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INTRODUCTION

Diamonds and their inclusions are some of the most scientifically valuable samples of 
the Earth (Haggerty 1999; Shirey et al. 2019). Among the analytical techniques used to study 
diamonds, Raman spectroscopy offers several advantages that make it an appealing tool 
for characterizing inclusions. It is a relatively low-cost, rapid, and non-destructive option, 
requiring minimal sample preparation, if any. Inclusions can often be characterized in-situ, 
while still fully enclosed in their diamond host, which ensures that no material is inadvertently 
lost (e.g., fluid) and the remnant pressure of the inclusion–host system is preserved. 
The pressure within inclusions can be on the order of several gigapascals (e.g., Nasdala et 
al. 2003) and is especially important for stabilizing the crystal structure of certain high-
pressure minerals, such as ringwoodite, in sublithospheric diamonds (Pearson et al. 2014). 
Ideally, Raman spectroscopy can be complemented by other in-situ methods, such as infrared 
spectroscopy (FTIR), micro-beam X-ray diffraction (XRD), X-ray computed tomography 
(CT), and synchrotron X-ray fluorescence (XRF). Raman spectroscopy can serve as a first 
step to help characterize inclusions before employing more time-consuming or destructive 
analytical techniques, but it can also serve as a powerful tool in its own right for diamond 
research (e.g., Liu et al. 1990; Gillet et al. 2002; Nasdala et al. 2003, 2005; Brenker et al. 2005; 
Walter et al. 2011; Howell et al. 2012; Pearson et al. 2014; Nimis et al. 2016; Smit et al. 2016; 
Smith et al. 2016b, 2018; Anzolini et al. 2018; Kemppinen et al. 2018). This chapter is the first 
Raman spectroscopy review specifically applied to inclusions in diamond.

Collecting Raman spectra can be straightforward, often with little training for users. 
However, obtaining good quality data and making reasonable interpretations can be challenging 
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and varies with each application of Raman spectroscopy. This chapter provides an overview of 
the application of Raman spectroscopy to inclusions in diamond, with a focus on highlighting 
relevant phases likely to be encountered in this context. A collection of Raman spectra is 
available as supplementary material (Smith 2021), intended to provide a diamond-specific 
resource for identifying included phases. Many but not all of these spectra come from inclusions 
in diamond. For some minerals, spectra from inclusions are not available or available spectra 
collected from non-inclusion samples are higher quality and more representative, making them 
better suited for use as a reference. Additional spectral databases, from the RRUFF Project 
(Lafuente et al. 2015) for example, can be found online, although users should be mindful 
of occasional erroneous data. With the correct mineralogical parameters, Raman spectra can 
also be predicted from first principles, such as in the WURM database of computed spectra, 
which sometimes can be useful for identifying Raman peak distributions of an unknown 
mineral phase (Caracas and Bobocioiu 2011). Helpful background information on Raman 
spectroscopy and its geological applications can be found in reviews elsewhere (e.g., Burke 
2001; Fries and Steele 2010; Frezzotti et al. 2012; Neuville et al. 2014; Elements 2020).

PRINCIPLES AND METHODS

Raman spectroscopy

When visible light intercepts matter, some of the light is scattered. Although most of the 
scatter occurs elastically, meaning the photon energy (or wavelength) remains unchanged, a 
small proportion of photons (approximately 1 in 107) scatter inelastically and their energy is 
measurably changed (Pasteris and Beyssac 2020). This is the Raman effect. The energy change, 
or Raman shift, is a consequence of some energy being transferred into (Stokes) or being 
released from (anti-Stokes) the vibrations of bonded atoms in the light-scattering material. 
This means that the spectrum of all the inelastically scattered photon energies is not random, 
but has bands (also called peaks) that correspond to the discrete vibrational frequencies in the 
material (i.e., the sample).

Raman spectroscopy exploits this phenomenon, whereby the spectrum of inelastically 
scattered light contains structural and, to some extent, chemical information about the sample. 
Typically, a laser source with photons of uniform energy is focused onto the sample and the 
scattered light is collected. The intense elastic scattering of the incident laser wavelength is 
excluded or removed from the signal using a Rayleigh rejection filter, triple monochromator 
or, in the case of a Fourier Transform system, an interferometer. It is important to note that the 
Raman shift is relative to the incident photon energy, meaning the energy or wavelength of a 
Raman band depends on the laser wavelength. For this reason, Raman spectra are plotted on a 
wavenumber-shift or Raman shift scale, which shows the energy change of scattered photons 
relative to the incident laser photons (in units of cm−1). This is not to be confused with an absolute 
wavenumber scale of energy (conventionally used for infrared absorption spectroscopy).

Instrumentation and sample considerations

The basic Raman spectrometer (or Raman microprobe) consists of a laser light source, 
a microscope, and a spectrometer. In the context of examining inclusions in diamonds, an 
important variable to consider is the use of a confocal arrangement of the optical pathway (e.g., 
Everall 2009). A two-dimensional confocal aperture blocks out-of-focus light, constraining 
the effectively analyzed sample volume and improving spatial resolution. A quasi-confocal 
arrangement can be achieved using a slit rather than an aperture. The spatial resolution also 
depends on how tightly the objective lens focuses the laser, which is a function of the lens’s 
numerical aperture (NA) and the laser excitation wavelength (λ), and is proportional to λ/NA. 
For example, with a confocal setup, a 0.9 NA, 100× magnification objective lens and 514.5 nm 
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laser can achieve a spatial resolution of approximately 1 × 1 × 5 μm3, elongate in the vertical 
axis (i.e., the axis of the incident laser beam). Note, however, that there are many additional 
factors affecting the spatial resolution (e.g., Kim et al. 2020) and that focusing the laser inside 
the diamond will further distort the spatial resolution due to refraction, surface roughness, and 
other effects. Ideally, inclusions should be as close to the surface of the diamond as possible, 
but realistically, they are often hundreds of micrometers deep or more and the working distance 
becomes an issue. For this reason, long working distance lenses are practical, at 100×, 50× 
or 20× magnification, for example, and can permit analysis of inclusions as deep as a few 
millimeters. Long working distance lenses have the tradeoff of a lower NA (e.g., a 50× long 
working distance lens might have a NA of 0.5), which increases the analyzed volume, chiefly 
in the vertical dimension because the height of the analyzed volume is inversely proportional 
to the square of the NA. This lowers the spatial resolution and can result in a diminished 
Raman signal intensity from the inclusion of interest.

The choice of laser is also important. Blue, green, and red lasers can all be used with 
varying success depending on the sample. Shorter wavelengths lead to smaller spot sizes and 
more intense Raman scattering, but the drawback is an increased likelihood of fluorescence 
from the diamond (or inclusion) that may drown out the Raman signal and decrease spectral 
resolution. Heating of the inclusion by the laser spot is not normally a concern, but it is possible 
and measures such as reducing the laser power may be prudent for sensitive hydrous or opaque 
phases. Smaller grain sizes and coexistence with phases that act as insulators are also factors 
that can facilitate heating. In this sense, Raman spectroscopy is not always non-destructive (e.g., 
de Faria et al. 1997). When striving to avoid damage, a good approach is to start at the lowest 
laser power and iteratively work up to a point where the Raman signal strength is acceptable. If 
possible, measuring the laser at the sample using a power meter is preferable. Additional factors 
such as the depth of the inclusion will affect the laser power reaching the inclusion.

It is possible to analyze through rough diamond surfaces, especially smooth and flat 
crystal or cleavage surfaces. Generally, the better an inclusion can be resolved visually, the 
greater the chances of being able to analyze it. A well-polished diamond surface (facet or 
window) is therefore ideal and becomes increasingly important for inclusions that are smaller 
or located deeper inside the diamond. If polishing is to be pursued, it may be helpful to collect 
X-ray CT images to locate all inclusions to aid planning, although this has the potential for a 
high radiation dose that could affect the sample. During polishing, good technique is important 
to avoid excessive sample heating, which could hypothetically modify or destabilize sensitive 
inclusions, such as hydrous ringwoodite.

When using a Raman microscope, good control over the lighting conditions is critical 
for navigating the subsurface space inside a diamond to find specific inclusions or parts of 
inclusions and bring them into focus for analysis. Transmitted light, with a diffuser plate or 
frosted microscope slide, or even an external light source, such as an intense fiber optic light, 
can be especially helpful. Depending on the sample, it can be possible to analyze inclusions 
even smaller than 1 μm, although successfully targeting the laser on the inclusion can present 
a challenge and the Raman signal may be weak. If a sufficiently dense cloud of inclusions is 
present, it can be possible to train the spot on the cloud and have a good chance of intersecting 
inclusions (e.g., Navon et al. 2017). Alternatively, when small inclusions are more dispersed, an 
automated mapping approach with a small step size can sequentially analyze a grid of many points 
and maximize the chances of hitting inclusions (e.g., Smit et al. 2016). Mapping capabilities are 
also helpful when analyzing multi-phase inclusions, where a traditional point analysis approach 
could allow some phases to go unnoticed, such as the presence of small amounts of molybdenite 
in sulfide inclusions (Kemppinen et al. 2018). Newer instruments capable of faster automated 
Raman mapping, in combination with the higher spatial resolution afforded by confocal optics, 
are likely to bolster the use of 2-D and 3-D mapping for inclusion analysis.
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Common challenges

Diamond has a very strong first-order Raman band, located at 1332.5 cm−1 in relatively 
strain- and impurity-free crystals (Schiferl et al. 1997) (larger grains than the excitation beam 
diameter), which is conveniently isolated from the 100–1300 cm−1 region where the key 
spectral features of most minerals lie. However, the diamond host can still present a challenge 
to inclusion analysis when it luminesces, imparting a strong broad background that can drown 
out the Raman spectrum, or when it introduces more discrete photoluminescence bands into 
the spectrum. Laser-induced photoluminescence can sometimes be overcome by controlling 
the laser spot size to excite less of the diamond (Kemppinen et al. 2018), or attempting analysis 
again with a different laser wavelength, if possible. Photoluminescence from defects in the 
diamond lattice, which may sometimes occur only locally around an inclusion (e.g., Fig. 9 
in Gu and Wang 2018), can produce bands at discrete wavelengths that overlap the Raman 
spectral features. It can be helpful to analyze the host diamond itself, adjacent to an inclusion 
of interest, for comparison. Also, photoluminescence features can be diagnosed by changing 
the laser excitation wavelength. These features depend on electronic transitions and will 
be detected at the same absolute energy or wavenumber, and therefore a different apparent 
Raman shift (wavenumber-shift), upon changing the laser wavelength. True Raman bands will 
plot at constant wavenumber-shift values, meaning their position in the Raman shift spectrum 
will not change upon changing the laser wavelength. Having the ability to choose between 
multiple laser wavelengths thus presents an advantage.

It is not uncommon for inclusions to contain multiple phases, which can be overlapped in 
Raman spectra, making phase identification more difficult. For example, this could occur as 
the result of co-trapping of multiple mineral grains together or as a result of retrogression of a 
single high-pressure mineral into multiple lower-pressure phases. Retrogression is a common 
phenomenon observed in sublithospheric diamonds. If an inclusion is not homogeneous, the 
Raman spectrum can exhibit substantial spatial variability and recognizing all the phases 
present can be difficult. Some phases may be very weakly active or even Raman inactive. 
Analyzing multiple points on the inclusion, potentially by automated mapping (e.g., Walter 
et al. 2011), is crucial to being able to recognize and deconvolve the spectra of mixed phases.

Another challenging aspect of inclusions in diamond is the presence of remnant pressure. 
As a diamond makes its way to Earth’s surface, the changes in pressure and temperature allow 
the diamond to relax, but its inclusions are constrained by the host diamond. As a result, many 
inclusions are under residual stress, which can often be seen visually with crossed polarizing 
filters as a halo of anomalous birefringence in the diamond surrounding an inclusion (Howell 
et al. 2010). The remnant pressure can be on the order of a few gigapascals (Nasdala et al. 
2003) and, rarely, might be greater than 10 GPa for some exotic micrometer- to nanometer-
sized inclusions (Navon et al. 2017; Tschauner et al. 2018). The pressure can make it difficult 
to identify phases because residual pressure affects the bonding geometry and shifts the 
position of some Raman bands. For example, the main band of coesite in an unstrained state 
resides at 520.6 cm−1 but under high remnant pressure as an inclusion this band has been 
recorded at 538 cm−1 (Smith et al. 2018). The host diamond Raman band also shifts under 
stress (Grimsditch et al. 1978; Sharma et al. 1985), which can be exploited to map out the 
stress distribution around inclusions (Nasdala et al. 2003; Howell et al. 2012). As a final note of 
caution, mentioned by Nasdala and Schmidt (2020), Raman spectroscopy can be deceptively 
simple and does not always receive sufficient oversight by trained users, so it is important to 
keep in mind that not all published Raman results are reliable.
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INCLUSION IDENTIFICATION

For most users, the principal goal is to identify the phase or phases that make up a visible 
inclusion in a diamond. Mineral inclusions are categorized below in terms of depth of origin 
(lithospheric and sublithospheric) and major host rock types. Lithospheric and sublithospheric 
diamonds are presented separately because the latter often change from their original high-
pressure mineralogy to lower-pressure phases during exhumation from the mantle, adding a 
degree of complexity to their interpretation.

Phase identification is accomplished by carefully comparing band positions, intensities, 
and shapes against those of known spectra, a process that can be aided by software that can 
automatically select possible matches from a database. It is important to keep in mind that 
band positions may be shifted due to remnant pressure in inclusions and that relative band 
intensities of a crystal can change as a function of its orientation with respect to the incident 
laser and its polarization. For identifying inclusions in diamond, it is helpful to consider 
the most plausible candidates as those minerals and mineral assemblages that have been 
encountered previously (Tables 1 and 2). Our list is not exhaustive and does not include the 
various phases that have been observed in micro- or nano-scale inclusions (e.g., Logvinova 
et al. 2008; Kaminsky 2012) that are less conducive to Raman analysis. A collection of 
relevant Raman spectra, including examples collected in-situ from inclusions, is available as 
supplementary material (Smith 2021). As visual inspection of inclusions under a microscope 
is often integral to Raman analysis, users may wish to refer to published images to see some 
good examples of different inclusion types (e.g., Koivula 2000; Tappert and Tappert 2011). 
In addition to minerals, fluids or amorphous solids are also possible inclusions in diamond, 
and these too can often be identified from their Raman spectra. However, scrutiny is required 
and phase identification is not always possible based on Raman spectra alone.

Inclusions in lithospheric diamonds

Inclusions in diamonds from the continental lithospheric mantle are divided into three 
paragenetic associations, reflecting their host rocks: peridotitic (comprising lherzolitic, 
harzburgitic and wehrlitic parageneses), eclogitic, and websteritic (Stachel and Harris 2008). 
Diamond from websteritic sources is relatively uncommon, accounting for only about 2% 
of inclusion-bearing lithospheric diamonds, whereas peridotitic and eclogitic parageneses 
account for 65% and 33%, respectively (Stachel 2014). Mineral phases encountered in 
lithospheric diamonds are laid out in Table 1 (also see Table 1 in Shirey et al. 2013) and 
some examples of corresponding Raman spectra from inclusions are shown in Figure 1. These 
inclusions are often single mineral phases and correspond to familiar minerals encountered in 
crustal rocks. As long as a reasonable Raman spectrum is collected, the identification of these 
phases is usually straightforward. In contrast, inclusions in sublithospheric diamonds often 
contain coexisting minerals representing a retrogression assemblage and may contain obscure 
mineral phases, adding a greater challenge to identification and interpretation.

Inclusions in sublithospheric diamonds

Inclusions derived from the sublithospheric mantle broadly mirror the peridotitic and 
eclogitic host rock associations of lithospheric diamond suites, but with mineralogy dictated by 
higher pressures and temperatures (see reviews by Stachel et al. 2005; Harte 2010; Kaminsky 
2012; Harte and Hudson 2013; Shirey et al. 2013; Nestola 2017). The mineralogy of peridotitic 
and eclogitic rocks as a function of depth, which has been delineated experimentally, provide a 
practical guide for interpreting inclusions in sublithospheric diamonds (e.g., Walter et al. 2011). 
Although the high-pressure mineralogy of peridotitic or eclogitic bulk compositions does 
explain many inclusion assemblages in sublithospheric diamonds, there are also inclusions that 
deviate from this framework, such as the occurrence of carbonates, or of Ca-silicate inclusions 
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with Ca:Si ratios above 1:1 that cannot be interpreted simply as a back-transformation product 
of CaSiO3-perovskite (Brenker et al. 2005, 2007). Other host rock types, such as subducted 
serpentinites or oceanic sediments, may also be relevant for sublithospheric diamond formation. 
In detail, many sublithospheric inclusions do not appear to be pristine grains of ambient mantle 
rocks, but instead bear evidence of variable chemical modification by, or crystallization from, 
low-degree melts or fluids prior to their entrapment in diamond, possibly related to diamond 
formation (Stachel et al. 2000; Walter et al. 2008; Thomson et al. 2016).

Table 2 lists mineral phases encountered in sublithospheric diamonds and some examples 
of their Raman spectra are shown Figure 2. It should be noted that few inclusions are found 
as well-preserved high-pressure minerals. The large pressure-temperature change during 
exhumation from the sublithospheric mantle destabilizes some mineral inclusions, causing 
inversion (change in structure) or retrogression (breakdown into multiple phases) to lower-
pressure polymorphs or assemblages. Observed inclusion phases must be carefully interpreted 
to judge the identity of the original inclusion phase that was trapped during diamond growth 
(also see Table 2 in Shirey et al. 2013). For example, inclusions of bridgmanite (MgSiO3-
perovskite) invert to orthopyroxene, but the original inclusion identity can be inferred based on 

Peridotitic Eclogitic Websteritic Uncertain

Common

Cr-pyrope Grossular–almandine–pyrope Almandine-pyrope Graphite

Olivine Omphacitic clinopyroxene Diopside-augite

Enstatite Fe sulfides* Enstatite

Cr-diopside

Mg-chromite

Fe–Ni sulfides*

Occasional

Rutile Coesite

Coesite Olivine

Rare

Coesite Kyanite Phlogopite Diamond

Mg-ilmenite Corundum Calcite

Magnesite Ilmenite Dolomite

Calcite Magnetite Perovskite

Native Fe Fe–Mg-chromite Amphibole

Zircon Phlogopite Moissanite

Phlogopite K-feldspar Apatite

Yimengite Titanite Eskolaite

Staurolite Sr-titanate

Zircon Monazite

Moissanite

Calcite

Dolomite

Table 1. Mineral inclusions in lithospheric diamond, modified from Stachel (2014).

Notes: *pyrrhotite ± pentlandite ± chalcopyrite ± molybdenite (Kemppinen et al. 2018), with bulk Ni content 
being >17 wt% for peridotitic and <10 wt% for eclogitic sulfides
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low NiO contents (300 ppm or less) compared to typical upper mantle orthopyroxene (1000 ppm 
or more) (Stachel et al. 2005). Sometimes bridgmanite contains Al, and the inclusion undergoes 
retrogression to an assemblage of orthopyroxene plus aluminous phases, such as jeffbenite 
and spinel (Walter et al. 2011; Harte and Hudson 2013). Jeffbenite [(Mg,Fe)3Al2Si3O12], 
formerly known as TAPP (tetragonal almandine-pyrope phase), may appear by retrogression 
of aluminous bridgmanite or majoritic garnet, though its possible occurrence as an original/

Figure 1. Raman spectra of a variety of mineral inclusions in lithospheric diamonds, along with corre-
sponding inclusion images. The phlogopite inclusion, which also has an O–H stretching band at 3732 cm−1, 
is in a facetted diamond (sample 110206866925) that also contains olivine inclusions. The kyanite inclusion 
is in a faceted diamond (sample 110209083424) that also contains orange eclogitic garnet inclusions.The 
coesite inclusion is in a yellow facetted diamond (sample 110208419590) and exhibits pressure-induced 
band shifts (Smith et al. 2016a). The omphacitic clinopyroxene (cpx) inclusion is in a yellow-green facetted 
diamond (sample 890000082714) that also contains orange eclogitic garnet (Fig. 3) inclusions (Smith and 
Wang 2017). The diopside inclusion (no image) is in a diamond from Sao Luiz (Juina area), Brazil. The 
enstatite is in a facetted diamond (sample 110208779832). The Mg-chromite is a small (~10 μm) inclusion 
trapped within a larger forsteritic olivine inclusion in a facetted diamond (sample 100722703657).
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primary inclusion is not ruled out (Nestola et al. 2016). Retrogression reactions can be complex, 
especially if multiple high-pressure phases have been trapped together (e.g., Brenker et al. 
2002). Consequently, it is not always possible to accurately interpret the original inclusion 
mineralogy without additional tools beyond Raman spectroscopy.

Table 2. Mineral inclusions observed in sublithospheric diamonds, adapted from Harte and Hudson 
(2013) and Stachel (2014).

Single or multi-phase mineral inclusion Possible original inclusion phase

Common

*Ferropericlase–magnesiowüstite

Ca-rich inclusions:
Breyite (CaSiO3-walstromite),
larnite (β-Ca2SiO4), CaSi2O5-titanite,
wollastonite, pseudowollastonite,
perovskite (CaTiO3), titanite (CaTiSiO5),
ZrO2, (additional Ca-silicates?)

Various:
CaSiO3-perovskite (or Ca(Si,Ti)O3),
breyite, larnite, CaSi2O5-titanite

Majoritic garnet ± cpx, olivine, plagioclase Majoritic garnet

Jeffbenite Majoritic garnet? Bridgmanite?

Jeffbenite + NaAl-pyroxene Majoritic garnet

Olivine Olivine, wadsleyite, ringwoodite

Quartz or coesite ± kyanite Stishovite

Nepheline, spinel ± olivine CF phase

Kalsilite, nepheline, spinel ± cpx NAL phase

Opx ± jeffbenite, spinel, ilmenite, olivine, cpx Bridgmanite (may be Al-bearing)

*Omphacitic cpx

Rarer occurrences

CaSiO3-perovskite ± perovskite (CaTiO3) Ca(Si,Ti)O3-perovskite

K-feldspar Liebermannite

Ca-feldspar Stöfflerite

Calcite Aragonite

*Ringwoodite

*Phase Egg

*Sulfides

*Merwinite

*Magnesite

*Ilmenite

*Corundum

*Chromite

*Spinel

*Native Fe–Ni

*Siderite

*Titanite
Note: *Inferred as the original inclusion phase, without inversion/retrogression. Abbreviations: opx = 
orthopyroxene; cpx = clinopyroxene; CF = Calcium-ferrite-structured phase; NAL = New aluminous phase.
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Interpretation of the depth of origin and the likely host rock association can be made on 
the basis of assemblages of coexisting inclusions (Stachel et al. 2005; Harte 2010; Kaminsky 
2012; Harte and Hudson 2013; Shirey et al. 2013; Nestola 2017). Caution is required, as 
some inclusions that are common in sublithospheric diamonds provide ambiguous depth 
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Figure 2. Raman spectra of a variety of phases included in sublithospheric diamonds. The ringwoodite 
shown is a synthetic crystal, R090003 from RRUFF (Lafuente et al. 2015). Nepheline and spinel were 
found coexisting in a multiphase inclusion in a boron-bearing (Type IIb) diamond (sample 110208245246 
in Smith et al. 2018). NaAl-pyroxene was found as part of a composite inclusion with jeffbenite in a 
Type IIb diamond (sample 880000037816 in Smith et al. 2018). The jeffbenite shown is in a diamond 
from Sao Luiz (Juina area), Brazil (Nestola et al. 2016). Phases related to Ca- and Ca,Ti-silicate inclusions 
are pseudowollastonite (composite with breyite in sample 110208423120), perovskite (composite with 
CaSiO3-perovskite) (Nestola et al. 2018), titanite (composition uncertain) with wollastonite (bands labeled 
W) in the same analyzed volume (coexisting with other Ca-silicates in sample 100918637486), CaSi2O5 
(structure uncertain) with larnite in the same analyzed volume (sample 110208104790), and breyite (sam-
ple 880000037816). (*There may be two different CaSi2O5 polymorphs, one with monoclinic (titanite-
structured) and one with triclinic structure.) Note that olivine, kyanite, coesite, diopside, and enstatite 
(orthopyroxene) from Figure 1 are also important phases for sublithospheric diamonds.
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information when found as lone occurrences. Ferropericlase, for example, is found among 
inclusion assemblages representing host rocks with peridotitic composition in the lower mantle 
(deeper than 660 km), but ferropericlase inclusions on their own do not indicate a lower mantle 
origin (Stachel et al. 2005). Regions of low silica activity in the upper mantle can stabilize 
ferropericlase (Brey et al. 2004). Similar care is required for lone inclusions of breyite, which 
cannot be automatically assumed to originate from CaSiO3-perovskite in the transition zone to 
lower mantle (Woodland et al. 2020; Brenker et al. 2021).

Remarks on some specific inclusion types

Graphite. Graphite is a common occurrence in diamond, sometimes as protogenetic, 
euhedral crystals (Nasdala et al. 2005) and possibly as a metastable syngenetic phase (Smit 
et al. 2016), but more often as a result of decompression in fractures surrounding inclusions, 
such as around sulfide inclusions. In addition to the most intense G band (~1580 cm−1), as well 
as the D and 2D bands of graphite, a weak but sharp band at 867 cm−1 that corresponds to 
“forbidden” out-of-plane vibrations (Kawashima and Katagiri 1999) is occasionally observed 
in graphitic material in inclusions.

In Raman spectroscopy, the presence of graphite can be helpful when analyzing 
inclusions that happen to be weak or Raman inactive, because detecting graphite from around 
the inclusion confirms that spectral information is, in fact, being collected from the inclusion. 
In this case, finding no discernible Raman spectrum from the major volume of the inclusion 
itself can be a useful observation.

Distinguishing among garnets. Garnet is widespread in the lithosphere, asthenosphere, 
and mantle transition zone and it is regularly found as an inclusion in diamond. In general, 
most garnet inclusions have similar features (Fig. 3) but their spectra change as a function of 
composition (Kolesov and Geiger 1998) and structural disorder. It is possible to determine 
garnet compositions by considering their spectral features as linear combinations between 
end-members (Bersani et al. 2009). For diamond, Kalugina and Zedgenizov (2020) have 
evaluated suites of eclogitic and peridotitic garnet inclusions and found reasonable agreement 
between compositions measured by EPMA analysis and compositions estimated from Raman 
spectra using the approach of Bersani et al. (2009). Kalugina and Zedgenizov (2020) used the 
rotation (R[SiO4]) and stretching (Si–O) vibrations of SiO4-tetrahedra near 360 and 910 cm−1, 
respectively, to estimate relative molar proportions of pyrope, almandine, and grossular. 
For their samples, R[SiO4] was the most sensitive band position, with eclogitic garnet 
inclusions falling within 355.9–361.2 cm−1 and peridotitic garnet inclusions being within 
361.2–365.2 cm−1 (Kalugina and Zedgenizov 2020). This difference in R[SiO4] band position 
mainly reflects the difference in contribution from almandine and pyrope end-members at 
342 cm−1 and 364 cm−1, respectively (Kolesov and Geiger 1998).

It can also be possible to recognize majoritic garnet (i.e., garnet from the sublithospheric 
mantle, with more than 3 Si per formula unit), from the width of the strongest Raman mode 
near 910 cm–1 (McMillan et al. 1989). Gillet et al. (2002) proposed that widened bands 
(FWHM greater than about 25 cm–1) are due to disorder of Al, Mg, and Si at the octahedral 
sites in majoritic garnet and can be considered diagnostic. If a garnet were to exhibit grain sizes 
smaller than the excitation laser beam diameter, this could also cause broadening. Narrower 
bands, however, do not necessarily rule out a majoritic component.

Sulfides. Sulfide inclusions can often be recognized visually, by their metallic grey or 
yellowish appearance and black graphitic fracture rosettes. The major sulfide phase, pyrrhotite, 
is only weakly Raman active and is usually not observable by Raman in-situ. Bands at about 
376 cm–1 and 341 cm–1 are associated with monoclinic pyrrhotite (Fig. 4), but can vary with 
Fe/S ratio and structure (Hope et al. 2001), whereas hexagonal pyrrhotite may be inactive 
(Mernagh and Trudu 1993). Pentlandite (main band at 370 cm–1) and chalcopyrite in sulfide 
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inclusions can also be difficult to detect. Studies on sulfide inclusions have more often relied 
on exposing the inclusion to characterize it. However, a recent Raman-based identification 
of small amounts of molybdenite in a significant number of sulfide inclusions in diamonds 
from several localities has led to the suggestion that Raman should be used as part of the 
initial characterization of sulfides prior to Re–Os dating studies (Kemppinen et al. 2018). 
Molybdenite and chalcopyrite (Fig. 4) are more Raman active and are detected more easily 
than pyrrhotite and pentlandite.

Calcium silicates. Calcium silicate inclusions, most notably breyite (Brenker et al. 2021; 
CaSiO3-walstromite), have popularly been interpreted as a breakdown product from more 
or less pure CaSiO3-perovskite, which is part of the experimentally-predicted mineralogy of 
the lower part of the transition zone and lower mantle for almost all rock types, including 
peridotitic, eclogitic and most sedimentary bulk compositions (e.g., Irifune and Ringwood 
1987, 1993). A single example of non-inverted CaSiO3-perovskite in diamond shows that 
the entrapment of CaSiO3-perovskite indeed occurs, although, unfortunately, CaTiO3- and 
CaSiO3-perovskite seem to show almost indistinguishable Raman spectra (Nestola et al. 2018). 
In detail, however, most calcium silicate inclusions are more complicated (Brenker et al. 2021) 
and exhibit multiple phases (Brenker et al. 2005). Their interpretation as a breakdown product 
from CaSiO3-perovskite should not be automatic.
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Figure 3. Examples of Raman spectra from garnet inclusions in diamond. Majoritic garnets in diamonds 
from Letseng (sample 110207974892 in Smith et al. 2016b) and Sao Luiz (sample BZ43 in Gillet et al. 2002) 
have broadening of the strongest band and some additional weak and broad underlying features between 800 
and 1000 cm−1. The lithospheric garnet inclusions grossular–almandine–pyrope (sample 110209083424) and 
Cr-pyrope (Siberian diamond sample in Kalugina and Zedgenizov 2020) may potentially be distinguished 
from one another based on the position of the ~360 cm−1 band (Kalugina and Zedgenizov 2020).
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For a long time, it was presumed that a pure CaSiO3 phase would not be stable in any likely 
mantle rock composition at depths shallower than about 520 km. However, on the basis of 
inclusions in diamond, Brenker et al. (2005) have demonstrated that Ca,Si-rich environments 
exist in the sublithospheric mantle and that these regions can enable the formation and 
entrapment of breyite in diamond at depths of less than 300 km.

In some instances, a simple CaSiO3 precursor is precluded by bulk inclusion Ca:Si ratios 
that are markedly different from 1:1 (Brenker et al. 2005). If diamond is formed in the lower 
part of the transition zone or lower mantle, CaSiO3-perovskite might be captured together with 
stishovite (SiO2) if a basaltic or sedimentary precursor is assumed. In this case the Ca:Si ratio 
of the whole inclusion will be lower than 1:1. However, it was experimentally demonstrated 
that breyite could crystallize together with diamond in the upper mantle (at 6–10 GPa) in 
SiO2-rich compositions (Woodland et al. 2020) resulting in the same phase assemblage.

For inclusions with a bulk Ca:Si ratio above 1:1, which usually consist of coexisting 
breyite and larnite (β-Ca2SiO4), the interpretation is less straightforward. In this case, diamond 
crystallization in the lower mantle is unlikely for peridotitic or basaltic bulk compositions. 
In order to account for such an inclusion, the diamond could have formed at conditions 
corresponding to the two-phase stability field of larnite and CaSi2O5-titanite. Here, a high Ca:Si 
ratio could be achieved by capturing a higher amount of larnite relative to CaSi2O5-titanite, 
breyite or CaSiO3-perovskite. The formation depth in this case will be between 300 and 400 km, 
that is, in the upper mantle above the transition zone. Furthermore, Fedoraeva et al. (2019) have 
experimentally shown that with an aragonite-breyite starting assemblage, an assemblage of 
breyite-larnite can be formed at 6 GPa and about 1700 °C due to incongruent melting, which 
again is at upper mantle conditions. Considering these possibilities, it is clear that the finding of 
breyite (with or without other Ca-silicates) inclusions alone as an inclusion in diamond does not 
necessarily indicate a transition zone or lower mantle depth (Brenker et al. 2021).
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Figure 4. Raman spectra of phases found in sulfide inclusions in diamond. Sulfides can be challenging to 
characterize by Raman spectroscopy, but it has been suggested as a useful way to check for the presence of 
molybdenite, which may be important for Re–Os geochronology studies (Kemppinen et al. 2018). Pyrrhotite 
(R060440), chalcopyrite (R050018), and molybdenite (R060124) are from RRUFF (Lafuente et al. 2015).
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Besides breyite, a surprising number of different calcium silicates can sometimes be found 
in inclusions, even co-existing metastably (Table 2). Some uncertainty surrounds the Raman 
identification of CaSi2O5-titanite. Two different CaSi2O5 polymorphs have been observed in 
high pressure experimental products, corresponding to monoclinic (titanite-structure) and 
triclinic structures (Angel 1997; Kubo et al. 1997; Kudoh and Kanzaki 1998; Akaogi et al. 
2004). In some experiments, monoclinic CaSi2O5-titanite produced at high pressure has 
inverted to the triclinic structure upon decompression (Akaogi et al. 2004). It might therefore 
be expected that both CaSi2O5 polymorphs could potentially be found in calcium silicate 
inclusions in diamond (compare CaSi2O5* and titanite* in Fig. 2).

The Raman spectrum corresponding to a synthetic CaSi2O5 sample produced by Gasparik 
et al. (1994) has been reported as CaSi2O5-titanite (CaSi2O5* in Fig. 2) in multi-phase calcium 
silicate inclusions (Nasdala et al. 2003; Anzolini et al. 2016; Smith et al. 2016b). However, 
it is not clear if the crystal structure of this sample, after decompression, has been verified as 
monoclinic CaSi2O5-titanite or if it might potentially be the triclinic polymorph.

In some multi-phase calcium silicate inclusions, a Raman spectrum resembling true 
monoclinic titanite (CaTiSiO5) with a prominent band at ~600 cm–1 (titanite* in Fig. 2) 
has been recorded (Smith et al. 2017). The composition of this phase was not determined, 
but based on the observation that the Raman spectra of CaSiO3-perovskite and CaTiO3-
perovskite might be virtually indistinguishable (Nestola et al. 2018), it is considered possible 
that the spectra of CaSi2O5-titanite and true titanite (CaTiSiO5) are similar. If so, the CaSi2O5 
sample of Gasparik et al. is not actually in the titanite structure but in the triclinic structure.

With the variety of calcium silicates described in diamonds to date, it may be reasonable to 
expect some additional phases to be encountered in future studies. Wollastonite-II, for instance, 
has been found in multiphase carbonatitic microinclusions (Kaminsky et al. 2009), and 
could potentially be part of larger calcium silicate inclusions. However, it may not be readily 
distinguishable from breyite by Raman spectroscopy, because their crystal structures are nearly 
identical (Joswig et al. 2003; Dörsam et al. 2009; Barkley et al. 2011). Some other phases 
that may be important for Ca-rich inclusion investigations are rankinite (Ca3Si2O7), kilchoanite 
(Ca3Si2O7), hartrurite/post-hartrurite (Ca3SiO5), tilleyite/post-tilleyite (Ca5Si2O7(CO3)2), 
trabzonite (Ca4(Si3O9OH)OH), and chegemite (Ca7(SiO4)3(OH)2), as well as hydrous post-
hartrurite, hydrous larnite, and hydrous CaSiO3-perovskite (e.g., Németh et al. 2017).

Ferropericlase–magnesiowüstite. Inclusions of ferropericlase–magnesiowüstite are 
one of the most commonly reported phases in sublithospheric diamonds. This phase is often 
transparent and brown, but can possess a colorful iridescence at the inclusion surface that is a 
good indicator for identification (Fig. 5). Inclusions can exhibit a wide range of Mg/(Mg+Fe) 
ratios, but most are within 0.60–0.82 (Stachel et al. 2005). For simplicity, the term ferropericlase 
is sometimes applied to the whole ferropericlase–magnesiowüstite series in inclusions.

Pure periclase (MgO) is Raman inactive, whereas wüstite (FeO) is weakly active with one 
somewhat broad band near 652 cm−1 (de Faria et al. 1997). The Raman spectra of periclase–
wüstite solid solutions have not been studied. As there is no accepted Raman spectrum for 
ferropericlase, a Raman-based identification is strictly not possible. However, ferropericlase 
inclusions whose identities have been confirmed using other techniques do exhibit some 
consistent Raman features. Figure 5 shows Raman spectra associated with confirmed (Fig. 5a–f) 
and inferred (Fig. 5g) ferropericlase inclusions in diamond, though the exact assignment of 
these features is uncertain. The ferropericlase inclusions in one of these diamonds (Fig. 5d–f) 
have also been identified by both EPMA analysis (Mg/(Mg+Fe) = 0.91) and X-ray diffraction 
(Smith et al. 2018). The possibility of exsolved magnesioferrite within ferropericlase inclusions 
(e.g., Palot et al. 2016) may be important, although the spectra in Figure 5 do not resemble 
magnesioferrite (e.g., D’Ippolito et al. 2015). One possibility is that the features are related 
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to magnetite (shown in Fig. 5). Laser-induced decomposition during Raman analysis could 
potentially cause ferropericlase to break down at the inclusion surface to produce magnetite, 
similar to the destabilization of wüstite noted by de Faria et al. (1997) that was found to 
produce α-Fe and magnetite (Fe3O4) under intense laser excitation. It may also be possible to 
partially destabilize ferropericlase by overheating the diamond during polishing. Alternatively, 
ferropericlase inclusions can potentially contain naturally-occurring micro-exsolutions of metal 
and magnetite (Anzolini et al. 2020). Further study is needed to characterize the Raman spectrum 
of ferropericlase inclusions.

Figure 5. Raman spectra tentatively associated with ferropericlase inclusions. The spectral features 
themselves may not necessarily belong to ferropericlase. (a) Ferropericlase inclusion in a diamond from 
Juina, Brazil. (b) Ferropericlase in a diamond from Sao Luiz (Juina area), Brazil. (c) Ferropericlase in a 
pink-brown diamond (sample CBP-0937) also containing two-phase composite inclusions of breyite and 
CaTiO3-perovskite. This spectrum was collected from an exposed surface after breaking open the inclusion. 
(d, e, f) Three spectra collected from different inclusions in a boron-bearing (Type IIb) diamond (sample 
110208425476 in Smith et al. 2018). (g) Large and iridescent inferred ferropericlase in a facetted pink dia-
mond (sample 110206861072). Magnetite reference spectrum R080025 from RRUFF (Lafuente et al. 2015).
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Metallic melt inclusions. A recently recognized variety of sublithospheric diamonds, 
called CLIPPIR diamonds, contain metallic Fe–Ni–C–S melt as their most abundant inclusion 
(Smith et al. 2016b, 2017). These inclusions were trapped as liquid, so are technically not 
mineral inclusions and are not listed in Table 2. However, they deserve mention in the discussion 
of sublithospheric diamonds. Although not well-represented in the geological literature from 
inclusion studies, many inclusion-free, nitrogen-deficient (Type IIa) diamonds can tentatively 
be assigned to the CLIPPIR category, in which case they may account for approximately 1% of 
the gem marketplace (Smith et al. 2017). The physical characteristics of CLIPPIR diamonds, 
often being colorless, large, and inclusion-poor, place them among the most valuable gem 
diamonds, seldom accessible for research.

The Fe–Ni–C–S metallic melt inclusions solidify to an assemblage of cohenite, pyrrhotite, 
and Fe–Ni alloy (± minor Fe–Cr-oxide, Fe-phosphate) (Smith et al. 2016b, 2017). These phases 
are virtually undetectable by Raman spectroscopy in-situ. However, Raman spectroscopy can 
still be helpful to increase the confidence in identifying them, beyond visual recognition. It is 
often possible to detect methane (as sharp band around 2915–2918 cm−1), and sometimes 
molecular hydrogen, at the inclusion-diamond interface (Smith et al. 2016b, 2017). However, 
methane has also been recorded in other kinds of inclusions in diamond (Smit et al. 2016) and 
is not diagnostic of Fe–Ni–C–S metallic inclusions. Similar metallic melt inclusions, potentially 
of variable composition, have been observed more rarely in sublithospheric Type IIb (boron-
bearing) diamonds (Smith et al. 2018). Various inclusions with native Fe, Ni, Fe–Ni alloys, and 
Fe-carbides have also been described in other kinds of sublithospheric diamonds, although it 
is unclear if these are related to the recurring Fe–Ni–C–S melt found in CLIPPIR diamonds 
(Hayman et al. 2005; Bulanova et al. 2010; Gurney et al. 2010; Kaminsky and Wirth 2011).

Additional high-pressure phases

As mentioned above, high-pressure phases are commonly found as retrograde 
transformation products and only a handful of mineral inclusions with their original mineralogy 
intact have been reported. One such mineral is ringwoodite, the most dominant mineral at the 
lower part of the mantle transition zone (~520–660 km depth) (e.g., Irifune and Ringwood 
1987), which was first synthesized in Fe2SiO4 composition in 1958 (Ringwood 1958) and 
not long after discovered in the Tenham L6-chondrite (Binns et al. 1969). The first terrestrial 
sample, however, has only recently been found, as an inclusion in diamond, and was first 
identified using Raman spectroscopy (Pearson et al. 2014). Thus, while finding pristine high-
pressure phases as inclusions in diamond is rare, it is possible, and Raman spectroscopy is an 
ideal tool to identify them. Unfortunately, not all experimentally derived phases have published 
Raman spectra. An example is the Al-rich phases expected to form in basaltic/eclogitic bulk 
compositions at lower mantle conditions, called NAL (new aluminous) phase (e.g., Akaogi 
et al. 1999; Gasparik et al. 2000) and CF (calcium-ferrite type structure) phase (e.g., Irifune 
and Ringwood 1993; Hirose et al. 2005; Ono et al. 2005), that are listed as possible original 
inclusions in Table 2. However, our spectral database (Smith 2021) includes a number of other 
possible deep mantle phases, from experiments and meteorites studies, that could plausibly 
occur in diamonds and the most important ones are introduced in this section.

Wadsleyite. While ringwoodite has been found in diamond, wadsleyite, the high-pressure 
equivalent of olivine replacing it as the principal rock-forming mineral below the 410 km 
discontinuity (e.g., Irifune and Ringwood 1987) in the upper portion of the mantle transition 
zone, has not yet been found. Because the entrapment conditions of high-pressure inclusions 
observed in terrestrial diamonds extend well within the stability of field of wadsleyite (Navon 
et al. 2017; Tschauner et al. 2018), researchers are actively searching for a pristine specimen.

Dense hydrous magnesium silicates. Experimental studies have shown that a number 
of dense hydrous magnesium silicates (DHMS) are stable at mantle pressures, corresponding 
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to depths greater than ~200 km (e.g., Ohtani et al. 2005; Komabayashi and Omori 2006). 
These phases are denoted by alphabetical names (e.g., A, B, etc.) and are expected to form 
either within deeply subducted cold slabs by metamorphism of serpentinites or within the 
convecting mantle by metasomatism from slab-derived hydrous fluid (Tschauner 2019). The 
DHMS phases proposed to be relevant to sublithospheric diamond formation (Harte 2010) 
are phase A, phase E, superhydrous phase B, and phase D (Litasov and Ohtani 2007 and 
references therein). Serpentinites and DHMS phases formed from them have further been 
suggested as potential carriers of water and boron for the formation of Type IIb diamonds in 
the transition zone and lower mantle (Smith et al. 2018).

Sediment assemblages. Geochemical, geophysical and experimental studies have shown 
evidence suggesting the subduction of continental crust and terrigenous and pelagic sediments 
to the mantle transition zone and possibly even to the lower mantle, despite their relative 
buoyancy compared to the surrounding mantle (e.g., von Huene and Scholl 1991; Irifune 
et al. 1994; Workman et al. 2004; Afonso and Zlotnik 2011). Once this material reaches 
depths greater than 250–300 km, its density increases significantly due to the formation of 
dense silicates, marking a “point of no return” for subducted continental crust. The volume 
of continental material that can be subducted is mainly dependent on the rheology of the 
continental crust, with strong crusts favoring deep subduction.

Based on experimental work on the phase relations in dry and hydrous sediment systems at 
transition zone and lower mantle pressures and temperatures, summarized by Litasov and Ohtani 
(2007), as yet undiscovered high-pressure minerals stable at such depths are liebermannite 
(KAlSi3O8-hollandite) and zagamiite (CAS phase). Liebermannite (Urakawa et al. 1994; Ma 
et al. 2018) is considered to be the most abundant phase in a continental crust bulk composition 
at pressure and temperature conditions corresponding to the mantle transition zone (Irifune et 
al. 1994). While both liebermannite and zagamiite (Gautron et al. 1996; Beck et al. 2004; Ma 
et al. 2018) have been found in shocked meteorites but not as terrestrial samples, one inclusion 
in diamond (Kankan, Guinea) has been reported where liebermannite might have been the 
precursor (Stachel et al. 2000). In hydrous sediment systems, two additional experimentally 
predicted phases are topaz-OH and δ-AlOOH (Wunder et al. 1993, 1999; Suzuki et al. 2000; 
Ohtani et al. 2001; Xue et al. 2006, 2010). Topaz-OH is thought to be stable above the mantle 
transition zone, between 250–350 km, while δ-AlOOH is expected to be a breakdown product 
of phase egg, along with stishovite, at depths below 450 km.

Tuite. Tuite (γ-Ca3(PO4)2) is the main product formed from of apatite, a common accessory 
mineral occurring in a variety of terrestrial rocks, at high pressures and has been shown to be 
stable at upper and lower mantle conditions (Murayama et al. 1986; Zhai et al. 2013). The 
natural occurrence of tuite was first found in the Suizhou L6 chondrite (Xie et al. 2003). The 
apatite-tuite transformation has been shown experimentally in both apatite–MORB (Konzett 
and Frost 2009) and apatite–peridotite (Konzett et al. 2011) systems, but so far no terrestrial 
samples have been discovered.

VOLATILE COMPONENTS

In addition to detecting characteristic vibrations from mineral phases, Raman spectroscopy 
is well-suited for detecting liquids or gases trapped as inclusions in diamond. Mineral 
inclusions in diamond can sometimes have small amounts of fluid coexisting with the main 
solid portion of the inclusion. For example, based on Raman analyses, it has been found that 
some common inclusions in lithospheric diamonds are surrounded by a thin layer (< 1.5 μm) 
of hydrous silicic fluid that contains Si2O(OH)6, Si(OH)4, and molecular H2O (Nimis et al. 
2016). Inclusions in some sublithospheric diamonds also possess an invisible fluid layer, 
made up of CH4, with or without H2 (Smith et al. 2016b, 2018) and possibly other species. 
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The ferropericlase inclusion shown in Figure 5g even has a layer of CH4. Methane has also 
been found associated with graphite in mixed-habit diamonds from Marange (Smit et al. 2016).

Fluid and melt inclusions have been reported along healed cracks in diamond, in which 
case Raman spectroscopy has revealed N2 and CO2 in the fluids (Tomilenko et al. 2001; Smith 
et al. 2014, 2015). Nitrogen has also been recorded in solid form, as nano-inclusions in some 
sublithospheric diamonds, where it is proposed to have exsolved from the substitutional 
nitrogen in the diamond lattice (Rudloff-Grund et al. 2016; Navon et al. 2017). Reviews on 
Raman analysis of fluid inclusions are a useful resource for characterizing volatile species 
(e.g., Burke 2001; Frezzotti et al. 2012; Bodnar and Frezzotti 2020).

RAMAN BAROMETRY

At the moment of entrapment, an inclusion is assumed to be enclosed by the host without 
any anomalous stresses at the interface (i.e., a uniform uninterrupted stress state with no 
squeezing or stretching and a perfect geometrical fit between the inclusion and host). When a 
diamond is carried to Earth’s surface, it can relax freely in response to the change in pressure 
and temperature, but its inclusions are nearly fixed in volume and are unable to expand 
freely. As a result, many inclusions are under considerable remnant pressures, reaching a few 
gigapascals (e.g., Nasdala et al. 2003).

Raman spectra can provide barometric information of the host-inclusion system because 
crystal lattice strains distort bonds, thereby changing vibrational frequencies and the position 
of Raman bands. It is possible to quantify the remnant pressure in an inclusion if a calibration 
is available for pressure-induced band shifts for the included phase, having the same chemical 
composition and structure (e.g., Sobolev et al. 2000; Gillet et al. 2002; Nasdala et al. 2003). By 
combining this remnant pressure with thermoelastic parameters of the mineral inclusion and the 
diamond host, it is possible to constrain the pressure–temperature conditions of diamond formation 
(Izraeli et al. 1999; Angel et al. 2014, 2015; Anzolini et al. 2018). Software such as EoSFit-Pinc 
(Angel et al. 2017) is useful for this purpose. However, non-elastic behavior of the diamond host 
around the inclusion, due to brittle or plastic deformation, can effectively alleviate some inclusion 
pressure, leading to underestimation of the depth of diamond growth (Howell et al. 2012).

Some additional obstacles limit this technique. The simplest inclusion would be a sphere, 
with isotropic properties, trapped in a host with isotropic properties. A somewhat equant, 
round shaped inclusion of a cubic mineral trapped in diamond (also cubic) is a reasonable 
approximation of the ideal scenario (Howell et al. 2010). Care must be taken when examining 
pressures in anisotropic mineral inclusions in diamond because of the possibility for deviatoric 
stresses that will lead to Raman band shifts that do not follow congruently with hydrostatic 
pressure calibrations (Anzolini et al. 2018). There is currently no reliable method among 
existing analytical techniques and hydrostatic calibrations to determine strains in minerals 
subject to deviatoric stresses and interpret them in terms of a single “inclusion pressure.” 
Another issue is that strains and Raman shifts can vary spatially within an inclusion, which is 
exacerbated by anisotropy and the effects of inclusion geometry (Mazzucchelli et al. 2018). 
In these cases, the center of the inclusion, away from edges, provides the best measurement for 
calculating entrapment conditions (Murri et al. 2018).

Host diamond barometry

Distortion of the host diamond around inclusions can be easily observed using crossed 
polarizers. This anomalous birefringence can be used to gage residual pressure and the 
distribution of strains in a diamond (Howell et al. 2010). The distortions also affect both 
the position and width of its main Raman band, normally located at 1332.5 cm−1 (also often 
stated as 1332 cm−1) in relatively strain- and impurity-free diamond (Schiferl et al. 1997). 
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Growth patterns and bulk deformation features of the whole diamond can also be manifested 
in spatial variations of the diamond Raman features. The distribution of strain around an 
inclusion is highly variable, but Raman mapping has been successfully applied to reveal its 
maxima/minima and geometry (Nasdala et al. 2003; Howell et al. 2012). Pressure exerted on 
the diamond in the <111> axis (perpendicular to one of its octahedral planes) causes a band shift 
of + 0.7 cm−1/GPa and along the <001> axis (perpendicular to one of its cube planes) a band 
shift of + 2.2 cm−1/GPa (Grimsditch et al. 1978; Sharma et al. 1985). As the crystallographic 
direction is relevant for the band shift calibration, it is necessary to understand the geometry 
of stresses and Raman analysis in order to quantify pressure adjacent to an inclusion (Nasdala 
et al. 2003). The band shift of the diamond adjacent to an inclusion can nevertheless provide 
some indication of remnant pressure inside the inclusion.

Inclusion barometry

Using Raman spectroscopy, the pressure has been quantified in several kinds of inclusions 
in diamond, such as coesite, olivine, clinopyroxene, garnet, breyite, and solid nitrogen (Liu et 
al. 1990; Izraeli et al. 1999; Sobolev et al. 2000; Gillet et al. 2002; Nasdala et al. 2003; Barron 
et al. 2008; Howell et al. 2012; Smith et al. 2015; Navon et al. 2017; Anzolini et al. 2018).

Coesite. The strongest band of coesite at 520.6 cm−1 in an unstressed crystal shifts by +2.9 
(±0.1) cm−1/GPa under hydrostatic compression (Hemley 1987). Beginning with Sobolev et 
al. (2000), this calibrated pressure-induced band shift has been used for inclusion barometry 
in several studies. It is good practice to check multiple coesite bands to ensure they exhibit 
similar pressure-induced shifts in their position (e.g., Table 3 in Hemley 1987). Otherwise, if 
the band shifts are incoherent, it suggests anisotropic stresses and the shift of the 520.6 cm−1 
band alone cannot be simply translated into an inclusion pressure. Calculation of trapping 
conditions of coesite inclusions based on remnant pressure often yields depths shallower than 
the diamond stability field, possibly due to anisotropic effects or plastic deformation around 
inclusions (Howell et al. 2010).

Breyite. An experimental calibration of pressure-induced Raman shifts up to 7.5 GPa 
under hydrostatic conditions was accompanied by ab initio calculations to assess the influence 
of non-hydrostatic conditions (Anzolini et al. 2018). The latter considerations revealed that 
some bands in the spectrum are more strongly influenced by non-hydrostatic conditions than 
others. The 977 cm–1 band of breyite was proposed to be the least sensitive to deviatoric 
stresses and most appropriate for determining the residual pressure, using its calibrated shift 
of +5.16(±0.09) cm–1 / GPa (Anzolini et al. 2018). It is notable that although many breyite 
inclusions are interpreted to be of sublithospheric origin in the transition zone or lower 
mantle, the remnant pressures in most breyite inclusions are relatively modest. The greatest 
band shifts yet observed in breyite inclusions are only sufficient to constrain the minimum 
inclusion entrapment depth to about 240–280 km (Anzolini et al. 2018; Smith et al. 2018). 
Brittle and plastic deformation of the surrounding diamond host could be responsible for some 
of this discrepancy. Some inclusions also have textural evidence of expansion of inclusion 
material out into decompression cracks (e.g., Smith et al. 2017, 2018), which could violate the 
assumption of a constant inclusion volume.

CONCLUDING REMARKS

Raman spectroscopy is well-suited as a reconnaissance tool for inclusion characterization 
and can be complementary to other in-situ methods such as FTIR, micro-beam XRD, X-ray 
CT, and synchrotron-XRF. Basic identification of mineral inclusions is often straightforward, 
especially by referring to the spectra of those minerals that have been found previously 
in diamond, or even those that are anticipated to occur in the deep mantle based on high-
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pressure experiments (Smith 2021). When used in conjunction with techniques to measure 
inclusion composition, such as EPMA analysis, or in situ with synchrotron-XRF (Laforce et 
al. 2014; De Pauw et al. 2020), Raman spectroscopy provides a simple way to confirm the 
crystal structure of mineral phases. The technique can also reveal hidden phases that might 
otherwise go unnoticed, such as molybdenite in sulfide inclusions (Kemppinen et al. 2018), or 
invisible layers of fluid trapped at the interface between solid inclusions and the host diamond 
(e.g., Nimis et al. 2016; Smith et al. 2018). In addition to identifying trapped phases, Raman 
data can reveal information about stresses in inclusions and permit calculation of minimum 
trapping conditions. The speed, low cost, minimal sample preparation, and capability to 
analyze inclusions in-situ make Raman spectroscopy a valuable method in the analytical 
toolkit for diamond research.
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