1 Prospects for mineralogy on Titan (revision 1)

- 2 Helen E. Maynard-Casely^a, Morgan L. Cable^b, Michael J. Malaska^b, Tuan H. Vu^b,
- 3 Mathieu Choukroun^b and Robert Hodyss^b

⁴ ^a Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW,

5 2232, Australia.

^b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove

7 Drive, Pasadena, California, 91109, USA

8 Abstract

9 Saturn's moon Titan has a surface that is dominated by molecular materials, much of 10 which is photochemically produced in the moon's atmosphere. This outlook reviews 11 the potential minerals that would be expected to form on the surface and subsurface of 12 Titan from these molecular solids. We seek to classify them and look towards how 13 the future study of these minerals will enhance our understanding of this planetary 14 body. The classification uses the basis of intermolecular interactions, with the 15 materials grouped into 'Molecular solids', 'Molecular co-crystals' and 'Hydrates' 16 classes alongside speculation on other possible classes of potential Titan minerals.

17 Introduction

The Cassini-Huygens mission has revealed Saturn's largest moon Titan to be a diverse world, with geological features that are astonishingly similar to those found on our own world. With vast seas and lakes, sweeping dunes and dendritic channels, the evidence is mounting that the landscape of Titan has been shaped by both fluvial and pluvial processes. However, there are stark differences between Earth and Titan, such as the temperatures and materials that shape their respective landscapes, Fig. 1.

24	Unlike the vast temperature variability we experience on Earth, Titan has a surface
25	temperature that has hardly been observed to vary from 92 K (Cottini et al., 2012).
26	Additionally, Earth's surface is made up of minerals that are largely silicate or metal-
27	based, with their structures and physical properties well established over the last
28	century. This is in contrast to Titan, where the bulk density of this body of 1.88 gcm^{-3}
29	(Jacobson et al., 2006) points to the surface and subsurface being composed of simple
30	molecular materials such as water ice, ammonia and organic materials such as
31	hydrocarbons and nitriles accompanied by hydrocarbon liquids (Stevenson, 1992).
32	Additionally, accumulation and redistribution of molecular materials produced photo-
33	chemically in the moon's atmosphere also shape the surface we observe (Lorenz et
34	al., 2008) (Janssen et al., 2009).

35 ~Fig. 1 here~

36 Photochemical processes in Titan's atmosphere are driven by solar radiation and 37 energy from Saturn's magnetosphere. These processes cause nitrogen and methane to 38 dissociate into radicals and then recombine, generating organic molecules that range 39 from simple (ethane, acetylene and hydrogen cyanide) to complex molecules (Cable 40 et al., 2011) (Carrasco et al., 2009) (He and Smith, 2014) (Pernot et al., 2010) 41 (Sciamma-O'Brien et al., 2014). The more complex molecules formed by these 42 processes would first form as haze layers in Titan's atmosphere, and continue to react 43 and grow before being deposited on the surface. A range of photochemical models 44 have been used to assess the molecular species and flux of these upon Titan's surface 45 (such as (Lavvas et al., 2008) (Krasnopolsky, 2009) (Krasnopolsky, 2014) (Cordier et 46 al., 2009) and (Willacy et al., 2016)), which are summarised in Table 1. 47 ~Table 1 here ~

48	This information leads us to wonder, what are the molecular minerals that shape the
49	surface of Titan? What crystal structures control the surface processes on this frozen
50	world? This is not without precedent here on Earth, where the International
51	Mineralogical Association recognises approximately 50 mineral species that
52	incorporate organic molecules (Hazen et al., 2013). There exists a number of types of
53	these materials too; from the mineral karpatite, predominately formed of the molecule
54	coronene $(C_{24}H_{12})$ (Echigo et al., 2007), to minerals with metal organic framework
55	structures (Huskić et al., 2016) as well as one example of a geoporphyrin (Hummer et
56	al., 2017).
57	There has, to date, been a number of contributions that have discussed Titan's
58	geological processes with references to the minerals that possibly govern them. This
59	has included erosion (Lorenz and Lunine, 1996), possible cryovolcanism (Fortes et
60	al., 2007) and the sequence of evaporite mineral formation (Malaska et al., 2012).
61	However these have largely concentrated on selected materials, subsets of the array of

molecules that are thought to exist on Titan's surface. Hence, we have viewed it as
timely to conduct a survey of known solid phases from the organic molecules that are
predicted to be present on Saturn's largest moon.

65 Survey of the Cambridge Structural Database

We have surveyed the current understanding of molecular solids formed from the
species outlined in Table 1 using the Cambridge Structural Database (CSD) version
5.37 (Groom et al., 2016). This information has been used to discern the possible
mineral 'types' that would be expected on the surface of Titan. Administered by the
Cambridge Crystallographic Data Centre (CCDC), the CSD is the foremost repository
of organic molecular crystal structures, containing 800,000 deposited structures.

72	Hence, it is an ideal database to undertake a survey of organic solids that could form
73	at the cryogenic temperatures of Titan. Using the CCDC's Conquest (Bruno et al.,
74	2002) program, a search for each molecular species was undertaken, with the results
75	summarised in Table 2.
76	\sim Table 2 here \sim
77	In the reminder of this article, we outline the current knowledge on these materials in
78	the context of Titan's surface and subsurface, and speculate on the potential of these
79	to template and provide surfaces for catalytic activity.
80	Molecular solids
81	Many of the molecules listed in Table 1, could exist on the surface of Titan in their
82	pure solid states. Fig. 2 presents three of the crystal structures of species listed in
82 83	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit,
82 83 84	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C-
82 83 84 85	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids
82 83 84 85 86	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can
82 83 84 85 86 87	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can range from affecting just part of the molecule to the whole molecule being
82 83 84 85 86 87 88	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can range from affecting just part of the molecule to the whole molecule being rotationally disordered.
82 83 84 85 86 87 88 88	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can range from affecting just part of the molecule to the whole molecule being rotationally disordered.
82 83 84 85 86 87 88 88 89 90	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C-HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can range from affecting just part of the molecule to the whole molecule being rotationally disordered. ~ Fig. 2 here ~
82 83 84 85 86 87 88 88 89 90 91	pure solid states. Fig. 2 presents three of the crystal structures of species listed in Table 1, and illustrates the variety of inter-molecular bonding these materials exhibit, including C-H π interactions (for acetylene), London forces (propane) and C- HN=C interactions (acetonitrile). Additionally, many of these molecular solids form crystal structures where the molecules exhibit positional disorder, which can range from affecting just part of the molecule to the whole molecule being rotationally disordered. \sim Fig. 2 here \sim

many of these molecular solids undergo phase transformations where the molecules

94 become partially or fully ordered. This change to ordered crystal structures often has

a number of effects, most noticeably an increase in density, often quite significant.

96	For instance the change between cubic and monoclinic ethane increases the density by
97	7 % (van Nes and Vos, 1978). The species outlined in Table 1 that undergo phase
98	transitions with temperature, driven by the ordering of their molecules are: ethane
99	(cubic to monoclinic at 88 K), acetylene (cubic to orthorhombic at 133 K (McMullan
100	et al., 1992)), HCN (tetragonal to orthorhombic at 170 K (Dulmage and Lipscomb,
101	1951)) and acetonitrile (monoclinic to orthorhombic at 203 K $$ - plus a possible lower
102	temperature transition (Enjalbert and Galy, 2002)). Though the surface temperature
103	of Titan varies very little from 92 K (Cottini et al., 2012) any burial of these
104	molecular materials could reach temperatures that exceed each of the phase
105	transformations listed. Any change in temperature would have also have a dramatic
106	effect upon the low-temperature orthorhombic form of HCN, which is pyroelectric
107	(Dulmage and Lipscomb, 1951) and could be a source of energy for further chemical
108	reactions.
109	Differences in density can drive a number of geological processes, but additionally,

some of these molecular solids (*n*-butane for instance) would form what is termed

111 'plastic solids' – any application of force would deform these materials in a non-

- 112 reversible way. Therefore, understanding the formation and weathering of Titan
- 113 materials may involve significant effort in characterising the evolution of
- 114 microstructure at low temperatures, something that is rarely attempted experimentally.
- 115 Molecular co-crystals
- 116 As the Cassini-Huygens mission has shown, Titan is a world with an active weather,
- 117 hydrologic (we use the term to include non-aqueous volatiles see (Barnes et al.,
- 118 2011)) and sediment transport cycle, and it is likely that the molecular solids
- 119 deposited on the surface of this moon will undergo physical and chemical processing.

120	This could occur by burial by subsequent layers of organic material or dissolution in
121	the liquid hydrocarbon seas (Raulin, 1987) (Cordier et al., 2009) (Malaska and
122	Hodyss, 2014) (Cordier et al., 2013). As has been proposed before (Glein and Shock,
123	2013), such processes would lead to mixing of the pure molecular species outlined in
124	the previous section, leading to the potential formation of more complex materials.
125	These solid molecular materials would be composed of mixtures of multiple species
126	listed in Table 1, but with a fixed stoichiometry: molecular co-crystals.
127	The chemical community usually excludes materials that include water molecules
128	from their definitions of molecular co-crystals (these are more often referred to as
129	hydrates or solvates). To date molecular co-crystals have been investigated with a
130	number of aims, ranging from addressing the delivery of pharmaceutical molecules
131	(Duggirala et al., 2016) to the control of energetic materials (Millar et al., 2012). As
132	detailed in the Table 2, there are already a number of co-crystals known between
133	potential Titan molecules and two are presented in Fig. 3. Notable in this, is the work
134	of Kirchner and co-workers who investigated co-crystals of acetylene in a bid to
135	explore weak interatomic potentials, ~5-20 kJ mol ⁻¹ (Kirchner et al., 2010). This aim
136	is particularly pertinent for the study of Titan minerals since, at 92 K, it is this range
137	of inter-molecular interactions that could be modified in small variations of low-
138	temperature conditions.

139 \sim Fig. 2 here \sim

Investigations into molecular co-crystals that would exist on Titan was taken up in
earnest more recently, motivated by the aim of finding materials that make up Titan's
evaporite deposits (MacKenzie et al., 2014) (Cordier et al., 2016). Raman spectra (Vu
et al., 2014) and subsequent kinetic studies (Cable et al., 2014) revealed the existence

144	of a co-crystal between benzene and ethane. Diffraction studies showed this to be a
145	novel material, with a two-dimensional host-guest structure where the benzene forms
146	a host framework connected by intermolecular C-H π interactions and ethane a
147	guest in the channels that form (Maynard-Casely et al., 2016). The discovery of this
148	co-crystal has ignited study in this area, with potential acetylene:benzene and
149	acetylene:ammonia co-crystals being subsequently identified (Cable, in preparation).
150	The latter, in particular, has been shown to be more thermodynamically stable than
151	the solids of pure ammonia or acetylene (Preston and Signorell, 2012), and is resistant
152	to potential pluvial or fluvial weathering by liquid methane or ethane.
153	It has already been demonstrated that the 3:1 benzene:ethane co-crystal has greater
154	expansive properties than other species thought to exist on the surface of Titan
155	(Maynard-Casely et al., 2016). In the case of this material, this is attributed to the C-
156	H π interactions, that can vary significantly in this temperature range. Hence, this
157	group of potential Titan minerals, molecular co-crystals, would be characterised by
158	dispersive, dipole and C-H π intermolecular interactions. The lower strength of
159	these interactions, compared to other materials, would mean that these mineral phases
160	would be more subjected to modification at 92 K than materials governed by stronger
161	intermolecular interactions.

- 162 As listed in Table 2, very few non-binary molecular co-crystals with these species
- 163 have been identified to date. There is a large scope for tertiary or even further multi-
- 164 species co-crystals, a pursuit that warrants further investigation.

165 Hydrates

- 166 Any interaction between the photo-chemically produced molecules and the underlying
- 167 water ice layers of Titan would have the potential to form hydrated materials. For a

168	more detailed review of current knowledge of physical properties and phase
169	behaviour of hydrates applied to icy worlds the reader is directed to (Fortes and
170	Choukroun, 2010). There are two groups of hydrates regularly proposed to be formed
171	on Titan, gas clathrate hydrates (hereafter clathrates) and ammonia hydrates. Some of
172	these materials, like methane or CO ₂ clathrate, would be the strongest of the surface
173	materials on Titan – even stronger than water ice (Durham et al., 2010). Ammonia
174	hydrates would likely originate from primordial materials from the deep subsurface
175	ocean crystallized within the crust (e.g. (Lunine et al., 2009) and therein), and it is
176	unclear whether they would be expressed on the surface.
177	Clathrates have been hypothesised to exist on the surface of Titan for some time
178	(Miller, 1961) where additional pressure and cold temperatures provided by the
179	atmosphere of Titan and ready availability of gas species favours the production of
180	these materials. As shown in Fig. 3, gas hydrates undertake clathrate host-guest
181	structures, with the water molecules forming the host three-dimensional framework,
182	and a variety of gas species (such as methane, ethane, acetylene and propane) sitting
183	within this framework as the guest molecules.

184 \sim Fig. 4 here \sim

185 Clathrates could have formed early in Titan's history (Tobie et al., 2006) (Lunine et
186 al., 2009), or they may also form from interaction at the surface between liquid
187 hydrocarbons produced by photochemistry and the icy bedrock (Choukroun and
188 Sotin, 2012). Whatever their origin, they have long been anticipated to play an
189 important role in the storage of methane and be involved in the replenishment of this
190 constituent to the atmosphere, via possible cryovolcanism (Lunine and Stevenson,

191	1987) (Choukroun et al., 2010) or substitution within the subsurface by other
192	clathrate-forming molecules like ethane and propane (Choukroun and Sotin, 2012).
193	Of particular relevance, given mounting evidence that these hydrate phases could
194	exist below layers of molecular co-crystals, is their high pressure behaviors. To date,
195	the relevance of ammonia hydrates to the evolution of Titan have centred about the
196	instability at high pressures of the dihydrate form (Loveday et al., 2009). The fact
197	that these structures are held together by a higher density of hydrogen bonds would
198	intrinsically make ammonia hydrates stronger than clathrates, as suggested by the
199	higher strength of hydrated sulfates (Durham et al., 2010), which also have a high
200	density of hydrogen bonds.

201 Further classes of potential Titan minerals

202 We have described three possible categories of Titan minerals, but in this outlook we 203 wish to speculate that there may be further classes to consider. This speculation is 204 driven by the fact that photochemical reactions in the Titan atmosphere are thought to 205 form clusters of complex organic molecules, referred to as tholins (Cable et al., 2011). 206 Any deposition of molecular heterogeneous tholins on the surface of Titan, via the 207 thick haze that is observed, would increase the possibility for rich mineralogy on 208 Titan. Such mixing could introduce the possibility of materials forming with 209 substitutional disorder. Additionally, like many of the mineral systems on Earth, some of Titan's material systems could exist as solid solutions, as has been recently 210 211 observed between CO₂ and N₂O (Connor et al., 2017).

212 Conclusions and future studies.

213 In classifying the possible minerals of Saturn's moon Titan, we hope to have shown 214 where current understanding of these materials is, and where it has to go to be useful 215 for future understanding of this icy moon. However, it is noted that the survey here 216 has been restricted to a very limited set of elements; hydrogen, carbon, nitrogen and 217 oxygen. Trace inclusion of other elements, provided for instance from meteoritic 218 bombardment, could drive further structural variability. Additionally, though a 219 number of polymorphs have already been identified across all of the classes we have 220 described, this aspect remains largely unexplored for possible Titan minerals. 221 The classification has identified a large range of physical properties that would be 222 expected in Titan minerals. Given that intermolecular forces have a great impact on 223 the bulk strength of a material, it can be broadly stated that the molecular materials 224 would be the weakest of the Titan materials, as strength will be determined by 225 dispersion and dipole-dipole intermolecular interactions (~3-20 kJmol⁻¹). These 226 would be followed in resilience by the molecular co-crystals, and then by the hydrate 227 materials (gas hydrates, ammonia hydrates and water-ice) where the hydrogen bond 228 (~20-30 kJmol⁻¹) would be the defining interaction. The molecular solids and 229 molecular co-crystals will have very different (and currently unexplored) mechanical 230 properties, with possibilities in some of the molecular solids for plastic deformation of 231 surface species. Additionally, the contrast in physical and mechanical properties 232 between these materials could drive the erosion and propagation of cracks that, in 233 turn, would form the process for a diversity of surface features on Titan such as those 234 observed by Cassini.

Intriguingly, a number of the molecular co-crystals (and intrinsically the gas hydrates)
form clathrate or inclusion compounds, a feature that could create chemical gradients
across the Titan surface. For instance, the host-guest structure of the benzene:ethane

238	co-crystal also raises the possibility that other molecules could substitute for the
239	ethane in the structure, leading to a variability of mineralogy and a non-stoichiometric
240	structure. The variety of inclusion compounds that have been identified as possible
241	Titan minerals suggests that chemical gradients are likely to form. This raises the
242	potential for astrobiological activity on Titan, since life tends to require a chemical or
243	energy gradient to exploit.

244 Acknowledgments

- 245 The authors acknowledge ideas and advice from the participants in the "Don't Follow
- 246 (Just) the Water: Does Life Occur in Non-Aqueous Media?" workshop organized by
- 247 the W.M. Keck Institute for Space Studies as well as Prof Hazen for his review of the
- 248 article. RH, MC, MM and TV gratefully acknowledge support from NASA's Solar
- 249 System Workings program. Part of this work has been conducted at the Jet Propulsion
- 250 Laboratory, California Institute of Technology, under contract to NASA. Government
- 251 sponsorship acknowledged. Crystal structure visualizations were drawn with the
- 252 Mercury 3.7 program (Macrae et al., 2008).
- 253

254 **References**

255 Barnes, J.W., Bow, J., Schwartz, J., Brown, R.H., Soderblom, J.M., Hayes, A.G., Vixie, G., 256 Le Mouélic, S., Rodriguez, S., and Sotin, C. (2011) Organic sedimentary deposits in 257 Titan's dry lakebeds: Probable evaporite. Icarus, 216(1), 136-140. 258 Bruno, I.J., Cole, J.C., Edgington, P.R., Kessler, M., Macrae, C.F., McCabe, P., Pearson, J., 259 and Taylor, R. (2002) New software for searching the Cambridge Structural Database 260 and visualizing crystal structures. Acta Crystallographica Section B, 58(3 Part 1), 261 389-397. 262 Cable, M.L., Hörst, S.M., Hodyss, R., Beauchamp, P.M., Smith, M.A., and Willis, P.A. 263 (2011) Titan tholins: Simulating Titan organic chemistry in the Cassini-Huygens era. 264 Chemical Reviews, 112(3), 1882-1909. 265 Cable, M.L., Vu, T.H., Hodyss, R., Choukroun, M., Malaska, M.J., and Beauchamp, P. 266 (2014) Experimental determination of the kinetics of formation of the benzene-ethane 267 co-crystal and implications for Titan. Geophysical Research Letters, 41(15), 5396-268 5401. 269 Cable, M.L., Vu, T.H., and Hodyss, R. (in preparation) The acetylene-ammonia co-crystal on 270 Titan. Earth Space Chem.

271 272 272	Carrasco, N., Schmitz-Afonso, I., Bonnet, JY., Quirico, E., Thissen, R., Dutuit, O., Bagag, A., Laprévote, O., Buch, A., and Giulani, A. (2009) Chemical characterization of Titan'a theling. Solubility, merchalogy and melagular structure revisited. The Journal
273 274	of Physical Chemistry A, 113(42), 11195-11203.
275	Choukroun, M., Grasset, O., Tobie, G., and Sotin, C. (2010) Stability of methane clathrate
276	hydrates under pressure: Influence on outgassing processes of methane on Titan.
277	Icarus, 205(2), 581-593.
278	Choukroun, M., and Sotin, C. (2012) Is Titan's shape caused by its meteorology and carbon
279	cycle? Geophysical Research Letters, 39(4).
280	Connor, L.E., Morrison, C., Oswald, I.D., Pulham, C.R., and Warren, M.R. (2017) Carbon
281	dioxide binary crystals via the thermal decomposition of RDX at high pressure.
282	Chemical Science.
283	Cordier, D., Barnes, J., and Ferreira, A. (2013) On the chemical composition of Titan's dry
284	lakebed evaporites. Icarus, 226(2), 1431-1437.
285	Cordier, D., Cornet, T., Barnes, J., MacKenzie, S., Le Bahers, T., Nna-Mvondo, D., Rannou,
286	P., and Ferreira, A. (2016) Structure of Titan's evaporites. Icarus, 270, 41-56.
287	Cordier, D., Mousis, O., Lunine, J.I., Lavvas, P., and Vuitton, V. (2009) An estimate of the
288	chemical composition of Titan's lakes. The Astrophysical Journal Letters, 707(2),
289	L128.
290	Cottini, V., Nixon, C.A., Jennings, D.E., de Kok, R., Teanby, N.A., Irwin, P.G., and Flasar,
291	F.M. (2012) Spatial and temporal variations in Titan's surface temperatures from
292	Cassini CIRS observations. Planetary and Space Science, 60(1), 62-71.
293	Downs, R.T., and Hall-Wallace, M. (2003) The American Mineralogist crystal structure
294	database. American Mineralogist, 88(1), 247-250.
295	Duggirala, N.K., Perry, M.L., Almarsson, Ö., and Zaworotko, M.J. (2016) Pharmaceutical
296	cocrystals: along the path to improved medicines. Chemical Communications, 52(4),
297	640-655.
298	Dulmage, W., and Lipscomb, W. (1951) The crystal structures of hydrogen cyanide, HCN.
299	Acta Crystallographica, 4(4), 330-334.
300	Durham, W., Prieto-Ballesteros, O., Goldsby, D., and Kargel, J. (2010) Rheological and
301	thermal properties of icy materials. Space Science Reviews, 153(1), 273-298.
302	Echigo, T., Kimata, M., and Maruoka, T. (2007) Crystal-chemical and carbon-isotopic
303	characteristics of karpatite (C24H12) from the Picacho Peak Area, San Benito
304	County, California: Evidences for the hydrothermal formation. American
305	Mineralogist, $92(8-9)$, $1262-1269$.
300	Enjaibert, R., and Galy, J. (2002) CH3CN: X-ray structural investigation of a unique single
307 200	crystal. [beta]> [alpha] phase transition and crystal structure. Acta
200	Ennia C. (2017) Dersonal Communication
210	Entris, C. (2017) Feisonal Communication.
310 311	Solance Deviews 152(1.4) 185 218
311	Fortes A D. Grindrod P.M. Trickett S. and Vočadlo I. (2007) Ammonium sulfate on
312	Titan: Possible origin and role in ervovolcanism Icarus 188(1) 130 153
313	Fortes A D. Suard F. Lemée-Cailleau MH.I.n. Pickard C.L. and Needs R.L. (2009)
315	Crystal structure of ammonia monohydrate phase II Journal of the American
316	Chemical Society 131(37) 13508-13515
317	Glein C R and Shock F L (2013) A geochemical model of non-ideal solutions in the
318	methane-ethane-propane-nitrogen-acetylene system on Titan Geochimica et
319	Cosmochimica Acta 115 217-240
320	Groom C.R. Bruno I.I. Lightfoot M.P. and Ward S.C. (2016) The Cambridge Structural
321	Database. Acta Crystallographica Section B 72(2) 171-179
322	Hazen, R.M., Downs, R.T., Jones, A.P., and Kah. L. (2013) Carbon mineralogy and crystal
323	chemistry. Reviews in Mineralogy and Geochemistry. 75(1), 7-46.
324	He, C., and Smith, M.A. (2014) Solubility and stability investigation of Titan aerosol analogs:
325	New insight from NMR analysis. Icarus, 232, 54-59.

326	Hummer, D.R., Noll, B.C., Hazen, R.M., and Downs, R.T. (2017) Crystal structure of
327	abelsonite, the only known crystalline geoporphyrin. American Mineralogist, 102(5),
328	1129-1132.
329	Huskić, I., Pekov, I.V., Krivovichev, S.V., and Friščić, T. (2016) Minerals with metal-organic
330	framework structures. Science advances, 2(8), e1600621.
331	Jacobson, R.A., Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionasescu, R., Jones, J.B.,
332	Mackenzie R A Meek M C Parcher D Pelletier F J W M Owen Jr Roth
333	D C Roundhill I M and Stauch J R (2006) The Gravity Field of the Saturnian
334	System from Satellite Observations and Spacecraft Tracking Data The Astronomical
335	Journal 132(6) 2520
336	Janssen M. Lorenz R. West R. Paganelli F. Lones R. Kirk R. Elachi C. Wall S.
337	Johnson W and Anderson V (2009) Titan's surface at 2.2-cm wavelength imaged
338	by the Cassini RADAR radiometer: Calibration and first results Icarus 200(1) 222-
330	222^{-2}
340	Z57. Kirchner M.T. Bläcer D. and Boese P. (2010) Co. grustels with A cetulene: Small Is not
2/1	Simplel Chemistry A European Journel 16(7) 2121 2146
241	Simple: Chemistry – A European Journal, $10(7)$, $2151-2140$.
342 242	Lograge 201(1) 226 256
343	Icarus, 201(1), 220-250.
344 245	(2014) Chemical composition of 1 itan's atmosphere and ionosphere: Observations and the
343	photochemical model. Icarus, 230, 83-91.
340	Lavvas, P., Coustenis, A., and Vardavas, I. (2008) Coupling photochemistry with naze
34/	formation in Litan's atmosphere, Part II: Results and validation with Cassini/Huygens
348	data. Planetary and Space Science, 56(1), 67-99.
349	Lorenz, R.D., and Lunine, J.I. (1996) Erosion on Titan: Past and present. Icarus, 122(1), 79-
350	91.
351	Lorenz, R.D., Mitchell, K.L., Kirk, R.L., Hayes, A.G., Aharonson, O., Zebker, H.A., Paillou,
352	P., Radebaugh, J., Lunine, J.I., Janssen, M.A., Wall, S.D., Lopes, R.M., Stiles, B.,
353	Ostro, S., Mitri, G., and Stofan, E.R. (2008) Titan's inventory of organic surface
354	materials. Geophysical Research Letters, 35(2), L02206.
355	Loveday, J., Nelmes, R., Bull, C., Maynard-Casely, H., and Guthrie, M. (2009) Observation
356	of ammonia dihydrate in the AMH-VI structure at room temperature–possible
357	implications for the outer solar system. High Pressure Research, 29(3), 396-404.
358	Lunine, J., Choukroun, M., Stevenson, D., and Tobie, G. (2009) The origin and evolution of
359	Titan. Titan from Cassini-Huygens, 35-59.
360	Lunine, J.I., and Stevenson, D.J. (1987) Clathrate and ammonia hydrates at high pressure:
361	Application to the origin of methane on Titan. Icarus, 70(1), 61-77.
362	MacKenzie, S.M., Barnes, J.W., Sotin, C., Soderblom, J.M., Le Mouélic, S., Rodriguez, S.,
363	Baines, K.H., Buratti, B.J., Clark, R.N., and Nicholson, P.D. (2014) Evidence of
364	Titan's climate history from evaporite distribution. Icarus, 243, 191-207.
365	Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E.,
366	Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P.A. (2008) Mercury
367	CSD 2.0 - new features for the visualization and investigation of crystal structures.
368	Journal of Applied Crystallography, 41(2), 466-470.
369	Malaska, M., Radebaugh, J., Barnes, J., and Mitchell, K. (2012) Titan in a Fume Hood:
370	Room-Temperature Simulation of a Titan Evaporite Playa Using a Multi-Component
371	Mixture of Organic Compounds. Lunar and Planetary Science Conference, 43.
372	Malaska, M.J., and Hodyss, R. (2014) Dissolution of benzene, naphthalene, and biphenvl in a
373	simulated Titan lake. Icarus, 242, 74-81.
374	Mavnard-Casely, H.E., Hodyss, R., Cable, M.L., Vu, T.H., and Rahm, M. (2016) A co-crystal
375	between benzene and ethane: a potential evaporite material for Saturn's moon Titan
376	IUCrJ. 3(3).
377	McMullan R K Kvick A and Popelier P (1992) Structures of cubic and orthorhombic
378	phases of acetylene by single-crystal neutron diffraction. Acta Crystallographica
379	Section B, 48(5), 726-731.

380	Millar, D.I.A., Maynard-Casely, H.E., Allan, D.R., Cumming, A.S., Lennie, A.R., Mackay,
381	A.J., Oswald, I.D.H., Tang, C.C., and Pulham, C.R. (2012) Crystal engineering of
382	energetic materials: Co-crystals of CL-20. Crystengcomm, 14(10), 3742-3749.
383	Miller, S.L. (1961) The occurrence of gas hydrates in the solar system. Proceedings of the
384	National Academy of Sciences, 47(11), 1798-1808.
385	Pernot, P., Carrasco, N., Thissen, R., and Schmitz-Afonso, I. (2010) Tholinomics-Chemical
386	analysis of nitrogen-rich polymers. Analytical chemistry, 82(4), 1371-1380.
387	Raulin, F. (1987) Organic chemistry in the oceans of Titan. Advances in Space Research,
388	7(5), 71-81.
389	Rühl, S. Inorganic Crystal Structure Database (ICSD). A Focus on Crystallography, 6.
390	Sciamma-O'Brien, E., Ricketts, C.L., and Salama, F. (2014) The Titan Haze Simulation
391	experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature.
392	Icarus, 243, 325-336.
393	Stevenson, D.J. (1992) Interior of Titan.
394	Tobie, G., Lunine, J.I., and Sotin, C. (2006) Episodic outgassing as the origin of atmospheric
395	methane on Titan. Nature, 440(7080), 61-64.
396	van Nes, G.J.H., and Vos, A. (1978) Single-crystal structures and electron density
397	distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure
398	determinations of two modifications of ethane. Acta Crystallographica Section B,
399	34(6), 1947-1956.
400	Vu, T.H., Cable, M.L., Choukroun, M., Hodyss, R., and Beauchamp, P.M. (2014) Formation
401	of a New Benzene-Ethane Co-Crystalline Structure Under Cryogenic Conditions. The
402	Journal of Physical Chemistry A, 118(23), 4087-4094.
403	Willacy, K., Allen, M., and Yung, Y. (2016) A new astrobiological model of the atmosphere
404	of Titan. The Astrophysical Journal, 829(2), 79.
405	

406

407 Table 1 – List of selected molecular species expected on the surface according to three

408 photochemical models as well as the implied flux of each molecule incident upon the Titan

409 surface. Those molecules where the specific model has not given a flux are denoted 'not

410 applicable' (N/A).

Species	(Krasnopolsky,	(Cordier et	(Willacy	State at Titan
	2009)	al., 2009)	et al.,	STP (1.5 bar,
	(molecules cm	(molecules	2016)	94 K)
	$^{2}s^{-1}$)	$cm^{-2}s^{-1}$)	(molecules	
			$cm^{-2}s^{-1}$)	
C_2H_6 (ethane)	1.17 x 10 ⁹	3.40×10^9	N/A	Liquid
C_2H_2 (acetylene)	3.22×10^8	5.10×10^7	N/A	Solid
C_3H_8 (propane)	2.17×10^8	3.30×10^8	N/A	Liquid
HCN (hydrogen	1.54×10^8	$1.30 \ge 10^8$	$1.20 \ge 10^8$	
cyanide)				Solid
HNC (hydrogen	N/A	N/A	8.10×10^6	
isocyanide)				Solid
C_4H_6 (butadiene)	1.71×10^7	N/A	N/A	Solid
C ₂ H ₃ CN (acrylonitrile)	1.62×10^7	N/A	$1.50 \ge 10^7$	Solid
CH ₃ CN (acetonitrile)	1.27×10^7	4.40×10^6	2.80×10^5	Solid
CH ₃ C ₂ CN	N/A	N/A	4.50×10^6	
(methylcyanoacetylene)				Solid(?)
HC ₃ N	1.26×10^7	N/A	2.90×10^7	Solid

(cyanoacetylene)				
HC ₅ N (2,4-	N/A	N/A	2.40×10^6	
pentadiynenitrile)				Solid(?)
C ₂ N ₂ (cyanogen)	3.52×10^6	N/A	5.80×10^5	Solid
C ₃ H ₄ (propadiene)	2.64×10^6	N/A	N/A	Solid
CO ₂ (carbon dioxide)	2.04×10^6	$1.30 \ge 10^6$	N/A	Solid
C_6H_6 (benzene)	$1.08 \ge 10^6$	$1.00 \ge 10^6$	N/A	Solid
C_4H_8 (butene)	9.24×10^5	6.20×10^7	N/A	Solid (2-
				butene),
				liquid ((1-
				butene)
C ₂ H ₅ CN	$8.00 \ge 10^5$	N/A	6.4×10^6	
(propionitrile)				Solid
C_4H_{10} (butane)	7.02×10^5	5.40×10^7	N/A	Solid
C ₄ H ₂ (diacetylene)	4.09×10^5	N/A	N/A	Solid
C_4H_4 (butatriene)	1.57×10^4	N/A	N/A	Solid (?)

411

412 Table 2 – A list of structures of possible solids on the surface of Titan, as determined

413 from the Cambridge Structural Database (CSD) version 5.37 (Groom et al., 2016). *

414 indicates structure determined at non-ambient pressure and ** indicates an entry not

415 in CSD version 5.37 as only recently deposited. Additionally, we are aware that a

structure of propionitrile has recently been determined (Ennis, 2017). ***The focus
of this contribution has been a survey of the potential organic solid component of

417 of this contribution has been a survey of the potential organic solid component of 418 Titan, hence the use of the CSD as a search tool. However, it should be noted that

419 Intail, hence the use of the CSD as a search tool. Thowever, it should be noted that 419 hydrates only fit into the remit of the CSD collection if they contain an organic

420 component - hence the limited number listed here (for instance there are no ammonia

421 hydrates in the CSD). The reader is directed to the Inorganic Crystal Structure

422 Database (Rühl) for further information on hydrate materials, and to the American

423 Mineral Database for information on Earth's organic-molecule containing minerals

424 (Downs and Hall-Wallace, 2003).

Material	CSD Refcode	Temperature structure	Density (gcm ⁻¹)	Notes
		determined		
		at (K)		
Molecular Solids				
C_2H_6 (ethane)	ETHANE	90	0.669	
C_2H_6 (ethane)	ETHANE01	85	0.719	
C_2H_6 (ethane)	ETHANE02	295	0.708	
C_2H_6 (ethane)	ETHANE03	90	0.668	
C_2H_2 (acetylene)	ACETYL	156	0.747	
C_2H_2 (acetylene)	ACETYL01	141	0.765	
C_2H_2 (acetylene)	ACETYL02	131	0.764	
C_2H_2 (acetylene)	ACETYL03	141	0.76	
C_3H_8 (propane)	JAYDUI	30	0.803	
HCN (hydrogen				No CSD
cyanide)				structure
HNC (hydrogen				No CSD
isocyanide)				structure

C_4H_6 (butadiene)	ZZZUPG	295	0.975	
C ₂ H ₃ CN (acrylonitrile)	POQMIR	153	1.027	
CH ₃ CN (acetonitrile)	QQQCIV	77	1.198	
CH ₃ CN (acetonitrile)	QQQCIV01	215	1.022	
CH ₃ CN (acetonitrile)	QQQCIV03	208	1.025	
CH ₃ CN (acetonitrile)	QQQCIV04	206	1.058	
CH ₃ CN (acetonitrile)	QQQCIV05	201	1.028	
CH ₃ CN (acetonitrile)	QQQCIV06	296	1.091	
CH ₃ CN (acetonitrile)	QQQCIV07	296	1.104	
CH ₃ CN (acetonitrile)	QQQCIV08	296	1.216	
CH ₃ C ₂ CN				No CSD
(methylcyanoacetylene)				structure
HC ₃ N	CAACTY	295	1.075	
(cyanoacetylene)				
HC ₅ N (2,4-				No CSD
pentadiynenitrile)				structure
C_2N_2 (cyanogen)	CYNGEN	295	1.25	
C ₃ H ₄ (propadiene)				No CSD
				structure
CO ₂ (carbon dioxide)	SACBAA	680	2.826	*
CO ₂ (carbon dioxide)	SACBAA01	680	2.831	*
C ₆ H ₆ (benzene)	BENZEN	218	1.055	
C_6H_6 (benzene)	BENZEN01	138	1.094	
C_6H_6 (benzene)	BENZEN02	270	1.024	
C_6H_6 (benzene)	BENZEN03	295	1.259	
C_6H_6 (benzene)	BENZEN04	295	1.259	
C_6H_6 (benzene)	BENZEN05	295	1.173	
C_6H_6 (benzene)	BENZEN08	295	1.561	
C_6H_6 (benzene)	BENZEN09	295	1.812	
C_6H_6 (benzene)	BENZEN10	295	1.263	
C_6H_6 (benzene)	BENZEN11	296	1.157	*
C_6H_6 (benzene)	BENZEN12	296	1.205	*
C_6H_6 (benzene)	BENZEN13	296	1.139	*
C_6H_6 (benzene)	BENZEN15	295	1.07	*
C_6H_6 (benzene)	BENZEN16	295	1.195	*
C_6H_6 (benzene)	BENZEN17	295	1.202	*
C_6H_6 (benzene)	BENZEN18	150	1.05	*
C_4H_8 (1-butene)				No CSD
				structure
C_4H_8 (2-butene)				No CSD
				structure
C_2H_5CN				No CSD
(propionitrile)	DUGUODAI			structure
C_4H_{10} (butane)	DUCKOB04	90	0.807	NL CCE
C_4H_2 (diacetylene)				No CSD
				structure
C_4H_4 (butatriene)				No CSD
Maland (1				structure
Nolecular co-crystals				

			I	
1:1 acetylene	CIYYEP	155	0.878	
methanol	DI LOIZ	100	1.01	
1:1 benzene :	ELIQIZ	123	1.01	
		201	0.007	
1:1 benzene :	ELIQIZ01	201	0.987	
acetylene	FOZHOG	1.42	0.024	
1:1 acetylene :	FOZHOS	143	0.834	
ammonia		1.42	0.024	
1:1 acetylene :	FOZHOSUI	143	0.834	
ammonia		1.50	0.0(2	
2:1 acetylene :	GURMUC	159	0.862	
acetonitrile	CUDNAL	1.42	1.10	
1:1 acetylene : phenol	GURNAJ	143	1.19	
1:1 acetylene :	GURNEN	123	0.925	
formaldehyde	CUDNUD	1.00	0.000	
1:1 acetylene : 1,3-	GURNIR	168	0.982	
xylene	CUDICU	1.50	0.000	
1:2 acetylene	GURNOX	153	0.982	
mesitylene				
1:2 acetylene : acetone	TACRUL	159	0.934	
(alpha)				
1:1 acetylene : acetone	TACSAS	159	0.93	
(beta)				
2:1 acetylene :	WAFNIB	185	1.005	
pyridine				
1:2 acetylene : 2,5-	WAFNOH	153	1.104	
dimethylpyrazine				
1:2 acetylene : 2,5-	WAFNUN	205	1.025	
dimethylpyridine				
1:3 acetylene :	ZZZVKY	295	1.358	
hydroquinone				
3:1 benzene : ethane	UKACAM	90	1.067	**
1:4 1,3-butadiene :				
urea	ZZZAJV	153	1.526	
1:1 acetonitrile : 3,4-	EDUWUW	120	1.426	
Dihydroxybenzoic				
acid				
1:1:1 acetonitrile :	GUTRUI	180	1.367	
Cyclohexane-				
1,3cis,5cis-				
tricarboxylic acid				
1:2:1 acetonitrile : 4-	HONTIO	100	1.275	
Hydroxybenzoic acid				
2,3,5,6-				
tetramethylpyrazine				
1:3 acetonitrile :	HQUACN	295	1.341	
hydroquinone				
1:3 acetonitrile :	HQUACN01	295	1.336	
hydroquinone				

1:1 acetonitrile : 4H- 1,2,4-Triazol-4-amine	IHAYAS	153	1.296	
1:0.5 Benzene-1,2,3- tricarboxylic : acetonitrile	YECBOY	160	1.536	
1:1 4-phenoxyphenol carbon dioxide	QIRKUZ	100	1.322	
1:1 4-phenoxyphenol : carbon dioxide	QIRLAG	100	1.349	
1:1 4-phenoxyphenol : carbon dioxide	QIRLEK	100	1.355	
1:1 Hydroquinone : carbon dioxide	ZZZVLW	295	N/A	No atomic co- ordinates in CSD
1:1 N,N-Diethyl-beta- alanine : benzene	DEBALB	160	1.133	
1:1 1,2- diphenylacetylene : benzene	KURCEG	173	1.157	
2:1 trimethyl-acetic acid : benzene	TMACBZ	278	1.051	
6:1 5-methyl-1,3- cyclohexanedione : benzene	VEVJOV	188	1.237	
Hydrates ***				
Ethane clathrate hydrate	IKAVOF	293	0.984	
Ethane clathrate hydrate	QQQFNM	295	N/A	No atomic co- ordinates in CSD
Acetylene (2,5- dimethylpyridine) dihydrate	WAFPAV	205	1.085	
acetylene clathrate hydrate	NAHCIJ	143	1.003	
propane clathrate hydrate	NAHCOP	123	0.919	
Methane propane clathrate hydrate	NAHCUV	163	0.994	
carbon dioxide clathrate hydrate	LURDOT	N/A	1.144	

425

426

427

428 Figure 1 – Comparison of mineral processes on Earth with that of Titan. Though there is 429 much that they have in common, such as 'hydrological' cycling, the temperatures and

- 430 dominant chemistry of the surface and sub surfaces of these planetary bodies are very
- 431 different.

432

433 Figure 2 – Presentations of the crystal structure of three molecular solids that could be present 434 on Titan, a) the crystal structure of acetylene (CSD refcode ACETYL), b) the crystal structure 435 of propane (refcode JAYDUI) and c) acetonitrile (refcode QQQCIV01). In each of the 436 images grey spheres represent carbon atoms, white hydrogen atoms, and blue represent 437 nitrogen atoms.

438

439

- 440 Figure 3 – Two molecular co-crystals that have already been identified between species listed
- 441 in Table 1, a) 2:1 acetylene : acetonitrile (CSD refcode GURMUC) and b) 3:1 benzene :
- 442 ethane (refcode UKACAM). In each of the images grey spheres represent carbon atoms;
- 443 white hydrogen and blue represent nitrogen atoms.

444

445

- 446 Figure 4 – Two possible Titan hydrate materials a) acetylene clathrate hydrate (CSD refcode
- 447 NAHCIJ) and b) ammonia monohydrate II (Fortes et al., 2009). In each of the images grey
- 448 spheres represent carbon atoms, white hydrogen, red oxygen and blue represent nitrogen
- 449 atoms.

