016-098) were approved by the Commission on New
83	Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical
84	Association (IMA). Type material was deposited in the mineralogical collection of the
85	Fersman Mineralogical Museum, Moscow, Russia; catalogue numbers: 4957/1.
86	
87	METHODS OF INVESTIGATION
88	Crystal morphology and chemical composition of stracherite and associated minerals
89	were examined using an optical microscope, as well as a Philips XL30 and a Phenom XL
90	analytical electron scanning microscopes (Faculty of Earth Sciences, University of Silesia,
91	Poland). Chemical analyses of stracherite were performed with a CAMECA SX100
92	microprobe (Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw,
93	Poland) at 15 kV and 10 nA using the following lines and standards: BaLa, SKa – baryte;
94	$PK\alpha$ – fluorapatite; $CaK\alpha$ – wollastonite; $SiK\alpha$ – diopside; $VK\alpha$ – V_2O_5 , $AlK\alpha$, $KK\alpha$ –
95	orthoclase; Ti $K\alpha$ – rutile; Na $K\alpha$ – albite, Sr $L\alpha$ – SrTiO ₃ , F $K\alpha$ – fluorphlogopite.
96	The Raman spectrum of stracherite was recorded on a WITec alpha 300R confocal
97	Raman microscope (Department of Earth Science, University of Silesia, Poland) equipped
98	with an air-cooled solid laser 532 nm and a CCD camera operating at -61°C. The laser
99	radiation was coupled to a microscope through a single-mode optical fibre with a diameter of
100	3.5 µm. An air Zeiss LD EC Epiplan-Neofluan DIC - 100/0.75NA objective was used. Raman

scattered light was focused on a broad band single mode fibre with an effective pinhole size of 30 μ m. A monochromator with a 600 mm⁻¹ grating was used. The power of the laser at the sample position was ca. 40 mW. Integration intervals of 10 s with accumulation of 15 scans and a resolution of 3 cm⁻¹ were chosen. The monochromator was calibrated using the Raman scattering line of a silicon plate (520.7 cm⁻¹).

Diffraction experiments were performed using a single crystal of stracherite (\approx 106 87×50×30 μm) at the Beamline X06DA, Swiss Light Source, Paul Scherrer Institute, Villigen, 107 Switzerland. Data were processed (incl. absorption correction) using the XDS software 108 package (Kabsch 2010). The atomic coordinates of zadovite (Galuskin et al., 2015a) were 109 110 used as a starting model. With subsequent analyses of difference-Fourier maps, the position of $(CO_3)^{2-}$ groups was located and the crystal structure was refined to R1 = 2.19 %. The 111 refinements include anisotropic atom displacement parameters and have been carried out with 112 neutral atom scattering factors, using the program SHELX97 (Sheldrick 2008). 113

114

115 ORIGIN AND DESCRIPTION OF STRACHERITE

Stracherite, BaCa₆(SiO₄)₂[(PO₄)(CO₃)]₂F, was found in spurrite pyrometamorphic rocks of the Hatrurim Complex in the Negev Desert (N31°13'58" E35°16'2") near Arad, Israel. Associated minerals are spurrite, calcite, brownmillerite, shulamitite, CO₃-bearing fluorapatite, fluormayenite-fluorkyuygenite, periclase, brucite, barytocalcite, baryte, garnets of elbrusite-kerimasite series, undiagnosed Ca-Fe and Rb-bearing K-Fe sulphides, the new mineral ariegilatite (Krüger et al. 2017a; Galuskin et al. 2018) and a potentially new mineral Ba₂Ca₁₈(SiO₄)₆(PO₄)₃(CO₃)F₃O (Krüger et al. 2017b).

123 Stracherite is confined to altered spurrite rocks with abundance of small calcite veins. 124 It was also observed in concentric formations, which we interpret as gaseous channels 125 (microfumaroles) filled with fine-grained calcite-spurrite aggregates and plenty of Ca- and K- Fe-sulfides (Fig. 1, zone I). Channel walls of this microfumaroles are formed by large spurrite
poikilitic crystals (metacrysts) up to 1 cm in length (Fig. 1, zone II). For comparison, in
unaltered spurrite marbles, spurrite grains usually do not exceed the size of 100 μm.
Nevertheless, rare and relatively large metacrysts of stracherite, up to 0.5 mm in size, are
found at the boundary of zone I and II (Figs. 1, 2, 3A). Also, smaller grains of stracherite, less
than 100 μm, occur in fine-grained part of spurrite rock (III zone, Fig. 1).

Stracherite crystals are flattened on $\{001\}$ and often exhibit a hexagonal shape in cross-sections perpendicular to *c* (Figs. 2A-C, 3A). Stracherite substitutes for CO₃-bearing fluorapatite (Fig. 3B). Occasionally, oriented overgrowths of stracherite on ariegilatite can be observed as well as substitutions of stracherite for ariegilatite (Fig. 3C). An induction surface of cooperative growth of stracherite with large spurrite metacrysts was recorded (Fig. 2D).

137 Stracherite is a colorless mineral with glassy luster and a white streak. It does not fluoresce. This mineral is optically uniaxial, positive: $\omega = 1.635(2)$, $\varepsilon = 1.659(2)$ ($\lambda = 589$ 138 nm). The measured microhardness VHN₅₀ = 510(12) kg·mm⁻² (average of 15 measurements), 139 range between 490 and 540 kg·mm⁻². Hence, Mohs hardness is about 5. Cleavage is imperfect 140 on (001), and parting is not observed. Stracherite is brittle with irregular fractures. Abundance 141 of tiny inclusions of spurite, fluormayenite, calcite, brownmillerite etc. does not allow to 142 select pure grains for density measurement. Consequently, the calculated density is 3.365 143 $g \cdot cm^{-3}$. Gladstone-Dale's compatibility factor [1 - (Kp/Kc)] was calculated to -0.026 144 145 (excellent), using the appropriate empirical formula (Mandarino 2007). Stracherite is homogeneous and its empirical formula is (Table 1, average of 22 measurements): 146 $(Ba_{0.96}K_{0.02}Na_{0.01})_{\Sigma 0.99}Ca_{6.01}[(SiO_4)_{1.86}(PO_4)_{0.12}(AIO_4)_{0.01}(TiO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{1.05}(CO_3)_{0.75}]$ 147

148 $(SO_4)_{0.18}(VO_4)_{0.02}]_{\Sigma 2}(F_{0.95}O_{0.03})_{\Sigma 0.98}$. About 38 % of the $(PO_4)^{3-}$ tetrahedra in stracherite are 149 substituted by planar $(CO_3)^{2-}$ groups. This was confirmed by structural refinement and Raman spectroscopy investigations (see below). Sulphur, which enters tetrahedral sites as $(SO_4)^{2^-}$ anion groups, is a significant impurity (SO₃ ~ 2 wt.%).

152

153 RAMAN SPECTROSCOPY

154 Unpolarised Raman spectra of stracherite and CO₃-bearing fluorapatite were obtained from the same grain, which was used to determine the chemical composition (Table 1). The 155 experimental spectra with the results of peak fitting in the region 80-1500 cm⁻¹ are presented 156 in Fig. 4. The main bands of stracherite are related to vibrations of $(CO_3)^{2-}$, $(PO_4)^{3-}$, and 157 (SiO₄)⁴⁻ groups analogous to CO₃-bearing apatite and hydroxylellestadite (Penel et al. 1998; 158 159 Comodi and Liu 2000; Banno et al. 2016). The main bands in the spectrum of stracherite are (Fig. 4A, cm⁻¹): 1408 $v_3(CO_3)^2$; 1069 $v_1(CO_3)^2$; 1036 $v_3(PO_4)^3$; 995 $v_1(SO_4)^2$; 952 $v_1(PO_4)^3$ 160 ; 858 $v_1(SiO_4)^{4-}$; 704 $v_4(CO_3)^{2-}$; 623 $v_4(SO_4)^{2-}$; 584 and 555 $v_4(PO_4)^{3-}$; 518 $v_4(SiO_4)^{4-}$; 431 161 $v_2(PO_4)^{3-}$; 399 $v_2(SiO_4)^{4-}$; 335, 307, 225, 210, 114 (lattice modes, Ca-O, Ba-O vibrations). 162 The main bands in the spectrum of CO₃-bearing apatite, which is substituted by stracherite, 163 are also connected with vibrations of $(PO_4)^{3-}$, $(CO_3)^{2-}$, and $(SiO_4)^{4-}$ (cm⁻¹, Fig. 4B): 1072 cm⁻¹ 164 $v_1(CO_3)^{2-}$; 962 $v_1(PO_4)^{3-}$; 859 $v_1(SiO_4)^{4-}$; 586 $v_4(PO_4)^{3-}$; 428 $v_2(PO_4)^{3-}$. The band caused by 165 stretching vibration of the $(CO_3)^{2-1}$ group is located nearly at the same Raman shift in 166 stracherite and CO₃-bearing apatite (cm⁻¹, Fig. 4): 1069 and 1072 cm⁻¹, respectively. In the 167 spectrum of stracherite containing ~4.4 wt.% CO₂ a band from bending vibrations of the CO₃ 168 group is well displayed at 704 cm⁻¹, which is not exhibited in the spectrum of CO_3 -bearing 169 apatite with ≈ 3 wt.% CO₂. 170

171

172 STRACHERITE STRUCTURE

The crystal structure of stracherite was refined from diffraction data collected from afragment of the crystal shown in Fig. 2A. The composition of the same grain was also

investigated (Table 1). Experimental data and the results of the structure refinement are given in the supplementary information (Table S1-S3) and can also be found within the CIF. Stracherite belongs to the zadovite group with the general crystal chemical formula $AB_6(TO_4)_2[(TO_4)_{2-x}(CO_3)_x]W$ and $x \approx 0$ (zadovite, aradite, gazeevite) and ≈ 1 (stracherite) (Galuskin et al. 2015a, 2017; Galuskina et al. 2018). The ideal modular structure type of zadovite is formed by intercalating antiperovskite layers { $[WB_6](TO_4)_2$ }^{e+} with $A(TO_4)_2^{e-}$ layers (Fig. 5).

The single antiperovskite layer shows F1Ca6 anion-centered coordination polyhedra. Using a cation-centered approach, F1 is sandwiched between two layers of seven-fold Ca coordination polyhedra. The Ca polyhedra form face-sharing triplets with the common edge F1-O1. The atom F1 connects two of these triplets (one of each layers), which are related by a three-fold roto inversion ($\overline{3}$) (Fig. 6).

The same kind of the layers composed of (Ca,Na)-triplets, $[(Ca,Na)_3O_{11-14}]$, with octahedral structural cages occupied by anions, were described earlier for a number of minerals exhibiting elements of hexagonal antiperovskite structure (Sokolova et al. 1999, 2005; Sokolova and Hawthorne 2001; Krivovichev 2008).

191 In stracherite, antiperovskite modules $\{FCa_6(SiO_4)_2\}^{3+}$ intercalate with

192 ${Ba(PO_4)(CO_3)}^{3-}$ layers. In addition to atom positions of the zadovite structure, the position

193 of C atoms in stracherite was located from difference-Fourier maps, 0.3 Å from the center of

the T2O₄ tetrahedra and the 3-fold axis (Fig. 7A, B). Therefore, $(CO_3)^{2-}$ triangles are

statistically distributed over three equivalent positions, parallel to three faces of the tetrahedra

196 (Fig. 7B). In the $T2O_4$ tetrahedra, the T2-atom has one bond to the apical oxygen O4 and

three bonds to the O3 atoms in the base. In the planar $(CO_3)^{2-}$ group, carbon is bonded to O4

and to two of the three O3 atoms at the base of the substituted tetrahedra (Fig. 7B). Therefore,

substitution of a $(PO_4)^{3-}$ tetrahedron by a $(CO_3)^{2-}$ group, results in formation of vacancies at

200	the O3 sites (Fig. 7B), which is evident from the refinement results (reduced site occupancy of
201	O3, Table 3). The O4 position does not show any reduced occupancy, which excludes the
202	location of the $(CO_3)^{2-}$ group at the base of the replaced tetrahedra.
203	The 40%-substitution of CO ₃ groups for PO ₄ tetrahedra results in cation and anion
204	disorder. The occupancy of the O3 site decreases from 100 to 87 % and hence the Ba atom is
205	coordinated by 5.22 oxygen atoms (instead of 6) on the O3 site. To compensate for decrease
206	in bond-valence contribution from anions at the O3 site, the O2 site splits into two subsites:
207	O2 and O2A (Fig. 7A, C). The bond-lengths Ba-O2 and Ba-O2A are 3.444(7) and 3.032(8) Å
208	(Table 2). The shorter bond-length Ba-O2A increases the bond-valence sum of the Ba atom
209	by 0.08 v.u. (valence units) (Table 2). That exactly compensates the decreased contribution
210	from O atoms on the O3 site (Table 2). In fact, the site occupancy of the O2A site corresponds
211	to the occupancy of the C site.
212	This kind of occupational and positional disorder in T2O ₄ /CO ₃ is responsible for the
212 213	This kind of occupational and positional disorder in $T2O_4/CO_3$ is responsible for the unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4)
213	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4)
213 214	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These
213 214 215	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O
213 214 215 216	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O (\approx 1.53Å) and planar C-O (\approx 1.28Å) distances (Shannon 1976). This can be observed in the O-
213 214 215 216 217	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O (\approx 1.53Å) and planar C-O (\approx 1.28Å) distances (Shannon 1976). This can be observed in the O-O distances too. In a typical planar (CO ₃) ²⁻ group (calcite, aragonite) the triangular O-O
213 214 215 216 217 218	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O (\approx 1.53Å) and planar C-O (\approx 1.28Å) distances (Shannon 1976). This can be observed in the O-O distances too. In a typical planar (CO ₃) ²⁻ group (calcite, aragonite) the triangular O-O distance is 2.23 Å (Graf 1961), whereas in a (PO ₄) ³⁻ tetrahedron the O-O distance is 2.50 Å
213 214 215 216 217 218 219	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O (\approx 1.53Å) and planar C-O (\approx 1.28Å) distances (Shannon 1976). This can be observed in the O-O distances too. In a typical planar (CO_3) ²⁻ group (calcite, aragonite) the triangular O-O distance is 2.23 Å (Graf 1961), whereas in a (PO_4) ³⁻ tetrahedron the O-O distance is 2.50 Å (Hughes et al. 1989). In stracherite the O3-O3 distance is 2.38 Å and thus intermediate
213 214 215 216 217 218 219 220	unusual bond distances observed in the tetrahedra (T2-O3=1.472(3) Å and T2-O4=1.500(4) Å), as well as in the $(CO_3)^{2-}$ group (C1-O3= 1.37(5) and C1-O4=1.44(2) Å, Table 2). These distances represent values somewhat intermediate between the expected tetrahedral P-O (\approx 1.53Å) and planar C-O (\approx 1.28Å) distances (Shannon 1976). This can be observed in the O-O distances too. In a typical planar (CO ₃) ²⁻ group (calcite, aragonite) the triangular O-O distance is 2.23 Å (Graf 1961), whereas in a (PO ₄) ³⁻ tetrahedron the O-O distance is 2.50 Å (Hughes et al. 1989). In stracherite the O3-O3 distance is 2.38 Å and thus intermediate between (CO ₃) ²⁻ and (PO ₄) ³⁻ . Disordered substitution of about 40 % of the (PO ₄) ³⁻ -tetrahedra

224 **DISCUSSION**

9

Stracherite, $BaCa_6(SiO_4)_2[(PO_4)(CO_3)]_2F$, is the first intercalated hexagonal 225 antiperovskite containing carbonate groups. $(CO_3)^{2-}$ groups substitute for $(PO_4)^{3-}$ according to 226 the mechanism known in CO₃-bearing apatite of the B-type, where $(CO_3)^{2-}$ group is randomly 227 located sub-parallel to one of the faces of a $(PO_4)^{3-}$ tetrahedron (Borneman-Starinkevitch and 228 Belov 1953; Ivanova et al. 2001; Fleet and Liu 2004). In stracherite about 40% of $(PO_4)^{3-1}$ 229 tetrahedra are substituted by $(CO_3)^{2-}$ groups. Theoretically, substitution of $(PO_4)^{3-}$ by $(CO_3)^{2-}$ 230 causes the appearance of two vacancies among six sites of O3 coordinating Ba1 and the shift 231 of six O2 oxygens (two O2-O2-O2 triangles) to O2A positions (Fig. 7A, C). Occupation of 232 233 ca. 0.87 for O3 (Table S2, Supplementary information) gives 5.22 atoms on six O3 sites. Therefore, 0.78 sites of six O3 are not occupied, half of this (0.78/2 = 0.39) corresponds to 234 vacancies at T2 (occupation 0.396) and occupation of C1 is $3 \times 0.132 = 0.396$ and O2A = 235 236 0.443 (Table S2, Supplementary information).

The substitution of $(CO_3)^{2-}$ for $(PO_4)^{3-}$ groups affects the coordination of the O4 atom. The O4 atom exhibits a bond valence sum (BVS) of 2.27, when it is coordinated by T2 and three Ca1 (Table 2). This coordination is changed to one carbon and three Ca-atoms, when a $(CO_3)^{2-}$ group is present. A part of the Ca-atoms (19%) is shifted from Ca1 to the Ca1A site (Fig. 7A). Therefore, O4 is either coordinated by one Ca1A and two Ca1 (BVS 2.25) or by one C and three Ca1 resulting in a BVS of 1.95 (Table 2).

The sum formula resulting from the final structure refinement 243 is $BaCa_6(SiO_4)_2[(PO_4)_{1,21}(CO_3)_{0.79}]_{\Sigma 2}F$, however the formula is not charge neutral (-0.21) 244 electrons). In stracherite, besides Si, a slight amount of phosphorus is located on site T1, and 245 besides P, S enters in T2. There are two alternative ways to obtain a charge-balanced formula, 246 depending on whether sulfur is present or not: BaCa₆[(SiO₄)_{1.79}(PO₄)_{0.21}][(PO₄)_{1.21} 247 $(CO_3)_{0.79}]_{\Sigma 2}F$ and BaCa₆(SiO₄)₂[(PO₄)_{1.00}(SO₄)_{0.21}(CO₃)_{0.79}]_{\Sigma 2}F. Both variants lead to the 248 idealized formula of the stracherite end-member - $BaCa_6(SiO_4)_2[(PO_4)(CO_3)]F$. 249

250	To obtain a charge-balanced empirical formula from the electron microprobe results, a
251	slightly lower $(CO_3)^{2-}$ content is needed in comparison to the structure refinement:
252	$(Ba_{0.96}K_{0.02}Na_{0.01})_{\Sigma 0.99}Ca_{6.01}[(SiO_4)_{1.86}(PO_4)_{0.12}(AlO_4)_{0.01}TiO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{1.05}(SO_4)_{0.18}]_{\Sigma 2}[(PO_4)_{1.05}(SO_4)_{0.18}]_{\Sigma 2}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}]_{\Sigma 2}[(PO_4)_{0.01}]_{\Sigma 2}[(PO_$
253	$(CO_3)_{0.75}(VO_4)_{0.02}]_{\Sigma 2}(F_{0.95}O_{0.03})_{\Sigma 0.98}.$
254	Stracherite is a relatively stable mineral. Our observations show that it does not alter in
255	low-temperature processes, whereas associated spurrite is completely substituted by
256	secondary hydrosilicates and calcite. The formation of large ariegilatite and stracherite
257	crystals (up to 0.5 mm), is related to high-temperature alterations of primary spurrite marbles
258	under the influences of by-products (gases, fluids) of combustion metamorphism generated in
259	different burning foci. Gases penetrate into earlier formed high-temperature rocks through
260	cracks or linear channels (microfumaroles; Fig. 1), that lead to re-crystallization of primary
261	clinker minerals. The re-crystallization products include large spurrite and calcite metacrystals
262	(up to 1 cm) and phosphorus-bearing layered antiperovskites. The largest stracherite crystals
263	were found in walls of "fumaroles" in association with compositionally exotic sulfides.
264	Gaseous phases were also involved in their formation (Figs. 2, 3A). Until now, stracherite was
265	only found in recrystallized spurrite marbles at one single outcrop at the Hatrurim Basin,
266	Negev Desert.

267

268 **GENETIC IMPLICATION**

269 In pyrometamorphic rocks of the Hatrurim Complex, intercalated hexagonal

antiperovskites are presented by minerals of the zadovite and the nabimusaite group. Minerals

of both groups differ in origin. Zadovite, BaCa₆[(SiO₄)(PO₄)](PO₄)₂F, and aradite,

272 $BaCa_6[(SiO_4)(VO_4)](VO_4)_2F$, form a solid solution and crystallize in paralavas confined to

273 gehlenite-larnite (flamite) hornfelses (Galuskin et al. 2015b). Gazeevite,

BaCa₆(SiO₄)₂(SO₄)₂O, and minerals of the nabimusaite group: nabimusaite,

275	KCa ₁₂ (SiO ₄) ₄ (SO ₄) ₂ O ₂ F, dargaite, BaCa ₁₂ (SiO ₄) ₄ (SO ₄) ₂ O ₃ and ariegilatite,
276	$BaCa_{12}(SiO_4)_4(PO_4)_2OF_2$, form in larnite marbles. Their genesis is a result of reactions of
277	minerals of early clinker association, such as fluorellestadite-fluorapatite, larnite and
278	oldhamite, with by-products of pyrometamorphism (Galuskin et al. 2015b, 2017, 2018;
279	Galuskina et al. 2018). Ariegilatite is the only phase, that was found in larnite as well as in
280	spurrite rocks. All intercalated hexagonal antiperovskites are found in numerous outcrops of
281	pyrometamorphic rocks in the territories of Israel, Palestine and Jordan (Galuskin et al.,
282	2015a,b; 2017, 2018; Galuskina et al., 2018). Stracherite, BaCa ₆ (SiO ₄) ₂ [(PO ₄)(CO ₃)]F, is an
283	exception, because it was found in spurrite marble in association with ariegilatite at the single
284	outcrop in the Hatrurim Basin, Negev Desert, Israel. As discussed, the formation of stracherite
285	and ariegilatite is related to reactions of by-products of combustion metamorphism with early
286	minerals of clinker association, mainly with CO ₃ -bearing fluorapatite. The genesis of all
287	intercalated hexagonal antiperovskites is not connected with the main pyrometamorphic event
288	of the Hatrurim Complex rock formation. The main stage of rock genesis resulted in very high
289	temperature water-free mineral association resembling natural ceramics and close in mineral
290	content to cement clinkers forming after sedimentary protolith. Pyrometamorphic process,
291	during which rocks of the Hatrurim Complex were formed, was relatively extended with
292	numerous burning foci, which generated different by-products – melts, fluids and gases.
293	Heterogeneous sedimentary protolith defines formation of not only main types of
294	pyrometamorphic rocks (spurrite and larnite marbles, gehlenite hornfelses), but also
295	determines the character of succeeding alterations. Just so, paralavas with minerals of the
296	zadovite-aradite series crystallized from partial melts generated at gehlenite hornfels unit
297	(Galuskin et al. 2015a). In larnite-bearing marble primary fluorellestadite was substituted by
298	$(SO_4)^{2}$ -bearing hexagonal antiperovskites: nabimusiate, dargaite and gazeevite (Galuskin et
299	al. 2015b, 2017; Galuskina et al. 2018). In spurrite-bearing marble CO ₃ -bearing apatite was

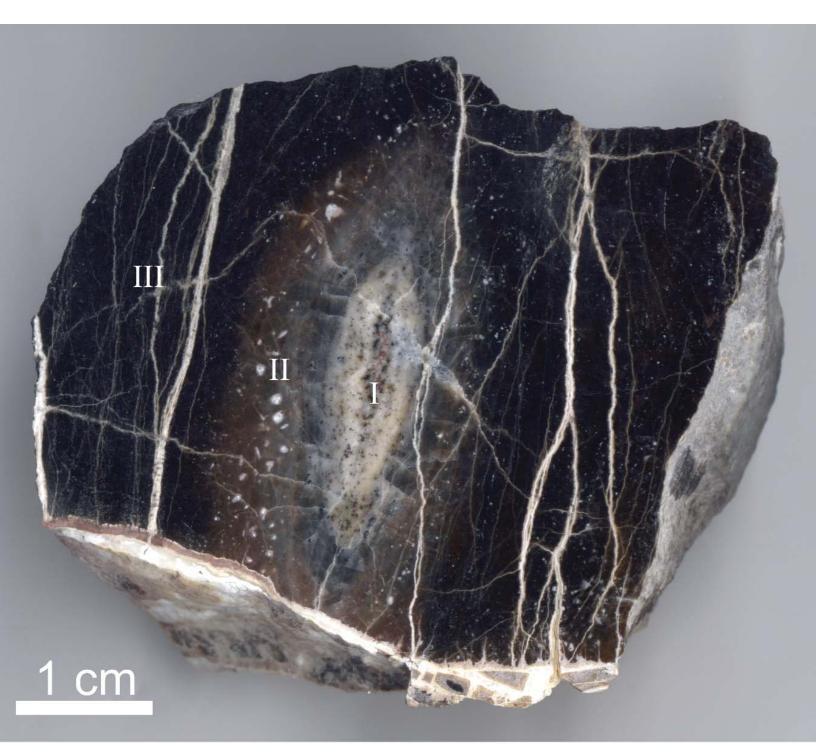
12

300	precursor for $(PO_4)^{3}$ -bearing antiperovskite formation: ariegilatite and stracherite (Fig. 3C).
301	That way, pyrometamorphic reactions of by-products with early formed minerals induced an
302	increasing diversity of high-temperature minerals in the Hatrurim Complex.
303	
304	ACKNOWLEDGEMENTS
305	The authors thank Elena Sokolova and Fernando Camara for their careful review that
306	improved the manuscript. The investigations were partially supported by the National Science
307	Centre (NCN) of Poland, grant no. 2016/23/B/ST10/00869. The authors are grateful to
308	Thomas Armbruster for helpful discussion.
309	
310	References
311	Banno, Y., Miyawaki, R., Momma, K., Bunno, M. (2016) CO3-bearing member of the
312	hydroxylapatite-hydroxylellestadite series from Tadano, Fukushima Prefecture, Japan:
313	CO ₃ -SO ₄ substitution in the apatite–ellestadite series. Mineralogical Magazine, 80,
314	363–370.
315	Borneman-Starinkevich, I.D., Belov, N.V. (1953) Carbonate-apatites. Doklady Akademii
316	Nauk SSSR, 90, 89-92.
317	Brown, I.D., Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
318	analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-
319	247.
320	Comodi, P. and Liu, Y. (2000) CO ₃ substitution in apatite: further insight from new crystal-
321	chemical data of Kasekere (Uganda) apatite. European Journal of Mineralogy, 12,
322	965–974.
323	Fleet, M.E., Liu, X. (2004) Location of type B carbonate ion in type A-B carbonate apatite
324	synthesized at high pressure. Journal of Solid State Chemistry, 177, 3174-3182.

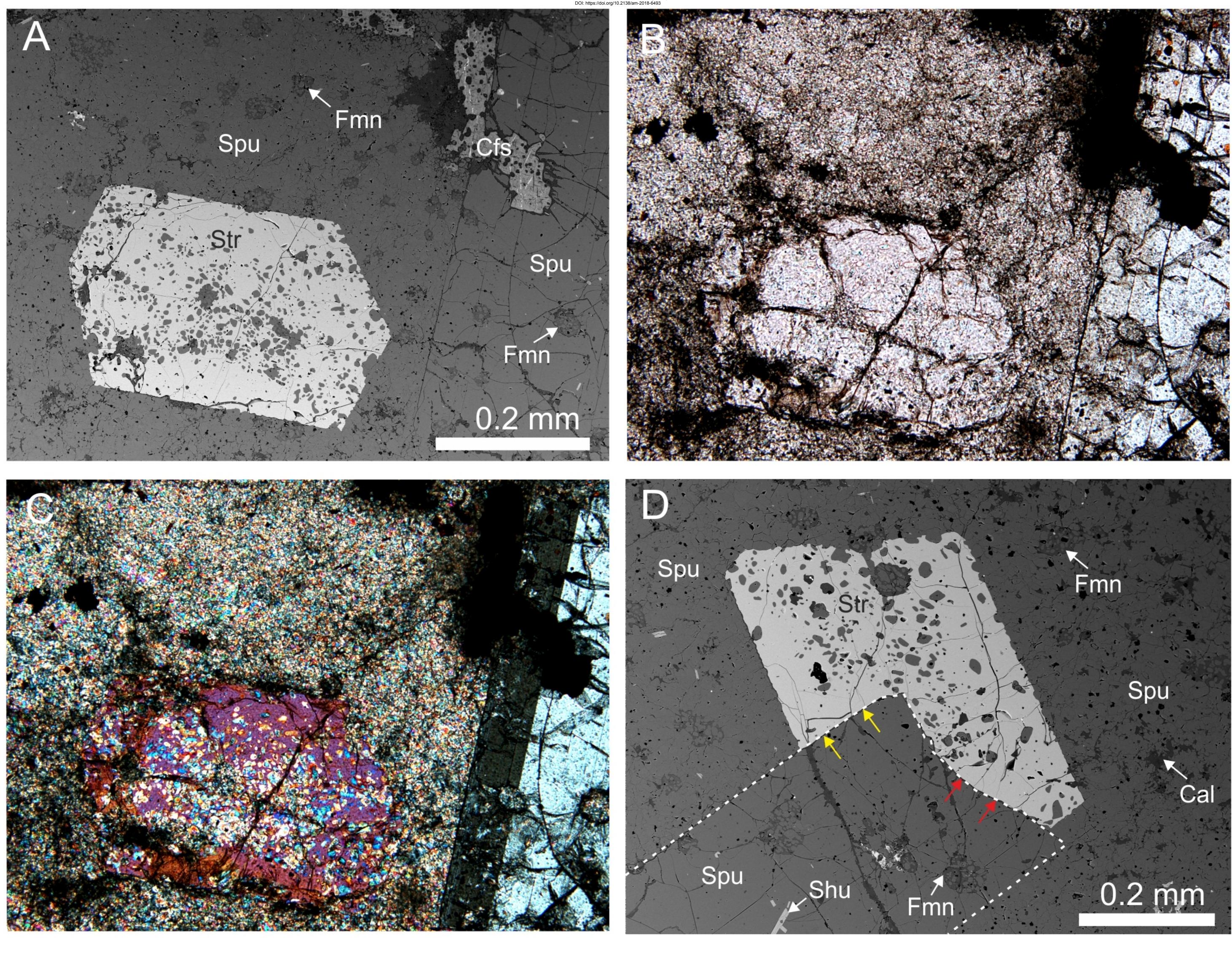
325	Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y.,
326	Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015a) New minerals with
327	modular structure derived from hatrurite from the pyrometamorphic Hatrurim
328	Complex, Part II: Zadovite, BaCa ₆ [(SiO ₄)(PO ₄)](PO ₄) ₂ F, and aradite,
329	$BaCa_6[(SiO_4)(VO_4)](VO_4)_2F$, from paralavas of the Hatrurim Basin, Negev Desert,
330	Israel. Mineralogical Magazine, 79, 1073–1087.
331	Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye., Murashko, M.,
332	Wodyka, R. and Dzierżanowski, P. (2015b) New minerals with modular structure
333	derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part I:
334	Nabimusaite, KCa ₁₂ (SiO ₄) ₄ (SO ₄) ₂ O ₂ F, from larnite rock of the Jabel Harmun,
335	Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 1061–1072.
336	Galuskin E. V., Gfeller F., Galuskina I. O., Armbruster T., Krzątała A., Vapnik Ye., Kusz J.,
337	Dulski M., Gardocki M., Gurbanov A. G. and Dzierżanowski P. (2017) New minerals
338	with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part
339	III. Gazeevite, $BaCa_6(SiO_4)_2(SO_4)_2O$, from Israel and the Palestine Autonomy, South
340	Levant, and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499-
341	513.
342	Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Wojdyla, J.A. and
343	Murashko, M. (2018) New mineral with modular structure derived from hatrurite
344	from the pyrometamorphic rocks of the Hatrurim Complex: ariegilatite,
345	BaCa ₁₂ (SiO ₄) ₄ (PO ₄) ₂ F ₂ O, from Negev Desert, Israel. Minerals, 8, 109.
346	Galuskina, I.O., Gfeller, F., Galuskin, E.V., Armbruster, T., Vapnik, Ye., Dulski, M.,
347	Gardocki, M., Jeżak, L., Murashko, M. (2018) New minerals with modular structure

14

348	derived from hatrurite 1 from the pyrometamorphic rocks, part IV: Dargaite,
349	CaCa ₁₂ (SiO ₄) ₄ (SO ₄) ₂ O ₃ , from Nahal Darga, Palestinian Autonomy. Mineralogical
350	Magazine, 82 (in press)
351	Graf, D. L. (1961) Crystallographic tables for the rhombohedral carbonates. American
352	Mineralogist, 46, 1283-1316.
353	Hughes, J.M., Cameron, M., and Crowley, K.D. (1989) Structural variations in
354	natural F, OH, and Cl apatites. American Mineralogist, 74, 870-876.
355	Ivanova, T.I., Frank-Kamenetskaya, O.V., Kol'tsov, A.B., Ugolkov, V.L. (2001) Crystal
356	structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition.
357	Journal of Solid State Chemistry, 160, 340-349.
358	Jeffery, J.W. (1952) The crystal structure of tricalcium silicate. Acta Crystallographica, 5, 26-
359	35.
360	Kabsch, W. (2010) XDS, Acta Crystallographica, D 166, 125-132.
361	Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für
362	Kristallographie, 223, 109–113.
363	Krüger, B., Galuskin, E.V., Galuskina, I.O., Krüger, H., Vapnik, Y., Wojdyla, J.A.,
364	Murashko, M. (2017) Ariegilatite, a new mineral with modular structure.
365	Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 163, 58.
366	Krüger, B., Galuskin, E.V., Galuskina, I.O., Krüger, H., Vapnik, Y., Olieric, V. and Pauluhn,
367	A. (2017) A potentially new mineral with a modular structure based on antiperovskite
368	layers. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 163, 59.
369	Mandarino, J. A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting
370	mineral species for further study. Canadian Mineralogist, 45, 1307-24
371	Penel, G., Leroy, G., Rey, C. and Bres, E. (1998) MicroRaman spectral study of the PO ₄ and
372	CO ₃ vibrational modes in synthetic and biological apatites. Calcified Tissue


373	International, 63, 475–481
374	Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic
375	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
376	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A, 64, 112-122.
377	Sokolova, E.V., Yamnova, N.A., Egorov-Tismenko, Yu.K. and Khomyakov, A.P. (1984)
378	Crystal structure of arctite, a new sodium calcium barium phosphate
379	(Na ₅ Ca)Ca ₆ Ba[PO ₄] ₆ F ₃ . Soviet Physics Doklady, 29, 5-8.
380	Sokolova, E.V., Kabalov, Yu.K., Ferraris, G., Schneider, J., Khomyakov, A.P. (1999)
381	Modulara approach in solving the crystals structure of a synthetic dimorph of
382	nacaphite Na ₂ Ca[PO ₄]F, from powder-diffraction data. Canadian Mineralogist, 37,
383	83-90.
384	Sokolova, E., Hawthorne, F.C. (2001) The crystal chemistry of the $[M_3\phi_{11-14}]$ trimeric
385	structures: from hyperagpaitic complexes to saline lakes. Canadian Mineralogist,
386	39, 1275-1294.
387	Sokolova, E., Hawthorne, F.C., Khomyakov, A.P. (2005) Polyphite and sobolevite: revision
388	of their crystal structures. Canadian Mineralogist, 43, 1527-1544.
389	Vapnik, Y., Sharygin, V.V., Sokol, E.V., Shagam, R. (2007) Paralavas in a combustion
390	metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18,
391	1–21.
392	Vapnik, Y., Galuskina, I., Palchik, V., Sokol, E.V., Galuskin, E., Lindsley-Griffin, N.,
393	Stracher, G.B. (2015) Stone-tool workshops of the Hatrurim Basin, Israel: mineralogy,
394	geochemistry, and rock mechanics of lithic industrial materials. in "Coal and peat
395	fires: a global perspective'', G.B. Stracher, A. Prakash, and E.V. Sokol, eds. Elsevier,
396	Amsterdam, Vol. 3, 281–316.
397	Waltersperger, S., Olieric, V., Pradervand, C., Glettig, W., Salathe, M., Fuchs, M. R., Curtin,

398	A., Wang, X., Ebner, S., Panepucci, E., Weinert, T., Schulze-Briese, C. & Wang, M.
399	(2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography.
400	Journal of Synchrotron Radiation. 22(4), 895–900.
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	


423 Figure captions:

424	Figure 1. Rare example of a gaseous channel (microfumarole) filled with a fine-grained
425	spurrite and calcite with accessory shulamitite and unidentified Ca- and K- Fe-sulfides (zone
426	I), with large spurrite metacrysts, up to 1 cm in size, forming the walls of the channel (zone
427	II). Zone III is represented by fine-grained spurrite rock with abundance of brownmillerite.
428	Large stracherite metacrysts have grown in a grey intermediate area between zones I and II.
429	Figure 2. A-C – one of the biggest stracherite metacrysts, its fragments were used for
430	structural and optical investigations: A – BSE image; B, C – transmitted light: B – parallel
431	nicols, C – crossed nicols; D – intergrowth of stracherite and spurrite indicating their
432	simultaneous growth. Yellow arrows show idiomorphic surface, and red arrows - induction
433	surface of cooperative growth of stracherite and spurrite.
434	Str = stracherite, Spu = spurrite, Shl = shulamitite, Fmn = fluormayenite-fluorkyuygenite, Cal
435	= calcite, Cfs = undiagnosed Ca-Fe sulphide.
436	Figure 3. A – stracherite metacrysts in spurrite rock, associated with large spurrite crystals at
437	the left bottom corner in the image, cross-section of stracherite sub-perpendicular to c ; B –
438	partial substitution of stracherite for CO ₃ -bearing fluorapatite; C – stracherite grows on
439	ariegilatite and partially substitutes for it.
440	Ap = fluorapatite; Arg = ariegilatite; Cal = calcite; Cfs = undiagnosed Ca-Fe sulphide; Kfs =
441	undiagnosed K-Fe sulphide in composition close to KFeS ₂ ; Fmn = fluormayenite-
442	fluorkyuygenite, Hsi = undiagnosed hydrosilicates, Shl = shulamitite, Spu = spurrite, Str =
443	stracherite.
444	Figure 4. Raman spectra of stracherite (A) and CO ₃ -bearing fluorapatite (B) with fitted bands.
445	Figure 5. A - ideal structure of stracherite, BaCa ₆ (SiO ₄) ₂ [(PO ₄)(CO ₃)]F, is easiest
446	described as a 1:1 stacking of the two modules (B) $\{(FCa6)(SiO_4)_2\}^{3+}$ and (C)
447	${Ba(PO_4)(CO_3)}^{3-}$ along [001] (CO ₃ groups are not shown). Module (B) consists of F1

- 448 octahedra (green) which are coordinated by 6 Ca atoms (yellow spheres) and (SiO₄) tetrahedra
- filling the gaps (red T1 tetrahedra). Module (C) is characterized by PO₄-tetrahedra (blue)
- 450 connected to sixfold coordinated Ba (purple translucent octahedra).
- 451 Figure 6. A ideal antiperovskite module in zadovite-type structure is composed of two layers
- 452 formed by Ca-triplets Ca₃O₁₄ (yellow), with Si-tetrahedra (red) located in the gaps; B triplets
- 453 are rotated relative to each other by 60 degrees; C the octahedral sites between the triplets
- 454 are occupied by F/O (green octahedra).
- 455 Figure 7. A A fragment of the stracherite structure, BaCa₆(SiO₄)₂[(PO₄)(CO₃)]F, showing
- 456 the split Ca1 and O2 sites and also the T2/C1 sites; B CO₃ groups, which replace ≈ 40 %
- 457 with PO_4 tetrahedra, take positions on three faces of the tetrahedra always including the apical
- 458 O4 atom (on the left); carbon occupies one of three symmetric sites centering the O3-O3-O4
- 459 triangle, with the opposite O3 site vacant (dashed, on the right); C oxygen sites surrounding
- the Ba site: sixfold coordination of Ba in C free domains (on the left); tenfold coordination of
- 461 Ba in the case of appearing of two vacancies at O3 sites (on the right) in C-bearing domains.
- 462 Color coding as in Figure 5. O2, O2A and O3 (light grey) are oxygen sites with incomplete
- 463 occupation.

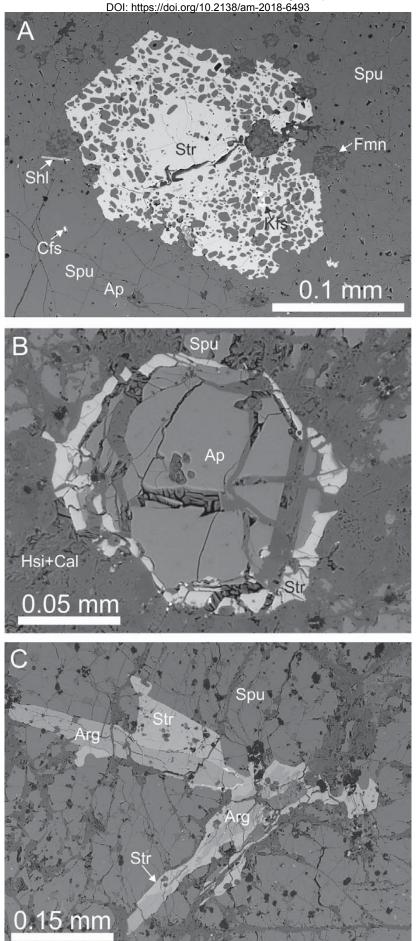
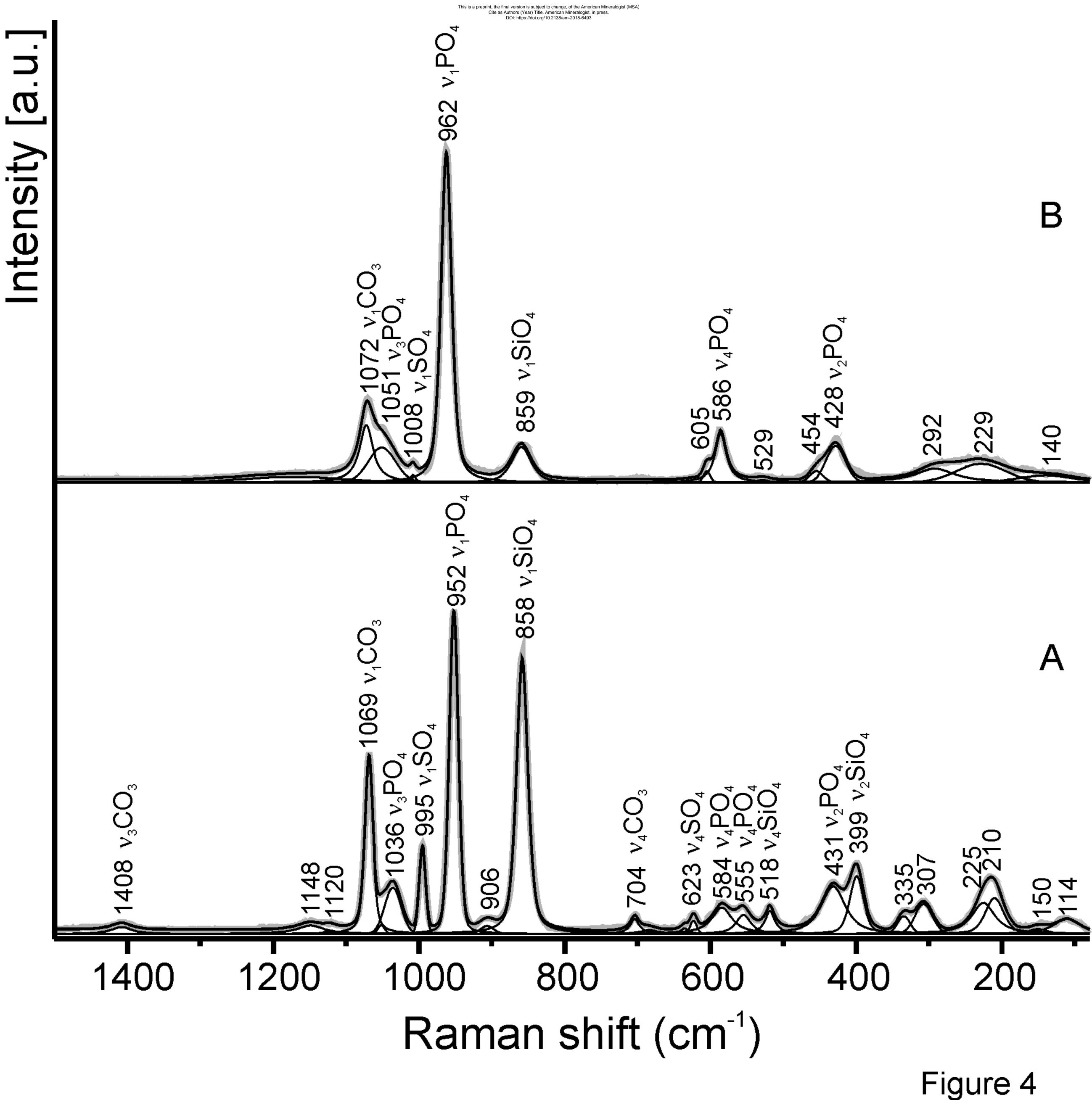


Figure 1


This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6493

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2018-6493

Figure 3
Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

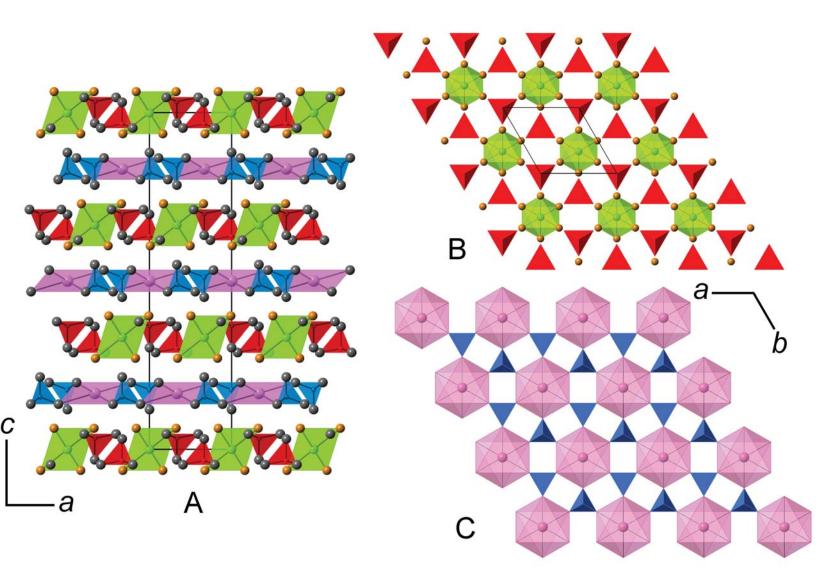
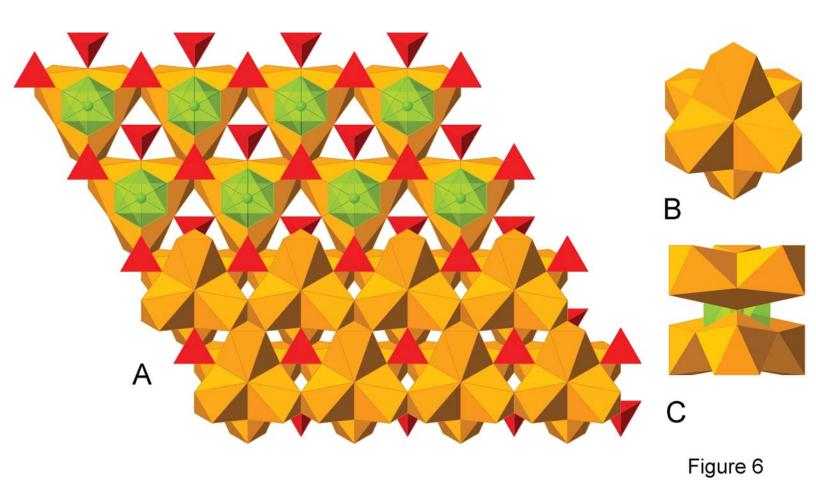



Figure 5

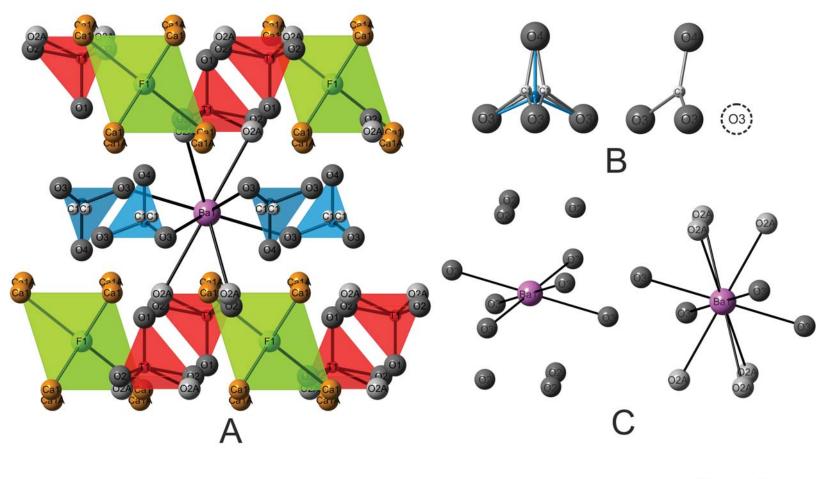


Figure 7

		strach	erite	fluorapatite
	mean 22	mean 22 s.d. Range		
SO ₃	1.94	0.09	1.79-2.10	n.d.
P_2O_5	11.24	0.25	10.71-11.69	33.78
V_2O_5	0.18	0.07	0-0.31	n.d.
SiO ₂	15.11	0.12	14.92-15.36	3.73
TiO ₂	0.09	0.02	0.05-0.13	n.d.
Al ₂ O ₃	0.09	0.02	0.04-0.12	0.16
CaO	45.49	0.14	45.22-45.73	56.44
BaO	19.85	0.23	19.19-20.20	n.d.
SrO	n.d.			0.20
Na ₂ O	0.05	0.02	0.03-0.11	0.08
K ₂ O	0.11	0.01	0.09-0.14	0.17
F	2.44	0.10	2.20-2.63	3.23
CO_2^*	4.44			2.97
H_2O^*				0.23
-O=F	1.03			1.36
	100.00			99.63
Ba	0.96 ¹			
Sr				0.01^{2}
Κ	0.02			0.02
Na	0.01			0.01
Ca	6.01			4.96
A(+B)	7.00			5.00
SiO4 ⁴⁻	1.86			0.31
TiO4 ⁴⁻	0.01			
A104 ⁵⁻	0.01			0.01
PO4 ³⁻	1.17			2.35
SO4 ²⁻	0.18			
VO4 ³⁻	0.02			
CO3 ²⁻	0.75			0.33
Т	4.00			3.00
F-	0.95			0.84
O ²⁻	0.03			
OH				0.13
W	0.08			0.07

Table 1. Chemical composition of stracherite and associated CO₃-bearing fluorapatite, wt.%.

* - calculated on charge balance; 1 - normalised on 7 (Ba+K+Na+Ca),

²- normalised on 5(Ca+Sr+K+Na); n.d. – not detected

Atom	-atom	distance		Atom	-atom	distance	
$Ba1^1$	03	2.835(2)	× 6	$O1^2$	CalA	2.471(9)	× 3
	O2	3.444(7)	× 6		T1	1.623(3)	
BVS	1.67(1)			BVS	2.41(2)		
Ba1 ²	O3	2.835(2)	$\times 4$	$O2^1$	Ba1	3.444(7)	
	O2A	3.032(8)	× 6		Ca1	2.330(5)	$\times 2$
BVS	1.75(2)				Ca1	2.770(8)	
Cal	01	2.244(3)			T1	1.620(5)	
	02	2.330(5)	$\times 2$	BVS	1.97(2)		
	O4	2.438(3)		$O2^2$	Ba1	3.444(7)	
	F1	2.543(2)			CalA	2.395(7)	$\times 2$
	03	2.589(3)	$\times 2$		T1	1.621(7)	
	02	2.770(8)		BVS	1.73(2)		
BVS	2.20(2)			O3 ¹	Ba1	2.835(2)	
Ca1A	04	2.175(10)			Cal	2.589(3)	$\times 2$
	O2A	2.380(8)	$\times 2$		T2	1.472(2)	
	O3	2.409(7)	$\times 2$	BVS	2.13(1)		
	01	2.471(9)		$O3^2$	Ba1	2.834(2)	
	F1	2.713(8)			CalA	2.409(7)	$\times 2$
BVS	2.25(2)				C1	1.44(2)	
$T1^1$	02	1.621(7)	× 3	BVS	1.73(1)		
	01	1.623(3)		$O4^1$	Cal	2.438(3)	× 3
BVS	4.15(2)				T2	1.500(4)	
T1 ²	O2A	1.628(10)	× 3	BVS	2.27(2)		
	O1	1.623(3)		$O4^2$	Cal	2.438(3)	× 3
BVS	4.07(3)				C1	1.37(4)	
T2	03	1.472(2)	× 3	BVS	1.95(2)	. /	
	O4	1.500(4)		O4 ³	CalA	2.175(10)	
BVS	5.97(2)				Ca1	2.438(3)	$\times 2$
C1	03	1.44(2)	$\times 2$		C1	1.37 (4)	
	O4	1.37(4)		BVS	2.25(2)		
BVS	2.92(1)	~ /		$F1^1$	Cal	2.543(2)	× 6
01 ¹	Cal	2.244(3)	× 3	BVS			
	T1	1.623(3)		$F1^2$. ,	2.542(3)	
BVS	2.49(1)					2.713(8)	× 5
	、			BVS			
1,2,3		agardinati		-			

Table 2. Selected interatomic distances (Å) and calculated BVS (Bond Valence Sum; Brown and Altermatt 1985) for stracherite.

^{1,2,3} possible coordination