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INTRODUCTION

The mineralogical and chemical properties of clays have been the subject of longstanding 
study in the research community—in fact, entire journals are devoted to the topic. In the fi eld of 
hydrology where transport behavior is more routinely considered, clays and clay-rich rock were 
largely relegated to a minor role because of their low hydraulic conductivity. However, this very 
property explains in part the renewed interest in the behavior of clays and clay rocks in several 
important subsurface energy-related applications, including the long-term disposal of nuclear 
wastes in geological repositories and the storage of CO2 in subsurface geological formations. 
In these applications and environments, the low permeability of the clay-rich formations or 
engineered barriers provides at least part of the safety functions for radionuclide contaminants 
confi nement and subsurface CO2 sequestration. From a geochemical and mineralogical point 
of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic 
conductivities by greatly increasing the retardation of radionuclides and other contaminants, 
making clays ideal where isolation from the biosphere is desired. The low permeability of 
clay-rich shales also explains why hydrocarbon resources are not easily exploited from these 
formations, thus requiring in many cases special procedures like hydraulic fracturing in order 
to extract them. Clay properties remain also topic of intensive research in the oilfi eld industry 
in connection with their swelling behavior, which has an adverse impact on drilling operations 
(Anderson et al. 2010; Wilson and Wilson 2014; De Carvalho Balaban et al. 2015).

While the low permeability and high adsorption capacity of clay minerals are widely 
acknowledged, it is clear nonetheless that there is a need for an improved understanding of 
how the chemical and mineralogical properties of clay rocks impacts transport through them. It 
is at the pore-scale that the chemical properties of clay minerals become important since their 
electrostatic properties can play a large role. For all above examples, it is necessary to predict 
gas, water and oil transport properties in clay materials porosity as a function of a range of 
physical and chemical contexts. For example, the prediction of diffusion and retention properties 
of clay-rocks and engineered bentonite barriers are of paramount importance for waste storage 
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applications in order to assess the long-term safety of the storage systems under consideration. In 
these systems, advective fl ux is negligible as compared to diffusive fl ux since the clays and clay-
rich rock have permeability values as low as 10-21–10-19 m2 (Delay et al. 2006, 2014). Examples 
include the clay-rock from the Callovian-Oxfordian layers in Bure (France) (Homand et al. 
2006) and the clay-rock from the Opalinus Clay formation in Mont-Terri (Pearson et al. 2003). 
Safety assessment calculations must be carried out over periods ranging from a few hundreds 
to hundreds of thousand years (Altmann 2008). This is despite the fact that the interpretation 
of laboratory results are typically obtained i) on time periods ranging from days to years and 
ii) on samples with centimeter dimension. This suggests the need for a good knowledge of the 
fundamental properties of clays at the pore-scale is required in order to extend these analyses 
to the longer time and space scales. Clay transport properties are however not simple to model, 
as they deviate in many cases from predictions made with models developed previously for 
“conventional” porous media such as permeable aquifers (e.g., sandstone). For example, water 
fl ow in clay cannot be described consistently with Darcy’s law (Neuzil 1986). In addition, model 
predictions must also take into account spatial heterogeneities, which can be time-dependent due 
to physical and chemical perturbations. In this respect, a signifi cant advantage of modern reactive 
transport models is their ability to handle complex geometries and chemistry, heterogeneities 
and transient conditions (Steefel et al. 2014). Indeed, numerical calculations have become one 
of the principal means by which the gaps between current process knowledge and defensible 
predictions in the environmental sciences can be bridged (Miller et al. 2010). In this regard, the 
present article approaches the topic of pore-scale transport through clays and clay-rich rocks by 
adopting a reactive transport approach (Steefel and Maher 2009). 

This article begins with a discussion of the classic theory of diffusion in porous media, the 
limitations of which for clay media are highlighted with selected diffusion experiment results 
from the literature. The second section introduces specifi cs of clay minerals and clay materials 
that explain some of the inconsistencies found in using the classical diffusion theory. In a third 
section, constitutive equations for diffusion in clay porous media are proposed and the link 
between the predictions made with these equations and the experimental results is achieved 
through simple examples. In a fourth section, reactive transport (RT) model applications to the 
selected examples provide the basis for a discussion on diffusion process understanding and the 
current limitations of the proposed approach. In a fi nal section, a summary is provided, together 
with perspectives on RT models and further code development that is needed.

CLASSICAL FICKIAN DIFFUSION THEORY

Diffusion basics

Diffusion processes are most often treated in terms of Fick’s laws. Fick’s fi rst law states 
that the diffusive fl ux of a species i in solution (Ji) is proportional to its concentration (ci) 
gradient (here in 1-D along x) (Steefel et al. 2014):
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where De,i is the effective diffusion coeffi cient that is specifi c to the chemical species i. The 
diffusion coeffi cient includes a correction for the tortuosity () and the porosity () of the 
porous media:

, , 0, ,e i p i iD D D      (2)

where 0,iD  is the diffusion coeffi cient of species i in water (or self-diffusion coeffi cient), 
and ,p iD  is the pore diffusion coeffi cient ( , 0,p i iD D  ). The tortuosity is defi ned as the square 
of the ratio of the path length the solute would follow in water alone, L, relative to the tortuous 
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path length, it would follow in porous media, Le (Bear 1972):

 2
./L Le  (3)

Note that the terminology of the diffusion coeffi cient terms is very diverse (Shackelford and 
Moore 2013). The terminology presented here is the most commonly used in geosciences. In 
particular the effective diffusion coeffi cient is defi ned here to include the porosity.

Fick’s second law is derived from the mass conservation law that includes the divergence 
of the fl ux:
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where Ctot,i is the concentration of species i in the porous media (i.e., the amount of species i 
in the solution and in the solid normalized to the solution and solid volumes). If the species i 
is in the solution only then:
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If the species i is also adsorbed on or incorporated into the solid phase, then it is possible 
to defi ne a rock capacity factor  that relates the concentration in the porous media to the 
concentration in solution: 
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The quantifi cation of adsorption processes is commonly translated into distribution ratio 
values, Rd (L·kg-1):
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where csurf, i is the concentration on the surface of the element of interest (mol·kg-1). If the 
concentration of species i on the solid is only due to adsorption processes, then Equation (6) 
can be combined with Equation (7), yielding:

,i d iRd   (8)

where d is bulk dry density of the material. In that case, Equation (4) transforms into:
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When interpreting diffusion data, the distribution ratio is commonly assumed to be constant (the 
adsorption is linearly dependent on the concentration) and representative of an instantaneous 
and reversible adsorption process. Under these conditions, the Rd value is designated as the 
distribution coeffi cient, KD. If it is further assumed that the media is homogeneous, Equation 
(9) reduces to:
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Anion, cation and water diffusion in clay materials

Diffusion parameters for cations, anions and water in clay materials have been extensively 
studied in the literature. Various experimental setups have been used to determine porosity, 
diffusion coeffi cients, tortuosity and –KD values. In the following, results obtained by 
Tachi and Yotsuji (2014), who performed through-diffusion experiments in order to study 
the diffusion of HTO, I-, Na+ and Cs+ in montmorillonite samples compacted at a bulk dry 
density of  d  0.8 kg·dm-3, are discussed. In the context of the geometry of their experimental 
setup (Fig. 1), all parameters of Equation (10) can be determined simultaneously by fi tting 
experimental points to the analytical solution:
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and where m fulfi lls:
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C(0,0) is the initial concentration in the inlet reservoir with volume Vin (mol m-3); Vout is the 
volume of the outlet reservoir (mol m-3), A is the cross-sectional area of the sample (m2) and L 
is the thickness of the sample (m).

 Diffusion parameters derived from fi tting of the data presented in Figure 2 with 
Equation (11) are given in Table 1. The rock capacity factor for water (~0.77) is consistent 
with the total porosity value that can be obtained by considering the clay mineral “grain” 
density (g~2.7–2.8 kg dm-3) and the bulk dry density of the material according to:
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This result is in agreement with the case where the entire porosity is assumed (or treated) 
as fully connected for diffusion of water as a tracer (tritiated water, or HTO). The higher 
 value for cations than for water can be related to their adsorption to the solid surfaces 
(KD > 0). The lower  values for anions than for water indicate that anions do not have access 
to all of the porosity. This result is a fi rst direct evidence of the limitation of the classic Fickian 
diffusion theory when applied to clay porous media: it is not possible to model the diffusion 
of water and anions with the same single porosity model. The observation of a lower  value 
for anions than for water led to the development of the important concept of anion accessible 
porosity (sometimes also improperly named ‘geochemical’ porosity) to be compared to the 
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water saturated or total porosity (Pearson 1999). The ratio of the anion accessible porosity to 
the total porosity depends not only on the nature of the clay minerals in the material, but also 
on the chemical conditions, particularly the ionic strength (Glaus et al. 2010; Tournassat and 
Appelo 2011). Thus, changes in chemical conditions can lead to signifi cant modifi cations of 
anion diffusion properties (Fig. 3). 

The effective diffusion coeffi cients normalized to the self-diffusion coeffi cient values 
depend on the nature of the aqueous species, with effective diffusion coeffi cient values in 
the order (De/D0)Cs+ > (De/D0)Na+ > (De/D0)HTO > (De/D0)I- when measured under similar 
experimental conditions (Table 1). Higher effective diffusion coeffi cient values for cations 
than for neutral species and higher values for neutral species than for anions have been 
reported repeatedly in the literature for clay materials (Nakashima 2002; Van Loon et al. 2003, 
2004a,b, 2005; García-Gutiérrez et al. 2004; Appelo and Wersin 2007; Glaus et al. 2007, 2010; 
Descostes et al. 2008; Wersin et al. 2008; Birgersson and Karnland 2009; Melkior et al. 2009; 
Appelo et al. 2010; Gimmi and Kosakowski 2011; Wittebroodt et al. 2012). 

Figure 1. Example of a through diffusion cell setup: (a) inlet reservoir, (b) peristaltic pump, (c) through-
diffusion cell, and (d) outlet reservoir. Arrow heads indicates the circulation of water from the reservoir 
to the fi lter in order to homogenize the inlet and outlet solutions compositions. [Figure from Tachi and 
Yotsuji (2014) Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a 
function of porewater salinity: Integrated sorption and diffusion model. Geochimica et Cosmochimica Acta 
Vol. 132, p 75–93. Reproduced with the permission from Elsevier.]
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 Figure 2. Flow-through experiment results for HTO, I-, Na+, and Cs+ diffusion in a montmorillonite sample 
(symbols). The continuous lines correspond to the fi t of the data with Equation (11) and parameters listed 
in Table 1. [Figure adapted from Tachi and Yotsuji (2014) Diffusion and sorption of Cs+, Na+, I- and HTO 
in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion 
model. Geochimica et Cosmochimica Acta Vol. 132, p 75–93, Figs. 2 and 3. Reproduced with permission 
from Elsevier.]

Figure 3. Diffusion data from Glaus et al. (2010) illustrating the changes in 36Cl- diffusion parameters with 
ionic strength. [Figure reproduced from Glaus MA, Frick S, Rosse R, Van Loon LR (2010) Comparative study 
of tracer diffusion of HTO, 22Na+ and 36Cl- in compacted kaolinite, illite and montmorillonite. Geochimica et 
Cosmochimica Acta, Vol. 74, p 1999–2010, Fig. 2. Reproduced with permission from Elsevier.]
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A second fundamental problem related to the classic Fickian diffusion theory arises 
when the pore diffusion coeffi cient, Dp,i, Equation (2), is estimated for cations based on their 
effective diffusion coeffi cient values and a porosity value. Since  cannot be greater than the 
total porosity, it follows that , , /p i e iD D  . For Cs+ diffusion in an experiment conducted at 
0.01 mol·L-1 NaCl, Dp,Cs+ values were higher than 3.1 × 10-9 m2·s-1, a value that is higher than 
the self-diffusion coeffi cient of Cs+ in pure water (2.07 × 10-9 m2·s-1, Li and Gregory, 1974). 
This result, also reported repeatedly in the literature (Van Loon et al. 2004b; Glaus et al. 2007; 
Wersin et al. 2008; Appelo et al. 2010; Gimmi and Kosakowski 2011), is not physically correct 
and points out the inconsistency of the classic Fickian diffusion theory for modeling diffusion 
processes in clay media. Again, the large changes of Cs+ diffusion parameters as a function 
of chemical conditions (De,Cs+ decreases when the ionic strength increases, Table 1, Figure 
2) highlight the need to couple the chemical reactivity of clay materials to their transport 
properties in order to build reliable and predictive diffusion models.

Diffusion under a salinity gradient

Most of reported diffusion experiments have been performed under spatially constant 
ionic strength conditions. Recently, Glaus et al. (2013) reported experimental results of 
22Na+ diffusion under a gradient of NaCl concentration. The experimental setup was similar 
to the one depicted in Figure 1: the inlet and outlet reservoirs contained a 0.5 mol·L-1 and 
0.1 mol·L-1 NaCl solution respectively. At time t = 0, both solutions were spiked with the same 
concentration of 22Na+ and the concentrations in both reservoir were monitored. From Fick’s 
diffusion equation, it would have been expected that 22Na+ diffuses from both reservoirs at 
an equal rate into the clay material, eventually producing a zero concentration gradient in-
between the reservoirs (dashed lines on Figure 4). However, the experimental observations 
were completely different: 22Na+ accumulated in the high NaCl concentration reservoir as it was 
depleted in the low NaCl concentration reservoir, evidencing non-Fickian diffusion processes.

KD values obtained from static and diffusion experiments

The adsorption properties of a material can be evaluated using batch (static) experiments. 
Batch KD values can be evaluated independently from diffusion experiments and then 
compared with  parameters derived from diffusion results. Unfortunately, this comparison 
often leads to KD values that differ from the diffusion experiment-based values, calling into 
question the usefulness of batch KD measurements to predict transport parameters of adsorbing 

Tabl e 1. Diffusion parameters for HTO, I-, Na+ and Cs+ in a montmorillonite sample compacted at 0.8 kg·dm-3 
(sample thickness L = 10 mm, and diameter d = 20 mm). Parameters were obtained from Tachi and Yotsuji 
(2014) and correspond to the fi tting lines shown in Figure 2 and obtained with Equation (11). D0,i values were 
taken from Li and Gregory (1974).

Tracer i NaCl 
 conc.

Vin Vout  De,i De,i / D0,i

(mol·L-1) (L) (L) (-) 10-11m2·s-1 (-)

HTO 0.1 0.6 0.6 0.775 ± 0.025 6.62 ± 0.11 (3.26 ± 0.005)•10-2

Na+ 0.1 2 2 8.12 ± 0.20 24.4 ± 0.5 (1.83 ± 0.04)•10-1

I- 0.1 2 0.2 0.421 ± 0.017 0.694 ± 0.037 (3.47 ± 0.02)•10-3

0.01 2.5 2.5 1460 ± 50 405 ± 9 (1.96 ± 0.04)•102

Cs+ 0.1 2 0.2 316 ± 4 73.3 ± 4 (3.54 ± 0.02)•10-1

0.5 0.6 0.2 65.5 ± 0.8 23.4 ± 0.3 (1.13 ± 0.01)•10-1
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species. For some reasons these KD discrepancies have often been attributed to the fact that 
the conditions of batch adsorption tests “have long been known to be unrepresentative of 
those existing in compacted clays”, i.e., the surface properties and/or the adsorption site 
accessibility depend on the compaction (Shackelford and Moore 2013). This statement fi nds 
its origin in the batch and diffusion KD discrepancies observed primarily for Cs+ in a range of 
published studies, with batch KD values typically higher than diffusion KD values (Miyahara et 
al. 1991; Tsai et al. 2001; Jakob et al. 2009; Aldaba et al. 2010). Studies of Cs+ that compared 
adsorption in loose and compacted clay material, without relying on diffusion experiments, 
led to apparently contradictory results. Oscarson et al. (1994) found that KD values for Cs+ 
on bentonite decreased with increasing compaction. In contrast, Montavon et al. (2006) did 
not observe any signifi cant differences in KD values for differing degrees of compaction 
under otherwise similar experimental conditions. Van Loon et al. (2009) reached the same 
conclusion when comparing Cs+ adsorption on crushed clay-rock from the Opalinus Clay 
formation (Mont-Terri, Switzerland) dispersed in water with Cs+ adsorption on intact samples. 
Chen et al. (2014) concluded also that there was no effect of compaction on Cs+ adsorption on 
i) the clay mineral fraction of a natural clay-rock (Callovian-Oxfordian clay-rock from Bure, 
France) and ii) on samples of the clay-rock itself. Whether the samples were i) powdered 
clay-rock samples dispersed in water, or ii) re-compacted powdered clay-rock samples, or 
iii) intact clay-rock samples had no impact on the measured KD values. Altogether, all recent 
Cs+  adsorption experiments showed no effect of compaction on the KD values, thus it is 
necessary to fi nd a different reason for the discrepancy between KD values derived from batch 
and diffusion experiments. 

 Figure 4. 22Na+ diffusion under a gradient of salinity. The dashed lines indicate the expected concentration 
profi les as a function of time in inlet and outlet reservoirs. Symbols indicate the measured concentrations. 
[Reprinted with permission from Glaus MA, Birgersson M, Karnland O, Van Loon LR (2013) Seeming 
steady-state uphill diffusion of 22Na+ in compacted montmorillonite. Environmental Science & Technology, 
Vol. 47, p 11522–11527, Fig. 1. Copyright 2013.]
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From classic diffusion theory to process understanding

The limitations of the classic Fickian diffusion theory must fi nd their origin in the 
fundamental properties of the clay minerals. In the next section, these fundamental properties 
are linked qualitatively to some of the observations described above.

CLAY MINERAL SURFACES AND RELATED PROPERTIES

Electrostatic properties, high surface area, and anion exclusion

 Crystallographic origin of clay mineral electrostatic properties. The fundamental 
structural unit of phyllosilicate clay minerals consists of layers made of a sheet of edge-
sharing octahedra fused to one sheet (1:1 or TO layers) or two sheets (2:1 or TOT layers) of 
corner-sharing tetrahedra (Fig. 5). The metals in the octahedral sheet of clay minerals consist 
predominantly either of divalent or trivalent cations. In the fi rst case, all octahedral sites are 
occupied (trioctahedral clay minerals) whereas in the second case, only two-thirds of the 
octahedral sites are occupied (dioctahedral clay minerals). The clay minerals smectite and illite 
may constitute ~30 % of the material making up sedimentary rocks (Garrels and Mackenzie 
1971). Those minerals have 2:1 layer structures and they are frequently dioctahedral. Kaolinite 
is also a very common clay mineral, the structure of which is dioctahedral and made up of 1:1 
layers. For these three minerals, tetrahedral and octahedral cations are primarily Si4+ and Al3+ 
respectively. Their ideal structural formulae can be written Si2Al2O5(OH)4 for kaolinite and 
Si4Al2O10(OH)2 for dioctahedral illite and smectite. In the following, most examples consider 
illite, the principal constituent of most clay-rocks, and montmorillonite, a smectite that is the 
main constituent of bentonite, which is the most studied material in diffusion experiments. 
Illite and montmorillonite layers differ by the nature and amount of the isomorphic 
substitutions taking place in their octahedral and tetrahedral sheets: in montmorillonite, most 

 Figure 5. Structure of a (dioctahedral) TOT layer and scheme of TOT layer and compensating cations in a 
clay mineral particle. [Figure adapted from Tournassat C, Bizi M, Braibant G, Crouzet C (2011) Influence 
of montmorillonite tactoid size on Na-Ca cation exchange reactions. Journal of Colloid and Interface Sci-
ence, Vol. 364, p 443–454, Fig 1. with permission from Elsevier.]
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of the substitutions occur in the octahedral sheet where Al3+ is replaced by Fe3+ or a cation 
of lower charge (Mg2+, Fe2+); in illite, a signifi cant amount of the substitutions occur also 
in the tetrahedral sheet with Al3+ or Fe3+ replacing Si4+. Isomorphic substitutions by cations 
of lower charge results in negative layer charge. Smectites have negative layer charges 
ranging between 0.2 and 0.6 molc·mol-1 (the layer charge of montmorillonite is commonly 
in the range 0.2–0.45  molc·mol-1), while illite has negative layer charges values between 
0.6 and 0.9 molc·mol-1 (Brigatti et al. 2013).

Morphology of illite and montmorillonite particles. Clay mineral particles are made 
of layer stacks and the space between two adjacent layers is named the interlayer space 
(Fig. 5). Illite particles typically consist of 5 to 20 stacked TOT layers (Sayed Hassan et al. 
2006). The interlayer spaces of illite particles are occupied by non-solvated cations (K+ and 
sometimes NH4

+). In contrast, the interlayer spaces of montmorillonite particles are occupied 
by cations and variable amounts of water. The number of layers per montmorillonite particle 
depends on the water chemical potential and on the nature and external concentration of 
the layer charge compensating cation (Banin and Lahav 1968; Shainberg and Otoh 1968; 
Schramm and Kwak 1982a; Saiyouri et al. 2000). The variable amount of interlayer water in 
montmorillonite leads to variations in interlayer distance, i.e., swelling, with discrete basal 
spacing (crystalline swelling) from 11.8–12.6 Å (one-layer hydrate), 14.5–15.6 Å (two-layer 
hydrate), and up to 19–21.6 Å (four-layer hydrate) (Holmboe et al. 2012; Lagaly and Dékány 
2013). In the case of Na+- and Li+-smectites, swelling can result in even larger basal spacing 
values in a continuous manner (osmotic swelling) (Méring 1946; Norrish 1954). 

The TOT layer thickness from the center-to-center of oxygen atoms is approximately 6.5 Å. 
As a rough estimation, the total thickness of the TOT layer can be obtained by summing this 
value to twice the ionic radius of external oxygen atoms: hTOT = 6.5 + 2 × 1.5 = 9.5 Å. 
This dimension can be compared with the lateral dimension of the TOT layers: from 50 to 
100 nm for illite (Poinssot et al. 1999; Sayed Hassan et al. 2006) and from 50 to 1000 nm 
for montmorillonite (Zachara et al. 1993; Tournassat et al. 2003; Yokoyama et al. 2005; Le 
Forestier et al. 2010; Marty et al. 2011). Consequently, illite and montmorillonite particles 
have high aspect ratios (from 2.5 to 1000) and their surface area is dominated by the 
contribution of the basal surfaces corresponding to the plane of TOT layer external oxygen 
atoms. The contribution of the surface area corresponding to the layer terminations (the edge 
surface) to the total surface area is minor (in the case of illite) if not negligible (in the case of 
montmorillonite). 

The specifi c area of basal surfaces (SSAbs) does not depend on the TOT layer lateral 
dimension, and it can be calculated from the structural formula and the crystallographic 
parameters, amounting to approximately 750 m2·g-1 (Tournassat and Appelo 2011). From the 
specifi c surface area and the layer charge, it is possible to calculate a specifi c surface charge. 
For a montmorillonite with a typical layer charge of 0.32 molc·mol-1, the specifi c surface 
charge is -0.11 C·m-2. With illite particles, only part of this surface, corresponding to the outer 
basal surfaces, is in contact with the porosity and interacts with water, while the other part that 
corresponds to the interlayer basal surfaces has no contact with water because of the collapse 
of the interlayer space. The specifi c outer basal surface area (SSAbs_outer) depends on the average 
number of stacked layer (nst) in a single illite particle: SSAbs_outer = SSAbs / nst. The outer basal 
surface area of illite particles can be measured by atomic force microscopy (AFM) and by gas 
adsorption experiments using the derivative isotherm summation (DIS) method, with a typical 
value of 100 m2·g-1 considered as representative of SSAbs_outer (Sayed Hassan et al. 2006). With 
montmorillonite particles, all the basal surfaces are in contact with water because interlayer 
spaces are hydrated. However, the number of stacked TOT layers in montmorillonite particles 
dictates the distribution of water in two distinct types of porosity: the interlayer porosity in 
contact with a specifi c surface area equal to SSAbs_inter = SSAbs ×(1-1/nst) and the inter-particle 
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porosity in contact with a specifi c surface area equal to SSAbs_outer. It is not possible to give 
generic and representative values of SSAbs_inter and SSAbs_outer, since the value nst changes 
as a function of conditions, such as the degree of compaction, salt background nature and 
concentration (Banin and Lahav 1968; Schramm and Kwak 1982a,b; Bergaya 1995; Benna et 
al. 2002; Melkior et al. 2009). 

From particle structure and morphology to anion exclusion. The negative charge of the 
clay layers is responsible for the presence of a negative electrostatic potential fi eld at the clay 
mineral basal surface–water interface. The concentrations of ions in the vicinity of basal planar 
surfaces of clay minerals depend on the distance from the surface considered. In a region 
known as the electrical double layer (EDL), concentrations of cations increase with proximity 
to the surface, while concentrations of anions decrease. This leads to a progressive screening 
of the surface charge by a solution having an opposite charge. At infi nite distance from the 
surface, the solution is neutral and is commonly described as bulk or free solution (or water). 
This spatial distribution of anions and cations gives rise to the anion exclusion process that 
is observed in diffusion experiments. Measurements of anion exclusion and electrophoretic 
mobility in aqueous dispersions of clay mineral particles indicate that the EDL has a thickness 
on the order of several nanometers with a strong dependence on ionic strength (Sposito 1992). 
As the ionic strength increases, the EDL thickness decreases, with the result that the anion 
accessible porosity increases as well. The EDL thickness, where more than 90 % of the surface 
charge is screened, is commensurable with 2–3 Debye lengths, -1:

22F 1000
 ,

R

I

T
 


(16)

where I is the non-dimensional ionic strength (Solomon 2001),  is the water dielectric constant 
(78.3 × 8.85419 × 10-12 F·m-1 at 298 K), F is the Faraday constant (96 485 C·mol-1), R is the gas 
constant (8.3145 J·mol-1·K-1) and T is the temperature (K).

The ionic charge distribution in the EDL is related to the potentials of mean force for the 
various ions and those potentials are for the most part related to the local magnitude of the 
electrostatic potential. Unfortunately, there is no experimental method to measure directly 
the electrostatic potential: the values derived from experiments such as electrophoretic 
measurements (Delgado et al. 1986, 1988; Sondi et al. 1996) are always model-dependent. 
The EDL can be conceptually subdivided into a Stern layer containing inner- and outer-
sphere surface complexes, in agreement with spectroscopic results (Lee et al. 2010, 2012), 
and a diffuse layer (DL) containing ions that interact with the surface through long-range 
electrostatics (Leroy et al. 2006; Gonçalvès et al. 2007), in agreement with direct force 
measurements (Zhao et al. 2008; Siretanu et al. 2014). Molecular dynamics (MD) calculations 
can also provide information on the Stern layer and diffuse layer structure at the clay mineral-
water interface (Marry et al. 2008; Tournassat et al. 2009a; Rotenberg et al. 2010; Bourg and 
Sposito 2011). The ion distribution in the diffuse layer obtained from MD simulation is in 
close agreement with the prediction of the simple modifi ed Gouy-Chapman (MGC) model 
prediction, where this model is applicable. In the MGC model, ion concentrations (DL

ic ) at a 
position y from the starting position of the diffuse layer follow a Boltzmann distribution:
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z y
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  
  

 
(17)

that is related to the charge of the ions (zi) and the electrostatic potential ( DL ) calculated from 
the Poisson equation:
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where 0ic  is the concentration of species i in the bulk water.

An equivalent anion accessible porosity can be estimated from the integration of the 
anion concentration profi le (Fig. 6) from the surface to the bulk water (Sposito 2004). In 
compacted clay material, the pore sizes may be small as compared to the EDL size. In that 
case, it is necessary to take into account the EDLs overlap between two neighboring surfaces. 
If the pores have all the same size, this calculation is straightforward. Clay mineral particles 
are, however, often segregated into aggregates delimiting inter-aggregate spaces whose size 
is usually larger than inter-particle spaces inside the aggregates. In clay-rocks, the presence 
of non-clay minerals (e.g., quartz, carbonates, pyrite) also infl uences the structure of the 
pore network and the pore size distribution. Pores as large as few micrometers are frequently 
observed (Keller et al. 2011, 2013) and these co-exist with pores having a width as narrow as 
the clay mineral interlayer spacing, i.e one nanometer. In practice, this complex distribution 
of pore sizes makes it diffi cult to calculate the anion accessible porosity from bulk sample 
data (e.g., specifi c surface area, total porosity and pore water ionic strength) (Tournassat and 
Appelo 2011).

Adsorption processes in clays

Adsorption processes on basal surfaces. The high specifi c basal surface area and their 
electrostatic properties give rise to adsorption processes in the diffuse layer, but also in the 
Stern layer. The composition of the Stern layer can be calculated according to various models 
such as the double layer model (DDL), the Triple layer—or plane—model (TLM or TPM), 
and the charge distributed model (CD) etc., depending on the required level of details. In the 
following, the double layer model is selected. In the DDL model, all specifi cally adsorbed 
species are located on the same plane that corresponds also to the start of the diffuse layer. The 
quantifi cation of the adsorbed cationic species Mei on basal surfaces sites, >B-, is calculated 

Figure 6. Electrostatic potential and chloride concentration in the diffuse layer calculated according to the 
MGC model, as a function of the distance from a clay mineral surface (x-axis), for two ionic strengths (left: 
I = 0.015; and right: I = 0.15)  and with two different electrolytes (NaCl: blue plain lines; CaCl2: red dashed 
line). The specifi c surface charge is -0.1 C·m-2.
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according to the surface complexation reactions (Dzombak and Hudson 1995; Appelo and 
Wersin 2007; Appelo et al. 2010; Tournassat et al. 2011):

zi >B- + Mei
zi

 (>B)zi Mei (19)

and their related equilibrium constants:
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where a is an activity term. The defi nition of surface species activity has always been 
problematic (Kulik 2009). Here, we consider that the activity of surface species is related to 
their concentrations on the surface and to the surface potential () experienced by the species i. 
We do not consider any non-electrostatic surface activity coeffi cient term, in accordance with 
most of geochemical codes conventions. The surface concentration term is calculated based 
on a coverage mole fraction convention in order to avoid thermodynamic inconsistencies with 
heterovalent reactions (Parkhurst and Appelo 1999; Kulik 2009; Tournassat et al. 2013; Wang 
and Giammar 2013):
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where c is a concentration term (mol·L-1) and 
TOTB  c is the total concentration of adsorption 

sites >B on the basal surface. The surface potential 0  is calculated according to:

0
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(23)

Equation (23) corresponds to the exact analytical solution of the modifi ed Gouy–Chapman 
model for an infi nite and fl at surface in contact with an infi nite reservoir of 1:1 electrolyte. As 
such, it must be remembered that Equation (23) is only an approximation for systems where 
the solution contains multi-valent species, for which the surface potential is lower, all other 
parameters (surface charge, ionic strength) remaining equal (Fig. 6).

Interlayer basal surface–solution interaction. The interlayer space can be seen as an 
extreme case where the diffuse layer vanishes leaving only the Stern layer of the adjacent basal 
surfaces. For this reason, the interlayer space is often considered to be completely free of anions 
(Tournassat and Appelo 2011), although this hypothesis is still controversial (Rotenberg et al. 
2007c; Birgersson and Karnland 2009). The reactions between the species in the interlayer 
space can be accounted for in the framework of the ion exchange theory (Vanselow 1932; 
Gapon 1933; Gaines and Thomas 1953; Sposito 1984). In this theory, negatively charged sites 
(X-) are fully compensated by counter cations (Mei) in the vicinity of the sites according to the 
reaction and species on the exchanger sites can be exchanged with other species in solution:

zj Xzi
-Mei + zi Mej

zj  zj Mei
zi + zi Xzj - Mej, (24)

The sum of the sites X- is referred as the cation exchange capacity (CEC). As for the adsorbed 
surface species, the activity of exchangeable cations is an ill-defi ned thermodynamic parameter. 
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There is no unifying theory to calculate the activity coeffi cients of surface or exchange species. 
In the following, we will rely on the equivalent ratio form of activity in cation exchange theory, 
where activity is related to the site molar ratio that is occupied by the species i (Ei) and a 
surface activity coeffi cient (i,exch), following the Gaines and Thomas convention (Gaines and 
Thomas 1953):

exch
exch exch 0 exch exch 0 ,exch

exch

exch 0
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ln R ln

R ln ,

i i i
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j jj
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z c
RT a T
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T E
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   

 (25)

where exchci is the concentration of species i one the exchanger in mol·L-1 of interlayer water. 
Note that there is no electrostatic potential term in Equation (25); the surface charge is 
considered to be fully compensated by the exchangeable cations leaving no surface potential. 
Usually, the equivalent fraction convention of Gaines and Thomas is preferred over the mole 
fraction convention of Vanselow (1932) in geochemical and reactive transport codes because 
the term exch  j j

j

z c remains constant and is equal to the CEC (cCEC in mol·L-1 of interlayer 

water) whatever the composition of the exchanger. This choice is not dictated by any theoretical 
reasons and it must be seen as being arbitrary, the Gaines and Thomas convention being 
easier to implement numerically. In addition the activity coeffi cient term ,exchi  is often, if not 
always, dropped owing to the diffi culty to quantify it (Chu and Sposito 1981). Consequently, 
the chemical potential of exchanged species becomes:

exch exch 0 .R lni i iT E    (26)

The equivalent fraction of species Mei on the exchanger sites are calculated according to the 
selectivity coeffi cients, exch

i jK  , of binary reactions (Eqn. 24):
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It can be emphasized that Equation (27) is equivalent to the combination of two Equations (22) 
for species i and j with the consideration of an electrostatic potential value of 0. This last 
condition corresponds indeed to the condition of full compensation of the surface charge by 
adsorbed cations. In this respect, the exchange model can be seen as a limiting case of the 
surface complexation model given above. 

Adsorption processes at edge surfaces. Unlike basal surface area, the specifi c edge surface 
area, SSAedge, depends on the lateral dimension of the TOT layers. The edge specifi c surface area 
can also be measured by AFM and DIS methods (Bickmore et al. 2002; Tournassat et al. 2003; 
Le Forestier et al. 2010; Marty et al. 2011; Reinholdt et al. 2013). Average reported values of 
SSAedge value ranges from 5 m2·g-1 to 30 m2·g-1. Although the edge surface area is quantitatively 
less important than the basal surface area, edge surfaces dominate in determining the surface 
complexation properties of clay minerals (Tournassat et al. 2013) and they cannot be ignored 
for the modeling of strongly interacting species such as divalent and trivalent metallic cations, 
lanthanides or actinides that interact with amphoteric sites at the clay mineral layer edges, or Cs+ 
that interacts with size specifi c adsorption sites at frayed-edge sites on illite. 

For metallic cations (e.g., Ni2+), at least two adsorption sites—a high energy and a 
low energy amphoteric adsorption sites—are necessary for modeling adsorption isotherms 
as a function of pH and as function of concentration. Adsorption reactions on layer edge 
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amphoteric sites may be modeled with surface complexation models, for which a generic 
reaction stoichiometry is written as:

>SOH + Mei
zi

  >B Mei
zi-1 + H+, (28)

where >SOH is an amphoteric surface site. A range of surface complexation models are 
available for adsorption processes on clay mineral layer edges (Bradbury and Baeyens 2005; 
Tertre et al. 2009; Gu et al. 2010). The most successful models in terms of range of conditions 
of applicability are the non-electrostatic models despite the abundant evidence of the presence 
of an electrostatic fi eld at clay mineral layer edges (Tournassat et al. 2013). 

For Cs+, frayed edge sites reactivity is commonly modeled with a cation exchange model 
with high values of selectivity coeffi cients for Cs+ and K+ as compared to Na+ (Brouwer et 
al. 1983; Poinssot et al. 1999; Bradbury and Baeyens 2000; Zachara et al. 2002; Steefel et al. 
2003; Gaboreau et al. 2012; Chen et al. 2014). 

Effect of nonlinearity of adsorption processes on experimental diffusion parameters. 
The superposition of various adsorption processes can result in highly non-linear adsorption 
isotherms. In such cases, adsorption needs to be described with multi-site models that include 
multiple cation exchange sites (as described above) and/or another set of more selective 
adsorption sites. However, interpretations of diffusion data for adsorbing species almost 
invariably rely on Equation (10), which assumes that adsorption is linear and rapid relative 
to the time-scale of diffusion. The consideration in Equation (6) of a non-linearity in the 
adsorption process yields the following alternative to Equation (9): 
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(29)

According to Appelo et al. (2010), the term 
ic




 is responsible, in a large part, for the observed 

discrepancy between KD values obtained from batch and diffusion experiments, and for which 
a difference in Cs+ adsorption capacities from dispersed to compact system is often invoked 
(Miyahara et al. 1991; Tsai et al. 2001; Van Loon et al. 2004b; Maes et al. 2008; Wersin 
et al. 2008). It is also possible to interpret diffusion data with numerical reactive transport 
software, in which case there is no special restriction to linear and/or equilibrium treatments 
of adsorption.

Non-linear adsorption is not restricted to the case where a range of adsorption sites are 
present with different affi nities for the tracer of interest. Even in the case of a single adsorption 
site, a non-linear adsorption isotherm can occur if the tracer concentration is high enough that 
the ions occupy a signifi cant fraction of the adsorption sites. The following simple example 
illustrates this problem. Na+ / Ca2+ cation exchange is considered to be the only reaction taking 
place at the clay mineral surface:

2 NaX + Ca2+ CaX2 + 2 Na+  log KNa/Ca = 0.5. (30)

The concentration of Ca2+ on the exchanger is obtained from:
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where CCEC is the cation exchange capacity of the clay mineral in mol·L-1
pore water. Equation (31) 

can be combined with the KD equation and yields:
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Under the experimental conditions considered here, the Na+ concentration is constant and 
thus  Ca2+ /[Na+]2 Na+ is constant. If the concentration of Ca2+ on the exchanger is negligible as 
compared to the concentration of Na+, then   CECNaX C  and Equation (32) transforms into:
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where qCEC is the CEC expressed in mol·kg-1
clay. All the terms in Equation (33) are constant 

and Ca2+ adsorption is linear. As soon as [NaX] deviates from the CCEC value, however, Ca2+ 
adsorption becomes non-linear. 

In the following, the effect of the non-linearity of adsorption is explored by comparing 
the simulation of diffusion breakthrough curves using reactive transport (RT) modeling with 
PHREEQC (Parkhurst and Appelo 1999, 2013) in combination with i) a KD model or ii) 
a cation exchange model. The system modeled is similar to the one depicted in Figure 1. 
The Ca2+ concentration was held constant in the inlet reservoir, either at 10-7 mol·L-1, at 10-3 
mol·L-1, or at 5 × 10-3 mol·L-1, and the outlet concentration was simulated as a function of 
time. The inlet and outlet reservoir had a volume of 1 L and the diameter and length of the 
sample were set at 2 cm and 1 cm, respectively. The dry bulk density was set at 0.8 kg·dm-3, 
and the porosity value was 0.72. The reference Ca2+ pore diffusion coeffi cient was set at 
2 × 10-10 m2·s-1. According to Equation (33), and considering a qCEC value of 1 mol·kg-1

clay and 
a NaCl background concentration of 0.1 mol·L-1, the KD value for Ca2+ at trace concentration 
is KD = 100 L·kg-1. While the KD model and the cation exchange models yielded identical 
results for the case with a Ca2+ concentration of 10-7 mol·L-1 in the inlet reservoir, the diffusion 
breakthrough curves were very different for the case with a Ca2+ concentration of 10-3 mol·L-1 
and 5 × 10-3 mol·L-1 (Fig. 7). At 5 × 10-3 mol·L-1, the two breakthrough curves could only be 

 Figure 7. Effect of the non-linearity of adsorption on the KD parameter derived from diffusion break-
through curves. 
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matched by decreasing the KD value to KD = 81 L·kg-1. Note that the KD value of Ca2+ at a 
concentration of 5 × 10-3 mol·L-1 is 42 L·kg-1 according to Equation (32) and thus a constant-
KD model calibrated on this value would have led to an incorrect position of the breakthrough 
curve. This simple example highlights the need to take into account the non-linearity of 
adsorption for the interpretation of experimental diffusion data. This result echoes the previous 
fi ndings of various authors (Melkior et al. 2005; Jakob et al. 2009; Appelo et al. 2010) who 
showed that Cs+ diffusion breakthrough curves can only be adequately modeled when the 
non-linearity of its adsorption isotherm obtained from batch experiment is correctly taken into 
account. Non-linear adsorption isotherms are not easily introduced in analytical solutions of 
the diffusion equations, whereas RT codes can handle easily various and complex adsorption 
models such as cation exchange and surface complexation reactions (Steefel et al. 2014).

CONSTITUTIVE EQUATIONS FOR DIFFUSION IN BULK,
DIFFUSE LAYER, AND INTERLAYER WATER

From real porosity distributions to reactive transport model representation

The pores in clay material and clay rocks are usually fully saturated as evidenced by 
the agreement between the porosity values derived from water loss measurements, density 
measurement (wet, dry, and grain densities), and water diffusion-accessible porosity 
measurements (Fernández et al. 2014). While these results imply that the pore network is 
fully connected, a full characterization of the connected pore geometry (particularly the pore 
throats) is still beyond the scope of what is possible, at least in the case of clay materials. 
Continuum reactive transport codes do not handle in full this complexity and average 
properties of the porosity must be considered (Steefel et al. 2014). Still it is possible to defi ne 
three porosity domains, or water domains, that can be handled separately: the bulk water, 
the diffuse layer water and the interlayer water, the properties for which can be each defi ned 
independently. One limitation of reactive transport models currently is that it is necessary to 
consider a non-zero volume for the bulk water and that the bulk water volumes are connected 
from one cell to the other. This representation of the system can be at variance with a real 
system in which the macropores (with bulk water) are inter-connected with only small pores 
with only EDL or interlayer water, i.e., a system where there is a discontinuity of the diffusion 
path in macropores. 

Diffusive fl ux in bulk water

Fick’s law as presented in Equation (1) is a strictly phenomenological relationship that is 
more rigorously treated with the Nernst–Planck equation. In the following, we will consider a 
pseudo 2-D Cartesian system in which diffusion takes place along the x axis only (Fig. 8). In 
absence of an external electric potential, the electrochemical potential in the bulk water can be 
expressed as (Ben-Yaakov 1981; Lasaga 1981): 

b b 0 b b 0 b bR ln R ln R .lni i i i i iT a T c T         (34)

The gradient in chemical potential along the x axis is the driving force for diffusion and 
the fl ux of ions i in the bulk water bJi can be written as:
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where b
iu  is the mobility in bulk water (m2·s-1·V) and where b

diff  is the diffusion potential 
that arises because of the diffusion of charged species at different rates. The gradient in 
chemical potential along x is:
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Combining Equation (36) with Equation (35), we obtain the Nernst–Planck equation:
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with b b /i i iD u RT z F , the diffusion coeffi cient of species i in the bulk water (Steefel et al. 
2014). 

In the absence of an external electric fi eld, there is no electrical current and so:

b 0.j j
j

z J  (38)

The combination of Equations (37) and (38) provides an expression for the gradient of the 
diffusion potential along the x-axis in the bulk water:
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Consequently, it is possible to express the Nernst-Planck equation with known parameters 
only, i.e., concentrations and activity coeffi cients (Boudreau et al. 2004).
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Diffusive fl ux in the diffuse layer

Flux equation. According to Equation (17), it is possible to write:
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The profi les of concentrations obtained from the Poisson–Boltzmann equation are 
representative of equilibrium between the solution in the diffuse layer and the solution at an 
infi nite distance from the diffuse layer, i.e., the bulk water:

   
     

   

DL b

DL 0 DL DL
DL

b 0 b b

, ,

R ln , R ln , F ,

R ln R ln .

i i

i i i i

i i i

x y x

T c x y T x y z x y

T c x T x

  

     

    

(42)

The combination of Equations (41) and (42) gives:

   DL 0 DL b 0 bR ln , R ln .i i i iT x y T x       (43)
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And so, by following the MGC model we implicitly assume:

DL 0 b 0,i i   (44)

   DL b, .i ix y x   (45)

The fl ux along x in the diffuse layer can be expressed in the same way as in the bulk water 
(Appelo and Wersin 2007):
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 
(46)

Since the chemical potential in the diffuse layer is the same as in the bulk water, it follows that:

         DL DL DL DL
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, .
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   
  

 
(47)

Again, in absence of an external electric fi eld and thus electrical current in the diffuse layer 
along the axis x, we obtain:

Figure 8. Pseudo-2-D Cartesian system with diffusion along the x-axis and electrostatic potential develop-
ing along the y-axis due to the negative charge at clay mineral surfaces. 
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with 
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 , the diffusion coeffi cient of species i in the diffuse layer water along the 

x-axis. The fl uxes of species i in the diffuse layer along the x-axis become:
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It can be noted that Equations (40) and (49) have the same form (Appelo and Wersin 2007; 
Appelo et al. 2010):
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with the ‘DL enrichment factor’ 
 DL ,F

R

x y
iz

T
iA e




  for the fl ux in the diffuse layer (DL) and 
1iA   for the fl ux in the bulk water (b). 

According to Equation (50), the diffusive fl ux can be split in three contributions for both 
diffuse layer and bulk waters:

 the concentration gradient: 
b

b/DL .i
i i

c
D A

x


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

 the activity coeffi cient gradient: 
b
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x
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

 the diffusion potential:
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
Calcu lation of DL. A numerical resolution of the full Poisson–Boltzmann (PB) equation 

is possible, but it is often too demanding computationally for RT codes applications that aim 
to solve the Nernst–Planck equation together with a full geochemical reaction network. If the 
details of the ion distribution in the diffuse layer as a function of the position along y are not 
needed, a simplifi ed model can be considered where only average ion concentrations in the 

diffuse layer, DL
ic , are calculated:
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where LDL is the length of the DL along the y axis and M  is the ‘mean potential’ in the diffuse 
layer. This model is often referred as a Donnan model (Muurinen et al. 2004; Appelo and 
Wersin 2007; Birgersson and Karnland 2009; Appelo et al. 2010; Tournassat and Appelo 2011) 
although it is based on an approximation of the PB equation and its underlying hypotheses. 
Note that Equation (51) can be solved for each individual ion, but that the resulting value of 
M that is calculated can be different depending on the ions considered. Since only a single 

value of M  is desired, the right side of Equation (51) can only be an approximation of DL
ic .

The average ion concentrations in the EDL are related to the surface charge,  (in C·m-2), 
according to:
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Note that hDL, the considered width of the diffuse layer, can be different from LDL, the actual 
width of the diffuse layer, in order to have a better agreement between the left and right terms 
of Equation (51). Re-substituting Equation (52) into Equation (49) makes it possible to express 
the species fl ux in the diffuse layer along the x-axis independently of the position within the 
diffuse layer along the y-axis, since an average electrostatic potential is used.

Interlayer diffusion

According to Equation (26), the gradient of chemical potential in the interlayer is:
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and the diffusive fl ux in the interlayer can be expressed as:
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The concentration of species i in the interlayer is related to the cation exchange capacity and 

to the equivalent fraction of species i on the exchanger, exch CECi
i

i

E c
c

z
 , and so:
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The diffusion potential term in the interlayer, 
exch

diff

x
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, is obtained by considering the zero 
charge fl ux condition:
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Approximations for Nernst-Planck equation for bulk and EDL water

Ion activity coeffi cient gradients. Ions activity coeffi cients are often calculated according 
to an extended Debye-Huckel model:
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with I the ionic strength:
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It follows:
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(60)

In principle, this expression can be substituted into Equation (50), but in practice the 
consideration of the gradient of ionic strength can be diffi cult as a function of the numerical 
scheme used for solving the transport and chemistry equations because the ionic strength is 
a function of all concentrations terms. Nonetheless, it is possible to do so within the standard 
RT numerical frameworks and there are some cases where it is necessary to do so (Molins et 
al. 2012; Steefel et al. 2014).

In most reactive transport codes, ionic strength and activity gradients are neglected and 
Equation (50) reduces to:
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Alternatively, by considering:
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it is possible to further simplify Equation (50) into:
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Equation (63) is for example the fl ux equation embedded in PHREEQC. It must however 
be remembered that Equation (62) is a simplifi cation which neglects the cross-coupling 

terms since 
bb b

b

ln ln ji i

j j

c

x c x

   


   . The simplifi cation made in Equation (62) leads to 

calculation results strictly equivalent to Equation (50) as long as it is evaluated numerically 
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and as long as the concentration gradient 
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. In this very 

special case Equation (63) is equivalent to Equation (61) and the activity gradient is neglected, 

even though the term 
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 is not equal to zero if there is a gradient of salinity. 

If Equation (62) is solved analytically, one obtains:
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From Equation (64), it is clear that the approximation made in Equation (62) leads to activity 
coeffi cient gradient terms which are underestimated (in absolute value). As an example 
let’s consider tracers whose charges are the same as the salt background ions, but whose 
concentrations are 1000 times lower than the background salt concentration. Their activity 

coeffi cients are the same and thus if follows that 
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. This result implies that for tracers, Equation (62) neglects 

the activity gradient terms and thus is very similar to Equation (63).

Diffuse layer and interlayer effective diffusion coeffi cients. In PHREEQC, the diffusion 
coeffi cients in the diffuse layer are set proportional to the diffusion coeffi cients in the bulk 
water. This simplifying assumption is however not strictly necessary, and diffusion coeffi cients 
in the diffuse layer could be set to values which are not correlated with the diffusion coeffi cients 
values in the bulk water, as done in CrunchFlowMC. The latter case would imply that the 
tortuosity, and thus the effective diffusion coeffi cient, need not be the same in the bulk and EDL 
porosity. One can however justify the PHREEQC simplifi cation by noting that the decrease of 
the diffusion coeffi cient in the diffuse layer is similar for all species according to molecular 
dynamics calculations (Tournassat et al. 2009b; Bourg and Sposito 2011; Holmboe and Bourg 
2014), although such calculations are incapable of taking into account the heterogeneous, 
potentially hierarchical structure of natural porous media.
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RELATIVE CONTRIBUTIONS OF CONCENTRATION, ACTIVITY 
COEFFICIENT AND DIFFUSION POTENTIAL GRADIENTS TO TOTAL FLUX

Model system

An important consideration is that the relative contributions of the three terms of Equation 
(50) to the total diffusive fl ux are not the same in the diffuse layer as in the bulk water. In the 
following sections, we explore the coupling of these different terms using simple examples in 
which the fl ux equations are solved numerically so as to explain experimental observations 
which have been reported repeatedly for diffusion in clay materials.

We consider a one centimeter long system with a constant salt background concentration 
along the x-axis (0.1 mol·L-1 NaCl), but with a linear gradient of 22Na and 36Cl tracer 
concentrations along x from 10-9 mol·L-1 at x = 0 to 0 mol·L-1 at x = 1 cm (Fig. 9). The pore 
diffusion coeffi cients are set to values ten times lower in the porous medium than in pure 
water, i.e., +,Nap

D  = 1.33 × 10-10 m2·s-1 and -,Clp
D  = 2.03 × 10-10 m2·s-1 in both bulk water and 

diffuse layer porosity. For simplicity, the Davies activity coeffi cient model is used (ADH = 0.5, 
0
iBa = 1, bi = -0.3 for all ions). The surface charge value is chosen to be representative of a clay 

plug packed at a bulk density of dry = 1 kg·dm-3 and with a cation exchange capacity (CEC) 
of 0.1 molc·kg-1, that is to say, values representative of an illite-rich clay material. The specifi c 
surface area is set to SSA = 100 m2·g-1, a value in good agreement with the properties of illite 
particles. The chosen thickness of the diffuse layer, hDL, is assumed = 3 × 10-9 m. The total porosity 

is dry
tot

illite

1
1 1 0.64

2.8


     


, the diffuse layer porosity is DL DL dry 0.3h SSA     , and 

the volumetric charge compensated in the diffuse layer is dry

DL

0.33q CEC


    


 mol·L-1. 

Based on these parameters, it is possible to calculate the mean potential in the diffuse layer 
using Equation (52) as M = -0.033 V.

Example 1: Constant ionic strength

In the fi rst example, the ionic strength is taken as constant across the length of the system, 
which is equilibrated with a 0.1 mol·L-1 NaCl solution. The tracers concentrations are assumed 
to show a linear gradient along x from 10-9 mol·L-1 at x = 0 to 10-11 mol·L-1 at x = 1 cm. The 
contribution of the tracers to the ionic strength is negligible and thus, the activity coeffi cient 
gradient is negligible. Under these conditions, the diffusion potential term is also negligible 
in the bulk water and in the diffuse layer water because the term 2 b/DL b

j j j j
j

z D c A  is high as 

compared to 
b b

b/DL b lnj j
j j j j

j

c
z D A c

x x
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 . While the 36Cl- fl ux is higher than the 22Na+ 

fl ux in the bulk water because of the higher of diffusion coeffi cient values of the former, the 
reverse is true in the diffuse layer (Fig. 9). This effect is due to the term A in Equation (50) 
which is related to the accumulation of 22Na+ and the depletion of 36Cl- in the diffuse layer 
water as compared to the bulk water. 

Example 2: Gradient in ionic strength and tracer concentration

In a second example, we add a linear gradient of NaCl concentrations along the x-axis 
from 0.1  mol·L-1 at x = 0 to 0.001 mol·L-1 at x = 1 cm, i.e., the tracers gradient and the 
NaCl gradient are now the same once scaled to their respective maximum concentrations. The 
diffusion fl uxes in the bulk water are dominated by the concentration gradient term (Fig. 10). 
In this case, the diffusion potential term is not negligible. The Na+ diffusive fl ux in the bulk 
water is increased as a result of this term, while the Cl- diffusive fl ux is decreased because of 
the higher diffusivity of Cl- as compared to Na+ coupled to the electroneutrality condition in 
the bulk water. In this example, the activity coeffi cient term is minor as compared to the two 
other terms, but it represents a negative contribution of up to 12% of the total 36Cl- fl ux in the 
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bulk water (up to 8% for 22Na+, Fig. 11). Moreover the contribution of this term is not constant 
along the x-axis and its negative contribution to the total fl uxes decreases over the length of the 
system as the total salt background concentration decreases. Consequently, the initial linear 
gradient of NaCl concentration is not truly representative of steady state conditions. 

In the diffuse layer water, the contributions of the different terms are radically different 
compared to the bulk water. While 22Na+ and 36Cl- diffusive fl uxes remain equal in the diffuse 
layer, the 22Na+ diffusive fl ux is dominated by the concentration gradient (positive) term that 
is counteracted primarily by the diffusion potential (negative) term (recall that, in contrast, 
the diffusion potential term is positive in the bulk water for Na+) and to a lesser extent by 
the activity coeffi cient term. For 36Cl-, the concentration gradient and the diffusion potential 
terms have almost the same positive contribution to the diffusive fl ux. At x = 1 cm, Na+ and 
Cl- diffusive fl uxes in the diffuse layer drop to a very low value because of the low ionic 
strength (I = 0.001), which in turn is responsible for the very low value of the enrichment 
factor A for Cl- and 36Cl- in the EDL. Because of the surface charge compensation condition, 
the enrichment factor A remains high for Na+ in the diffuse layer, but the charge conservation 
conditions and the related diffusion potential term cancel its effect on the total fl ux intensity. 
Similar to the bulk water, the calculated 22Na+ and 36Cl- fl uxes in the diffuse layer are not 
constant as a function of the position along the x-axis and thus the system is not representative 
of steady state conditions because of the activity gradient term in the fl ux Equation (50). If this 
term is dropped as in Equation (61), then the fl uxes increase by up to 4% for the conditions 
considered here (Fig. 11).

Figure 9. Ex ample 1. Calculation of 22Na+ and 36Cl- concentrations and fl uxes in the bulk and in the diffuse 
layer waters according to Equation (50). Ionic strength is constant along the x-axis (I = 0.1). The dashed 
line and the open green circles in the upper left Figure correspond to the gradient of the activity coeffi cient 
calculated according to Equation (60) or Equation (62), respectively.
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Figure 10. E xample 2. Calculation of 22Na+ and 36Cl- concentrations and fl uxes in the bulk and in the 
diffuse layer waters. The salt background NaCl concentration follows a linear gradient from 0.1 to 0.001 
mol·L-1 along the x-axis. The dashed line and the open green circles in the upper left Figure correspond 
to the gradient of activity coeffi cient calculated according to Equation (60) or Equation (62) respectively. 
The blue open circles on the bottom-right Figure corresponds to the J22

Na
+ values in the diffuse layer for 

comparison with the J36
Cl

- values. 

Figure 11. Example 2. Calculation of 36Cl- fl uxes in the bulk and in the diffuse layer waters according to 
Equation (50) (full equation, lines) and Equation (61) (no activity gradient term, open circles). Results for 
22Na+ fl uxes are identical to those for 36Cl-.
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Example 3: Gradient in ionic strength and no tracer gradient

In this last example, we consider a system where the NaCl concentration follows the same 
linear concentration gradient as in Example 2. However, in contrast to Example 2, we consider 
22Na+ and 36Cl- concentrations gradients that are initially zero. This last condition cancels the 
concentration gradient term in the diffusion equation for the tracers in both bulk and diffuse 
layer waters, and the activity coeffi cient gradient and diffusion potential terms are the only 
remaining contributors to the total diffusive fl ux. In those conditions, the diffusive fl ux is 
positive for 22Na+ in the bulk water and negative for 36Cl- while the reverse is true in the diffuse 
layer (Fig. 12). In these conditions, the diffusion potential term dominates over the activity 
coeffi cient gradient term (Fig. 13). 

Links to experimental diffusion results

In Example 1 above, the fl uxes are independent of the position along the x-axis. Therefore, 
this system is representative of a through-diffusion experiment that has reached steady state 
conditions. The presence of a diffuse layer at a negatively charged surface increases the 
diffusivity of cationic species and decreases the diffusivity of anionic species as compared to 
bulk water, at least in the case where the diffusion coeffi cients are the same in the EDL and 
bulk water. Under the same conditions, the diffusive fl ux of a neutral species (such as HTO, a 
water tracer) is not impacted by the presence of a diffuse layer (the enrichment term A is equal 
to 1 and there is no diffusion potential term for neutral species). As such, this very simple 
example captures essential features of diffusion experiments performed on clay samples where 
the observed fl uxes at steady state are in the order JCations > JHTO > JAnions (Glaus et al. 2010; 
Tachi and Yotsuji 2014). 

Figure 12. E xample 3. Calculation of 22Na+ and 36Cl- concentrations and fl uxes in the bulk and in the 
diffuse layer waters. The salt background NaCl concentration follows a linear gradient from 0.1 to 0.001 
mol·L-1 along the x-axis in this case where there is no tracer concentration gradient. 
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Example 2 points out the extent of the approximation made in the calculation of the 
diffusive fl ux if the activity coeffi cient gradient is dropped in the solution of the Nernst–Planck 
equation. The relative error made in the calculation of the diffusive fl ux is less in the EDL 
water than in the bulk water, thereby justifying this simplifi cation if the contribution of the 
EDL to the total fl ux dominates the fl ux in the bulk water. (Fig. 11) 

Example 3 shows that the presence of a salt background concentration gradient can lead 
to up-gradient as well as to down-gradient diffusion of charged tracers in the bulk and in the 
EDL water. If the contribution of the diffuse layer to the total volume of water is not negligible, 
cationic tracers experience up-gradient diffusion, because the diffusive fl ux is two orders of 
magnitudes higher in the EDL than in the bulk water (Fig. 12). For anions, the direction of total 
diffusive fl ux depends on the relative contributions of bulk and EDL waters. Diffusion does 
not follow the activity gradients, since the diffusion potential term governs the direction of the 
diffusive fl ux for the tracers in this case (Fig. 13). Again, this observation helps to justify the 
simplifying assumption of ignoring the activity coeffi cient gradient term in the Nernst–Planck 
equation. Up-gradient diffusion of 22Na has been recently reported in an experimental system 
similar to that described in Example 3 (Glaus et al. 2013). 

FROM DIFFUSIVE FLUX TO DIFFUSIVE TRANSPORT EQUATIONS

The analysis presented above of the different contributions of the terms in the fl ux 
equation highlights the feasibility of explaining qualitatively experimental observations of 
water and ion fl uxes with the Nernst Planck model developed from Equations (34) to (64). 
Quantitative simulations of those fl uxes including transient conditions can be achieved only 
by implementing the fl ux equation in transport equations. 

Diffusive transport equation for porous medium with interlayer and EDL water

The 1D Cartesian diffusion equation in a saturated porous media has the form:

,i iC J

t x

 


 
(65)

where iC  is the concentration of species i in the porosity (in mol·dm-3). If the species i is not 
adsorbed on a surface, and if it does not participate in dissolution-precipitation reactions or 
other processes which would reduce its concentration in solution (for example, radioactive 

Figure 13. E xample 3. Calculation of 36Cl- fl uxes in the bulk and in the EDL porosity according to Equa-
tion (50) (full equation, lines) and Equation (61) (no activity gradient term, open circles). 
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decay), then i iC c  , where  is the total porosity and ic  is the total concentration in the 
porosity:

.i ic J

t x

 


 
(66)

In the presence of a diffuse layer and of an interlayer space, the term ic  can be split into three 
contributions (bulk – b, diffuse layer – DL, and interlayer, or exchangeable, – exch):

b b DL DL exch exch .i i i ic c c c       (67)

The same approach (and nomenclature) can be used for the fl ux term iJ . Thus, the transport 
equation becomes:

b b DL DL exch exch b DL exch

.i i i i i ic c c J J J

t x

      
  

 
(68)

The solution of Equation (68) can pose several problems. Firstly, the porosity terms on the left 
hand side of the equation are not constant if the salinity changes as a function of time, and in 
this case the derivative of the porosity terms as a function of time must be solved (for example, 
an increase of salinity contracts the diffuse layer, and thus the bulk porosity value increases 
proportionally to the decrease of the diffuse layer porosity). Secondly, each of the fl ux terms 
includes porosity and tortuosity contributions within their effective diffusion coeffi cient terms:

b/DL/exch b/DL/exch b/DL/exch b/DL/exch
0, .i i iD D   (69)

If the porous media is not homogeneous (
b/DL/exch

0
x

 



), then it is diffi cult to defi ne 

unambiguously summation rules at the interface for the different terms. In particular, if one 
part of the modeled system contains only bulk water and the other part contains bulk and 
diffuse layer (and a fortiori interlayer water), it is not clear whether or not a fl ux between the 
bulk water and the diffuse layer water should be considered. This problem is exemplifi ed in the 
following section by considering simple illustrative examples.

Summation of bulk and diffuse layer diffusive fl uxes over an interface

Normalized fl ux term. We defi ne here the terms, i.e., fl uxes normalized to a porosity value 
of one:

b DL exch
* b * DL * b *

b DL exch
; ; ; .i i i i

i i i i

J J J J
J J J J   

   
(70)

Simple case. We will fi rst consider an interface between two adjacent numerical domains 
(porous media 1 and 2) whose bulk water porosities are the same, and whose diffuse layer 
porosities are also the same (Fig. 14). In this particular case, we can safely assume that the 
surface available for bulk and DL water diffusion are proportional to the bulk and diffuse 
layer water porosities. Consequently, can be expressed as the weighed sum of b *

iJ  and 
DL *

iJ :

b DL
* b * DL * .i i iJ J J

 
 
 

(71)

*
iJ
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Complex case 1: Same total porosity, different diffuse layer porosity. In this fi rst complex 
case (Fig. 15), the calculation of the diffuse layer and bulk water contributions to the overall 
diffusion fl ux is not straightforward. A simple method can be the use of an arithmetic mean, 
which is also consistent with Equation (71) if b b

1 2    and DL DL
1 2   :

b b
* b * *1 2 1 2

2 2
.

DL DL
DL

i i iJ J J
     

 
 

(72)

Complex case 2: Same total porosity, one zone without diffuse layer porosity. In the 
second complex case exemplifi ed in Figure 16, the calculation of the diffuse layer and bulk 
water contributions to the overall diffusion fl ux is again not straightforward. One can see this 
case as a limiting case of Complex case 1, and so one should write:

b b DL
* b * DL *1 2 1

2 2
.i i iJ J J

   
 

 
(73)

However, if we consider that the bulk water of the porous medium 2 is in contact with the 
diffuse layer water of porous medium 1, the scheme of Figure 16 is equivalent to the scheme 
in Figure 14, but with the consideration that the diffuse layer 2 volume has the same properties 
as bulk 2 water (i.e., the electrostatic potential is zero: this condition can be easily considered 
for the solution of Equation (63)). In that case the fl ux summation becomes:

* b b * DL DL *
1 1 .i i iJ J J    (74)

Consequently, Equation (72) lacks a condition of continuity. This problem can be solved by 
considering the more complex equation:

b DL DL b
* b * DL * b to DL *2 1 1 2 ,i i i iJ J J J

     
  

  
(75)

where b to DL *
iJ  is a fl ux term that is calculated with Equation (63) with the consideration 

of an electrostatic potential of zero on one site of the interface and a non-zero electrostatic 
potential on the other side of the interface. As such, Equation (75) fulfi lls the continuity 
conditions.

Complex case 3. Variable total porosity, differing diffuse layer and bulk porosities. A 
still more complex case where the total porosity is not constant along the x-axis (Complex 
case 3, Fig. 17) cannot be unambiguously treated with Equation (75). In this case, the 
priority that should be given to the connectivity between diffuse layer or bulk water volumes 
(or interlayer porosity) is not clear and the convention that is chosen must then be seen as 
arbitrary.

Summary of cases. The calculation of the fl uxes in the diffuse layer and in the bulk water 
can be obtained theoretically from the consideration of the Nernst–Planck equation coupled 
to the modifi ed Gouy–Chapman model (or its simplifi ed form, the mean potential model). In 
contrast, the summation of the fl ux at complex interfaces between two numerical cells does 
not follow rules that are dictated by any fi rmly grounded theory. The choices of summation 
rules which are given above, therefore, must be considered as intuitive choices. One should 
note that the complex case 2 illustrates conditions similar to a boundary condition between a 
fi lter (without diffuse layer) and a clay plug (with a diffuse layer), so it is far from an academic 
scenario. The Complex case 1 can be seen as representative of a medium with homogeneous 
surface charge properties, but one with a gradient in salinity.
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  Figure 14. Scheme of an interface between two numerical domains. Simple case with no gradient in poros-
ity properties.
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 Figure 15. Scheme of an interface between two numerical domains. Complex case 1.
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Differentiation of the fl ux at interface between two numerical grid cells

The numerical differentiation of the fl ux poses another challenge. For a grid cell n, at 
position xn, the numerical equivalent of Equation (65) is given by:

 +1/2 -1/2

new old 1
,n n

n n

i,x i,x
i,x i,x

C C
J J

t x


  

 
(76)

where superscripts new and old refer to two consecutive time steps, and where xn+1/2 and xn-1/2 
are the positions at the interface between cells n and n + 1, and n and n - 1, respectively. 

1/2, ni xJ


 and 
1/2, ni xJ


 can be calculated according to Equations (57) (for the interlayer 

contribution) and (61) (for the bulk and diffuse layer contributions and neglecting the gradient 
of activity coeffi cient). For the bulk and diffuse layer contributions of 

1/2, ,
ni xJ


 the equations 
are represented numerically by fi nite differences as:

+1/2

1

1 1
n+

2 2

1

1/2

1/2 1/2 1/2

1/2 1/2 1/2

b/DL

b bb

DL

1

b b
b/DL

b/DL b
i b/DL b

z .

n

n+ n

n+

n+ n

n+

n+ n+ n+

n+ n+ n+

i,x

i,x i,x
i,x i,x

n+ n

j,x j,x
j j j,xj

n+1 n
i,x i,x i,x 2

j j,x j,x j,x
j

J

c - c
D A

x - x

c - c
z D A

x - x
D c A

z D c A

 





(77)

While the term 1

b b
, ,

1

n ni x i x

n n

c c

x x







 is a well-defi ned quantity, the terms 
1/2

b
, nj xc


 (the 

co ncentration in the bulk water at the interface between cells n and n+1) and 
1/2, nj xA


 (the 

 Figure 16. Scheme of an interface between two numerical domains. Complex case 2.

Porous medium 1 Porous medium 2

Diffuse layer 1

Bulk 1
Bulk 2

In
te

rfa
ce

Lϕ2

Solid 1 Solid 2

Lϕ1

Dbϕ1



Ionic Transport in Nano-Porous Clays Considering Electrostatic Eff ects 319

diffuse layer enrichment factor water concentration related to the electrostatic potential of 
the diffuse layer at the interface between cells n and n+1) are not known quantities, and their 
value must be approximated. A simple arithmetic averaging is frequently used for the bulk 
concentration that is strictly valid for an equally spaced grid:

1

1/2

b b
, ,b

, .
2

n n

n

i x i x
j x

c c
c 




 (78)

Alternatively, a harmonic mean can be used if the numerical grid is heterogeneous. The 
averaging of the diffuse layer enrichment factor 

1/2, nj xA


 is more problematic if there is a 
gradient of electrostatic potential from one cell to the next, as in the case of a gradient of 
ionic strength. A linear gradient of ionic strength results in a highly non-linear gradient of 
electrostatic potential as exemplifi ed in Figure 18. In that case an arithmetic or harmonic mean 
may be inaccurate for estimating the Ai value at the interface. The same kind of problem may 
occur for a gradient of surface charge between two grid cells.

APPLICATIONS

Code limitations

While a range of reactive transport codes handle the Nernst–Planck equations for diffusive 
fl uxes in the bulk water, very few of them can handle transport processes in the diffuse layer 
(Steefel et al. 2014). Available publications with reactive transport simulations considering 
diffusion in the diffuse layer are limited to PHREEQC and CrunchFlowMC application 
studies (Appelo and Wersin 2007; Appelo et al. 2008, 2010; Alt-Epping et al. 2014). To our 
knowledge, interlayer diffusion processes are handled by PHREEQC only, and the interlayer 
diffusion option has been applied in only two published studies (Appelo et al. 2010; Glaus et al. 
2013). In the following PHREEQC and CrunchFlowMC are used to illustrate the importance 
of considering coupled diffusion/surface reaction effects in order to understand and to predict 
migration processes and associated parameters in charged porous media, especially clays. 

Figure 17. Scheme of an interface between two numerical domains. Complex case 3.
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Simultaneous diffusion calculations of anions, cations, and neutral species

The data from Tachi and Yotsuji (2014), which were presented previously (Fig. 2), were 
modeled with CrunchFlowMC (Steefel et al 2014). The total porosity of the montmorillonite 
plug was set at 0.71, in agreement with the bulk dry density of the material (0.8 kg·dm-3). A 
typical total specifi c surface area of 750 m2·g-1 was assumed for montmorillonite. The total 
surface charge was set at 1 mol·kg-1. Constants of the surface adsorption reactions were set at 
log KNa = 0.7 (in agreement with the MD results from Tournassat et al. 2009) and log KCs = 2.5:

>Surf- + Na+  >SurfNa
+

SurfNa  0
Na

Na Surf  

F
 exp ,

R

c
K

a c T





     
(79)

>Surf- + Cs+  >SurfCs
+

SurfCs 0
Na

Cs Surf  

F
 exp .

R

c
K

a c T





     
 (80)

Half of the total porosity was attributed to the diffuse layer, so that the mean Cl- (or I-) accessible 
porosity was ~0.41, in close agreement with the value given in Table 1. The tortuosity values 
were fi tted for each species and are reported in Table 2. Results are plotted in Figure 19. 
The tortuosity values follow the order I- < HTO < 22Na+ < 137Cs+, indicating that the tortuous 
diffusion pathways are not the same for all of these species. Or alternatively, that the adsorbed 
species in the Stern layer, considered in the calculations as immobile, are in fact mobile. 
Nevertheless, the contribution of the diffuse layer to the diffusion fl ux calculation make it 
possible to derive a physically feasible value (< 1) for 137Cs+ , in contrast with the results 
obtained with a single porosity diffusion model. Note also that the assumed adsorption constant 
for Cs+ is responsible for a KD value of 430 L·kg-1 at a ionic strength of 0.1, i.e., a value in 
agreement with KD values obtained from batch experiments from Tachi and Yotsuji (2014). 

The bulk + diffuse layer water diffusion model presented here makes it possible to 
calculate the diffusive fl ux of neutral species, anions and cations with the same conceptual 
model and with physically feasible parameters. In this respect, the advantage of the RT codes 
is their ability to test these kinds of models under transient conditions and in the context of 
complex geometries in order to derive porosity and tortuosity values as well as adsorption 
parameters. Model benchmarking is thus not restricted to the comparison of data under steady-
state conditions and/or the estimation of apparent diffusion coeffi cients where the adsorption 
and the diffusion parameters are lumped together. The effectiveness of this type of integrated 
approach has previously been put forward in the geochemical literature (Appelo and Wersin 
2007; Appelo et al. 2008, 2010), but still remains the exception rather than the rule for the 
interpretation of diffusion data.

Figure 18. Averaging methods for the bulk concentration (left) and the diffuse layer enrichment factor, Ai 
(right) for a monovalent cationic tracer at the interface between two grid cells whose centers are located at 
xn = 0 and xn+1 = 0.01 m. The variation of Ai is due to a linear gradient of ionic strength from 0.1 (left of the 
system) to 0.001 (right of the system).
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Diffusion under a salinity gradient

The experiments conducted and described by Glaus et al. (2013) were also modeled using 
CrunchFlowMC. The resistance to the diffusion by the fi lters was explicitly taken into account 
by assuming a tortuosity of 0.25 and a porosity of 0.32 for the fi lters. This corresponds to an 
effective diffusion coeffi cient of ~10-10 m2·s-1 for Na+ in the fi lter, a value in agreement with 
published values (Glaus et al. 2008). The total porosity in the montmorillonite plug was set 
to a value of 0.3, in agreement with the 1.9 kg·dm-3 dry bulk density of the material (Glaus et 
al. 2010). At this high degree of compaction, the actual presence of bulk water is not certain. 
However, it is necessary to have a non-zero bulk water volume to run CrunchFlowMC (or 
PHREEQC). This bulk water volume was set to a very low porosity value (0.02), so that the 
overall fl uxes were not impacted by the diffusion in this volume. The same surface adsorption 
model as was used for the modeling of Tachi and Yotsuji’s data (see previous section) was 
used in this case. The tortuosity parameter was set to a value of 0.014 in the montmorillonite, 
in close agreement with the value measured for water, whose effective diffusion coeffi cient 
is about (1.5–1.7)·10-11 m2·s-1 in similar conditions (Glaus et al. 2010, 2013). The modeling 
results are shown on Figure 20 and agree almost perfectly with the experimental data. 

 Figure 19. Modeling with CrunchFlowMC and a bulk + diffuse layer water diffusion model of the diffu-
sion of 22Na+ , Cs+, HTO and I- through a montmorillonite plug equilibrated with a 0.1 mol·L-1 NaClO4 

solution in the experimental conditions from Tachi and Yotsuji (2014). See Figure 2 for the reference data 
and Table 1 for the experimental conditions.

  Table 2. Tortuosity values calculated with CrunchFlow for each 
species in the diffusion experiment from Tachi and Yotsuji (2014), 

and according to a bulk + diffuse layer water diffusion model.

Tracer i 

HTO 0.047

Na+ 0.071

I- 0.09

Cs+ 0.136
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Glaus et al. (2013) have also modeled their data using two types of model. The fi rst 
model they considered was an interlayer diffusion model implemented in PHREEQC. The 
second model was based on that of Birgersson and Karnland (2009) (BK-model), in which 
the entire porosity was represented by a diffuse layer with a homogeneous mean electrostatic 
potential. The authors were able to obtain an equally good fi t of the data with both models. 
In Figure 20, a third alternate and equally good model (from the point of view of how well 
it fi ts the data) is given. It should be noted that the three models are totally different from a 
conceptual point of view: i) the interlayer diffusion model makes the assumption of a complete 
screening of the surface charge by the exchanged cations and the macroscopic driving force 
for cations mobility is the gradient of activity of the exchanged cations; ii) the BK-model 
makes the assumption of no screening of surface charge other than in the diffuse layer, and the 
macroscopic driving force for the diffusion is the gradient of concentration in the diffuse layer; 
and iii) the present model makes the assumption of partial screening of the surface charge by 
cations adsorbed in the Stern layer, where the mobility of cations is assumed to be negligible, 
and the macroscopic driving force of the diffusion is the diffusion potential in the diffuse layer, 
as shown in Figure 12.

Interlayer diffusion

Recently, Tertre et al. (2015) published data from their diffusion experiments carried 
out with centimeter-size mono-crystal of vermiculite. Vermiculite is a swelling clay mineral 
that has a high CEC (~1.8 mol·kg-1) originating primarily from isomorphic substitutions in 
the tetrahedral sheet. The size of the sample and the experimental setup (Fig. 21a) are ideal 
for probing self-diffusion processes in the interlayer porosity, as the setup makes it possible 
to eliminate the tortuosity parameter in the diffusion equation (the interlayer spaces are 
sandwiched between two fl at surfaces). The exchange sites in the vermiculite were saturated 
with Ca2+. The interlayer width in the vermiculite corresponded to a bi-layer hydrate. 
Following contact with a NaCl solution, a release of Ca2+ was observed in solution. This 
experiment showed unambiguously that interlayer diffusion exists, and it made it possible also 
to quantify the diffusion coeffi cient for Ca2+ in the interlayer. By immersing the vermiculite in 
a NaCl solution with a high salinity (0.1 mol·L-1), the authors were able demonstrate that the 
Ca2+ interlayer diffusion coeffi cient was in good agreement with the value that they obtained 
from MD simulations. For experiments performed at lower ionic strength, they observed a 
discrepancy between the two values that they attributed to the diffusion of the solute species at 
the interface between the NaCl reservoir and the vermiculite interlayers. Their conclusion was 
based on the results of Brownian dynamics calculations.

  Figure 20. Modeling of the diffusion of 22Na+ under a salinity gradient for the experimental conditions con-
sidered by Glaus et al. (2013) using CrunchFlowMC. The blue plain curves correspond to the ratio C/C0 of 
22Na+, while the dashed curves are the NaClO4 concentrations in the reservoirs (blue: 0.5 mol·L-1 NaClO4; 
red: 0.1 mol·L-1 NaClO4). Left: Experiment with a 5-mm thick clay plug and reservoir volumes of 250 mL. 
Right: Experiment with a 10-mm thick clay plug and reservoir volumes of 100 mL.
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The data from Tertre et al. (2015) were reinterpreted using the interlayer diffusion 
option of PHREEQC (Fig. 21b). It was possible to reproduce the data with the same level of 
quality as the Brownian dynamics calculations by considering an interlayer Ca2+ diffusion 
coeffi cient value of 0.8 × 10-11 m2·s-1, together with an interlayer Na+ diffusion coeffi cient of 
4 × 10-11 m2·s-1, 1 × 10-11 m2·s-1, 0.1 × 10-11 m2·s-1, and 0.1 × 10-11 m2·s-1, for the experiments 
at NaCl concentration of 1, 0.1, 0.05 and 0.003 mol·L-1 respectively. The decrease of the 
Na+ interlayer diffusion coeffi cient with NaCl concentration is in agreement with MD results 
from Tertre et al. (2015), which show a decrease of its value with an increase of the Ca2+/Na+ 
occupancy ratio in the interlayer (Fig. 21c). At 1 mol·L-1 NaCl, the PHREEQC and MD results 
fully agree. At 0.05 and 0.003 mol·L-1 NaCl, the interlayer diffusion coeffi cient fi tted with 
PHREEQC correspond to the lowest value obtained with MD (within the range of the error 
bands). Consequently, the apparent decrease in Ca2+ interlayer diffusion coeffi cient can also 
be interpreted as a result of the decrease of the Na+ interlayer diffusion coeffi cient that arises 
from the coupling between the diffusion of these two species through the diffusion potential 
term in Equation (57).

SUMMARY AND PERSPECTIVES

Diffusion processes through clay materials is the result of a complex interplay of transport 
and non-linear adsorption processes under the infl uence of electrostatic fi elds. In this context, 

 Figure 21. Experiments from Tertre et al. (2015): a) setup; b) modeling of the Ca2+ out-diffusion results 
using the interlayer diffusion option of PHREEQC (this study); c) self-diffusion coeffi cients of Na+ and 
Ca2+ in the vermiculite interlayer as a function of the equivalent fraction of Ca on the surface (XCa), and 
obtained from molecular dynamics calculations (from Tertre et al. 2015). 



324 Tournassat & Steefel

the classical Fickian diffusion model applied in the framework of a single pore diffusion 
model with linear adsorption processes (KD model) appears to be inappropriate for describing 
diffusion data without making less than satisfying modeling assumptions, such as i) different 
defi nitions of the porosity as a function of the nature of the tracer of interest (see anion 
accessible porosity) and as a function of the conditions (anion accessible porosity change 
with time; ii) change of the adsorption parameters from batch to diffusion experiment; and iii) 
physically unrealistic pore diffusion coeffi cients (or tortuosity values).

It is clear that RT codes have been capable of solving the problem of the transfer of 
KD values from batch experiments to compact porous media systems for some time. Much of the 
diffi culty stems from the non-linearity of the adsorption process for strongly adsorbed species 
on clay mineral surfaces, which can be handled readily by numerical reactive transport codes 
(Steefel et al 2014). Perhaps surprisingly, this has been done only recently for Cs+ diffusion 
data (Appelo et al. 2010), although it was done some time in the past for column percolation 
experiments (Steefel et al. 2003).

Recent developments of selected RT codes that can handle diffusion processes in 
diffuse layer and interlayer porosities made it possible to model the diffusion data of neutral, 
anionic and cationic species within the same conceptual framework. Also, the contribution 
of the diffuse layer and/or the interlayer to the overall diffusion of ions makes it possible to 
explain the origin of the apparent acceleration of cation diffusion as compared to water, which 
otherwise would require unrealistic tortuosity values for cations in classical Fickian diffusion 
models. RT modeling has also helped to improve our understanding of anomalous diffusion 
behavior such as that of up-hill diffusion. 

Despite the successes of these new RT modeling approaches, it must be stressed that the 
model and its parameters derived from diffusion experiments are not always unique. Two 
examples given above highlight the fact that several different conceptual models can provide 
equally good fi ts of the data. As such, the modeling effort is typically under constrained, a fact 
that explains the multitude of conceptual and numerical models available in the literature that 
describe the ionic transport properties of clay media (Leroy et al. 2006; Appelo and Wersin 
2007; Gonçalvès et al. 2007; Birgersson and Karnland 2009; Gimmi and Kosakowski 2011; 
Tachi et al. 2014).

The transport properties of clay nanopores have been the matter of intensive research 
using advanced computational methods such as molecular dynamics, lattice-Boltzmann etc. 
(Bourg and Sposito 2010; Rotenberg et al. 2010; Obliger et al. 2013). The input of these 
techniques is clearly needed to constrain the macroscopic diffusion models (Fig. 21). Upscaling 
strategies have been developed to derive macroscopic diffusion parameters from microscopic 
information (Rotenberg et al. 2007a,b, 2014; Jardat et al. 2009; Bourg and Sposito 2010; 
Churakov and Gimmi 2011; Churakov et al. 2014) and these can be complemented by RT 
modeling that takes into account the complexity of the chemical reactivity of the material in 
fi ner details (e.g., adsorption processes, activity coeffi cients)

However, it is noteworthy that the interpretation of diffusion data is complicated by 
complex microstructures that are dependent on physical and chemical conditions, and that 
these microstructures have not been yet characterized down to the scale of the smallest pores, 
i.e., the interlayer pores. The connectivity of the pore network connectivity across the full 
range of pore sizes has not been successfully determined for any of the investigated systems 
as well. These properties cannot be probed easily. For example, microscopic and tomography 
techniques still fail at imaging the porous network at the correct resolution (Hemes et al. 2013). 
The development of new observation techniques is thus necessary to make a step forward in 
the understanding of transport processes in clay materials. 
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