1	Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for
2	the formation of magmatic sulfide deposits
3	Revision 2
4	Zhuosen Yao ^{a,b,d} , Kezhang Qin ^{a,b,c*} , James E. Mungall ^d
5	^a Key Laboratory of Mineral Resources, Institute of Geology and Geophysics,
6	Chinese Academy of Sciences, Beijing, 100029, China
7	^b University of Chinese Academy of Sciences, Beijing 100049, China
8	^c CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China
9	^d Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa,
10	ON K1S 5B6, Canada
11	

12 * Corresponding author. E-mail address: <u>kzq@mail.iggcas.ac.cn</u>

13 Abstract

14	We have modeled the genesis of primary mantle-derived magma to explore the
15	controls exerted on its Ni-Cu ore potential by water content, pressure and mantle
16	potential temperature (T _p). During decompression melting, Ni concentration in
17	primary magma decreases with increasing degree of melting, in contradiction to
18	long-held understanding obtained from previous isobaric melting models. Pressure
19	exerts a first-order control on the ore potential of primary plume-derived melt, such
20	that plumes rising beneath thick lithosphere with melting paths terminating at
21	relatively high pressure generate Ni-rich melts. Additionally, as plumes with higher T_p
22	produce more Ni-rich melt at a higher pressure, the magmatism related to hotter
23	plume-centers may have the greatest ore potential. On the other hand, the strong
24	dependence of Cu behavior upon the presence or absence of residual sulfide is partly
25	countered in decompression melting. Significant influences of mantle-contained water
26	on Ni and Cu partitioning are restricted to low-degree melting. While release of H_2O
27	in lithosphere delamination may trigger voluminous magmatism, the Ni concentration
28	in melt is far lower than in melt generated from plumes. Furthermore, if isobaric
29	melting dominates when the subcontinental lithospheric mantle (SCLM) is heated by
30	underlying hotter plumes, the plume-lithosphere interaction plays no active role in the
31	Ni ore potential of primary magma because derived melt volumes are relatively small.
32	In subduction zones, flux-melting of the mantle wedge tends to generate cool Ni-poor
33	melts, however hot subduction zones may produce magmas with increased metal
34	concentrations. Overall, the anticipated ranges of Ni contents in primary melts are

35	strongly controlled by tectonic setting, with range of 100-300 ppm in subduction
36	zones, 230-450 ppm in mid-ocean ridges, and 500-1300 ppm in plume suites. There
37	are only minor differences in the Cu concentrations of primitive magmas generated
38	from diverse tectonic settings, despite the variations in Cu partitioning behaviors.
39	
40	Keywords mantle partial melting, Ni and Cu partitioning behaviors, tectonic settings,
41	ore potential of primary magma, forward model
42	
43	1. Introduction
44	
45	Magmatic Ni-Cu-(PGE) sulfide deposits, hosting ~56 % and >96 % respectively
46	of global resources of Ni and PGEs, are formed as the result of segregation and
47	accumulation of immiscible sulfide liquids from mafic and/or ultramafic
48	mantle-derived magmas (Arndt et al. 2005; Barnes and Lightfoot 2005; Naldrett 2010,
49	2011; Mungall 2014; Barnes et al. 2016; Barnes and Robertson 2018). The
50	characteristics of primary magma that promote the formation of magmatic
51	Ni-Cu-(PGE) deposits in various tectonic settings still remain poorly constrained
52	(Arndt et al. 2005; Zhang et al. 2008) despite the general consensus that picritic and
53	komatiitic magmas are best. Although the existence of an unusually metal-rich
54	primary melt has not been widely considered as a necessity for the formation of most
55	magmatic Ni-Cu-(PGE) deposits, it is also evident that relatively metal-poor magmas
56	would not be optimal. Petrological information regarding primary magma

57	composition that can be obtained from intrusive samples is not straightforward as
58	primary magmas are likely to be modified by partial crystallization, assimilation, and
59	mixing in crustal environments (Herzberg and Asimow 2015).
60	The use of forward models to compute the geochemistry of melts and partitioning
61	behaviors of Ni, Cu and PGEs during partial melting offers us a distinctive angle to
62	explore the ore potential of primary magma. Naldrett (2010, 2011) modeled the
63	partitioning behaviors of Ni, Cu, Pt and Pd in the isobaric melting of mantle, an
64	approach followed in several more recent studies (e.g., Li et al. 2012; Lightfoot et al.
65	2012; Jowitt and Ernst 2013; Mao et al. 2014). Lee et al. (2012) quantified the
66	evolution of Cu concentrations in mantle-derived melts by modeling fractional
67	melting of a fertile mantle at fixed proportions of mineral phases and P-T condition,
68	advocating Cu content can be used to trace the presence of sulfide in the source (Liu
69	et al. 2014; Le Roux et al. 2015). More recently, polybaric melting models were
70	developed to predict the concentrations of PGE in primary melt and the corresponding
71	restites (Mungall and Brenan 2014; Aulbach et al. 2016), as well as the sulfur budget
72	in MORBs (Ding and Dasgupta 2017). The compositions of primary melts can be
73	controlled by: 1) the composition and thermal state of mantle source; 2) the type of
74	melting (e.g., fractional, equilibrium or continuous melting); 3) melting conditions,
75	including the temperature, pressure, and volatile components (Asimow et al. 2001;
76	Herzberg and O'Hara 2002; Asimow and Langmuir 2003; Arndt et al. 2005; Herzberg
77	and Asimow 2015). These factors, which dominate the extent and output of partial
78	melting, are highly variable in different tectonic settings, e.g., mid-ocean ridges,

79	mantle plumes and subduction zones. Consequently, the geochemical characteristics
80	and ore potentials of primary magmas involved in magmatic deposits must bear a
81	close relationship to geodynamic environments. Existing models have not considered
82	all of these parameters together to provide a detailed and realistic picture of this
83	complex process in the broad range of tectonic settings in which mantle melting
84	occurs.
85	In this contribution, we present a comprehensive model optimized for mantle
86	melting in the pressure range of 0-4 GPa, using the alphaMELTS thermodynamic
87	software (Ghiorso and Sack 1995; Ghiorso et al. 2002; Asimow et al. 2004; Smith and
88	Asimow 2005) to constrain phase equilibria, in conjunction with recent refinements of
89	partition coefficients to trace the behaviors of Ni and Cu during the partial melting of
90	mantle in various tectonic settings as realistically as possible with the current state of
91	knowledge.
92	
93	2. Model descriptions
94	
95	Approaches to modeling mantle melting can be achieved via empirical
96	parameterizations (Katz et al. 2003; Till et al. 2012; Kimura and Kawabata 2014;
97	Mungall and Brenan 2014) and thermodynamic models (Ghiorso et al. 2002; Ueki and
98	
	Iwamori 2013; Jennings and Holland 2015), each with their own advantages and
99	Iwamori 2013; Jennings and Holland 2015), each with their own advantages and weaknesses (Supplementary 1). pMELTS is a popular model to track the phase

101	to various melting mechanisms (e.g., fractional, continuous or equilibrium) and P-T
102	conditions (e.g., isobaric, polybaric or dynamic P-T paths) (Ghiorso et al. 2002) that
103	cannot be addressed quantitatively with purely empirical models. Although the
104	topology and phase proportions in mantle melting reactions are captured well by
105	alphaMELTS, it reproduces experimental temperature and MgO content of melt at a
106	given melt fraction in due to the overstabilization of clinopyroxene, and gives relative
107	large disparities at high pressure exceeding 4 GPa (Ghiorso et al. 2002; Ueki and
108	Iwamori 2013; Kimura and Kawabata 2014; Jennings and Holland 2015). Here, we
109	have adopted the latest version of alphaMELTS, which includes pMELTS having
110	updated garnet and spinel models and offers an improved match to experimental data
111	(Supplementary 1), but caution is still warranted in the entire calculation. Below we
112	summarize the controls on partitioning behaviors of Ni and Cu during partial melting
113	exerted by a range of parameters, including pressure, temperature, oxygen fugacity,
114	source composition, H_2O concentration, and the partition coefficients between silicate
115	melt, minerals and sulfide liquid.
116	
117	2.1 Source compositions
118	
119	Concentrations of major elements (including Ni) of primitive source from
120	McDonough and Sun (1995), were used to model the partial melting of primitive

121 mantle (PM, Table 1). Cu concentration in PM was assumed to be 24 ppm (Wang and

Becker 2015), within the estimated range of 20-30 ppm (Sun 1982; O'Neill 1991;

McDonough and Sun 1995; Lorand and Luguet 2016; Barnes et al. 2016). For the

124	melting models of the MORB mantle source, we used the depleted MORB mantle
125	(DMM) (Workman and Hart 2005). Compared to the primitive mantle, DMM has
126	been depleted by 2-3% ancient melt extraction. The Ni abundance in DMM is 1886
127	ppm, but the Cu concentration was not mentioned by Workman and Hart (2005).
128	Because the presence of residual sulfide phase at such low degree of melt extraction
129	would minimize depletion of Cu, we assume that DMM has the same concentration of
130	Cu as PM (Table 1).
131	The composition of the sub-continental lithospheric mantle (SCLM) has a broad
132	range, and is related to the age of overlying crust (Griffin et al. 1998, 2009). We used
133	three estimates of SCLM composition based on the Griffin et al. (1999) classification,
134	wherein A-SCLM occurs in areas where the crust has been unaffected since \geq 2.5 Ga;
135	P-SCLM has been formed or modified in the range of 2.5-1.0 Ga; and T-SCLM
136	experienced tectonism and melting \leq 1.0 Ga (Table 1). The Ni amounts in A-, T- and
137	P-SCLM are 2357 ppm, 2200 ppm and 2043 ppm, respectively (Griffin et al. 2009).
138	Additionally, the Cu concentrations of most massif and xenolith peridotites exhibit a
139	positive correlation with Al ₂ O ₃ content, an indicator of the fertility (or melt depletion)
140	of peridotites (Wang and Becker 2015). Based on the Al ₂ O ₃ contents from the A-, T-
141	and P-SCLM compositions (Griffin et al. 2009), in conjunction with the values of
142	Al ₂ O ₃ /Cu from DMM, the Cu concentrations in A-, T- and P-SCLMs were taken to be
143	1.8, 11.5 and 21.1 ppm, respectively.
144	The mantle wedge above subduction zones is a complex environment where

145	subducted inputs are mixed with the convecting mantle to generate magmas (Stern
146	2002), and hence, its partial melting is a multi-stage and multi-source process (Cole et
147	al. 1990). The composition of mantle wedge may be highly variable from one location
148	to another. We use Workman and Hart's (2005) DMM to approximate the composition
149	of the sub-arc mantle to facilitate comparison of partitioning behaviors of Ni and Cu
150	between the mantle wedges and mid-ocean ridges. The restites resulting after 5%,
151	10%, 15% and 20% melt extraction from the isobaric melting of DMM at 1 GPa were
152	considered as the plausible approximations of initial source compositions within the
153	mantle wedge. The transfer of ore-forming metals from slab-derived inputs into
154	mantle wedge is restricted (e.g., Mungall 2002; Jenner et al. 2010; Lee et al. 2012),
155	and hence, the source was assumed to contain 24 ppm Cu.
156	
157	2.2 Water content
158	
159	There is a growing database on the water content in nominally anhydrous
160	minerals from a wide range of mantle-derived rocks (Peslier 2010). Although previous
161	estimates of H ₂ O content of the MORB source vary from 100 to 340 ppm (Bell and
162	Rossman 1992; Bolfan-Casanova 2005), the most recent estimates range from 50 to
163	200 ppm (Peslier 2010, and references therein). A range of 0-250 ppm H_2O was
164	adopted in our model.
165	The source of the oceanic island basalts (OIBs), which is a common component
166	of mantle plume material (Wilson 1963; White 2010), appears to be more hydrous

8

167	than MORB-source mantle (200-550 ppm H ₂ O; Bell and Rossman 1992 or 450-700
168	ppm H ₂ O; Bolfan-Casanova 2005). Based on the H ₂ O analyses of glasses and melt
169	inclusions, the sources of OIBs are richer in water than DMM, containing 300-1000
170	ppm H ₂ O (Hirschmann 2006; Peslier 2010). Comparably, the H ₂ O contents of basaltic
171	glasses from the Ontong Java and Kerguelen oceanic plateaus (~4000-6900 ppm) are
172	also higher than that of MORBs (~2500 ppm) (Michael 2000; Wallace 2002). More
173	recently, the estimated H ₂ O contents of the mantle sources for Siberian Traps, Karoo
174	LIP, Tarim LIP, Emeishan LIP, Yellowstone hotspot track and Caribbean LIP are from
175	750 to ~6000 ppm (Liu et al. 2017). Additionally, H_2O may have been transferred
176	from a hypothesized water-rich transition zone to Archaean plumes, producing
177	hydrous komatiites with ~0.6 wt. % water (Sobolev et al. 2016). Therefore, the H_2O in
178	mantle plumes has a broad range (0-6000 ppm in this modeling), and its source should
179	have one or more H ₂ O-rich reservoirs that feed plume-related magmatism
180	(Hirschmann 2006).
181	The recalculated water contents of whole-rock peridotite xenoliths from
182	continental cratons are somewhat lower than the MORB source, e.g., Kaapvaal craton
183	(16-175 ppm H ₂ O, average of 82 ppm) (Bell and Rossman 1992; Peslier et al. 2012).
184	Although the whole-rock H_2O content of SCLM can be affected by many complex
185	processes, e.g., metasomatism (Siberia craton, 38-293 ppm, Doucet et al. 2014;
186	Ragozin et al. 2014), lithospheric thinning (North China craton, mostly <50 ppm,
187	Yang et al. 2008; Xia et al. 2010) and plume-lithosphere interaction (Tranzanian
188	craton, 7-48 ppm, Hui et al. 2015), with few exceptions it stays in a relatively low

189 range,	~0-150 ppm.
------------	-------------

190	As slab-derived fluids and melts have a broad range of compositions, the $\rm H_2O$
191	content of the mantle wedge may be highly variable from one location to another,
192	with a reported range from 250 to >2500 ppm (Peslier et al. 2002; Dixon et al. 2004;
193	Peslier and Luhr 2006; Peslier 2010).
194	
195	2.3 Mantle potential temperature
196	
197	Mantle potential temperature (T _p) represents the hypothetical temperature that
198	mantle would have if it was adiabatically decompressed to surface without melting
199	(Fig. 1) (McKenzie and Bickle 1988). The ranges of T_p in different tectonic
200	environments mostly do not overlap (Lee et al. 2009), so the inferences of T_p based on
201	basaltic magma compositions can be used to constrain the tectonic setting of basaltic
202	magmatic suites (Putirka 2005; Herzberg et al. 2007; Herzberg and Asimow 2008).
203	Based on the global database of basaltic magmatism, Lee et al. (2009) depicted
204	the Earth's thermal state (T _p) and magmatism in various geologic environments.
205	MORB compositions from the Mid-Atlantic Ridge and the East Pacific Rise showed
206	that the T_p of their mantle is near 1350-1400°C (Lee et al. 2009), which is hotter than
207	previous estimates (McKenzie and Bickle 1988), but falls within the range of recent
208	estimations for mid-ocean ridges (1280-1400°C by Herzberg et al. 2007 and
209	1300-1570°C by Langmuir et al. 1993), considering that the aggregated error on T_p
210	may be as large as $\pm 77^{\circ}$ C due to uncertainties in estimates of melting fraction and

211 mantle olivine composition (Putirka 2016).

212	Furthermore, numerous petrological studies of basalts from large igneous
213	provinces (LIPs) and ocean islands infer higher T _p than the oceanic ridges, which
214	strongly supports the mantle plume model (Thompson and Gibson 2000; Putirka 2005,
215	2016; Putirka et al. 2007; Herzberg et al. 2007; Lee et al. 2009; Herzberg and Gazel
216	2009). The estimated range of T_p for plume-related magmatism is large, even for an
217	individual mantle plume occurrence (Herzberg and Asimow 2008; Herzberg and
218	Gazel 2009). The T _p of Hawaii and Iceland reach as high as 1722°C and 1616°C,
219	respectively (Putirka et al. 2007; Herzberg and Asimow 2008, 2015). More broadly,
220	almost all of the data from plume-related basalts point to a T _p of more than 1500°C,
221	and the T_{p} anomaly required to merit the term "plume" can be set to be 220-320 $^{\text{o}}\text{C}$
222	higher than the ambient mantle (Putirka 2016).
223	
224	2.4 Choice of Partition Coefficients between minerals and melt
225	
226	Ni is compatible in olivine, which is the most abundant mineral in the Earth's
227	upper mantle. As a result, the behavior of Ni is mostly determined by its distribution
228	between olivine and silicate melt as defined by its Nernst partition coefficient
229	$(D_{Ni}^{ol/melt})$. We used a parameterized equation of $D_{Ni}^{ol/melt}$ that accounts for the
230	effects of temperature and melt composition (Matzen et al. 2017a). Ni is also
231	compatible in orthopyroxene. Experiments by Laubier et al. (2014) under anhydrous
232	and oxidized conditions at 0.1 MPa and 1155-1180°C indicated that the partition

233	coefficient $D_{Ni}^{Opx/melt}$ was 7.38±2.56, whereas high pressure (1.5-2 GPa), high
234	temperature (1300-1500 °C) and relatively reducing conditions may result in a low
235	$D_{Ni}^{Opx/melt}$ (3.69-4.38; Le Roux et al. 2011). Here, we followed the model of Beattie
236	et al. (1991), which gives $D_{Ni}^{Opx/melt}$ as a function of the mole fractions of MgO in
237	the melt and orthopyroxene. Although this is a temperature-, pressure-independent
238	model, we think the influences of temperature and pressure can be reflected in the
239	variations of MgO in melt, and the equation of Beattie et al. (1991) also provides a
240	good description of experimental data for the Ni partitioning between olivine and melt
241	(Herzberg et al. 2013), lending confidence to the orthopyroxene model. The
242	$D_{Ni}^{Cpx/melt}$ was calculated as a function of temperature, pressure and $D_{Ni}^{Opx/melt}$
243	(Seitz et al. 1999), whereas the parameterization of $D_{Ni}^{Grt/melt}$ is based on the
244	experimental measurements of partitioning of Ni between olivine and garnet (Canil
245	1999).
246	In contrast to Ni, as constrained by several recent studies, Cu is a mildly
246 247	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012;
246 247 248	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$
246 247 248 249	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$ from groundmass and phenocrysts pairs in natural samples (Lee et al. 2012) are
246 247 248 249 250	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$ from groundmass and phenocrysts pairs in natural samples (Lee et al. 2012) are usually equivalent to or lower than the values obtained from experiments (Fellows
246 247 248 249 250 251	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$ from groundmass and phenocrysts pairs in natural samples (Lee et al. 2012) are usually equivalent to or lower than the values obtained from experiments (Fellows and Canil 2012; Liu et al. 2014; Le Roux et al. 2015). In addition, Liu et al. (2014)
246 247 248 249 250 251 252	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$ from groundmass and phenocrysts pairs in natural samples (Lee et al. 2012) are usually equivalent to or lower than the values obtained from experiments (Fellows and Canil 2012; Liu et al. 2014; Le Roux et al. 2015). In addition, Liu et al. (2014) found that increasing fO ₂ (> Δ FMQ+1.2) would result in the increase of $D_{Cu}^{mineral/melt}$
246 247 248 249 250 251 252 253	In contrast to Ni, as constrained by several recent studies, Cu is a mildly incompatible element in the major mineral phases of mantle (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015). The measured $D_{Cu}^{minerals/melt}$ from groundmass and phenocrysts pairs in natural samples (Lee et al. 2012) are usually equivalent to or lower than the values obtained from experiments (Fellows and Canil 2012; Liu et al. 2014; Le Roux et al. 2015). In addition, Liu et al. (2014) found that increasing fO ₂ (> Δ FMQ+1.2) would result in the increase of $D_{Cu}^{mineral/melt}$ for olivine, orthopyroxene, spinel and possible clinopyroxene, presumably due to

values for high-pressure Cu partitioning ($D_{Cu}^{ol/melt}$, 0.13; $D_{Cu}^{opx/melt}$, 0.12; $D_{Cu}^{Cpx/melt}$, 0.09; $D_{Cu}^{Grt/melt}$, 0.042; $D_{Cu}^{Spl/melt}$, 0.25) based on the recent work of Le Roux et al. (2015).

258

259 **2.5 Influence of sulfide within source**

260

Fe-Ni-Cu base metal sulfides (BMSs) have been widely observed as intergranular

grains and as inclusions within silicate minerals from a variety of peridotites and

263 xenoliths (Harvey et al. 2016 and references therein). The partition coefficients

between sulfide and melt are large for Cu (~290-390 for komatiite, 360-460 for basalt,

and 420-560 for andesite, Kiseeva et al. 2017), with the result that the bulk

266 partitioning of Cu during partial melting strongly depends on how sulfide mode varies

267 during melt extraction.

Although the canonical S content of primitive mantle is ~250 ppm (McDonough

and Sun 1995; Lorand and Luguet 2016 and references therein), the bulk S abundance

of DMM is closer to 150-200 ppm (Lorand and Luguet 2016), which coincides with

the estimated value in recent models (e.g., 100-200 ppm in Ding and Dasgupta 2017;

272 195±45 ppm from Nielsen et al. 2014; 185 ppm in Mungall and Brenan 2014; 165

ppm from Shimizu et al. 2016). The S contents of A-, P- and T-SCLM (Table 1) were

assumed following the linear decrease in sulfur content with decreasing Al_2O_3 (Wang

and Becker 2013), although this simple relationship could be affected by addition or

276 removal of S by S-unsaturated fluids or melts. In the mantle wedge above subduction

zones, the estimated S contents range from 250 to 500 ppm (Métrich et al. 1999; De 277 Hoog et al. 2001), which may be triggered by addition of excess S in the slab-derived 278 279 fluids (Mungall 2002; Jégo and Dasgupta 2013, 2014). Sulfur in solid mantle materials is hosted by sulfide phases which dissolve 280 progressively during partial melting of mantle. The S content in melt at equilibrium 281 with sulfide liquid (SCSS) is influenced by pressure, temperature, melt composition 282 (including water content), oxygen fugacity and the sulfide composition (Mavrogenes 283 and O'Neill 1999; Liu et al. 2007; Moretti and Baker 2008; Li and Ripley 2009; 284 Ariskin et al. 2013; Fortin et al. 2015; Lesne et al. 2015; Smythe et al. 2017). At the 285 relative low oxygen fugacity that obtains during partial melting of DMM, PM and 286 287 SCLM (Foley 2010; Cottrell and Kelley 2011), effectively all S within melt remains in the S²⁻ redox state. The f_{O_2} of mantle wedge above subducting slabs is widely 288 considered to be relatively oxidized due to the addition of subduction-released 289 oxidized fluids and/or melts (Mungall 2002; Kelley and Cottrell 2009; Richards 2015), 290 and the island arcs (average Δ FMQ+1.3) are more oxidized than continental arcs 291 (average Δ FMQ-0.16) (Foley 2010). At high oxygen fugacity (log $f_{0_2} > \Delta$ FMQ+1), 292 the dominant speciation of S in melt changes from S^{2-} to S^{6+} , and the total S solubility 293 increases dramatically (Jugo et al. 2010). We have adopted the SCSS model of Fortin 294 et al. (2015) for the MORB generation and the sub-arc mantle wedge melting due to 295 its success at the corresponding pressure-temperature conditions (Ding and Dasgupta 296 2017). But for higher pressure melting (PM and SCLM), we used the new model of 297 Smythe et al. (2017) that incorporates the influences of sulfide composition and 298

299	extends the pressure and temperature ranges of SCSS. The differences between
300	modeling outputs that would result from the use of various SCSS models are
301	discussed in the Supplementary 2.
302	We have adopted a recent thermodynamic model that accounts for the effects of
303	temperature and sulfide composition on the partitioning of Ni and Cu between sulfide
304	liquids and anhydrous silicate melt at 1.5 GPa and 1300-1700°C (Kiseeva and Wood
305	2013, 2015) in lieu of previous assumptions of fixed values (e.g., Lee et al. 2012;
306	Naldrett 2010, 2011; Ding and Dasgupta 2017).
307	
308	3. Mechanism of partial melting in mantle
309	3.1 Polybaric continuous melting of DMM beneath Mid-Ocean Ridges
310	
310 311	Models for the production of MORB have been based on empirical or
310 311 312	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993;
310 311 312 313	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting
310 311 312 313 314	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions,
 310 311 312 313 314 315 	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions, crustal thickness and axial depth of global Mid-Ocean Ridges (Asimow et al. 2001;
 310 311 312 313 314 315 316 	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions, crustal thickness and axial depth of global Mid-Ocean Ridges (Asimow et al. 2001; Asimow and Langmuir 2003; Asimow 2004).
 310 311 312 313 314 315 316 317 	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions, crustal thickness and axial depth of global Mid-Ocean Ridges (Asimow et al. 2001; Asimow and Langmuir 2003; Asimow 2004). In a continuous melting model, a fixed volume (or mass) proportion of melt is
 310 311 312 313 314 315 316 317 318 	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions, crustal thickness and axial depth of global Mid-Ocean Ridges (Asimow et al. 2001; Asimow and Langmuir 2003; Asimow 2004). In a continuous melting model, a fixed volume (or mass) proportion of melt is retained in residual mantle after extraction, defining an intermediate state between
 310 311 312 313 314 315 316 317 318 319 	Models for the production of MORB have been based on empirical or thermodynamic parameterization (McKenzie and Bickle 1988; Langmuir et al. 1993; Asimow et al. 2001; Niu and O'Hara 2008). We use the polybaric continuous melting model via the alphaMELTS, which derives plausible results for MORB compositions, crustal thickness and axial depth of global Mid-Ocean Ridges (Asimow et al. 2001; Asimow and Langmuir 2003; Asimow 2004). In a continuous melting model, a fixed volume (or mass) proportion of melt is retained in residual mantle after extraction, defining an intermediate state between fractional and batch melting. The approach for computing the polybaric continuous

321	decompression process from the solidus to surface in 10 MPa steps. Once the melt
322	fraction by volume exceeds a fixed threshold, the extra melt in each increment is
323	extracted, and the composition and entropy of the residual system are used as
324	reference for the next increment. Increments of extracted liquid are integrated as the
325	pooled magmatic output of mantle melting beneath the mid-ocean ridges. We
326	compared results using a triangular melting prism (e.g., Mungall and Brenan 2014)
327	and the simpler vertical column (e.g., passive flow model of Asimow et al. 2001) and
328	found little difference for Cu and Ni. The results presented here are for a simple
329	vertical melting column. The influence of water on melting behavior was taken into
330	account throughout this entire calculation by simulating the equilibrium distribution
331	of hydrogen among silicate melts and nominally anhydrous minerals (Asimow et al.
332	2004; Asimow 2004). The measurements of global $Fe^{3+}/\Sigma Fe$ ratios of MORB glasses
333	
334	provided an accurate approximation for the oxygen fugacity of the MORB source,
335	which is distributed around the fayalite-magnetite-quartz (FMQ) buffer
336	(~ Δ FMQ+0.07 by Cottrell and Kelley 2011; Δ FMQ+0.1 by Berry et al. 2018; or
337	Δ FMQ-0.18 by Zhang et al. 2018). The modeling results of DMM melting under
338	different fixed oxygen fugacity (from Δ FMQ-1.0 to Δ FMQ+0.6) show almost the
339	same trends of Cu; a relatively oxidized state drives a slightly faster drop of Ni at
340	lower pressure (Fig. S3).
341	To address the behavior of Ni and Cu, a secondary operation was done on the
342	output of alphaMELTS (Supplementary 3). There are two simple alternative models
5.2	for the trace element distribution during partial melting (White 2013): equilibrium

343	model based on the mass balance, or fractional model where the melt is extracted
344	instantaneously without being equilibrated with the restite (Shaw 1970). It has been
345	confirmed that the equilibrium partitioning model offers a good approximation of
346	trace element behaviors in the complex partial melting reactions (e.g., Langmuir et al.
347	1993). For the finite difference models used here, the differences between Ni and Cu
348	concentrations in the pooled melt derived from equilibrium and fractional (modal and
349	non-modal) partitioning models are less than 3 ppm (Supplementary 3), and hence we
350	adopted the simple equilibrium model where the contents and individual partition
351	coefficients of the solid phases plus residual sulfide at each melting increment were
352	used to calculate the instantaneous bulk partition coefficients. As the amount of
353	residual sulfide is not provided by alphaMELTS, it must be calculated by mass
354	balance, subtracting the amount of S dissolved in melt from the bulk S budget
355	(Supplementary 3). Before the complete exhaustion of sulfide liquid in the source,
356	melt in each increment is saturated with sulfide liquid, so the sulfur content of melt
357	was obtained by using empirical SCSS parameterizations (Fortin et al. 2015; Smythe
358	et al. 2017).
359	
360	3.2 Adiabatic decompression melting of primary mantle in mantle plume

361

The decompression of mantle material is considered by some investigators to be essentially adiabatic (McKenzie and Bickle 1988; Asimow 1997). Alternatively, Herzberg and O'Hara (2002) advocated the importance of perfect fractional melting in

365	plumes, which is different from adiabatic decompression because latent heat escapes
366	with the extracted melt, and differs from continuous melting as there is no melt
367	retained in restite after extraction. The impacts of adiabatic, perfect fractional or
368	continuous melting on the compositions of primary melts have been evaluated in the
369	Supplementary 4; Putirka (2016) argued that the differences between those three
370	melting mechanisms would not introduce significant systematic errors. Here we use a
371	model of purely adiabatic decompression melting, in part because the alphaMELTS
372	software is not calibrated for pressures exceeding 4 GPa, preventing adequate
373	modeling of open-system behaviour in high T_p mantle. In this purely adiabatic case
374	the melt is not separated from the restite over the entire melting path.
375	To begin calculation of a melting path, the entropy of the metastable completely
376	solid system is calculated at 0.1 MPa and the desired T_p . This estimated entropy will
377	be unchanged along the adiabat, so it can be used as a constraint on the
378	thermodynamic model at the starting point of the melting path to give the temperature
379	of the stable assemblage at 4 GPa and then being held constant during decompression.
380	Adiabatic upwelling of mantle leads to continued melting until upwelling ceases at the
381	base of rigid lithosphere (Fig. 1). We have extended our decompression model to the
382	surface in order to explore the effects of melt cessation under differing lithospheric
383	thicknesses.
384	

385 **3.3 Isobaric melting of SCLM in plume-lithosphere interaction**

386

387	The base of the lithosphere will be heated and weakened after hotter plume
388	material impinges on it from below (Condie 2001; Manglik and Christensen 2006;
389	Burov et al. 2007; Gorczyk et al. 2017). We examined the initial stage of
390	plume-lithosphere interaction prior to any subsequent lithospheric thinning, so that the
391	melting of SCLM is caused solely by the isobaric addition of heat from the plume.
392	For this isobaric melting model, we assumed pressures of 1.5, 2.7 and 3.9 GPa,
393	corresponding to 45, 81 and 117 km thick lithosphere, respectively. Based on
394	extensive calculations with oxybarometers in peridotites from the continental
395	lithosphere, it has been concluded that the f_{O_2} of peridotites should decrease by 0.7
396	log units per 1 GPa increase in pressure (Foley 2010). Therefore, the appropriate f_{O_2}
397	at these pressures are Δ FMQ = -1.0, -1.7, and -2.4, respectively. In addition, the
398	estimated compositions of A-, P- and T-SCLM (Table 1) were adopted to take the
399	evolution of lithospheric mantle into consideration (Griffin et al. 2009). The range of
400	water contents of SCLM has been assumed as 0-300 ppm, whereas the water-rich
401	portion (100-300 ppm) was used to examine the influence of metasomatism in melting
402	of SCLM.
403	
404	3.4 Flux-melting of mantle wedge above subduction zone
405	

The presence of H₂O depresses the peridotite solidus, so the influx of slab-drived fluids and hydrous melts induces magmatism in the mantle wedge (Tatsumi and Eggins 1995; Stern 2002; Grove et al. 2012). Decompression melting associated with

409	convection-induced pressure release has also been proposed to operate above
410	subduction zones (Lee et al. 2009). Because decompression melting in subduction
411	zones (e.g., Tatsumi et al. 1983; Plank and Langmuir 1988; Lee et al. 2009) is similar
412	to what we already consider in mid-ocean ridges, the model here focuses on isobaric
413	flux-melting in an open system, where the progressive addition of small amounts of
414	$\mathrm{H}_{2}\mathrm{O}$ and the removal of the generated melts occurs simultaneously at constant P-T
415	close to the anhydrous solidus of mantle wedge peridotite. Primary magmas found in
416	continental magmatic arcs typically last equilibrated with mantle at ~ 1 GPa and
417	1100°C, representing the crust-mantle boundary; while the temperature of the hottest
418	part of mantle wedge even reaches ~1200-1350°C (Grove et al. 2012). Therefore, the
419	constant pressure in flux-melting model is assumed as 1.0 GPa, and the temperature
420	of this open system ranges from 1100 to 1300 °C. We modeled melting at a range of
421	f_{O_2} , e.g., Δ FMQ = +1.0, +1.3, +1.6, +2.0.
422	In subduction zones, the compositions of slab-derived fluids vary from aqueous
423	fluid (5-15% SiO ₂ and 80-95% H_2O) to hydrous silicate melt (55-75 %SiO ₂ and 5-30%
424	H_2O) along subduction paths with rising pressure and temperature (Spandler and
425	Pirard 2013). In addition, supercritical fluid, which exhibits complete miscibility
426	between aqueous solution and hydrous melt, is predicted to form in subducting slabs
427	at sub-arc depths (Spandler and Pirard 2013; Kessel et al. 2005a). In order to estimate
428	the effect of various slab fluids on this flux-melting model, 15 typical fluid
429	compositions from previous experiments were used to cover the variation range of
430	these three fluid types (3 representative compositions are listed in Table 1) (Kessel et

- 431 al. 2005b; Hermann and Spandler 2008). In this model, 0.1 wt. % slab-fluid is added
- 432 into the system at each increment, and the portion of melt exceeding 1 vol. % is

433 extracted and pooled to form the final magmatic output.

434

435 **4. Results**

436 **4.1 Polybaric continuous melting of DMM**

437

438 Figures 2 a-c exhibit the variations of Ni in aggregated melt during the partial melting of DMM at 1350°C T_p. Ni concentrations decrease with increasing melting, 439 which is opposite to expectations based on simple isobaric melting models (Naldrett 440 2010, 2011), as issue dealt with in the Discussion. Mantle source with greater H_2O 441 contents (0 to 250 ppm) causes its partial melting to begin at a higher pressure (e.g., 442 increase from 1.85 to 3.54 GPa in Figure 2a) and temperature, which diminishes the 443 444 bulk Ni partition coefficient and therefore strongly elevates the Ni concentration within the first ~5 wt. % of melting (Figs. 2a, b and c). The effect of remaining melt 445 fraction ("porosity") is felt most strongly at the initial stage of partial melting. If the 446 447 DMM contains 250 ppm H₂O, the Ni concentrations in first instantaneous melt removed are 580, 543 and 511 ppm at the porosity of 0.3, 0.5 and 0.7 vol. %, 448 respectively (Figs. 2a, b and c), because greater retention of the earliest Ni-rich melts 449 occurs at higher porosity; these differences gradually decrease as melting progresses. 450 In other words, greater proportions of retained melt modulate the effects of extreme 451 first melt compositions. Based on the assumed initial S abundance (200 ppm) and 452

potential temperature (1350°C), the Ni in pooled melt produced by the polybaric
continuous melting of DMM falls in a range between 320-450 ppm after 5 wt. %
melting.

456	The trends of Cu in aggregated melt (Fig. 2d) also differ from previous results
457	(Naldrett 2010, 2011; Lee et al. 2012; Ding and Dasgupta 2017). At anhydrous
458	conditions, the Cu concentration of melt starts at 70 ppm, slowly grows to 87.1 ppm at
459	16-17 wt. % melting, and then declines. Addition of water will drive a great increase
460	of Cu amounts in the first instantaneous melt (e.g., 94.6 ppm Cu at 250 ppm H_2O , Fig.
461	2d), which is followed by a sharp drop of Cu within the first \sim 0-3 wt. % melting. The
462	variations of Cu in hydrous melt output are almost parallel to, but slightly higher than
463	the result from anhydrous melting (Fig. 2d). Moreover, the influence of porosity (i.e.,
464	melt retention in the source) on the Cu concentration of melt is so small as to be
465	negligible.
466	At 1350°C T _p and 200 ppm initial S, the sulfide in residual mantle will be
467	exhausted after ~11.7 wt. % melting, which should not be notably influenced by
468	various water contents and remaining melt fractions. The Ni concentrations of
469	residual sulfide liquids increase from initial values of \sim 27.5, 24.5, and 23 wt. % (at
470	the initial H_2O contents of 0, 100, and 200 ppm, respectively) to 31.5 wt.%
471	immediately before complete exhaustion of residual sulfide, and the Cu amounts
472	range from 2.79, 2.55, and 2.41 wt. % (at 0, 100, and 200 ppm H_2O , respectively) to
473	~6.35 wt.% (Figs. 2a, b and c). Moreover, the MgO and FeO of melt output decrease
474	continuously during partial melting (Figs. 2e and f); as with Ni, addition of water can

475 strongly increase their contents at the initial stage.

476	Higher T_p leads to increased concentration of Ni in melt (~50-100 ppm with the
477	25° C increase of T _p) over the whole partial melting path (Fig. 3a). Parallel effects of
478	T_p on the MgO and FeO of aggregated melt are shown in Figure 3c and 3d. The
479	increase of T _p will also drive Cu concentrations to higher values in melt outputs (rise
480	of ~6-17 ppm for 25 $^{\circ}$ C increase of T _p), but this influence wanes after the complete
481	exhaustion of sulfide (Fig. 3b). A hotter DMM brings about the exhaustion of sulfide
482	at a greater depth and a lower melting fraction (Fig. 3a). Moreover, in Figure 2d and
483	Figure 3b, the point when Cu reaches its maximum value slightly lags behind the
484	exhaustion of sulfide in residual mantle due to the buffering of remaining melt, and a
485	higher T _p will cause the maximum in Cu concentration to occur earlier and extend at a
486	higher value.
487	

488 4.2 Adiabatic decompression melting in Mantle Plumes

489

In the adiabatic decompression melting model, the Ni concentration in primitive melt also decreases with the increasing melting degree (Figs. 4a, c and e). Because the base of solid lithosphere limits the final depth of decompression melting of plume which, in turn, determines the extent of melting, the influences of distinct parameters on melt output are easiest to compare at a single pressure. At given pressure and T_p, H₂O in the source can strongly increase the melting fraction, and drive a slight or negligible decrease of Ni concentration in melts. For example, at the same pressure

497	(2.7 GPa) and potential temperature (1500 $^{\circ}$ C), the decrease of Ni caused by 0-1000
498	ppm $\rm H_2O$ addition is ~26 ppm, whereas continued addition of 2000-6000 ppm $\rm H_2O$
499	causes a further drop of only 44-76 ppm Ni (Fig. 4a). By analogy to the polybaric
500	continuous melting of DMM, the influences of water on melting fractions and Ni
501	contents are weakened at high degrees of partial melting. On the other hand, small
502	decreases in pressure cause large decreases in Ni, e.g., a fall of ~90-180 ppm Ni for a
503	pressure drop of 0.6 GPa (Figs. 4a, c and e). In contrast, a higher T_p largely increases
504	the degree of melting and slightly increases the Ni content of melt at the same
505	pressure and water content, e.g., 876 ppm ($T_p=1500^{\circ}C$), 966 ppm ($T_p=1550^{\circ}C$) and
506	1011 ppm (T_p =1600°C) at 2.7 GPa and 0 ppm H ₂ O (Figs. 4a, c and e). Therefore, Ni
507	concentration in primitive melt is more strongly affected by pressure than by an
508	increase of T_p , and both of them far overweigh the effects of H_2O at the same pressure.
509	Additionally, the exhaustion of sulfide in the source will be completed earlier in a
510	hotter plume, changing from 21.4% to 16.1% melting for an increase of T_p from
511	1500°C to 1550°C.
512	The MgO content of melt also decreases with melting until the exhaustion of
513	orthopyroxene (Figs. 4b, d and f). After this point, the restite is dunite and further

melting leads to rapid rise of MgO in melt. At constant pressure, the effect of H_2O

addition on MgO is insignificant. Moreover, the pressure drop causes an obvious

decrease of MgO, which is analogous to the trend of Ni in melt. Likewise, a higher T_p

slightly increases the MgO of magma (~0.5-1.0 wt. %) at the same pressure and water

content. In all, the trend of MgO within primitive melt is similar to that of Ni during

519 adiabatic decompression melting process.

520	At $T_p=1500$ °C, the Cu concentration in melt always exhibits a constant
521	downward trend with increasing melting, and the exhaustion of sulfide causes only a
522	slight inflection on the slope of Cu vs. degree of melting (Fig. 5a). This trend is
523	different from either the long-held view of Cu behavior (Naldrett 2010, 2011; Lee et
524	al. 2012; Ding and Dasgupta 2017) or the previous results obtained for polybaric
525	continuous melting of DMM (Figs. 2d and 3b), and we return to this matter in the
526	Discussion. Addition of water will drive a slight increase of Cu in melt at the same
527	melting fraction, but this effect is negligible after the complete exhaustion of sulfide
528	in source (Fig. 5a). In contrast, at constant pressure, a greater amount of H_2O in
529	source slightly reduces the Cu concentration of primary melt (by \sim 6 ppm for 0 to
530	1000 ppm H_2O at 3.9 GPa) due to the extended degree of melting. Although sulfide
531	exhaustion occurs at different melting degrees for T_p =1500 and 1550 °C, the Cu
532	concentrations of melts fall into equal or near-equal ranges from 0 to 4 GPa (Figs. 5a
533	and 5b). In the model with higher T_p (>1600 °C), the residual sulfide is entirely
534	dissolved at greater depth before the simulation begins (i.e., >4 GPa), so its result
535	only reflects the late diminishing part and overlaps the Cu trend for the 1500 $^\circ\!\!C$ T_p
536	model at the corresponding melting range. Before complete exhaustion of sulfide, the
537	Ni and Cu amounts of residual sulfide liquids fall into a narrow range (Ni, 24.7-30.8
538	wt. %; Cu, 1.8-2.29 wt. %) (Fig. 5).

539

540 **4.3 Isobaric melting of SCLM due to plume-lithosphere interaction**

542	For an isobaric melting model, the temperature of SCLM must be continuously
543	increased to trigger and continue partial melting. Several numerical simulations of
544	plume-lithosphere interaction have generated the temporal and spatial distribution of
545	the complex resulting temperature field (Farnetani and Richards 1994; d'Acremont et
546	al. 2003; Burov et al. 2007; Koptev et al. 2015; Gorczyk et al. 2017). To avoid endless
547	proliferation of model parameters we have adopted a simple limiting constraint that
548	the melting temperature in SCLM cannot exceed the temperature of subjacent plume.
549	In Figure 6, the conditions where the continuously rising temperature of the isobaric
550	model intersects with the temperature of adiabatic decompression melting at the same
551	pressure, are indicated as round dots. If the temperature of the system exceeds this
552	threshold value, the remaining parts of models will be divorced from reality, and
553	shown as dotted lines.
554	The models of A-, P- and T-SCLM at 3.9 GPa, 50 ppm H_2O and ΔFMQ -2.4,
555	show that Ni concentration increases steadily in melt as melting proceeds (Fig. 6a).
556	Based on the assumed S abundances (Table 1), the residual sulfide of source is
557	entirely dissolved in melts at ~1.43%, 5.76% and 10.14% melting for A-, P- and
558	T-SCLM, respectively. Overall, at the same degree of melting, the relative Ni contents
559	of melt from A-SCLM are highest, followed by P-SCLM and T-SCLM. The oldest
560	A-SCLM should be strongly depleted and refractory after previous melting events.
561	Thus, limited to the temperature threshold offered by the plumes with same T _p , the
562	effective melting extent of A-SCLMs is lower than that of P-SCLMs, and both of

563	them are lower than T-SCLMs (Fig. 6a). If S has not previously been affected by
564	metasomatism of SCLM, the isobaric melting of SCLMs mostly ceases before the
565	complete exhaustion of sulfide, except for the T-SCLM heated by mantle plume with
566	1600°C T _p (Fig. 6a).
567	To examine the effect of lithospheric thickness, isobaric melting of T-SCLM has
568	been modeled at 1.5 GPa (Δ FMQ-1.0), 2.7 GPa (Δ FMQ-1.7) and 3.9 GPa
569	$(\Delta FMQ-2.4)$ (Fig. 6b). For the same source, isobaric melting at higher pressure results
570	in higher Ni contents; melting at 2.7 GPa results in Ni contents ~400 ppm greater than
571	at 1.5 GPa. Additionally, the reduction of pressure will also drive a slight delay for the
572	sulfide exhaustion, and much higher degrees of melting occur at lower pressure (Fig.
573	6b). The MgO content of melts for different SCLMs and pressures have similar trends
574	as the Ni concentration with the melting increases (Fig. 6c). Dotted lines in Figure 6c
575	show the unrealistic increases in melt MgO content that would occur if the isobaric
576	melting was not limited by the temperature of the impinging plume.
577	The Cu concentration of melt in isobaric model shows a rapid growth at the
578	beginning of melting, followed by a smooth increase to a maximum value, and then a
579	slow decline (Fig. 6d). The complete exhaustion of sulfide slightly lags behind the
580	appearance of maximum Cu concentration, except in the case of partial melting of
581	T-SCLM at 1.5 GPa. Higher pressure increases the Cu concentration at the initial
582	stage of melting, but the results at different pressure overlap at higher degrees of
583	melting after the exhaustion of sulfide (Fig. 6d). As the A- and P-SCLM may be
584	depleted in Cu due to multi-phase magmatic events, the Cu released by their isobaric

melting is generally less than that of T-SCLM at the same fraction of mantle melted(Fig. 6d).

587	Isobaric melting models of T-SCLM with different H_2O contents (0-300 ppm)
588	were conducted under 3.9 GP and Δ FMQ-2.4, using H ₂ O as a proxy for the many
589	possible fluxing influences of metasomatism. Because H_2O in the source reduces the
590	melting temperature, its effect is exhibited in element concentration vs. temperature
591	diagrams (Figs. 6e and f). The increase of H_2O from 0 to 300 ppm leads to only 11 °C
592	drop of the temperature at which sulfide is exhausted (Figs. 6e and f). On the other
593	hand, the influences of H_2O addition on the overall trends of Ni and Cu are
594	insignificantly small. At the same temperature, just ~ 60 ppm growth of Ni
595	concentration is related to the increase of H_2O from 0 to 300 ppm (Fig. 6e). The
596	variation of melt productivity (%/°C) along with the increasing temperature shows a
597	smooth growth at the onset of melting, and then rapidly increases to a maximum value
598	with the exhaustion of clinopyroxene, which can be slightly delayed via the loss of
599	H ₂ O (Fig. 6e).
600	

601 **4.4 Flux-melting of mantle wedge**

602

Variations of Ni and Cu in the aggregated melt during the partial melting of mantle wedge are shown in Figure 7. Although the model slab-derived fluids cover the compositional range from aqueous fluid to hydrous silicate melt, these changes have little influence on the Ni, Cu concentrations and compositions of melts. Increase

607	of temperature from 1100 to 1300 °C causes increases in MgO and Ni contents in
608	magmatic output, e.g., 5-6 wt.% MgO, ~90 ppm Ni at 1100° C and $11-13.5$ wt. %
609	MgO, ~250-300 ppm Ni at 1300°C (Figs. 7a and b).
610	On the other hand, increasing temperature also enhances the transfer of S into the
611	melt, leading to sulfide exhaustion at ~17 %, 19 %, 20.5 %, 21.3 % and 22 % of
612	mantle wedge melted at the temperature of 1300, 1250, 1200, 1150 and 1100 $^\circ \! \mathbb{C}$,
613	respectively, which, in turn, will control the behavior of Cu during flux-melting (Fig.
614	7c). Moreover, the timing of maximum values of Cu lag behind the sulfide exhaustion
615	owing to the buffering of remaining melt. Variations of initial S abundance in the
616	source can slightly enhance or retard the exhaustion of sulfide, driving a little increase
617	or decrease of the Cu maximum, but all trends overlap at high degrees of melting (Fig.
618	7d). The depleted DMM will reach the exhaustion of sulfide earlier, but the reason for
619	these nearly parallel Cu trends is the different initial concentrations of Cu in sources
620	(Fig. 7e). At higher f_{0_2} , sulfide will be exhausted at lower degree of melting because
621	of enhanced S solubility, resulting in earlier and more efficient release of Cu into the
622	melt. For example, the maximum value of Cu within melt exceeds ~ 170 ppm at
623	Δ FMQ+2 and 1% melting, but is about 65 ppm for Δ FMQ+1 and 20% partial melting
624	(Fig. 7f). More oxidized conditions are therefore conducive to the generation of more
625	Cu-rich arc magmas from a given source.

626

627 **5. Discussion**

628 5.1 Partitioning behavior of Ni during decompression melting

630	Based on the models above, the distribution of Ni during partial melting of
631	mantle is complicated and shows a strong dependence on tectonic setting (230-450
632	ppm Ni for mid-ocean ridges, Figs. 2 and 3; 500-1300 ppm Ni for mantle plume, Fig.
633	4; 100-300 ppm Ni for subduction zones, Fig. 7), which can be attributed to the
634	following reasons: (1) Ni is not only strongly compatible in sulfide, but is also hosted
635	in major mineral phases in the source, especially the olivine which constitutes a large
636	percentage of mantle and has a moderate partition coefficient for Ni (~1.5-13); (2)
637	partition coefficients of Ni between the mineral phases and silicate melt are dependent
638	on melt composition, pressure and temperature (Beattie et al. 1991; Li and Ripley
639	2010; Herzberg et al. 1991; Matzen et al. 2013, 2017a), which will change during the
640	generation of magma; (3) source compositions, thermal regimes and melting
641	mechanisms of mantle are different in various tectonic settings (Arndt et al. 2005),
642	resulting in diverse melt products.
643	First of all, the partitioning behavior of Ni in mantle melting is determined by the
644	bulk partition coefficient of Ni between restite and melt (D_{Ni}^{bulk}) , which is simply the
645	sum of the individual partition coefficients multiplied by the proportions of each
646	phase, including the residual sulfide. Therefore, the variations of partition coefficients
647	and modal phase proportions in restite during partial melting of mantle affect the Ni
648	contents of melts along melting paths. As shown in Supplementary Figure S6, the
649	contribution of olivine to the bulk partition coefficient is far greater than that of other
650	phases, occupying ~ 78-91% proportion of D_{Ni}^{bulk} in the polybaric continuous

651	melting of DMM (Fig. S6b), ~>73% proportion in the adiabatic melting of PM (Fig.
652	S6d), ~ 76.5-86% proportion in the isobaric melting of T-SCLM (Fig. S6f), and > 73.5%
653	proportion in the flux melting of mantle wedge (Fig. S6h). Additionally, as garnet,
654	clinopyroxene and/or orthopyroxene are exhausted in turn, the olivine proportion in
655	restite rises in a similar manner over melting paths in different tectonic settings (Figs.
656	S6a, S6c, S6e and S6g). Therefore, the distinct partitioning behaviors of Ni (Figs. 2, 3,
657	4, 6 and 7) are mostly strongly attributed to the variations of $D_{Ni}^{ol/melt}$ at different
658	melting scenarios.
659	During decompression, for both the continuous melting of DMM and adiabatic
660	melting of PM, Ni concentrations in melts decrease with increasing degree of melting
661	(Figs. 2, 3 and 4), which contradicts intuition and the long-held conclusions derived
662	from previous isobaric melting models with fixed partition coefficients (Naldrett 2010,
663	2011). As the D_{Ni}^{bulk} is mostly controlled by the partition coefficient between olivine
664	and melt (Figs. S6b, S6d, S6f and S6h), the reasons for the distinct Ni trends are
665	related to variations of $D_{Ni}^{Ol/melt}$ between melting scenarios. First, there is an obvious
666	inverse relationship between $D_{Ni}^{Ol/melt}$ and MgO in melt (e.g., Hart and Davis 1978);
667	the increasing temperature and pressure of melting typically yield primary melts with
668	elevated MgO (Herzberg et al. 2013, 2016), and this strong correlation makes it
669	difficult to distinguish the isolated effects of temperature and/or pressure on $D_{Ni}^{Ol/melt}$.
670	More recently, the experiments of Matzen et al. (2013, 2017a) separated the
671	influences of temperature from liquid composition, and demonstrated that the increase
672	of temperature at constant melt composition largely decreases $D_{Ni}^{Ol/melt}$. Niu et al.

673	(2011) suggested explicitly the inverse correlation of $D_{Ni}^{Ol/melt}$ with increasing
674	pressure, but this parameterization may not be consistent with the experimental
675	database (Herzberg et al. 2013). In addition, an explicit pressure dependence is absent
676	from many parameterizations of $D_{Ni}^{Ol/melt}$ (Li and Ripley 2010; Putirka et al. 2011;
677	Herzberg et al. 2013); Matzen et al. (2013, 2017a) proposed that the effect of pressure
678	on $D_{Ni}^{Ol/melt}$ is negligible over the range from 0 to 3 GPa. Incorrect results are
679	obtained by simple isobaric melting models because increasing temperature and
680	continuous growth of MgO in melt cause a decrease of $D_{Ni}^{Ol/melt}$ in isobaric models
681	(Naldrett 2010, 2011). For the decompression melting of mantle, the variation of
682	pressure cannot be ignored, and will exert a strong influence on the melt composition.
683	Melting experiments of both the spinel peridotite and garnet peridotite have
684	consistently shown that MgO increases in partial melt with the increasing pressure
685	(Jaques and Green 1980; Walter 1998; Herzberg and Asimow 2015). Once upwelling
686	mantle material intersects the solidus, initial melting occurs at the largest pressure and,
687	in turn, results in minor melt production of melt with the highest MgO. As upwelling
688	continues, more melt with less MgO will be generated at lower pressure, which
689	dilutes the original high-MgO melt. Hence, the drop of pressure in decompression
690	process causes the decrease of MgO with melting before the exhaustion of
691	orthopyroxene, resulting in rising $D_{Ni}^{Ol/melt}$ and a consequent drop of Ni
692	concentration in the melt. In addition, the temperature of hotter mantle decreases
693	during its ascent, making secondary contributions to the increase of $D_{Ni}^{Ol/melt}$ and
694	decrease of Ni concentrations in the decompression of DMM and PM (Matzen et al.

695	2013, 2017a). This trend of MgO within melt has also been revealed by the
696	accumulated and instantaneous fractional melts during adiabatic decompression paths
697	of the fertile peridotite (Fig. 8 and Fig. 11 in Herzberg and O'Hara 2002).
698	
699	5.2 Partitioning behavior of Cu during partial melting
700	
701	In consideration of the complexities of various melting degrees and source
702	compositions, our results are in good agreement with existing knowledge of the Cu
703	concentrations in MORBs (60-90 ppm), arc basalts (50-100 ppm) and OIBs (80-120
704	ppm) (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014; Richards 2015).
705	Based on the recent experimental investigations on the partition coefficients of Cu
706	between mineral phases and silicate melts at upper mantle conditions (Fellows and
707	Canil 2012; Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015; Zhang et al. 2017),
708	many models for the partitioning of Cu within partial melting have reached a
709	consensus that its concentration increases with progressive melting at initial stage,
710	reaches a maximum value and then starts to decrease when sulfide is exhausted as
711	there is little to hold them back in the restite (Naldrett 2010, 2011; Lee et al. 2012;
712	Zhang et al. 2017; Ding and Dasgupta 2017).
713	However, our models predict some distinct and complex partitioning behaviors of
714	Cu during the partial melting of DMM (Figs. 2d and 3b), PM (Fig. 5), SCLM (Fig. 6d)
715	and mantle wedge (Figs. 7c-f), which is mostly attributed to the new insight into
716	$D_{Cu}^{sul/melt}$. Due to the insufficient and unsystematic experiments on $D_{Cu}^{sul/melt}$, a high

717	constant value was mostly used as a simplifying assumption in previous models (e.g.,
718	800 in Lee et al. 2012, 1000 in Ding and Dasgupta 2017), which ignores the possible
719	effects of changes of $D_{Cu}^{sul/melt}$ and overestimates the contribution of sulfide to the
720	D_{Cu}^{bulk} . More recently, Li and Audétat (2012) recognized that the sulfide-silicate melt
721	partition coefficients of Ni and Cu vary as a function of oxygen fugacity. Then
722	Kiseeva and Wood (2013, 2015) did further experiments and developed a more
723	comprehensive thermodynamic model that takes account of the effects of temperature,
724	oxygen fugacity (refers to the FeO wt. % in silicate melt) and the composition of
725	sulfide liquid on $D^{sul/melt}$, to describe the Ni and Cu partitioning between sulfide
726	liquids and silicate melts. A simple relationship between the $D_{Cu}^{sul/melt}$ and the FeO
727	of melt has been confirmed by Kiseeva and Wood (2013), showing the negative
728	near-linear correlation in diagram of $\log D_{Cu}^{sul/melt}$ vs. $\log FeO$. Moreover, negative
729	T-dependences were also observed within the range of 1300-1700°C, and substantial
730	addition of Ni and/or Cu into the sulfide liquid resulted in the slight variation of
731	D ^{sul/melt} (Kiseeva and Wood 2015). As a result, the elevated temperature and FeO of
732	melt experienced during melting at higher pressure drive an important reduction of
733	$D_{Cu}^{sul/melt}$.
734	Walter (1998) demonstrated that the FeO of melt increases with increasing

735 pressure, although his data exhibit considerable scatter. Hence, the FeO of melt output

during decompression, shows a sustained downward trend (Fig. 3d), leading to the

increase of $D_{Cu}^{sul/melt}$ (Fig. 8a) and falling Cu of melts. On the other hand, the ascent

of mantle is also accompanied by the reduction of temperature, which also makes a

739	secondary contribution to the elevated $D_{Cu}^{sul/melt}$. As the start of melting for the hotter
740	mantle occurs at a higher pressure, the $D_{Cu}^{sul/melt}$ will increase from a lower value for
741	the mantle partial melting at a larger T _p . For the adiabatic decompression melting of
742	mantle plume (T _p >1500°C), the values of $D_{Cu}^{sul/melt}$ are always smaller than ~290
743	before the exhaustion of residual sulfide (Fig. 8a), resulting in the monotonic decrease
744	of Cu with melting (Fig. 5). Similarly, Cu concentrations during polybaric continuous
745	melting of DMM at T_p = 1400 and 1375 °C will also exhibit a fast drop followed by a
746	smooth increase (the concave trend of Cu before exhaustion of sulfide, Fig. 3b)
747	because their increasing $D_{Cu}^{sul/melt}$ cross the transition value (~360) for Cu evolution
748	above which its D_{Cu}^{bulk} becomes less than unity (Fig. 8a). In contrast, for lower T _p
749	cases, Cu mostly increases before sulfide is exhausted (Fig. 3b) as their values of
750	$D_{Cu}^{sul/melt}$ always exceed ~360 (Fig. 8a). Additionally, because of the relative low
751	$D_{Cu}^{sul/melt}$ at the initial melting of DMM, the Cu content begins the melting path at
752	moderate values, which is distinct from the low initial value of Cu predicted by
753	previous models (Naldrett 2010; Lee et al. 2012; Ding and Dasgupta 2017). As a
754	result, the Cu contents of melts derived from partial melting of DMM fall into a
755	narrow range (~60-90 ppm for 1300-1375 $^\circ C ~ T_p)$ during the entire decompression
756	process, matching well with the observed distribution of Cu from MORB worldwide
757	(Fellows and Canil 2012). The hotter plume results in a very low value of $D_{Cu}^{sul/melt}$,
758	which, in turn, increases the Cu of primary melt, showing good agreement with the
759	relative high Cu contents from OIBs (Fellows and Canil 2012).
760	In contrast, the constantly rising temperature within isobaric melting of SCLMs

761	induces the increase of FeO of melt output, meanwhile both factors cause the
762	reduction of $D_{Cu}^{sul/melt}$. Its low melt productivity (%/°C) at the initial stage of partial
763	melting (Fig. 6e) determines that \sim 2-3% fraction after the onset of melting requires
764	great growth of temperature, leading to a sharp drop of $D_{Cu}^{sul/melt}$ (Fig. 8b)
765	accompanied by the rapid increase of Cu abundance in this stage (Fig. 6d). Then the
766	trend of $D_{Cu}^{sul/melt}$ shows a smooth decrease due to the relatively slow heating
767	process (moderate melt productivity, Fig. 6e) at the high melting fraction (Fig. 8b).
768	Additionally, the positive relationship between pressure and FeO content of melt also
769	makes a difference, showing that the isobaric melting of T-SCLM at higher pressure
770	produces melt with higher FeO content, lower $D_{Cu}^{sul/melt}$ and consequently higher Cu
771	content (Figs. 8b and 6d). At 3.9 GPa, the $D_{Cu}^{sul/melt}$ falls beneath ~150 for Cu
772	evolution during isobaric melting, leading to the transition of Cu abundance from fast
773	initial rise to smooth decrease (Fig. 6d). Hence, during the isobaric melting of SCLMs
774	at high pressure, the control of mantle sulfide on Cu partitioning behavior is
775	weakened by the sustained fall in $D_{Cu}^{sul/melt}$, and the maximum Cu content in the melt
776	can be reached before the exhaustion of sulfide within the restite.
777	As the temperature and pressure are constant within the flux-melting model, the
778	FeO content of melt output is nearly invariable, producing little change in $D_{Cu}^{sul/melt}$
779	during partial melting (Fig. 8c). Increasing temperature causes an increase in FeO and
780	reduction of $D_{Cu}^{sul/melt}$, but all the flux-melting models at appropriate temperature
781	range (1100-1300 °C) confirm the high level of $D_{Cu}^{sul/melt}$ (>~590), driving the

monotonic increase of Cu concentration with increasing melting before sulfide
exhaustion (Figs. 7c-f), which is parallel to the Cu trends from previous models with the assumed high $D_{Cu}^{sul/melt}$ (Naldrett 2010, 2011; Lee et al. 2012; Ding and Dasgupta 2017).

786

787 **5.3 Composition of base metal sulfide**

789	Base metal sulfide (BMS) within the mantle has drawn attention because it
790	controls the behaviors of chalcophile and siderophile elements and plays a crucial role
791	in recording melt depletion, enrichment and/or metasomatic events that may occur in
792	the mantle, particularly for Re-Os isotope systematics (Lorand and Luguet 2016;
793	Harvey et al. 2016). We presume that under all conditions addressed in our modeling
794	study, the BMS exists as a single sulfide liquid phase (Zhang and Hirschmann 2016).
795	Here, the thermodynamic model for Ni and Cu partitioning between sulfide and
796	silicate melt (Kiseeva and Wood 2013, 2015) not only traces the variations of
797	$D_{Ni}^{sul/melt}$ and $D_{Cu}^{sul/melt}$, but also provides a new insight into the compositional
798	evolution of BMS during partial melting of mantle. During the polybaric continuous
799	melting of DMM, the Ni concentration in BMS increases from 27.5 to 31.7 wt.%,
800	along with the rise of Cu from 2.79 to 6.33 wt.% (Figs. 2a, b and c). Addition of water
801	to the source drives a slight reduction of Ni and Cu contents in low-degree melting
802	due to the H ₂ O-induced extremely low $D^{sul/melt}$ at the onset of melting (Fig. 2f).
803	For the adiabatic decompression melting of hotter mantle, BMS falls into a similar
804	range for Ni abundance (24.7-29.9 wt.%), but a relatively lower and narrower range

805	for Cu concentration (1.8-2.3 wt.%, Fig. 5). In contrast, the BMS in models of
806	isobaric melting of SCLM exhibits decreasing Ni and Cu concentrations with
807	increasing melting (Fig. 6d), because of the drop of $D^{sul/melt}$. The ranges of Ni and
808	Cu in BMS are larger if the SCLM melts at lower pressure, and the melting of
809	strongly-depleted A-SCLM at 3.9 GPa results in Ni-rich, Cu-poor BMS (Fig. 6d).
810	Flux-melting of the mantle wedge gives a wide range for the composition of BMS that
811	mostly has high Ni (20-36 wt.%) and Cu (2-15 wt.%). In all, the sulfide compositions
812	within our models mostly fall into the range of 20-30 wt.% Ni and 2-10 wt.% Cu,
813	coinciding well with the observed compositional range of peridotite-hosed sulfide
814	worldwide (e.g., Guo et al. 1999; Wang et al. 2009; Liu et al. 2010; Lorand and
815	Luguet 2016; Harvey et al. 2016). Although the influence of Ni and Cu concentrations
816	in sulfide on partitioning is relatively small (Kiseeva and Wood 2013, 2015), their
817	impacts on the SCSS model are the factors that must be considered (Ariskin et al.
818	2013; Smythe et al. 2017).
819	We have used our modeled phase compositions to assess several published
820	parameterizations for the distribution of Ni between olivine and sulfide melt
821	(Supplementary 5). Whereas our model results are consistent with experimental data
822	in olivine-sulfide systems, they are not consistent with any of the published models.
823	We conclude that there is potential to derive a self-consistent model for olivine-sulfide
824	partitioning of Ni from the existing thermodynamic models for olivine-silicate melt
825	and sulfide liquid-silicate melt partitioning that would be more accurate than the
826	existing ones (e.g., Barnes et al. 2013; Sciortino et al. 2015).

827

828 **5.4 Effect of lithosphere thickness overlying mantle plume**

829

830	The decompression melting of deep-rooted thermal mantle plumes is triggered by
831	their intersection with the solidus, during the adiabatic upwelling of plume mantle,
832	and ceases at the bottom of lithosphere (Fig. 1). Hence, the base of rigid,
833	nonconvecting lithosphere will act as a 'lid' on upwelling sources, controlling the
834	vertical range of decompression processes, which is also proportional to the extent of
835	melting (Humphreys and Niu 2009; Niu et al. 2011). This decompression melting
836	beneath thick lithosphere stops at a greater depth, resulting in less melt with a high
837	pressure signature; whereas more melt bearing a low pressure signature comes from
838	partial melting beneath thin lithosphere (Humphreys and Niu 2009; Niu et al. 2011).
839	Because high pressure leads to the lower melting degree, larger MgO and Ni in melt
840	(Fig. 4), the lithosphere thickness exerts a strong control on the Ni concentration of
841	mantle plume-derived magma. On the other hand, our results are consistent with
842	explanations for the occurrence of high-Ni olivine phenocrysts stating that the
843	presence of thick lithosphere leads to high Ni contents in melt that in turn, allow the
844	crystallization of Ni-rich olivine near the surface (Niu et al. 2011; Putirka et al. 2011;
845	Matzen et al. 2013, 2017a, b).
846	It has been confirmed that variation of oceanic lithosphere thickness exerts the
847	first-order control on the major elements of OIBs (Humphreys and Niu 2009; Niu et al

848 2011). We have adopted geochemical data for volcanic islands from the GEOROC

849	database to evaluate the relationship between the lithosphere thickness and Ni
850	concentration in melt. The samples with $SiO_2 > 53\%$ and no Ni contents were excluded,
851	which resulted in a smaller data set containing 93 volcanic islands and 7216 samples
852	from the Pacific, Atlantic and Indian Oceans. The Ni contents of the OIB data set
853	were corrected for fractionation effects using the MORB liquid lines of descent (LLD)
854	to $Mg^{\#}=0.72$ (Supplementary 6). In order to test the influence of lithosphere thickness,
855	the corrected Ni contents of samples from each volcanic island were averaged
856	(Supplementary Table S1). Lithosphere thickness of each volcanic island was
857	obtained from Humphreys and Niu (2009), and given in Supplementary Table S1.
858	Although it has large compositional scatter for a given volcanic island (1σ variation in
859	Supplementary Table S1, and the error bars in Figure 9), the positive correlation of
860	island-averaged Ni with lithosphere thickness is noticeable ($R^2=0.295$, Fig. 9),
861	coinciding with the model-based prediction that termination of melting paths at higher
862	pressure under thicker lithosphere results in the increase of Ni concentration in melt
863	output.
864	Additionally, based on the GEOROC database, ultramafic-mafic volcanic
865	samples from oceanic LIPs were also used to verify the effect of lithosphere thickness.
866	Oceanic plateaus form in deep-ocean basins as broad and flat-topped plateaus with
867	over-thickened crusts (Ernst 2014). Although some features of oceanic plateaus (in
868	particular, Ontong Java) disagree with expectations of the mantle plume hypothesis
869	(Korenaga 2005), most oceanic plateaus still appear to have formed as a result of
870	decompression melting of a large mantle plume head (Révillon et al. 2000; Weis et al.

871	2002; Ernst 2014). The geochemical signatures of the Caribbean, Kerguelen and most
872	Ontong Java oceanic plateau lavas show no evidence of lithospheric interaction (Kerr
873	and Mahoney 2007; Ernst 2014). The older Kerguelen plateau basalts are slightly
874	contaminated by continental lithosphere (Ingle et al. 2002), and Wrangellia is the only
875	known oceanic plateau to have evidence for interaction with a subduction-modified
876	lithosphere (Greene et al. 2008). Thus, most oceanic plateaus are unlikely to be
877	modified by crustal contamination and continental lithosphere, and hence, are more
878	useful than continental LIPs to decipher mantle processes and source materials (Kerr
879	and Mahoney 2007; Ernst 2014). The Ni and MgO concentrations in lavas from
880	oceanic plateaus show a strong positive correlation, especially when MgO exceeds 12
881	wt.% (Fig. 10a). Final melting pressure and temperature are inferred from the
882	compositions of high-Mg rocks (>12 wt.%) following the equations from Herzberg
883	and Gazel (2009) (Fig. 10b). Melting in the Ontong Java and Wrangellia oceanic
884	plateaus is inferred to have ceased at 0.5-2 GPa, whereas the final melting pressures
885	of Caribbean and Kerguelen magmas decreased from \sim 7 GPa to 0.5 GPa. Diameters
886	of circles in Figure 10b are proportional to the Ni concentrations in samples. Although
887	the rocks are mixtures of melts and olivine phenocrysts, causing some overestimations
888	of Ni amount in melt, it appears that, in general, low final melting pressure leads to a
889	relatively low Ni content (Fig. 10b).
890	Even if the parental magma for Ni-Cu-(PGE) deposit experiences ascent,
891	assimilation, transport and crystallization after its generation (Naldrett 2010, 2011), a

892 Ni-rich primary melt still has greater potential to form a deposit during its subsequent

893	evolution. Based on many systematic studies of magmatic sulfide deposits, it has
894	become widely accepted that most of them are closely related to the coeval mantle
895	plume events and LIPs (Barnes and Lightfoot 2005; Begg et al. 2010; Qin et al. 2011;
896	Ernst 2014; Barnes et al. 2015), e.g., the Noril'sk magmatic deposit associated with
897	the end-Permian Siberian Traps (Lightfoot and Keays 2005). However, there is almost
898	no significant Ni-Cu-(PGE) mineralization in oceanic LIPs, except the Wellgreen
899	deposit in the Wrangellia plateau, which has interacted with the continental crust or
900	lithosphere (Marcantonio et al. 1994; Ernst 2014). Our models indicate that melting
901	beneath the thin oceanic lithosphere (mostly <90 km) may cause Ni concentrations
902	too low to generate significant magmatic mineralization. Although the continental
903	LIPs usually interacted with thick ancient cratonic lithosphere, there are still some
904	barren continental LIPs, in which no significant magmatic Ni-Cu-(PGE) deposits have
905	been found, e.g., the Paraná-Etendeka Province and Deccan Traps (Zhang et al. 2008).
906	In the main pulse of Deccan Traps magmatism (~65 Ma), the thickness of Dharwar
907	Carton in Indian may have been just ~80 km (Dessai et al. 2004; Karmalker et al.
908	2009). Based on the compositions of MgO-rich rocks, most magmatism in the Deccan
909	LIP was constrained by its low lithosphere thickness, and contain extremely low Ni
910	contents (8-573 ppm, Zhang et al. 2008). Additionally, a thinned lithosphere is also
911	advocated in the Paraná-Etendeka LIP event (Gibson et al. 2006). The thin lithosphere
912	may therefore be one of the reasons for the barren Deccan and Paraná-Etendeka LIPs.
913	However, it must be recalled that the mineralization process depends on a
914	combination of factors such as the availability of S-rich crustal contaminants and

915	suitable structural traps that are not related to the composition of the primary magma;
916	furthermore, not all valuable Ni deposits are preserved and exposed where we can
917	find them. Absence of evidence for their existence is not evidence of their absence.
918	
919	5.5 Effect of potential temperature in mantle plume
920	
921	Besides lithosphere thickness, the potential temperature also influences the P-T
922	condition at which melting ceases within the ascending plume. Evidently $T_{\rm p}$ of an
923	adiabatically upwelling plume must be high enough for it to intersect the solidus at
924	sub-lithospheric depths (e.g., Farnetani and Richards 1994; Garfunkel 2008). At
925	constant pressure (e.g., thickness of lithosphere lid), a 50 $^\circ \! C$ increase of T_p will lead to
926	~2 MgO wt. % growth and ~70-110 ppm Ni increase in melt.
927	The T _p of some typical oceanic and continental LIPs have been calculated using
928	PRIMETL 3 (Herzberg and Asimow 2015) (Fig. 11). In our calculations, we excluded
929	samples: (1) generated from pyroxenite sources; (2) degassed from CO ₂ -rich sources;
930	(3) which have experienced plagioclase and/or clinopyroxene fractionation. All results
931	illustrated that LIPs were formed by sources which are hotter than normal mantle, and
932	most of them have a wide range of T_p , such as 1410-1670°C for Siberian Traps (Fig.
933	11). Although secular cooling does occur in mantle plumes (Herzberg and Gazel
934	2009), this influence is very small for the short duration of these LIP events, and
935	hence, the variations of T _p mostly depend on the thermal structure of mantle plume
936	such that hot primary magmas originate from the axis with high T _p , and cooler

937	primary magmas come from the periphery having low T_p (Ribe and Christensen 1999).
938	Therefore, the primary melt related to the highest T _p in plume-center should have
939	great ore potential, coinciding well with observations that the Ni-Cu-(PGE)
940	mineralization is usually proximal to their respective mantle plume centers (Ernst
941	2014). Furthermore, Lee et al. (2009) concluded that Archean komatiites mostly
942	formed by melting in a mantle with a $T_p>1700$ °C, which is one of the possible reasons
943	for the abundant magmatic Ni-Cu-(PGE) sulfide deposits located in komatiites.
944	
945	5.6 Effect of H_2O in Mid-Ocean Ridges and Mantle Plumes
946	
947	Under water-unsaturated conditions in our models, the effect of H_2O on mantle
948	melting was determined via a simplified approach using water partition coefficients
949	between phases and melt (Asimow et al. 2004; Hirschmann 2006), where water as an
950	incompatible component has a strong tendency to enter into the melt. The decreased
951	melting temperature of hydrous mantle causes the onset of melting at a higher
952	pressure (Fig. 1) (Hirth and Kohlstedt 1996; Asimow and Langmuir 2003; Aubaud
953	2004), which further results in a series of changes in the melt composition, e.g., the
954	reduction of SiO ₂ and increase of MgO and FeO (e.g., Hirose and Kushiro 1993;
955	Hirose and Kawamoto 1995; Walter 1998). The elevated MgO causes a decrease of
956	$D_{Ni}^{Ol/melt}$ (Matzen et al. 2017a), resulting in an increase of Ni concentration in the
957	melt. Meanwhile, the increase of FeO content will also reduce $D_{Cu}^{sul/melt}$ (Kiseeva
958	and Wood 2013, 2015), facilitating the liberation of Cu into the melt. Additionally,

959	recent experiments demonstrate an increase in the SCSS of ~100 ppm/wt.% added
960	water into the melt composition (Fortin et al. 2015), which enhances the dissolution of
961	residual sulfide to release more Ni and Cu at the same melting degree. Therefore, the
962	influence of water on mantle melting can be projected on the partitioning behavior of
963	Ni and Cu, and mostly will elevate their concentrations in the melt output.
964	During polybaric continuous melting of DMM, the augmenting effects of water
965	addition on the Ni and Cu concentrations are significant at the initial stage, but will be
966	gradually weakened with continued melting (Figs. 2a-d). As the bulk partition
967	coefficient for hydrogen applicable to partial melting of mantle is extremely low
968	(~0.009) and similar to that of incompatible Ce (Aubaud 2004; Kohn 2006), hydrogen
969	should be strongly concentrated in melt. Because of the very small amount of water
970	contained in DMM, its abundance within the source will be diluted by further melting
971	and has little effect on the maximum melting extent (Hirth and Kohlstedt 1996;
972	Asimow and Langmuir 2003). On the other hand, although H ₂ O can trigger the onset
973	of partial melting at higher pressure, the melt productivity (%/GPa) is extremely low
974	at the initial stage. Hence, the addition of water strongly expands the melting region
975	by creating a large pressure interval at the base of the main melting regime, but the
976	contribution of this elongated area to the final melt output is minimal (Asimow and
977	Langmuir 2003). Therefore, the sharp drop of Ni and Cu concentrations within 0-3 wt.%
978	melting (Figs. 2a-d) comes from the accumulated effect of a long decompression path
979	with the very low melt productivity.
980	However, the net effect of water addition seems to be long-lasting in the adiabatic

981	decompression melting of primary mantle (Figs. 4 and 5). In addition to the
982	differences between the initial abundance of H_2O within PM (0-6000 ppm) and DMM
983	(0-250 ppm), the partial melting mechanisms can also make some difference. In the
984	polybaric continuous melting and perfect fractional melting, H ₂ O is lost rapidly from
985	the system but this loss of water is not experienced during adiabatic decompression
986	melting. Notwithstanding the fact that water addition can drive the increase of Ni and
987	Cu contents at the same melting fraction; at a constant pressure (lithosphere thickness),
988	the increase of water from 0 to 1000 ppm slightly decreases the Ni and Cu in melt
989	(Figs. 4 and 5) because the melting extent has been greatly increased. In adiabatic
990	decompression melting, this influence of water will also become negligible at high
991	melting fraction.
992	Ductile delamination of continental lower lithosphere can cause continental
993	magmatism, possibly with large volumes (Elkins-Tanton 2005, 2007; Lustrino 2005).
994	The delaminating material may dehydrate as it sinks and heats, releasing a fluid that
995	induces melting in the asthenospheric mantle which has flowed in to replace the
996	foundered lithosphere; furthermore, the rising asthenosphere may produce melt
997	adiabatically in response to the upward movements (Elkins-Tanton 2005; Lustrino
998	2005). However, delamination models do not require hotter mantle upwelling from
999	deep hotter boundary layers, and hence the adiabatic decompression melting occurs
1000	within ambient normal mantle ($\sim T_p=1350^{\circ}C$). The model of DMM melting in
1001	mid-ocean ridge, shows that the metals in melt remain at a relatively low levels under
1002	such conditions (Ni, ~230-450 ppm; Cu, ~60-90 ppm). Moreover, the addition of vast

1003	amounts of water to the source (e.g., 2000-6000 ppm) in adiabatic decompression
1004	greatly increases its melting extent and causes reductions of Ni and Cu in melt at the
1005	same pressure (Figs. 4a, c, e, and 5). The overall combination of decompression- and
1006	fluid-induced melting provoked by the lithospheric delamination undoubtedly can
1007	generate extensive magmatism, but the metals in the melt output are far lower than
1008	that in mantle plume-related suites.
1009	
1010	5.7 Contribution of SCLM to plume-derived magmas
1011	
1012	Recently, the contribution of SCLM to the mineralization in magmatic ore
1013	deposits has been a topic of much discussion and debate. Griffin et al. (2013) claimed
1014	that 'fertile' (mineralized and continental) LIPs with high PGE contents (e.g., at the
1015	Bushveld Complex) have a close genetic relation to the SCLMs. Mungall and Brenan
1016	(2014) also advocated a mixture of SCLM- and asthenosphere-derived magmas to
1017	account for the PGE composition of Bushveld magmas. However, Arndt (2013)
1018	suggested that lithospheric mantle may play no active role in the magmatic deposits,
1019	and no evidence was found for systematic differences in magma compositions
1020	between various LIPs that could be attributed to contributions from SCLM (Barnes et
1021	al. 2015).
1022	From the T-SCLMs to P-SCLMs and then to A-SCLMs, the lithospheric mantle is
1023	continuously depleted due to the progressive removal of basaltic components during
1024	previous partial melting events, resulting in high Mg number, slight increase of Ni

1025	content, obvious reduction of Cu and S concentrations, and small amounts of easily
1026	fusible minerals (Griffin et al. 1999, 2009; Arndt 2013; Wang and Becker 2013, 2015).
1027	Hence, A-SCLM requires a higher temperature for a lower melting degree, and the
1028	contributions of Ni and Cu from older lithospheric mantle to plume magmas must be
1029	rather small, although A-SCLM-derived melts may have a slightly higher Ni content
1030	(Fig. 6a) but lower Cu concentration (Fig. 6d). In all isobaric melting models of
1031	SCLMs, the Ni and Cu amounts in melt are always less than that in corresponding
1032	plume system driving heating of the SCLM, even at the maximum extent of SCLM
1033	melting. Mixture of melts generated from SCLMs and plumes undoubtedly
1034	contributes continental signatures, but this process dilutes the Ni and Cu in the
1035	plume-related primary melt. Furthermore, our model did not account for the drop of
1036	temperature during plume-lithosphere interaction, heat loss by conduction and the
1037	complexities of the spatial thermal regime in SLCM. Hence, the achievable degree of
1038	melting in the SCLM was overestimated here. Once the sulfide in SCLMs has been
1039	completely dissolved, which is not likely to occur for the A-SCLMs and P-SCLMs in
1040	our models (Fig. 6a), it is possible that a unique SCLM PGE signature may be
1041	imparted to the mixed asthenosphere-SCLM source melt (Mungall and Brenan 2014),
1042	however this is not expected to be important except in the hottest and largest plume
1043	impingement events such as the Bushveld LIP or cases in which large-scale
1044	refertilization of the SCLM by melts or fluids permits greater degrees of melting than
1045	are envisaged here. For the T-SCLM, sulfide exhaustion requires high T_p plume or
1046	thin lithosphere (Figs. 6a and b), which occurs when plume heads migrate towards the

1047	thinned edges of continental lithosphere but not within continents. Even if sulfide is
1048	exhausted, the Cu contents still stay in the same order with these in plume-related
1049	melt, showing no great enrichment. Although the addition of metasomatic fluids
1050	easily triggers SCLM melting, its influence on Ni and Cu is still minimal (Figs. 6e
1051	and f). Finally, there is little evidence that the metasomatized SCLMs are abnormally
1052	enriched in chalcophile and highly siderophile elements (Arndt 2013; Wang and
1053	Becker 2015; Aulbach et al. 2015; Barnes et al. 2015; Lorand and Luguet 2016) to
1054	increase the metals contents in their melting products. Therefore, during
1055	plume-lithosphere interaction, the contribution of SCLMs to the ore potential of
1056	mantle-derived magma output is minimal, or even negative.
1057	
1058	5.8 Controlling factors in melting of the mantle wedge
1058 1059	5.8 Controlling factors in melting of the mantle wedge
1058 1059 1060	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our
1058 1059 1060 1061	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee
1058 1059 1060 1061 1062	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and
1058 1059 1060 1061 1062 1063	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and only changed melt fractions during the entire melting process. Our models confirm
1058 1059 1060 1061 1062 1063 1064	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and only changed melt fractions during the entire melting process. Our models confirm that the MgO and Ni contents of melts driven by flux melting in subduction zones are
1058 1059 1060 1061 1062 1063 1064 1065	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and only changed melt fractions during the entire melting process. Our models confirm that the MgO and Ni contents of melts driven by flux melting in subduction zones are strongly enhanced by increases in temperature (Fig. 7a and b). High temperature will
1058 1059 1060 1061 1062 1063 1064 1065 1066	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and only changed melt fractions during the entire melting process. Our models confirm that the MgO and Ni contents of melts driven by flux melting in subduction zones are strongly enhanced by increases in temperature (Fig. 7a and b). High temperature will also drive increasing Cu concentration in melt (Fig. 7c) owing to its combined
1058 1059 1060 1061 1062 1063 1064 1065 1066	5.8 Controlling factors in melting of the mantle wedge For the partial melting of the mantle wedge above subduction zones, our flux-melting model is more suitable than the widely-adopted melting calculation (Lee et al. 2012; Liu et al. 2014; Le Roux et al. 2015) that assumed mineral phases and only changed melt fractions during the entire melting process. Our models confirm that the MgO and Ni contents of melts driven by flux melting in subduction zones are strongly enhanced by increases in temperature (Fig. 7a and b). High temperature will also drive increasing Cu concentration in melt (Fig. 7c) owing to its combined influences on SCSS and $D_{Cu}^{sul/melt}$, which may be one of the reasons for the elevated

1069 (Fig. 2c in Lee et al. 2012).

1070	Recent experiments confirmed that fluid-present melting of sulfide-bearing ocean
1071	crust enhances the transport of S from the slab to mantle wedge (Jégo and Dasgupta
1072	2013, 2014). Sulfur enrichment leads to the complete exhaustion of residual sulfide at
1073	a higher melting fraction accompanied with a lower Cu maximum (Fig. 7d). On the
1074	other hand, melt induced by aqueous fluid has slightly larger MgO, Ni and Cu than
1075	the output triggered by hydrous silicate melt (Figs. 7a, b and c), ignoring any possible
1076	transfer of metals into mantle wedge by slab-induced fluids.
1077	A simplified petrological model from Arai and Ishimaru (2008) demonstrated that
1078	before metasomatism, the degree of depletion of mantle peridotite decreases from the
1079	fore-arc to back-arc region within the mantle wedge. Although prior melt depletion
1080	would reduce S and Cu concentrations, the subsequent addition of slab-derived fluids
1081	may compensate the S depletion (Jégo and Dasgupta 2013, 2014). Hence, for the
1082	flux-melting of mantle wedge with different depletion degrees, the partitioning
1083	behaviors of Cu are more affected by the loss of Cu relating to the prior melt
1084	extraction rather than the variations of other major compositions (Fig. 7e), if the S
1085	content within mantle wedge remains the same. Additionally, the Cu enrichment in
1086	melt could potentially be derived from highly oxidized melting of the subducted slab
1087	(Oyarzun et al. 2001) and/or heating of pyroxenite cumulates in the deep roots of arcs
1088	(Lee et al. 2012), which may introduce more complexity into the behavior of Cu in
1089	the fore-arc and back-arc regions.
1090	Oxygen and sulphur fugacity within the mantle wedge are also crucial to the fate

1091	of S and, in turn, the partitioning behavior of Cu during partial melting (e.g., Mungall
1092	et al. 2005, 2006; Jugo et al. 2010). It has been confirmed that a small increase in f_{O_2}
1093	above Δ FMQ+1 will have a strong impact on S behavior (transition from S ²⁻ to S ⁶⁻),
1094	leading to a 10-fold increase of the total S solubility (Li and Ripley 2009; Jugo et al.
1095	2010). Flux-melting of highly oxidized mantle wedge accelerates the liberation of Cu
1096	with the largest maximum value (~185 ppm Cu at Δ FMQ+2, Fig. 7f) owing to the low
1097	melting degree at the complete exhaustion of sulfide. However the influence of high
1098	oxidation state on Cu behavior is weaker than predicted by Lee et al. (2012), e.g., the
1099	Cu maximum value decreases from ~280 ppm to ~140 ppm (Fig. 7f) at Δ FMQ+1.6.
1100	At still higher f_{O_2} , Cu and other chalcophile elements are incompatible from the very
1101	onset of melting because sulfide melt is not a stable phase (e.g., Mungall 2002;
1102	Botcharnikov et al. 2013). Relatively high oxidation states are indicated in many arcs
1103	(Arai and Ishimaru 2008; Frost and McCammon 2008), but unlike Au and PGE
1104	(Mungall et al. 2006; Botcharnikov et al. 2013), no convincing correlation between
1105	magma oxidation state and Cu enrichment has been found (Lee et al. 2012; Richards
1106	2015). One of the reasons for this may be that the promotion effect of high oxidation
1107	state on Cu abundance is confined to a narrow window near the exhaustion of sulfide
1108	(mostly at low melting degree), and most parts of Cu trends are identical to each other
1109	at high melt fractions, e.g., 20-30 wt. % melting degree as suggested for most arc
1110	rocks (Mitchell and Grove 2015; Mallik et al. 2016).
1111	In all, during flux-melting of mantle wedge within subduction zones, temperature

is the most important factor controlling the partitioning behavior of Ni, and the

1113	temperature distribution of the mantle wedge reflects the influences of convergence
1114	rate, slab age, dip, rate of shear heating, vigor and geometry of flow in the mantle
1115	wedge and release of latent heat during phase change, and dehydration of the slab
1116	(Stern 2002; Simon 2003; Kincaid and Griffiths 2003; Peacock et al. 2005; van Keken
1117	et al. 2008; Leng and Mao 2015). Slow convergence rate, young lithosphere and low
1118	subduction angle lead to relatively high temperature in the subduction system (Leng
1119	and Mao 2015), increasing the Ni abundance in melt. If the dehydration of slab is
1120	weak and pre-eruptive water contents are low, or at slab windows, the partial melting
1121	occurs at high temperature, similar to the decompression melting in mid-ocean ridges.
1122	On the other hand, the melting in cooler subduction zones is usually triggered and
1123	enhanced by continuous addition of slab-derived fluids or melts, resulting in a relative
1124	low Ni content in the melt. In contrast, although the Cu behavior can be influenced by
1125	temperature, S and Cu enrichment, depletion of mantle and oxygen fugacity, showing
1126	notable increases in low-degree oxidized melts over all others, the Cu concentrations
1127	of most arc magmas are expected to fall in the range from 50 to 100 ppm, which is
1128	sufficient for the generation of large porphyry deposits within reasonable magma
1129	volumes (Cline and Bodnar 1991; Richards 2015).

1130

1131 6. Implications

1132

There is a close relationship between the geodynamic environment of partial
 melting and ore-potential of mantle-derived magma, which will be of significance for

1135	the delineation of the Ni-Cu exploration target areas at the regional scale. For
1136	magmatic sulfide deposits, a thick lithosphere (high pressure) with a hot plume tends
1137	to generate melts with higher MgO and Ni contents, whereas there is no clear
1138	correlation between magma fertility for porphyry Cu deposits and the detailed aspects
1139	of the melting process above subduction zones.
1140	2. In this regard, the comprehensive results can be used as reference values for
1141	the MgO content and ore potential of primary melt. If the tectonic setting, thermal
1142	state and H ₂ O abundance of source mantle can be presumed <i>a priori</i> for given
1143	mineralized magmatic suite, these expectations can be compared with the observed
1144	outputs from the system to provide a better understanding of the complex processes
1145	that may have occurred in transit through the crust, e.g., assimilation, sulfide
1146	segregation, magma evolution and transport, because the characteristics of inflow and
1147	outflow magmas have been effectively outlined.
1148	3. This forward model sheds new light on some contentious issues for the genesis
1149	of magmatic sulfide deposits; we suggest that the SCLM may play no active role for
1150	ore potential of mixed magma during plume-lithosphere interactions and that addition
1151	of vast amounts of water released from delaminating material, while potentially
1152	generating extensive magmatism, is unlikely to produce magmas highly fertile for the
1153	generation of Ni deposits.
1154	4. Our results show that efforts to decipher the NiO content of olivine
1155	phenocrysts in basalts strictly in terms of lithospheric thickness (e.g., Matzen et al.
1156	2013, 2017a, b; Niu et al. 2011) must be applied in full consideration of complicating

1157	factors including partial melting mechanisms, last equilibration pressures (e.g.,
1158	lithospheric thicknesses for plumes) and thermal states of source (e.g., potential
1159	temperatures), besides the possible presence of olivine-free pyroxenite mantle in
1160	source (Sobolev et al. 2005, 2007).
1161	5. By using completely independent parameterizations for the deportment of Ni
1162	in systems containing silicate melt, sulfide melt, and olivine, we have duplicated
1163	experimental results and also shown that existing parameterizations of Ni partitioning
1164	between sulfide melt and olivine are inconsistent with what is known about Ni
1165	partitioning between the more thoroughly understood sulfide melt and silicate melt or
1166	olivine and silicate melt systems. The results open a path to improved understanding
1167	of olivine-BMS equilibria in mantle peridotite, and further make it easier to
1168	distinguish between diverse BMS generations for in situ analyses of Re-Os isotope to
1169	trace the evolution of SCLM.
1170	

1171 Acknowledgments

1172 We are grateful for the help of Mark Ghiorso and Paul Asimow for instruction on

alphaMELTS, especially for the flux melting model. This work is funded by the

1174 National Key Research & Development Program of China (2017YFC0601306 and

1175 2017YFC0601204), and a visiting scholar grant provided by the Chinese Scholarship

1176 Council. Special thanks go to Alexey Ariskin and an anonymous reviewer for their

1177 very useful and constructive comments and to the journal editors, Ekaterina Kiseeva

1178 and Keith Putirka for their assistance.

1179

1180 **References**

1181

Arai, S., and Ishimaru, S. (2008) Insights into petrological characteristics of the 1182 lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a 1183 review. Journal of Petrology, 49, 665-695. 1184 Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., McNeill, A.W., Barmina, G.S., 1185 and Nikolaev, G.S. (2013) Modeling solubility of Fe-Ni sulfide in basaltic 1186 magmas: the effect of nickel. Economic Geology 108, 1983-2003. 1187 Arndt, N. (2013) The lithospheric mantle plays no active role in the formation of 1188 orthomagmatic ore deposits. Economic Geology, 108, 1953-1970. 1189 Arndt, N.T., Lesher, C.M., Czamanske, G.K., Arndt, N.T., Lesher, C.M., and 1190 Czamanske, G.K. (2005) Mantle-derived magmas and magmatic Ni-Cu-(PGE) 1191 deposits. Economic Geology 100th Aniversary volume, 5-24. 1192 Asimow, P.D. (1997) A thermodynamic model of adiabatic melting of the mantle, 370 1193 p. Ph.D. thesis, Callifonia Institute of Technology. 1194 Asimow, P. D. (2004) The significance of multiple saturation points in the context of 1195 polybaric near-fractional melting. Journal of Petrology, 45, 2349-2367. 1196 Asimow, P.D., and Langmuir, C.H. (2003) The importance of water to oceanic mantle 1197 melting regimes. Nature, 421, 815-820. 1198 1199 Asimow, P.D., Hirschmann, M.M., and Stolper, E.M. (2001) Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. 1200 adiabatic decompression and the composition and mean properties of 1201 Mid-ocean Ridge Basalts. Journal of Petrology, 42, 963-998. 1202 Asimow, P.D., Dixon, J.E., and Langmuir, C.H. (2004) A hydrous melting and 1203 fractionation model for mid-ocean ridge basalts: Application to the 1204 Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 1205 5. doi:10.1029/2003GC000568 1206 Aubaud, C. (2004) Hydrogen partition coefficients between nominally anhydrous 1207 minerals and basaltic melts. Geophysical Research Letters, 31. Doi: 1208 10.1029/2004GL021341. 1209 Aulbach, S., Mungall, J.E. and Pearson, D.G. (2016) Distribution and processing of 1210 highly siderophile elements in cratonic mantle lithosphere. Reviews in 1211 Mineralogy and Geochemistry, 81, 239-304. 1212 Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., and Stolper, E.M. (1995) 1213 Compositions of near-solidus peridotite melts from experiments and 1214 thermodynamic calculations. Nature, 375, 308-311. 1215 Barnes, S.J., and Lightfoot, P.C. (2005) Formation of magmatic nickel sulfide ore 1216 1217 deposits and processes affecting their copper and platinum group element contents. Economic Geology, 100, 179-213. 1218 Barnes, S.J., and Robertson, J.C. (2018) Time scales and length scales in magma flow 1219

- pathways and the origin of magmatic Ni-Cu-PGE ore deposits. Geoscience
 Frontiers, doi:10.1016/j.gsf.2018.02.006.
- Barnes, S.J., Maier, W.D., and Curl, E.A. (2007) Composition of the marginal rocks
 and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa:
 Implications for the formation of the Platinum-group element deposits.
 Economic Geology, 105, 1491-1511.
- Barnes, S.J., Godel, B., Gürer, D., Brenan, J.M., Robertson, J., and Paterson D. (2013)
 Sulfide-olivine Fe-Ni exchange and the origin of anomalougly Ni rich
 magmatic sulfides. Economic Geology, 108, 1971-1982.
- Barnes, S.J., Cruden, A.R., Arndt, N., and Saumur, B.M. (2016) The mineral system
 approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geology
 Reviews, 76, 296-316.
- Beattie, P., Ford, C., and Russell, D. (1991) Partition coefficients for olivine-melt and
 orthopyroxene-melt systems. Contributions to Mineralogy and Petrology, 109,
 212-224.
- Begg, G.C., Hronsky, J.A.M., Arndt, N.T., Griffin, W.L., O'Reilly, S.Y., and Hayward,
 N. (2010) Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE
 sulfide deposits. Economic Geology, 105, 1057-1070.
- Bell, D.R., and Rossman, G.R. (1992) Water in earth's mantle the role of nominallyanhydrous minerals. Science, 255, 1391-1397.
- Berry, A.J., Stewart, G.A., O'Neill, H.S.C., Mallmann, G., Mosselmans, J.F.W., (2018)
 A re-assessment of the oxidation state of iron in MORB glasses. Earth and
 Planetary Science Letters, 483, 114-123.
- Bochrath, C., Ballhaus, C., and Holzheid, A. (2004) Fractionation of platinum-group
 elements during mantle melting. Science, 305, 1951-1953.
- Bolfancasanova, N. (2005) Water in the Earth's mantle. Mineralogical Magazine, 69,229-258.
- Borisov, A., and Danyushevsky, L. (2011) The effect of silica contents on Pd, Pt and
 Rh solubilites in silicate melts: an experimental study. European Journal of
 Mineralogy, 23, 355-367.
- Borisov, A., and Palme, H. (1997) Experimental determination of the solubility of
 platinum in silicate melts. Geochimica et Cosmochimica Acta, 125, 265-289.
- Botcharnikov, R.E., Holtz, F., Mungall, J.E., Beermann, O., Linnen R.L., and
 Garbe-Schönberg, D. (2013) Behavior of gold in a magma at sulfide-sulfate
 transition: Revisited. American Mineralogist, 98, 1459-1464.
- Brenan, J.M. (2003) Effects of fO₂, fS₂, temperature, and melt composition on Fe-Ni
 exchange between olivine and sulfide liquid: Implications fro natural
 olivine-sulfide assemblages. Geochimica et Cosmochimica Acta, 67,
 2663-2681.
- Burov, E., Guillou-Frottier, L., d'Acremont, E., Le Pourhiet, L., and Cloetingh, S.
 (2007) Plume head-lithosphere interactions near intra-continental plate
 boundaries. Tectonophysics, 434, 15-38.
- Canil, D. (1999) The Ni-in-garnet geothermometer: calibration at natural abundances.
 Contributions to Mineralogy and Petrology, 136, 240-246.

- Cline, J.S., and Bodnar, R.J. (1991) Can economic porphyry copper mineralization be
 generated by a typical calc-alkaline melt? Journal of Geophysical Research, 96,
 8113-8126.
- Cole, J.W., Graham, I.J., and Gibson, I.L. (1990) Magmatic evolution of late
 Cenozoic volcanic rocks of the Lau Ridge, Fiji. Contributions to Mineralogy
 and Petrology, 104, 540-554.
- Condie, K.C. (2001) Mantle plumes and their record in earth history. Cambridge Univ.
 Press, New York.
- 1272 Cottrell, E., Kelley, K. A., (2011) The oxidation of Fe in MORB glasses and the
 1273 oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305,
 1274 270-282.
- d'Acremont, E., Leroy, S., and Burov, E. B. (2003) Numerical modelling of a mantle
 plume: the plume head–lithosphere interaction in the formation of an oceanic
 large igneous province. Earth and Planetary Science Letters, 206, 379-396.
- De Hoog, J.C.M., Mason, P.R.D., and Bergen, M.J.V. (2001) Sulfur and chalcophile
 elements in subduction zones: constraints from a laser ablation ICP-MS study
 of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et
 Cosmochimica Acta, 65, 3147-3164.
- Dessai, A.G., Markwick, A., Vaselli, O., and Downes, H. (2004) Granulite and
 pyroxenite xenoliths from the Deccan Trap: insight into the nature and
 composition of the lower lithosphere beneath cratonic India. Lithos, 78,
 263-290.
- Ding, S., and Dasgupta, R. (2017) The fate of sulfide during decompression melting
 of peridotite implications for sulfur inventory of the MORB-source depleted
 upper mantle. Earth and Planetary Science Letters, 459, 183-195.
- Dixon, J.E., Dixon, T.H., Bell, D.R., and Malservisi, R. (2004) Lateral variation in
 upper mantle viscosity: role of water. Earth and Planetary Science Letters, 222,
 451-467.
- Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov,
 A.G., and Ashchepkov, I.V. (2014) High water contents in the Siberian cratonic
 mantle linked to metasomatism: an FTIR study of Udachnaya peridotite
 xenoliths. Geochimica et Cosmochimica Acta, 137, 159-187.
- Elkins-Tanton, L.T. (2005) Continental magmatism caused by lithospheric
 delamination. In G.R. Fouler, D.L. Anderson, J.H. Natland, and D.C. Presnall,
 Ed., Melting anomalies: their nature and origin. Geological Society of America
 Special Papers 388, 449-461.
- Elkins-Tanton, L.T. (2007) Continental magmatism, volatile recycling, and a
 heterogeneous mantle caused by lithospheric gravitational instabilities. Journal
 of Geophysical Research: Solid Earth, 112, 485-493.
- Elkins-Tanton, L.T., Grove, T.L., and Donnellynolan, J. (2001) Hot, shallow mantle
 melting under the Cascades volcanic arc. Geology, 29, 631.
- Ernst, R.E. (2014) Large Igneous Provinces, 653 p. Cambridge Univ. Press,
 Cambridge, United Kingdom.
- 1307 Farnetani, C.G., and Richards, M.A. (1994) Numerical investigations of the mantle

plume initiation model for flood basalt events. Journal of Geophysical 1308 Research: Solid Earth, 99, 13813-13833. 1309 Fellows, S.A., and Canil, D. (2012) Experimental study of the partitioning of Cu 1310 during partial melting of Earth's mantle. Earth and Planetary Science Letters, 1311 337, 133-143. 1312 Foley, S.F. (2010) A reappraisal of redox melting in the earth's mantle as a function of 1313 tectonic setting and time. Journal of Petrology, 52, 1363-1391. 1314 Fortin, M. A., Riddle, J., Desjardins-Langlais, Y., Baker, D. R., (2015) The effect of 1315 water on the sulfur concentration at sulfide saturation (SCSS) in natural melts. 1316 Geochimica et Cosmochimica Acta, 160, 100-116. 1317 Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual 1318 Review of Earth and Planetary Science, 36, 389-420. 1319 1320 Gaetani, G.A., and Grove, T.L. (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in 1321 the Earth and Mars. Geochimica et Cosmochimica Acta, 61, 1829-1846. 1322 Garfunkel, Z. (2008) Formation of continental flood volcanism — the perspective of 1323 setting of melting. Lithos, 100, 49-65. 1324 1325 Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the 1326 interpolation and extrapolation of liquid-solid equilibria in magmatic systems 1327 at elevated temperatures and pressures. Contributions to Mineralogy and 1328 Petrology, 119, 197-212. 1329 Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., and Iii, V.C.K. (2002) The pMELTS: 1330 a revision of MELTS for improved calculation of phase relations and major 1331 element partitioning related to partial melting of the mantle to 3 GPa. 1332 Geochemistry, Geophysics, Geosystems, 3, 1–35. 1333 Gibson, S.A., Thompson, R.N., and Day, J.A. (2006) Timescales and mechanisms of 1334 plume-lithosphere interactions: 40Ar/ 39Ar geochronology and geochemistry 1335 of alkaline igneous rocks from the Paraná-Etendeka large igneous province. 1336 Earth and Planetary Science Letters, 251, 1-17. 1337 Gorczyk, W., Mole, D.R., and Barnes, S.J. (2017) Plume-lithosphere interaction at 1338 margins throughout Earth history. Tectonophysics. craton 1339 http://dx.doi.org/10.1016/j.tecto.2017.04.002 1340 Greene, A.R., Scoates, J.S., and Weis, D. (2008) Wrangellia flood basalts in Alaska: a 1341 record of plume-lithosphere interaction in a Late Triassic accreted oceanic 1342 plateau. Geochemistry, Geophysics, Geosystems, 9, 178-196. 1343 Griffin, W.L., O'Reilly, S.Y., Rvan, C.G., Gaul, O., and Ionov, D.A. (1998) Secular 1344 variation in the composition of subcontinental lithospheric mantle: geophysical 1345 and geodynamic implications. InJ. Braun, J. Dooley, B. Goleby, R. Hilst, and C. 1346 Klootwijk, Ed., Structure and evolution of the Australia continent. American 1347 Geophysical Union, Geodynamics Series 26, 1-26. 1348 Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., 1349 Kinny, P.D., and Ilupin, I.P. (1999) The Siberian lithosphere traverse: mantle 1350 terranes and the assembly of the Siberian Craton. Tectonophysics, 310, 1-35. 1351

- Griffin, W.L., O'Reilly, S.Y., Afonso, J.C., and Begg, G.C. (2009) The Composition
 and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic
 Implications. Journal of Petrology, 50, 1185-1204.
- Griffin, W.L., Begg, G.C., and O'Reilly, S.Y. (2013) Continental-root control on the
 genesis of magmatic ore deposits. Nature Geoscience, 6, 905-910.
- Grove, T.L., Till, C.B., and Krawczynski, M.J. (2012) The role of H₂O in subduction
 zone magmatism. Annual Review of Earth and Planetary Sciences, 40,
 413-439.
- Guo, J.F., Griffin, W.L., and O'Reilly, S.Y. (1999) Geochemistry and origin of
 sulphide minerals in mantle xenoliths: Qilin, Southeastern China. Journal of
 Petrology, 40, 1125-1149.
- Hart, S.R., and Davis, K.E. (1978) Nickel partitionging between olivine and silicate
 melt. Earth and Planetary Science Letters, 40, 203-219.
- Harvey, J., Gannoun, A., Burton, K.W., Schiano, P., Rogers, N.W., and Alard, O.
 (2010) Unravelling the effects of melt depletion and secondary infiltration on
 mantle Re-Os isotopes beneath the French Massif Central. Geochimica et
 Cosmochimica Acta, 74, 293-320.
- Harvey, J., Warren, J.M., and Shirey, S.B. (2016) Mantle sulfides and their role in
 Re-Os and Pb isotope geochronology. Reviews in Mineralogy and
 Geochemistry, 81, 579-649.
- Hermann, J., and Spandler, C. J. (2008) Sediment melts at sub-arc depths: an
 experimental study. Journal of Petrology, 49, 717-740.
- Herzberg, C., and O'Hara, M.J. (2002) Plume-associated ultramafic magmas of
 Phanerozoic age. Journal of Petrology, 43, 1857-1883.
- Herzberg, C., and Asimow, P.D. (2008) Petrology of some oceanic island basalts:
 PRIMELT2.XLS software for primary magma calculation. Geochemistry,
 Geophysics, Geosystems, 9, doi:10.1029/2008GC002057
- Herzberg, C., and Gazel, E. (2009) Petrological evidence for secular cooling in mantle
 plumes. Nature, 458, 619-622.
- Herzberg, C., and Asimow, P.D. (2015) PRIMELT3 MEGA.XLSM software for
 primary magma calculation: Peridotite primary magma MgO contents from the
 liquidus to the solidus. Geochemistry, Geophysics, Geosystems, 16, 563-578.
- Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle,
 M.J., and Saunders, A.D (2007) Temperatures in ambient mantle and plumes:
 Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics,
 Geosystems, 8. doi:10.1029/2006GC001390.
- Herzberg, C., Asimow, P.D., Ionov, D.A., Vidito, C., Jackson, M.G., and Geist, D.
 (2013) Nickel and helium evidence for melt above the core-mantle boundary.
 Nature, 493, 393-398.
- Herzberg, C., Vidito, C., and Starkey, N.A. (2016) Nickel-cobalt contents of olivine
 record origins of mantle peridotite and related rocks. American Mineralogist,
 101, 1952-1966.
- Hirose, K., and Kushiro, I. (1993) Partial melting of dry peridotites at high pressures:
 Determination of compositions of melts segregated from peridotite using

aggregates of diamond. Earth and Planetary Science Letters, 114, 477-489. 1396 Hirose, K., and Kawamoto, T. (1995) Hydrous partial melting of lherzolite at 1 GPa: 1397 The effect of H₂O on the genesis of basaltic magmas. Earth and Planetary 1398 Science Letters, 133, 463-473. 1399 Hirschmann, M.M. (2006) Water, melting and the deep earth H₂O cycle. Annual 1400 Review of Earth and Planetary Sciences, 34, 629-653. 1401 Hirth, G., and Kohlstedt, D.L. (1996) Water in the oceanic upper mantle: implications 1402 for rheology, melt extraction and the evolution of the lithosphere. Earth and 1403 Planetary Science Letters, 144, 93-108. 1404 Holzheid, A., and Lodders, K. (2001) Solubility of copper in silicate melts as a 1405 function of oxygen and sulfur fugacities, temperature and silicate composition. 1406 Geochimica et Cosmochimica Acta, 65, 1933-1951. 1407 1408 Hui, H., Peslier, A.H., Rudnick, R. L., Simonetti, A., and Neal, C.R. (2015) Plume-cratonic lithosphere interaction recorded by water and other trace 1409 elements in peridotite xenoliths from the Labait volcano, Tanzania. 1410 Geochemistry, Geophysics, Geosystems, 16, 1687-1710. 1411 Humphreys, E. R., and Niu, Y. (2009) On the composition of ocean island basalts 1412 (OIB): the effects of lithospheric thickness variation and mantle metasomatism. 1413 Lithos, 112, 118-136. 1414 Ingle, S., Weis, D., Scoates, J.S., and Frey, F. A. (2002) Relationship between the 1415 early Kerguelen plume and continental flood basalts of the paleo-Eastern 1416 Gondwanan margins. Earth and Planetary Science Letters, 75, 35-50. 1417 Jaques, A.L., and Green, D.H. (1980) Anhydrous melting of peridotite at 0-15 Kb 1418 pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and 1419 Petrology, 73, 287-310. 1420 Jégo, S., and Dasgupta, R. (2013) Fluid-present melting of sulfide-bearing ocean-crust: 1421 Experimental constraints on the transport of sulfur from subducting slab to 1422 mantle wedge. Geochimica et Cosmochimica Acta, 110, 106-134. 1423 Jégo, S., and Dasgupta, R. (2014) The fate of sulfur during fluid-present melting of 1424 1425 subducting basaltic crust as variable oxygen fugacity. Journal of Petrology, 55, 1019-1050. 1426 Jenner, F.E., O'Neill, H.S.C., Arculus, R.J., and Mavrogenes, J.A. (2010) The 1427 magnetite crisis in the evolution of arc-related magmas and the initial 1428 concentration of Au, Ag and Cu. Journal of Petrology, 51, 2445-2464. 1429 Jennings, E.S., and Holland, T.J.B. (2015) A simple thermodynamic model for melting 1430 of peridotite in the system NCFMASOCr. Journal of Petrology, 56, 869-892. 1431 Jowitt, S.M., and Ernst, R.E. (2013) Geochemical assessment of the metallogenic 1432 potential of Proterozoic LIPs of Canada. Lithos, 174, 291-307. 1433 Jugo, P.J., Wilke, M., and Botcharnikov, R.E. (2010) Sulfur K-edge XANES analysis 1434 of natural and synthetic basaltic glasses: implications for S speciation and S 1435 content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74, 1436 1437 5926-5938. Karmalkar, N.R., Duraiswami, R.A., Rao, N.V.C., and Paul, D.K. (2009) 1438 Mantle-derived mafic-ultramafic xenoliths and the nature of Indian 1439

- sub-continental lithosphere. Journal of the Geological Society of India, 73,657-679.
- 1442 Katz, R.F., Spiegelman, M., and Langmuir, C. H. (2003) A new parameterization of
 1443 hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4.
 1444 Doi:10.1029/2002GC000433
- Kelley, K.A., and Cottrell, E. (2009) Water and the oxidation state of subduction zonemagmas. Science, 325, 605-607.
- 1447 Kerr, A.C., and Mahoney, J.J. (2007) Oceanic plateaus: problematic plumes, potential
 1448 paradigms. Chemical Geology, 241, 332-353.
- Kessel, R., Schmidt, M.W., Ulmer, P., and Pettke, T. (2005a) Trace element signature
 of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.
 Nature, 437, 724-727.
- Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., and Thompson, A.B. (2005b) The
 water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint
 in a K-free eclogite at 700 to 1400 °C. Earth and Planetary Science Letters,
 237, 873-892.
- Kimura, J.I., and Kawabata, H. (2014) Trace element mass balance in hydrous adiabatic mantle melting: the hydrous adiabatic mantle melting simulator
 version 1 (HAMMS1). Geochemistry, Geophysics, Geosystems, 15, 2467-2493.
- Kincaid, C., and Griffiths, R.W. (2003) Laboratory models of the thermal evolution of
 the mantle during rollback subduction. Nature, 425, 58-62.
- Kiseeva, E.S., and Wood, B.J. (2013) A simple model for chalcophile element
 partitioning between sulphide and silicate liquids with geochemical
 applications. Earth and Planetary Science Letters, 383, 68-81.
- Kiseeva, E.S., and Wood, B.J. (2015) The effects of composition and temperature on
 chalcophile and lithophile element partitioning into magmatic sulphides. Earth
 and Planetary Science Letters, 424, 280-294.
- 1468 Kiseeva, E.S., Fonseca, R.O.C., Smythe, D.J. (2017) Chalcophile elements and1469 sulfides in the upper mantle. Elements, 13, 111-116.
- 1470 Kohn, S.C. (2006) The partitioning of water between nominally anhydrous minerals1471 and silicate melts. Reviews in Mineralogy and Geochemistry, 62, 231-241.
- Koptev, A., Calais, E., Burov, E., Leroy, S., and Gerya, T. (2015) Dual continental rift
 systems generated by plume-lithosphere interaction. Nature Geoscience, 8,
 388-392.
- 1475 Korenaga, J. (2005) Why did not the Ontong Java Plateau form subaerially? Earth and
 1476 Planetary Science Letters, 234, 385-399.
- Langmuir, C.H., Klein, E.M., and Plank, T. (1993) Petrological systematics of Mid-Ocean Ridge Basalts: constraints on melt generation beneath ocean ridges.
 In: Morgan, J. P., Blackman, D. K. and Plank T. (ed.) Mantle flow and melt generation at Mid-ocean ridges. American Geophysical Union., Washington, 183-280. doi:10.1029/GM071p0183
- Laubier, M., Grove, T.L., and Langmuir, C.H. (2014) Trace element mineral/melt
 partitioning for basaltic and basaltic andesitic melts: an experimental and laser

- 1484 ICP-MS study with application to the oxidation state of mantle source regions.
 1485 Earth and Planetary Science Letters, 392, 265-278.
- Lee, C.T.A., Luffi, P., Plank, T., Dalton, H., and Leeman, W.P. (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279, 20-33.
- Lee, C.T.A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Le Roux,
 V., Yin, Q.Z., and Jin, D. (2012) Copper systematics in arc magmas and
 implications for crust-mantle differentiation. Science, 336, 64-68.
- Leng, W., and Mao, W. (2015) Geodynamic modeling of thermal structure of
 subduction zones. Science China Earth Sciences, 58, 1070-1083.
- Le Roux, V., Dasgupta, R. and Lee, C.T. (2011) Mineralogical heterogeneities in the
 Earth's mantle: constraints from Mn, Co, Ni and Zn partitioning during partial
 melting. Earth and Planetary Science Letters, 307, 395-408.
- Le Roux, V., Dasgupta, R., and Lee, C.T. (2015) Recommended mineral-melt partition
 coefficients for FRTEs (Cu), Ga and Ge during mantle melting. American
 Mineralogist, 100, 2533-2544.
- Lesne, P., Scaillet, B., and Pichavant, M. (2015) The solubility of sulfur in hydrous
 basaltic melts. Chemical Geology, 418, 104-116.
- Li, C., and Ripley, E.M. (2009) Sulfur contents at sulfide-liquid or anhydrite
 saturation in silicate melts: empirical equations and example applications.
 Economic Geology, 104, 405-412.
- Li, C., and Ripley, E.M. (2010) The relative effects of composition and temperature
 on olivine-liquid Ni partitioning: Statistical deconvolution and implications for
 petrologic modeling. Chemical Geology, 275, 99-104.
- Li, C., Tao, Y., Qi, L., and Ripley, E.M. (2012) Controls on PGE fractionation in the
 Emeishan picrites and basalts: constraints from integrated lithophile–
 siderophile elements and Sr–Nd isotopes. Geochimica et Cosmochimica Acta,
 90, 12-32.
- Li, Y., and Audétat, A. (2013) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn,
 Sb, W, Au, Pb and Bi between sulfide phases and hydrous basanite melt at
 upper mantle conditions. Earth and Planetary Science Letters, 355-356,
 327-340.
- Lightfoot, P.C., and Keays, R.R. (2005) Siderophile and chalcophile metal variations
 in flood basalts from the Siberian Trap, Noril'sk region: implications for the
 origin of the Ni-Cu-PGE sulfide ores. Economic Geology, 100, 439-462.
- Lightfoot, P.C., Keays, R.R., Evans-Lamswood, D., and Wheeler, R. (2012) S
 saturation history of Nain Plutonic Suite mafic intrusions: origin of the
 Voisey's Bay Ni–Cu–Co sulfide deposit, Labrador, Canada. Mineralium
 Deposita, 47, 23-50.
- Liu, J., Xia, Q.K., Kuritani, T., Hanski, E., and Yu, H.R. (2017) Mantle hydration and
 the role of water in the generation of large igneous provinces. Nature
 Communications. Doi:10.1038/s41467-017-01940-3
- 1527 Liu, X., Xiong, X., Audétat, A., Li, Y., Song, M., Li, L., Sun, W., and Ding, X. (2014)

- 1528 Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, 1529 garnet and silicate melts at upper mantle conditions. Geochimica et 1530 Cosmochimica Acta, 125, 1-22.
- Liu, Y., Samaha, N.T., and Baker, D.R. (2007) Sulfur concentration at sulfide
 saturation (SCSS) in magmatic silicate melts. Geochimica et Cosmochimica
 Acta, 71, 1783-1799.
- Lorand, J.P., and Luguet, A. (2016) Chalcophile and siderophile elements in mantle
 rocks: trace elements controlled by trace minerals. Reviews in Mineralogy and
 Geochemistry, 81, 441-488.
- Lustrino, M. (2005) How the delamination and detachment of lower crust can
 influence basaltic magmatism. Earth-Science Reviews, 72, 21-38.
- Lynton, S.J., Candela, P.A., and Piccoli, P.M. (1993) An experimental study of the
 partitioning of copper between pyrrhotite and a high silica rhyolitic melt.
 Economic Geology, 88, 901-915.
- Mallik, A., Dasgupta, R., Tsuno, K., and Nelson, J. (2016) Effects of water, depth and
 temperature on partial melting of mantle-wedge fluxed by hydrous
 sediment-melt in subduction zones. Geochimica et Cosmochimica Acta, 195,
 226-243.
- Manglik, A., and Christensen, U.R. (2006) Effect of lithospheric root on
 decompression melting in plume-lithosphere interaction models. Geophysical
 Journal International, 164, 259-270.
- Mao, Y.J. Qin, K.Z., Li, C., and Tang, D.M. (2014) A modified genetic model for the
 Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt,
 Xinjiang, western China. Mineralium Deposita, 50, 65-82.
- Marcantonio, F., Reisberg, L., Zindler, A., Wyman, D., and Hulbert, L. (1994) An
 isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia
 Terrane: evidence for hydrothermal mobilization of rhenium and osmium.
 Geochimica et Cosmochimica Acta, 58, 1007-1018.
- Matzen, A.K., Baker, M.B., Beckett, J.R., and Stolper, E.M. (2013) The temperature
 and pressure dependence of nickel partitioning between olivine and silicate
 melt. Journal of Petrology, 54, 2521-2545.
- Matzen, A.K., Baker, M.B., Beckett, J.R., Wood, B.J., and Stolper, E.M. (2017a) The
 effect of liquid composition on the partitioning of Ni between olivine and
 silicate melt. Contributions to Mineralogy and Petrology, 172, 3.
 doi:10.1007/s00410-016-1319-8
- Matzen, A.K., Wood, B.J., Baker, M.B., and Stolper, E.M. (2017b). The roles of
 pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature
 Geosicence, 10, 530-535.
- Mavrogenes, J., and O'Neil, H.S.C. (1999) The relative effects of pressure,
 temperature and oxygen fugacity on the solubility of sulfide in mafic magmas.
 Geochimica et Cosmochimica Acta, 63, 1173-1180.
- 1569 McDonough, W.F., and Sun, S.S (1995) The composition of the Earth. Chemical 1570 Geology, 120, 223-253.
- 1571 McKenzie, D., and Bickle, M.J. (1988) The volume and composition of melt

- 1572 generated by extension of the lithosphere. Journal of Petrology, 29, 625-679.
- Michael, P.J. (2000) Implications for magmatic processes at Ontong Java Plateau from
 volatile and major element contents of Cretaceous basalt glasses. Geochemistry,
 Geophysics, Geosystems, 1. Doi:10.1029/1999GC000025
- 1576 Mitchell, A.L., and Grove, T.L. (2015) Melting the hydrous, subarc mantle: the origin 1577 of primitive andesites. Contributions to Mineralogy and Petrology, 170, 23.
- 1578 Moretti, R., and Baker, D.R. (2008) Modeling the interplay of fO_2 and fS_2 along the 1579 FeS-silicate melt equilibrium. Chemical Geology, 256, 286-298.
- Mungall, J.E. (2002) Roasting the mantle: slab melting and the genesis of major Au
 and Au-rich Cu deposits. Geology, 30, 915-918.
- Mungall, J.E. (2014) Geochemistry of magmatic ore deposits. Treatise on
 Geochemistry: Geochemistry of Mineral deposits (Elsevier, Amsterdam), 2nd
 Ed Vol 13, 195-218.
- Mungall, J.E., and Brenan, J.M. (2014) Partitioning of platinum-group elements and
 Au between sulfide liquid and basalt and the origins of mantle-crust
 fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta,
 125, 265-289.
- Mungall, J.E., Andrews, D.R.A., Cabri, L.J., Sylvester, P.J., and Tubrett, M. (2005)
 Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide
 solid solution and sulfide melt under controlled oxygen and sulfur fugacities.
 Geochimica et Cosmochimica Acta, 69, 4349-4360.
- Mungall, J.E., Hanley, J.J., Arndt, N.T., and Debecdelievre, A. (2006) Evidence from
 meimechites and other low-degree mantle melts for redox controls on
 mantle-crust fractionation of platinum-group elements. Proceeding of the
 National Academy of Sciences, 103, 12695-12700.
- Naldrett, A.J. (2010) From the mantle to the bank: the life of a Ni-Cu-(PGE) sulfide
 deposit. South African Journal of Geology, 113, 1-32.
- Naldrett, A.J. (2011) Fundamentals of magmatic sulfide deposits. In C. Li, and E.M.
 Ripley, Ed., Magmatic Ni-Cu and PGE deposits: geology, geochemistry and
 genesis: reviews in economic geology, volume 17. Society of Economic
 Geologists, Denver., 1-50.
- Nielsen, S.G., Shimizu, N., Lee, C.T., and Behn, M.D. (2014) Chalcophile behavior of
 thallium during MORB melting and implications for the sulfur content of the
 mantle. Geochemistry, Geophysics, Geosystems, 15, 4905-4919.
- Niu, Y., and O'Hara, M.J. (2008) Global correlations of ocean ridge basalt chemistry
 with axial depth: a new perspective. Journal of Petrology, 49, 633-664.
- Niu, Y., Wilson, M., Humphreys, E.R., and O'Hara, M.J. (2011) The origin of
 intra-plate ocean island basalts (OIB): the lid effect and its geodynamic
 implications. Journal of Petrology, 52, 1443-1468.
- O'Neill, H.S.C. (1991) The origin of the Moon and the early of the Earth a chemical
 model. Part 2: the Earth. Geochimica et Cosmochimica Acta, 55, 1159-1172.
- Oyarzun, R., Márquez, A., Lillo, J., López, I., and Rivera, S. (2001) Giant versus
 small porphyry copper deposits of Cenozoic age in northern Chile: adakitic
 versus normal calc-alkaline magmatism. Mineralium Deposita, 36, 794-798.

- Peacock, S., van Keken, P.E., Holloway, S.D., Hacker, B.R., Abers, G.A., and
 Fergason, R.L. (2005) Thermal structure of the Costa Rica Nicaragua
 subduction zone. Physics of the Earth and Planetary Interiors, 149, 187-200.
- Peslier, A.H (2010) A review of water contents of nominally anhydrous natural
 minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology
 and Geothermal Research, 197, 239-258.
- Peslier, A., and Luhr, J. (2006) Hydrogen loss from olivines in mantle xenoliths from
 Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water
 budget of the sub-continental lithosphere. Earth and Planetary Science Letters,
 242, 302-319.
- Peslier, A.H., Luhr J.F., and Post J. (2002) Low water contents in pyroxenes from
 spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth and Planetary
 Science Letters, 201, 69-86.
- Peslier, A.H., Woodland A.B., Bell D.R., Lazarov M., and Lapen T.J. (2012)
 Metasomatic control of water contents in the Kaapvaal cratonic mantle.
 Geochimica et Cosmochimica Acta, 97, 213-246.
- Plank, T., and Langmuir, C.H. (1988) An evaluation of the global variations in the
 major element chemistry of arc basalts. Earth and Planetary Science Letters, 90,
 349-370.
- Prichard, H.M., Neary, C.R., Fisher, P.C., and O'Hara, M.J. (2008) PGE-rich podiform
 chromitites in the Al 'Ays ophiolite complex, Saudi Arabia: an example of
 critical mantle melting to extract and concentrate PGE. Economic Geology,
 103, 1507-1529.
- Prouteau, G., and Scaillet, B. (2013) Experimental constraints on sulphur behaviour in
 subduction zones: I mplications for TTG and adakite production and the global
 sulphur cycle since the Archean. Journal of Petrology, 54, 183-213.
- Putirka, K.D. (2005) Mantle potential temperatures at Hawaii, Iceland, and the
 mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for
 thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6.
 doi:10.1029/2005GC000915
- Putirka, K. D. (2016) Rates and styles of planetary cooling on Earth, Moon, Mars, and
 Vesta, using new models for oxygen fugacity, ferric-ferrous ratios,
 olivine-liquid Fe-Mg exchange, and mantle potential temperature. American
 Mineralogist, 101, 819-840.
- Putirka, K.D., Perfit, M., Ryerson, F.J., and Jackson, M.G. (2007). Ambient and
 excess mantle temperatures, olivine thermometry and active vs. passive
 upwelling. Chemical Geology, 241, 177-206.
- Putirka, K.D., Ryerson, F.J., Perfit, M., and Ridley, W.I. (2011) Mineralogy and
 composition of oceanic mantle. Journal of Petrology, 52, 279-313.
- Qin, K.Z., Su, B.X., Sakyi, P.A., Tang, D.M., Li, X.H., Sun, H., Xiao, Q.H., and Liu,
 P.P. (2011) SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu
 bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in
 correlation with flood basalts in Tarim Basin (NW China): constraints on a ca.
 280 Ma mantle plume. American Journal of Science, 311(3), 237-260.

- Ragozin, A.L., Karimova, A.A., Litasov, K.D., Zedgenizov, D.A., and Shatsky, V.S.
 (2014) Water content in minerals of mantle xenoliths from the Udachnaya pipe
 kimberlites (Yakutia). Russian Geology and Geophysics, 55, 428-442.
- Révillon, S., Arndt, N.T., Chauvel, C., and Hallot, E. (2000) Geochemical study of
 ultramafic volcanic and plutonic rocks from Gorgona island, Colombia: the
 plumbing system of an oceanic plateau. Journal of Petrology, 41, 1127-1153.
- 1666 Rey, P.F. (2015) The geodynamics of mantle melting. Geology, 43, 367-368.
- 1667 Ribe, N.M., and Christensen, U.R. (1999) The dynamical origin of Hawaiian
 1668 volcanism. Earth and Planetary Science Letters, 171, 517-531.
- 1669 Richards, J.P. (2015) The oxidation state, and sulfur and Cu contents of arc magmas:
 1670 implications for metallogeny. Lithos, 233, 27-45.
- 1671 Righter, K., Campbell, A.J., Humayun, M., and Hervig, R.L. (2004) Partitioning of Ru,
 1672 Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and
 1673 silicate melts. Geochimica et Cosmochimica Acta, 68, 867-880.
- 1674 Ripley, E.M., Brophy, J.G., and Li, C. (2002) Copper solubility in a basaltic melt and
 1675 sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochimica et
 1676 Cosmochimica Acta, 125, 265-289.
- 1677 Robertson, J.C., Barnes, S.J., and Le Vaillant, M. (2015) Dynamics of magmatic
 1678 sulphide droplets during transport in silicate melts and implications for
 1679 magmatic sulphide ore formation. Journal of Petrology, 56, 2445-2472.
- Salters, V.J.M., and Stracke, A. (2004) Composition of the depleted mantle.
 Geochemistry, Geophysics, Geosystems, 5. doi:10.1029/2003GC000597
- Sattari, P., Brenan, J.M., Horn, I., and McDonough, W.F. (2002) Experimental
 constraints on the sulfide- and chromite-silicate melt partitioning behavior of
 rhenium and the platinum-group elements. Economic Geology, 97, 385-398.
- Sciortino, M., Mungall, J.E., and Muinonen J. (2015) Generation of high-Ni sulfide
 and alloy phases during serpentinzation of dunite in the Dumont Sill, Quebec.
 Economic Geology, 110, 733-761.
- Seitz, H.M., Altherr, R., and Ludwig, T. (1999) Partitioning of transition elements
 between orthopyroxene and clinopyroxene in peridotitic and websteritic
 xenoliths: New empirical geothermometers. Geochimica et Cosmochimica
 Acta, 35, 3967-3982.
- Shaw, D.M. (1970). Trace element fractionation during anatexis. Geochimica et
 Cosmochimica Acta, 34, 237-243.
- Shimize, K., Saal, A.E., Myers, C.E., Nagle, A.N., Hauri, E.H., Forsyth, D.W.,
 Kamenetsky, V.S., and Niu, Y. (2016) Two-component mantle melting-mixing
 model for the generation of mid-ocean ridge basalts: implications for the
 volatile content of the Pacific upper mantle. Geochimica et Cosmochimica
 Acta, 176, 44-80.
- Simon, M.P. (2003) Thermal structure and metamorphic evolution of subducting slabs.
 In Inside the Subduction Factory. In J.M. Eiler, Ed., Washington DC: AGU. pp.
 7-22.
- Smith, P.M., and Asimow, P.D. (2005) Adiabat_1ph: a new public front-end to the
 MELTS, pMELTS, and pHMELTS models. Geochemistry, Geophysics,

1704	Geosystems, 6. doi:10.1029/2004GC000816
1705	Smythe, D.J., Wood, B.J., and Kiseeva, E.S. (2017) The S content of silicate melts at
1706	sulfide saturation: New experiments and a model incorporating the effects of
1707	sulfide composition. American Mineralogist, 102, 795-803.
1708	Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., and Nikogosian, I.K. (2005) An
1709	olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590-597.
1710	Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L.,
1711	Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A.,
1712	Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V.,
1713	Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., and
1714	Teklay, M. (2007) The amount of recycled crust in sources of mantle-derived
1715	melts. Science, 316, 412-417.
1716	Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Malitch, K.N., and Petrunin, A.G. (2009)
1717	Siberian meimechites: origin and relation to flood basalts and kimberlites.
1718	Russian Geology and Geophysics, 50, 999-1033.
1719	Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin,
1720	M.V., Garbe-Schönberg, D., and Krasheninnikov, S.P. (2016) Komatiites reveal
1721	a hydrous Archaean deep-mantle reservoir. Nature, 531, 628-632.
1722	Spandler, C., and Pirard, C. (2013) Element recycling from subducting slabs to arc
1723	crust: a review. Lithos, 170-171, 208-223.
1724	Stern, R.J. (2002) Subduction zones. Reviews of Geophysics, 40.
1725	doi:10.1029/2001RG000108
1726	Stolper, E., and Newman, S. (1994) The role of water in the petrogenesis of Mariana
1727	trough magmas. Earth and Planetary Science Letters, 121, 293-325.
1728	Sun, S.S. (1982) Chemical composition and origin of the Earth's primitive mantle.
1729	Geochimica et Cosmochimica Acta, 46, 179-192.
1730	Tatsumi, Y. and Eggins, S. (1995) Subduction zone magmatism, 224 p. Blackwell
1731	Science, Cambridge, MA.
1732	Tatsumi, Y., Sakuyama, M., Fukuyama, H., and Kushiro, I. (1983) Generation of arc
1733	basalt magmas and thermal structure of the mantle wedge in subduction zones.
1734	Journal of Geophysical Research: Solid Earth, 88, 5815–5825.
1735	Thompson, R.N., and Gibson, S.A. (2000) Transient high temperatures in mantle
1736	plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature,
1737	407, 502-506.
1738	Till, C.B., Grove, T.L., and Krawczynski, M.J. (2012) A melting model for variably
1739	depleted and enriched lherzolite in the plagioclase and spinel stability fields.
1740	Journal of Geophysical Research, 117. Doi:10.1029/2011JB009044
1741	Ueki, K., and Iwamori, H. (2013) Thermodynamic model for partial melting of
1742	peridotite by system energy minimization. Geochemistry, Geophysics,
1743	Geosystems, 14. Doi:10.1029/2012GC004143
1744	Van Keken, P.E., Currie, C.A., King, S.D., Behn, M.D., Cagnioncle, A.M., He, J.,
1745	Katz, R.F., Lin, S.C., Parmentier, E.M., Speigelman, M., and Wang, K. (2008)
1746	A community benchmark for subduction zone modeling. Physics of the Earth
1747	and Planetary Interiors, 171, 187-197.

- Wallace, P.J. (2002) Volatiles in submarine basaltic glasses from the northern
 Kerguelen Plateau (ODP Site 1140): implications for source region
 compositions, magmatic processes, and Plateau subsidence. Journal of
 Petrology, 43, 1311-1326.
- Walter, M.J. (1998) Melting of garnet peridotite and the origin of Komatiite and depleted lithosphere. Journal of Petrology, 39, 29-60.
- Wang, K.L., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., and Zhang, M. (2009)
 Sulfide in mantle peridotites from Penghu Islands, Taiwan: Melt percolation,
 PGE fractionation, and the lithospheric evolution of the South China block.
 Geochimica et Cosmochimica Acta, 73, 4531-4557.
- Wang, Z., and Becker, H. (2013) Ratios of S, Se and Te in the silicate Earth require a
 volatile-rich late veneer. Nature, 499, 328-331.
- Wang, Z., and Becker, H. (2015) Abundance of Ag and Cu in mantle peridotites and
 the implications for the behavior of chalcophile elements in the mantle.
 Geochimica et Cosmochimica Acta, 160, 209-226.
- Weis, D., Frey, F.A., Schlich, R., Schaming, M., Montigny, R., Damasceno, D.,
 Mattielli, N., Nicolaysen, K.E., and Scoates, J.S. (2002) Trace of the
 Kerguelen mantle plume: evidence from seamounts between the Kerguelen
 Archipelago and Heard Island, Indian Ocean. Geochemistry, Geophysics,
 Geosystems, 3, 1-27.
- Wilson, J.T. (1963) A possible origin of the Hawaiian Islands. Canadian Journal ofPhysics, 41, 863-870.
- 1770 White, W.M. (2007) Geochemistry. John-Hopkins University Press, pp. 273-324.
- White, W.M. (2010) Oceanic island basalts and mantle plumes: the geochemical
 perspective. Annual Review of Earth and Planetary Sciences, 38, 133-160.
- Workman, R.K., and Hart, S.R. (2005) Major and trace element composition of the
 depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231,
 53-72.
- 1776 Xia, Q.K., Hao, Y., Li, P., Deloule, E., Coltorti, M., Dallai, L., Yang, X., and Feng, M.
 1777 (2010) Low water content of the Cenozoic lithospheric mantle beneath the
 1778 eastern part of the North China Craton. Journal of Geophysical Research: Solid
 1779 Earth, 115. doi:10.1029/2009JB006694
- 1780 Xu, J.H., and Xie, Y.L. (2007) Sulfide-melt inclusions in mantle xenoliths from the
 1781 Changbaishan district, Jilin province, China. Acta Petrologica Sinica, 23,
 117-124.
- Yang, X.Z., Xia, Q.K., Deloule, E., Dallai, L., Fan, Q.C., and Feng, M. (2008) Water
 in minerals of the continental lithospheric mantle and overlying lower crust: A
 comparative study of peridotite and granulite xenoliths from the North China
 Craton. Chemical Geology, 256, 33-45.
- Zhang, C.C., Sun, W.D., Wang, J.T., Zhang, L.P., Sun, S.J., and Wu, K. (2017)
 Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing
 porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206,
 343-363.
- 1791 Zhang, H.L., Cottrell, E., Solheid, P.A., Kelley, K.A., Hirschmann, M.M. (2018)

- 1792 Determination of $Fe^{3+}/\Sigma Fe$ of XANES basaltic glass standards by Mössbauer 1793 spectroscopy and its application to the oxidation state of iron in MORB. 1794 Chemical Geology, 479, 166-175.
- Zhang, M., O'Reilly, S.Y., Wang, K.L., Hronsky, J., and Griffin, W.L. (2008) Flood
 basalts and metallogeny: The lithospheric mantle connection. Earth-Science
 Reviews, 86, 145-174.
- Zhang, Z., and Hirschmann, M.M. (2016) Experimental constraints on mantle sulfide
 melting up to 8 GPa. American Mineralogist, 101, 181-192.
- 1800

1801

Figure captions

Fig. 1. Phase diagram of mantle melting (modified from Rey 2015). Primary melts are 1802 1803 initially produced at solidus temperatures (blue and red stars). If they are extracted at 1804 the onset of melting, they would follow their respective melt adiabat (solid blue and red arrows). For the polybaric continuous melting in mid-ocean ridges, melt is usually 1805 extracted with a minor part retained in the residual source. As latent heat escapes with 1806 melt, the source cools and follows the solidus during its exhumation (path a-a'). In a 1807 mantle plume, the adiabatic upwelling of source keeps following the adiabat (path 1808 b-b'). Once the upwelling ceases at the base of lithosphere (b'), magma will be 1809 extracted following the melt adiabat (empty red arrow). The water-saturated solidus 1810 1811 was predicted by the pHMELTS model (Ghiorso et al. 2002), showing that addition of 1812 water can cause melting to begin at a higher pressure under constant potential temperature. The filled blue and red circles mark the potential temperature (T_p) for 1813 mantle exhumation (e.g., polybaric continuous melting of DMM) and mantle plume 1814 1815 upwelling, respectively. 1816 Fig. 2. Variations of Ni in pooled melts during the polybaric continuous melting of 1817 DMM with constant potential temperature ($T_p=1350^{\circ}$ C), different water contents 1818 (0-250 ppm) and fractions of remaining melt (**a**, 0.3 vol.%; **b**, 0.5 vol.%; **c**, 0.7 vol.%). 1819 1820 The influence of water abundances (0-250 ppm) on the partitioning behaviors of Cu (d), the trends of MgO (e) and FeO (f) within the aggregated melt at 1350 $^\circ\!\mathrm{C}$ $~T_p$ and 1821 0.3 vol. % remaining melt. In addition, the variations of $D_{Ni}^{ol/melt}$ and $D_{Cu}^{sul/melt}$ 1822 within low melting degree (0-3 wt.%) are shown in the schematic inset diagrams in (e) 1823 and (f). The dash lines in (a, b, c, d) are the constant pressure lines in these models, 1824 1825 and the variations of residual sulfide compositions (Ni and Cu abundances) before complete exhaustion are also provided in (**a**, **b**, **c**). The gray vertical bands in (**a**-**f**) 1826 indicate the reference area in which the residual sulfide has been completely 1827 1828 dissolved. 1829

Fig. 3. Influences of different potential temperature on the evolutions of (**a**). Ni, (**b**).

1831 Cu, (c). MgO and (d). FeO abundances in the pooled melts during the polybaric 1832 continuous melting of DMM with 150 ppm H₂O and 1 vol. % remaining melt. The 1833 dash lines in (**a-d**) are the constant pressure lines in these models.

1834

Fig. 4. Variations of (a, c, e) Ni and (b, d, f) MgO in the instantaneous, equilibrated melts during the adiabatic melting of primary mantle with different potential temperatures (1500, 1550 and 1600°C) and water contents (0-6000 ppm). Note that these high T_p melting paths begin at 4.0 GPa with some melt already present as described in the text. The dash lines in (a-f) mean the constant pressure values. The gray vertical bands in (a-f) indicate the reference area in which the residual sulfide has been completely dissolved.

Fig. 5. Partitioning behavior of Cu in the instantaneous, equilibrated melts during

adiabatic melting of mantle at (a). 1500°C and (b). 1550°C potential temperatures.

1845 The dotted line in (a) shows the constant pressure condition (3.9 GPa), and the

variations of residual sulfide compositions (Ni and Cu abundances) before complete

1847 exhaustion were also provided in (**a**, **b**). The gray vertical bands in (**a**) and (**b**)

indicate the reference area in which residual sulfide has been completely dissolved.

1849

Fig. 6. Results of isobaric melting model for SCLM. (a). the behaviors of Ni in the 1850 isobaric melting of A-, P- and T-SCLMs under constant pressure (3.9 GPa) and water 1851 content (50 ppm); (b) the trends of Ni in isobaric melting model of T-SCLMs at 1852 different pressure (1.5, 2.7 and 3.9 GPa); The gray vertical band in (b) indicates the 1853 reference area that the residual sulfide has been completely dissolved. The variations 1854 of (c) MgO and (d) Cu in the melt derived from isobaric melting of A-, P- and 1855 1856 T-SCLMs at 3.9 GPa, in conjunction with T-SCLMs melting at 1.5 and 2.7 GPa. The dotted lines in (a-d) represent the unrealizable parts of isobaric melting as their 1857 temperatures exceed the threshold values that assumed as the temperatures of 1858 underlying hotter mantle (white dots, $T_p=1500^{\circ}$ C; black dots, $T_p=1550^{\circ}$ C; red dots, 1859 $T_p=1600^{\circ}C$) at the same pressure. Moreover, the variations of residual sulfide 1860

compositions (Ni and Cu abundances) are also exhibited in (d). (e, f). the influences
of water addition (0-300 ppm) on the abundances of Ni, Cu in melt and the melt
productivity (%/°C) in isobaric melting model of T-SCLMs at 3.9 GPa. The light blue
vertical bands in (e) and (f) indicate the influences of water addition on the sulfide
exhaustions.

1866

Fig. 7. In flux-melting mode, the partitioning behaviors of (a) Ni, (b) MgO and (c) Cu 1867 abundances in the aggregated melts at different temperature (1100-1300°C) and 375 1868 ppm initial S. Influences of various initial S (250-500 ppm) abundances on the trends 1869 1870 of Cu was shown in (d). The depletion degree of mantle and initial Cu abundance can also change the behavior of Cu (e). (f) Cu content of silicate melt versus different f_{O_2} 1871 $(\Delta FMQ+1.0, +1.3, +1.6, +2.0)$ for flux-melting. In (**a-f**), the solid lines represent the 1872 melting model induced by slab aqueous fluid, and the dash lines correspond to the 1873 1874 slab hydrous melt.

1875

Fig. 8. Variations of $D_{Cu}^{sul/melt}$ along with increasing melting for (a) polybaric

1877 continuous melting of DMM at different T_p (1300-1400°C), (**b**) isobaric melting of

1878 T-SCLMs at various pressure (1.5, 2.7 and 3.9 GPa), (c) flux-melting of mantle wedge

under distinct temperature (1100, 1150, 1200, 1250 and 1300° C). The red dashed line

1880 in (a) represent the changes of $D_{Cu}^{sul/melt}$ in the adiabatic decompression melting of

1881 PM at 1500°C T_p. Moreover, the critical values of $D_{Cu}^{sul/melt}$ for the transfer of Cu

1882 behavior from downtrend to uptrend are shown as grey dashed lines in (a)

decompression melting (~360) and (**b**) isobaric melting (~150).

1884

Fig. 9. Island-averaged Ni concentrations corrected for fractionation effect to Mg[#]=0.72 plotted as a function of the lithosphere thickness. Each data point represents average contents for a given volcanic island; error bars represent standard deviations from the mean. The data are corrected using liquid lines of descent (LLDs) derived from MORB (in Supplementary 6).
1890

Fig. 10. (a). MgO wt. % vs. Ni contents of rocks from the oceanic plateaus. (b). 1891 1892 Inferred temperatures and pressures at which partial melting terminated (in text) for 1893 the high-Mg rocks from oceanic plateaus. Diameters of circles in (b) are proportional to the Ni concentrations in samples. The grey area is nominally below the peridotite 1894 solidus, which is not perfectly constrained; dashed lines are melting paths. The points 1895 farthest to the left of the solidus represent the products of the highest degrees of 1896 partial melting. The highest Ni contents are typically found in magmas with the 1897 highest pressures and temperatures of equilibration at near-solidus conditions, not the 1898 highest aggregate degrees of melting. 1899 1900

1901 Fig. 11. Mantle potential temperatures inferred for rocks from some oceanic and

1902 continental LIPs. Oceanic plateaus: Wrangellia, Kerguelen, Ontong Java and

1903 Caribbean. Continental LIPs: Deccan, Parana, Siberian Trap, Karoo and Emeishan.

1904

1905

1907

Table 1. Compositions of different sources and fluids used in this work

	SiO ₂	Al_2O_3	FeO ^a	MnO	MgO	CaO	Na ₂ O	K ₂ O	Cr ₂ O ₅	TiO ₂	NiO	CoO	P_2O_5	H ₂ O	Total	Ni(ppm)	Cu(ppm)	S(ppm)
PM ^b	45	4.45	8.43	0.135	37.8	3.55	0.36	0.029	0.384	0.2	0.25	0.013	0.021	-	100.622	1960	24	250
DMM ^c	44.71	3.98	8.18	0.13	38.73	3.17	0.13	0.006	0.57	0.13	0.24	-	0.019	-	100	1886	24	200
A-SCLM ^d	42.9	0.3	6.5	0.15	49.2	0.1	0.1	-	0.4	0.01	0.30	-	-	-	99.96	2357	1.8	20
P-SCLM ^d	44.6	1.9	7.9	0.12	42.6	1.7	0.12	-	0.4	0.07	0.28	-	-	-	99.69	2200	11.5	112
T-SCLM ^d	44.5	3.5	8.0	0.13	39.8	3.1	0.24	-	0.4	0.14	0.26	-	-	-	100.07	2043	21.1	190
Aqueous fluid ^e	5.52	0.7	0.23	-	0.24	0.13	1	0.12	-	0.03	-	-	-	92	100	-	-	
Hydrous melt ^e	59.02	11.03	0.7	-	0.34	1.14	4.77	2.63	-	0.25	-	-	-	20	99.88	-	-	
Supercritical	29.8	2.89	1.12	-	0.85	3.25	2.64	-	-	0.71	-	-	-	57.6	98.86	-	-	
liquid ^f																		

^a total Fe as FeO

- ^b primitive mantle from McDonough and Sun (1995)
- ^c depleted MORB mantle (DMM) from Workman and Hart (2005)
- ^d A-SCLM, P-SCLM and T-SCLM from Griffin et al. (2009)
- ^e typical aqueous fluid and hydrous melt from Hermann and Spandler (2008)
- ^f typical supercritical liquid from Kessel et al. (2005b)

Figure 1.

1957 **Figure 3**

1975

1979 Figure 6.

1988 Figure 7.

1997 **Figure 8.**

2007

2008

