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INTRODUCTION

Carbon can be a major constituent of crustal and mantle fluids, occurring both as dissolved 
ionic species (e.g., carbonate ions or organic acids) and molecular species (e.g., CO2, CO, 
CH4, and more complex organic compounds). The chemistry of dissolved carbon changes 
dramatically with pressure (P) and temperature (T). In aqueous fluids at low P and T, molecular 
carbon gas species such as CO2 and CH4 saturate at low concentration to form a separate 
phase. With modest increases in P and T, these molecular species become fully miscible with 
H2O, enabling deep crustal and mantle fluids to become highly concentrated in carbon. At 
such high concentrations, carbon species play an integral role as solvent components and, 
with H2O, control the mobility of rock-forming elements in a wide range of geologic settings. 
The migration of carbon-bearing crustal and mantle fluids contributes to Earth’s carbon cycle; 
however, the mechanisms, magnitudes, and time variations of carbon transfer from depth to the 
surface remain least understood parts of the global carbon budget (Berner 1991, 1994; Berner 
and Kothavala 2001).

Here we provide an overview of carbon in crustal and mantle fluids. We first review the 
evidence for the presence and abundance of carbon in these fluids. We then discuss oxidized 
and reduced carbon, both as solutes in H2O-rich fluids and as major components of miscible 
CO2-CH4-H2O fluids. Our goal is to provide some of the background needed to understand the 
role of fluids in the deep carbon cycle.
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Carbon in aqueous fluids of crust and mantle

Numerous lines of evidence indicate that carbon may be an important component of crustal 
and mantle fluids. Fluid inclusions provide direct samples of carbon-bearing fluids from a 
range of environments. Carbon species in fluid inclusions include molecular gas species (CO2, 
CH4), carbonate ions, and complex organic compounds, including petroleum (Roedder 1984). 
Carbon-bearing fluid inclusions occur in all crustal metamorphic settings, but they have also 
been reported in samples derived from mantle depths, including nearly pure CO2 inclusions 
in olivine in mantle xenoliths (Roedder 1965; Deines 2002), inclusions in ultrahigh-pressure 
metamorphic minerals exhumed from mantle depths (Fu et al. 2003b; Frezzotti et al. 2011), and 
carbon-bearing fluid inclusions in diamonds from depths corresponding to more than 5 GPa 
(Navon et al. 1988; Schrauder and Navon 1993).

The formation of carbon-bearing minerals in fluid-flow features such as veins and 
segregations are prima facie indications of carbon transport by deep fluids. Environments 
in which carbonate veins have been observed range from shallow crustal settings to rocks 
exhumed from subduction zones (Gao et al. 2007) and, rarely, mantle xenoliths (Demeny et 
al. 2010). Graphite is also widely observed as a vein mineral, most famously perhaps in the 
Borrowdale graphite deposit of the Lake District in the United Kingdom (e.g., Barrenechea et 
al. 2009). The occurrence of C-bearing minerals in metamorphic veins is consistent with the 
observation that the C content of metamorphic rocks decreases with increasing metamorphic 
grade. For example, pelagic clay lithologies (“pelites”) progressively decarbonate during 
metamorphism: whereas the global average oceanic sediment has 3.01 wt% CO2, low-grade 
metapelites have an average of 2.31 wt% CO2, and high-grade metapelites average 0.22 wt% 
CO2 (Shaw 1956; Plank and Langmuir 1998). The decarbonation correlates with dehydration, 
clearly demonstrating that prograde metamorphic reactions liberate a fluid phase containing 
both H2O and carbon as components. Similarly, the development of calc-silicate skarns in 
carbonate lithologies (Einaudi et al. 1981), in which fluid flow induces replacement of carbonate 
minerals (chiefly calcite) by silicates and oxides, requires liberation of carbon to water-rich 
fluids. Finally, spring waters discharging from active metamorphic terranes commonly contain 
carbon derived from depth (Irwin 1970; Chiodini et al. 1995; Chiodini et al. 1999; Becker et 
al. 2008; Wheat et al. 2008).

Sources of carbon in aqueous fluids of the crust and mantle

The carbon that is incorporated into deep fluids is derived from two sources. It may be 
liberated from the host rocks during fluid-rock reaction (“internal sources”), or it may be 
introduced by mixing with other fluids (“external sources”).

Internal carbon sources. Oxidized carbon is incorporated into rocks by primary 
accumulation and crystallization processes, and by secondary weathering, alteration, or 
cementation processes. The dominant primary internal source of oxidized carbon is sedimentary. 
Pure limestone generated by accumulation of biomineralized calcite (shells, etc.) contains 44 
wt% CO2, whereas dolomite contains 48 wt% CO2. Varying amounts of siliciclastic detritus 
found in “impure” carbonates lowers the CO2 concentration. The carbonate compensation 
depth limits the accumulation of carbon in pelagic sediments. But even deep-ocean sedimentary 
packages contain at least some CO2: the global average composition of oceanic sediment 
entering subduction zones is 3.01 ± 1.44 wt% CO2 (Plank and Langmuir 1998). In addition, 
calcite is one of the most common cements found in sandstone. Carbonate minerals are rare 
products of magmatic crystallization of silicate magmas, though they occur as primary phases 
in C-rich magmas such as carbonatites and kimberlites (Jones et al. 2013). Carbonate minerals 
have been observed as inclusions in silicate minerals in mantle xenoliths (e.g., McGetchin and 
Besancon 1973).
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Near Earth’s surface, secondary processes can enrich igneous, metamorphic, and 
sedimentary lithologies in CO2 by weathering and alteration. On continents, rock weathering 
extracts CO2 from the atmosphere to produce secondary carbonate minerals (Urey 1952; Berner 
et al. 1983). In submarine settings, seafloor alteration processes lead to significant CO2 uptake 
by secondary carbonation of basaltic crust. For example, fresh mid-ocean ridge basalt (MORB) 
is estimated to contain ~0.15 wt% CO2, but during alteration and seafloor weathering the CO2 
content of the upper 600 m of the oceanic crust may increase to ~3 wt%, and the average CO2 
gain by the entire crustal section is elevated to ~0.4 wt% (Staudigel 2003). Abundant carbonate 
veins in oceanic serpentinites are observed in core, dredge hauls, and ophiolites, indicating that 
altered oceanic mantle rocks likewise contain significant carbon (e.g., Thompson et al. 1968; 
Thompson 1972; Bonatti et al. 1974, 1980; Trommsdorff et al. 1980; Morgan and Milliken 
1996; Schrenk et al. 2013). 

The most common source of reduced carbon is buried organic material found in sedimentary 
lithologies. Carbon in sedimentary basins is present in a variety of species and phases that span 
a substantial range of redox states. Familiar organic compounds found in sedimentary basins 
include the fossil fuels such as coal, petroleum, and natural gas, which typically have their 
origins in the transformation of detrital organic remains of life (Sephton and Hazen 2013). 
The biomolecules that accumulate with mineral grains in sediments and sedimentary rocks 
are those compounds that are most resistant to microbial modification. The most refractory 
compounds are membrane molecules of microbes and lignin molecules from plants, which 
can be transformed into petroleum or coal, respectively, if the subsurface geologic conditions 
are conducive. Through a complex series of reactions, these compounds may transform to 
graphite during crustal metamorphism. This graphite can be an important source for carbon in 
metamorphic fluids.

Condensed zero-valent and reduced carbon occurs in mantle rocks in a variety of forms 
(Mathez et al. 1984). It is found as a free phase as graphite or diamond, or as carbide minerals 
such as moissanite, cementite or other Fe-C compounds (Dasgupta and Hirschmann 2010; 
Shiryaev et al. 2011; Hazen et al. 2013). Small amounts of carbon may dissolve in mantle 
minerals (Tingle and Green 1987; Tingle et al. 1988; Keppler et al. 2003; Shcheka et al. 2006; 
Ni and Keppler 2013) or coat grain surfaces (Mathez 1987; Pineau and Mathez 1990; Mathez 
and Mogk 1998).

External carbon sources. The carbon in a system experiencing fluid-mineral interaction 
need not be solely internally derived from the local rock host. Fluids carrying carbon from 
external sources may mix with an otherwise carbon-free fluid. At least at depths above the 
brittle-ductile transition, meteoric waters drawn downward by hydrothermal or metamorphic 
circulation may carry atmosphere-derived carbon. Magmas also represent a potentially 
important carbon source. Carbon in volcanic gases typically occurs as CO2; reduced species 
such as CO and CH4 are very low in abundance (Symonds et al. 1994; Burton et al. 2013). 
Pre-eruptive CO2 contents of the main types of mafic magmas are 2000-7000 ppm in ocean 
island basalts and ~1500 ppm in normal MORB (Marty and Tolstikhin 1998; Gerlach et al. 
2002; Oppenheimer 2003; Dasgupta 2013; Ni and Keppler 2013). Andesite exhibits a wide 
range of pre-eruptive CO2, from below detection to 2500 ppm (Wallace 2005), and CO2 is 
typically below detection in silicic magmas such as dacites and rhyolites (Oppenheimer 2003). 
Carbonatite and carbonated silicate magmas, though rare, carry substantial carbon and may 
act as a carbon source where they trigger production of more common magmas (Dasgupta and 
Hirschmann 2006; Jones et al. 2013).

Although inferred pre-eruptive carbon contents of the more common magma types are 
generally low, molecular carbon species are strongly partitioned into the vapor phase when 
magmas reach saturation. This fractionation means that substantial carbon may be lost prior to 
entrapment of melt inclusions or liberation of volcanic gas, both of which form the basis for 
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estimates of the above volatile abundances. In many cases, concentration estimates are therefore 
simply lower bounds. This factor may be particularly important in convergent margins and 
orogenic belts. For example, Blundy et al. (2010) proposed early saturation of CO2 and more 
CO2-rich arc magmas than previously assumed. The occurrence of magmatic calcite inclusions 
in granitoids is a test of this idea. Audétat et al. (2004) describe magmatic calcite inclusions 
in quartz and apatite in a quartz monzodioritic dike at Santa Rita, New Mexico. Calcite on 
the liquidus in granitic systems requires crystallization at depths of at least 10 km (Swanson 
1979; Audétat et al. 2004), at conditions of high CO2 partial pressure. The Santa Rita example 
suggests that, at least locally, very high carbon contents may in fact occur in felsic systems. 
Rare carbonate-bearing scapolite that is rich in meionite component [Ca4Al6Si6O24(CO3)] has 
been reported from a range of volcanic and plutonic rock types (Goff et al. 1982; Mittwede 
1994; Smith et al. 2008).

Carbon contents may also be particularly high in alkaline and peralkaline magmatic 
systems due to elevated carbonate solubility (Koster van Groos and Wyllie 1968). Alkali 
carbonate/bicarbonate-rich fluids have been reported from numerous granitic pegmatites 
(Anderson et al. 2001; Sirbescu and Nabelek 2003a,b; Thomas et al. 2006, 2011). Evidence is 
chiefly the presence of fluid and melt inclusions containing carbonate daughter minerals such as 
nahcolite (Na2CO3), zabuyelite (Li2CO3), and even potassium carbonate (K2CO3). In a detailed 
study, Thomas et al. (2011) report evidence for pegmatite emplacement from a three-phase 
fluid system of hydrous carbonate melt, a hydrous carbonate-saturated silicate melt, and CO2-
rich vapor. Total carbonate species concentrations in the vapor phase may exceed 30-40 wt%. 
These observations demonstrate that magmatic systems represent an important, though highly 
variable, source of carbon in the geologic environment through which they pass.

Finally, mantle degassing may provide an important source of carbon (Burton et al. 
2013; Dasgupta 2013). Evidence for mantle fluids in deep environments is typically obscured 
by more voluminous fluids sourced from crustal rocks. However, fluid inclusions in mantle 
xenoliths record evidence for reduced carbon species, including CH4, CO, and, potentially, 
COS (Melton et al. 1972; Melton and Giardini 1974; Murck et al. 1978; Bergman and Dubessy 
1984; Tomilenko et al. 1998). In addition, carbonate-metasomatized shear zones of the deep 
crust display mantle-like C, Sr, and He isotope ratios, leading to the inference that components 
of the fluids that deposited the carbonates were initially of mantle origin (Baratov et al. 1984; 
Lapin et al. 1987; Stern and Gwinn 1990; Dahlgren et al. 1993; Dunai and Touret 1993; Oliver 
et al. 1993; Wickham et al. 1994).

OXIDIZED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T

A vast body of experimental and theoretical work has shown that in pure H2O at ambient 
conditions and along the liquid-vapor saturation curve, species of oxidized carbon dissolved in 
pure H2O include carbonate ion (CO3

2−), bicarbonate ion (HCO3
−), and dissolved CO2 (CO2,aq; 

Fig. 1). A fourth possible species, “true” carbonic acid (H2CO3; Fig. 1), has been isolated as 
a pure gas and solid (e.g., Terlouw et al. 1987), but decomposes rapidly in H2O, such that the 
reaction

	 H2CO3 = CO2,aq + H2O	 (1)

proceeds far to the right; for example, at room T and P, H2CO3 concentration is about ~0.1% 
of CO2,aq (Loerting et al. 2000; Ludwig and Kornath 2000; Tossell 2006; England et al. 2011). 
Detection of these low concentrations of H2CO3 in aqueous solutions has now been convincingly 
achieved (Falcke and Eberle 1990; Soli and Byrne 2002; Adamczyk et al. 2009). Nevertheless, 
because of its very low concentration, geochemists conventionally treat the carbon present in 
both hydrated neutral species as CO2,aq.
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The predominant oxidized carbon species 
interact via two stepwise dissociation reactions. 
The first involves generation of bicarbonate 
from CO2,aq and a solvent H2O molecule: 

               CO2,aq + H2O = HCO3
− + H+	 (2)

The second stepwise dissociation reaction is

                     HCO3
− = CO3

2− + H+	 (3)

Figure 2a shows that at ambient conditions, 
neutral pH of H2O lies between pK2 and pK3, 
where pKi is the negative logarithm of the 
equilibrium constant K of reaction i. Thus, 
bicarbonate will often be the predominant 
species when pH is fixed independently of the 
carbon system.

Natural crustal and mantle solutions are 
complex, and contain substantial dissolved 
metal cations. These may interact with car-
bonate ions to form ion pairs such as NaCO3

−, 
CaCO3°, or CaHCO3

+. But dissolved oxidized 
carbon chemistry will vary strongly with geo-
logic environment even in dilute aqueous solu-
tions, because the pK values and the equilib-
rium constant for H2O dissociation are strong 
functions of P and T. Thus, as illustrated in 
Figure 2b, the predominant species can be ex-
pected to change in deep crustal and mantle 
settings.

Aqueous fluids at high P and T

Experimental constraints on homoge-
neous systems. Whereas there is a voluminous 
literature on aqueous carbonate ion speciation 
at ambient conditions and along the liquid-

vapor saturation curve of H2O, there have been few direct studies of homogenous aqueous 
carbonate systems at high P and T. This lack is chiefly due to the experimental challenges posed 
by working at these conditions. Read (1975) appears to have been the first experimentalist to 
examine aqueous carbonate equilibria at pressures greater than a few hundred atmospheres. 
Extending earlier work by Ellis (1959a) and Ryzhenko (1963), he used electrical conductiv-
ity measurements to 250 °C and 0.2 GPa (= 2 kbar) to determine the equilibrium constant for 
reaction (2):

3

2 2,

(4)HCO H

CO aq H O

a a
K

a a

− +

=

The results revealed that K rises with increasing P at constant T, but drops with increasing T at 
constant P. Thus, reaction (2) is driven to the right on isothermal compression, but to the left 
on isobaric heating. 

Kruse and Franck (1982) compressed KHCO3 solutions at up to 300 °C and 50 MPa, 
and used Raman spectroscopy to show that CO3

2− is favored relative to HCO3
−. Frantz (1998) 

CO3
-2 HCO3

- 

cis-trans H2CO3
 cis-cis H2CO3

 

CO2
 

Manning et al Figure 1 
Figure 1. Gas-phase structures of the main 
oxidized-carbon species found in deep aque-
ous fluids. Carbon atoms are black, oxygen 
atoms gray, and hydrogen atoms white. The 
carbonate ion (CO3

2−) has trigonal planar 
structure. The C-O bond distance is 0.131 nm 
and the bond angle is 120°. One of the three 
C-O bonds is a double bond. In bicarbonate 
(HCO3

−), the hydration of an oxygen atom 
lengthens the corresponding C-O bond and all 
bond angles rotate slightly to accommodate. 
The cis-cis carbonic acid (H2CO3) structure 
is more stable than the cis-trans variant (e.g., 
Mori et al. 2011); the unhydrated oxygen 
shares a double bond with carbon. Carbon di-
oxide (CO2) is a linear molecule with double 
C-O bonds that are 0.16 nm in length.
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used a similar approach on 1 molal K2CO3 
and KHCO3 solutions. He studied solutions 
along two isobars of 0.1 and 0.2 GPa, to 550 
°C. When adjusted for Raman scattering 
cross-section ratios, the results support iso-
baric decreases in HCO3

− relative to CO2,aq 
and CO3

2− (Fig.  3). Martinez et al. (2004) 
studied 0.5 and 2 m K2CO3 solutions in a 
diamond cell. Raman spectra in runs to 400 
°C and 0.03 GPa indicated the presence of 
CO3

2−, but not HCO3
−. They inferred that 

HCO3
− stability decreases significantly at 

high pressure. Thus, it appears that bicar-
bonate ion becomes less stable relative to 
CO2,aq and carbonate ion as P and T rise to 
crustal and mantle conditions.

None of the spectroscopic studies 
yielded evidence for metal-carbonate ion 
pairing, although the solutions were rela-
tively dilute. In addition, no evidence has 
been found for carbonic acid, consistent with results at ambient conditions (e.g., Davis and Oli-
ver 1972); however, Falcke and Eberle (1990) found evidence of H2CO3 at high ionic strengths. 
The significantly higher ionic strengths of high P-T solutions (Manning 2004) means that this 
species may yet be significant at these conditions. Finally, there is not yet any evidence of other 
species in high P-T aqueous solutions. For example, it has been suggested that dicarbonate ion 
(C2O5

2−) may be produced by reaction of carbonate ion with H2O:

	 2CO3
2− + H2O = C2O5

2− + 2OH−	 (5)

CO3
-2

CO2aq

HCO3
-

M
ol

e 
fra

ct
io

n

Temperature (°C)

1.0

0.8

0.6

0.4

0.2

0.0
0 100 400 500 600300200

0.2 GPa

Manning et al Figure 3

Figure 3. Mole fraction of total dissolved carbonate, 
bicarbonate, and CO2,aq in 1 molal KHCO3 solutions 
at 0.2 GPa (Frantz 1998). The relative concentration 
of bicarbonate decreases isobarically with rising tem-
perature.

Figure 2. Variation in the abundances of the main oxidized carbon species with pH at 25 °C, 1 bar (A), 
and 500 °C, 0.2 GPa (B). Calculations assume unit activity coefficients of all species; data are from Shock 
et al (1989, 1997b). Total carbon concentration (CT) in (A) is 8 × 10−4 molal, the global average riverine 
bicarbonate concentration (Garrels and Mackenzie 1971). In (B), CT is set to 10−2 molal. Vertical dashed 
line shows neutral pH at each set of conditions. Comparison of (A) and (B) highlight that the pH range over 
which HCO3

− is stable decreases as P and T rise.
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(Zeller et al. 2005). Although dicarbonate ions may form when CO2 dissolves into carbonate 
melts via 

	 CO2 + CO3
2− = C2O5

2−	 (6)

(Claes et al. 1996), there is as yet no evidence for this species in relevant geological fluids at 
crustal or mantle conditions.

Experimental studies of carbonate mineral solubility in H2O. The most voluminous 
source of information on oxidized carbon species in aqueous solutions comes from studies 
of the solubility of carbonate minerals in H2O and mixed solvents. In general, experimental 
work has focused on the solubility of divalent metal carbonates, chiefly calcite, because carbon-
ate minerals involving monovalent or trivalent cations are highly soluble or require extremely 
acidic pH, respectively (Rimstidt 1997). 
The solubility of carbonate minerals in 
H2O is strongly dependent on pH, regard-
less of P and T (Fig.  4). However, when 
carbonate minerals dissolve in initially 
pure H2O, the solute products shift pH to 
a value that is more alkaline than neutral 
pH at the conditions of interest. Hence, all 
carbonate minerals contribute alkalinity to 
crustal and mantle fluids. We focus first on 
calcite in H2O, then other minerals in H2O, 
then carbonate minerals in more complex 
solutions. 

Numerous studies investigated calcite 
solubility in H2O (CO2-free or equilibrated 
with the atmosphere) at low P and T along 
the H2O liquid-vapor saturation curve and 
up to ~0.1 GPa (Wells 1915; Frear 1929; 
Schloemer 1952; Morey 1962; Segnit 
1962; Plummer 1982). The results showed 
that calcite dissolution in pure H2O is con-
gruent, and that solubility decreases with 
increasing temperature isobarically and 
along the H2O boiling curve—the well-
known “reverse solubility” effect for cal-
cite.

There are only 3 studies of calcite 
solubility in H2O at higher P and T appro-
priate for metamorphism and mantle fluids 
(Fig. 5). Walther and Long (1986) reported 
initial results at 0.1-0.3 GPa, 300-600 °C. 
They observed that solubility decreased 
with increasing temperature at 0.1-0.2 GPa; 
however at 0.3 GPa solubility was constant 
or increased slightly with temperature. 
Fein and Walther (1989) later showed that 
the solubilities of Walther and Long (1986) 
were too low because they used less accu-
rate post-experiment analytical procedures. 
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Figure 4. Calcite solubility in pure H2O at 25 °C, 1 
bar (A) and 600 °C, 2.0 GPa (B), as a function of 
pH. Calcite solubility (bold lines) is the sum of the 
concentrations of each constituent carbonate species 
(light lines). The general form of the solubility curves 
and the solubility at high pH are very similar. How-
ever the increase in the equilibrium constant for H2O 
dissociation with P and T leads to an increase in cal-
cite solubility in near-neutral fluids.
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However, the revised results yield similar solubility trends at 0.2 GPa (Fig. 5). Caciagli and 
Manning (2003) extended these studies to deep crustal and mantle pressures (Fig. 5). Their 
data confirm that at high pressure calcite exhibits an isobaric rise in solubility with temperature. 

Calcite transforms to aragonite at high pressure (Boettcher 1968; Johannes 1971); no 
studies have yet investigated aragonite solubility directly, though Caciagli and Manning (2003) 
extrapolated their results into the aragonite stability field. Lennie (2005) found that, at ambient 
T, ikaite (CaCO3·6H2O) was stable with respect to calcite + H2O; however, solubility data were 
not obtained.

Although solubilities of a wide range of metal carbonate minerals in H2O have been 
investigated at low pressures and temperatures (below 0.1 GPa), high-pressure studies are 
rare. Sanchez-Valle et al. (2003) combined hydrothermal diamond anvil cell (HDAC) methods 
with synchrotron X-ray fluorescence spectroscopy to determine SrCO3 solubility in H2O to 3.6 
GPa and 525 °C. Strontianite was used because a high atomic number was required to obtain 
sufficiently favorable detection limits. Heating/compression runs in the HDAC revealed that 
strontianite solubility increases with pressure and temperature. Maximum solubility at 3.3-3.6 
GPa and 475-525 °C was ~0.2 mol/kg H2O. Siderite (FeCO3) dissolution in H2O has been 
studied to 400 °C and 1.13 GPa in the HDAC (Marocchi et al. 2011), but the acquired Raman 
spectra were not used to determine quantitative solubility values.

The paucity of data on the dissolution of simple carbonate minerals in pure H2O at the 
high pressures presents serious challenges for testing thermodynamic models of carbonate 
ions and mineral solubility (see below). However, the hydrothermal piston-cylinder methods 
(e.g., Caciagli and Manning 2003) in parallel with hydrothermal diamond anvil cell methods 
(Sanchez-Valle et al. 2003) hold promise for generating such data in the near future.

Experimental studies of calcite solubility in NaCl-H2O. Studies at P < 0.1 GPa show 
that calcite solubility in H2O increases with addition of NaCl (Ellis 1963; Malinin 1972). Fein 
and Walther (1989) extended these studies to higher pressure of 0.2 GPa and temperature up 
to 600 °C. They showed that with addition of up to 0.1 m NaCl, calcite solubility increased 
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Figure 5. Summary of high-pressure determinations of calcite solubility in H2O. Solubilities in molality.



Carbon in Aqueous Fluids at Crustal & Upper Mantle Conditions 117

consistent with formation of CaCl+ in solution (Fig.  6). Newton and Manning (2002a) 
conducted experiments on calcite solubility in H2O-NaCl at 600-900 °C, 1.0 GPa, and to highly 
concentrated NaCl solutions approaching halite saturation. They showed that calcite solubility 
increased with NaCl at all investigated conditions (Fig.  7). The pressure, temperature, and 
composition dependence of calcite molality (

3CaCOm ) are described by 

( ) ( )
3

4 2 6 2
CaCO NaCl0.051 1.65 10 exp 3.071 4.749 10 0.76 0.024 (7)m T X T P− − = − + × + − + × + 

with P in kbar (1 kbar = 0.1 GPa) and T in kelvins. The solubility increase with temperature 
and salinity is so great that critical mixing of NaCl-rich hydrous carbonate liquid and CaCO3-
rich saline solution was proposed at 1.0 GPa at about 1000 °C and NaCl mole fraction (XNaCl) 
of ~0.4.

The enhancement of solubility increases dramatically with temperature at constant XNaCl. 
Experiments at 0.6, 1.0, and 1.4 GPa revealed a slight increase with pressure (~20%) at fixed 
XNaCl. Moreover, Newton and Manning’s solubility data display a simple dependence on the 
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Figure 6. Dependence of calcite solubility 
on NaCl concentration at 500 °C, 0.2 GPa 
(after Fein and Walther 1989). Calcite solubil-
ity, expressed as total dissolved Ca, increases 
with increasing NaCl. The corresponding rise 
in total chloride results in Ca-Cl ion pairing; 
however, no evidence of Na-carbonate pairing 
was observed. Solubility in pure H2O plots at 
−∞, to right of break in scale.
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Figure 7. Experimentally determined 
CaCO3 molality at 1.0 GPa, as a func-
tion of NaCl mole fraction (after New-
ton and Manning 2002a). Vertical size 
of rectangles reflects the range between 
maximum and minum solbility from a 
The 600, 700, and 800 °C curves are 
extrapolated to halite saturation (filled 
circles) in the system NaCl-H2O (Ara-
novich and Newton 1996), ignoring dis-
solved CaCO3.
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square of the NaCl mole fraction. This result has important implications for the nature of carbon 
and other solutes. An increase in solubility over the entire investigated range shows that the 
solute species are not hydrous; if they were, their concentrations would be required to decline 
with rising NaCl in concert with decreasing H2O activity. These concentrated solutions behave 
in a manner similar to molten salts (Newton and Manning 2002a, 2005; Tropper and Manning 
2007), in which the activity of NaCl is proportional to the square of its mole fraction (Aranovich 
and Newton 1996), and solute mixing is nearly ideal. This result led to the inference that the 
dissolution reaction, written in terms of predominant species, was

	 CaCO3 + NaCl = CaCl+ + NaCO3
−	 (8)

                                                                  calcite

Further discussion of the chemistry of saline brines can be found in Newton and Manning 
(2010).

Experimental studies of cal-
cite solubility in CO2-H2O. Miller 
(1952), Ellis (1959b), Sharp and 
Kennedy (1965), and Malinin and 
Kanukov (1972) showed that, at 
low fixed P and T, calcite solubil-
ity in H2O increases to a maximum 
and then declines with increasing 
XCO2. Fein and Walther (1987) ex-
tended these studies to 0.2 GPa, 
550 °C, and found similar behav-
ior. At 0.2 GPa, calcite solubil-
ity reaches a maximum at XCO2 = 
0.025 to 0.05 and then decreases 
(Fig.  8). Fein and Walther sug-
gested that this solubility behavior 
arises from the tradeoff between 
increasing formation of bicarbon-
ate and decreasing H2O activity as 
XCO2 increased.

Thermodynamics of oxidized 
carbon in dilute aqueous systems. 
Two fundamentally different ap-
proaches to treat oxidized dis-
solved carbon species have evolved in the literature, depending on the application. The first 
approach, which could be termed a component approach, is commonly used for the treatment 
of metamorphic fluids and fluids in the mantle (Anderson and Crerar 1993; Zhang and Duan 
2009). It treats CO2 as a component for which the partial molal Gibbs free energy (

2CO ; ,P TG ) is 
expressed by

2 2 2 2 2

0
CO ; , CO ; 1.0, CO ; , CO ; , CO ; ,ln (9)P T P T P T P T P TG G RT X P== + χ

where the first term on the right-hand side represents the standard partial molal Gibbs energy of 
CO2 ( 2

0
CO ; 1.0,P TG = ). The standard state is the hypothetical ideal gas at the temperature of interest 

and 1 atmosphere. The second term on the right-hand side represents the connection from the 
standard state to the real fluid. In this term, 

2CO ; ,P Tχ  represents the fugacity coefficient, 
2CO ; ,P TX  

the mole fraction and 
2CO ; ,P TP  the partial pressure of CO2, all at the pressure and temperature 

of interest.
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Figure 8. Calcite solubility in CO2-H2O fluid as a function 
of CO2 mole fraction at 0.2 GPa (Fein and Walther 1987). 
Addition of CO2 to pure H2O initially causes solubility to 
increase, but solubility maximizes and then declines with 
more CO2. Fein and Walther (1987) attribute this behavior 
to a decrease in H2O activity.
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This approach ignores the detailed speciation of the dissolved carbon dioxide. There is no 
concept of pH in the model. Advantages of this approach are that the first term on the right-hand 
side of Equation (9) can be easily calculated from experimental data and statistical mechanics, 
and that it permits consideration of the full compositional range along the CO2-H2O binary (see 
below). Most of the labor involved in this approach is associated with evaluating the second 
term on the right-hand side. Specifically, very intensive experimental and theoretical efforts 
are needed to derive the fugacity coefficients for pure fluids and mixtures of fluids (Jacobs and 
Kerrick 1981b; Kerrick and Jacobs 1981; Holland and Powell 1991; Zhang et al. 2007; Zhang 
and Duan 2009). Without any experimental data it is difficult to implement this approach.

The second approach could be called the speciation approach, commonly used in the 
aqueous geochemistry of hydrothermal fluids. Here, all known dissolved carbon species are 
treated explicitly and the dependence on pH and concentrations of other components can be 
evaluated. For example, for the dissolved carbonate ion, we treat the partial molal Gibbs free 
energy of formation of the ion ( 2

3

0
,CO ; ,f P T

G −∆ ) by defining

2 2 2 2
3 3 3 3

0
,CO ; , ,CO ; , CO ; , CO ; ,

ln (10)
r rf P T f P T P T P T

G G RT m− − − −∆ = ∆ + g

where 2
3

0
,CO ; ,r rf P T

G −∆  represents the standard partial molal free energy of formation at reference 
pressure and temperature, and 2

3CO ; ,P T−g  and 2
3CO ; ,P T

m −  represent the activity coefficient and 
molality, respectively, of the aqueous carbonate ion. Here the standard state is the hypothetical 
1.0 M solution referenced to infinite dilution at the temperature and pressure of interest. The 
advantage of this approach is that ions are treated explicitly, enabling pH variations to be 
analyzed as a result of interactions with silicate mineral assemblages that control activity ratios 
such as 2

2
Ca H

/a a+ +. Disadvantages of this approach are that only species whose existence is 
known can be included in the model, and its applicability is limited to H2O-rich solutions and 
conditions where H2O solvent properties are well known. 

The most difficult and uncertain aspect of evaluating Equation (10) is the calculation of 
the first term on the right-hand side: the standard Gibbs free energy of formation of the ion. 
Considerable effort has been expended in developing methods to calculate this term for many 
types of aqueous species including metal complexes and biomolecules (Shock and Helgeson 
1988, 1990; Shock et al. 1989, 1997a, 1997b; Shock 1995; Amend and Helgeson 1997; 
Sverjensky et al. 1997; Plyasunov and Shock 2001; Richard 2001; Dick et al. 2006). In contrast, 
the second term on the right-hand side can be approximated—at least for water-rich fluids—
by a variety of models, which can be used to evaluate the aqueous ion activity coefficients. 
Experimental and theoretical studies relevant to these two approaches are summarized below.

As an example of the species approach we focus on the aqueous CO3
2− ion. The standard 

Gibbs free energy of formation of the ion at elevated pressure and temperature can be calculated 
from

2 2 2
3 3 3

2

0 0
,CO ; , ,CO ; , CO

H O

1
( , ) 1 (11)

r rf P T f P T
G G f P T− − −

 
∆ = ∆ + + ω −  e 

where 2
3

0
,CO ; ,r rf P T

G −∆  again represents the free energy at the reference pressure and temperature 
(Shock et al. 1997b). The function f(P,T) is a complex function of equation-of-state coefficients 
of the carbonate ion associated with the non-solvation part of the Gibbs free energy change, 
and 2

3CO −ω  represents the equation-of-state coefficient for the carbonate ion associated with the 
solvation part of the Gibbs free energy change, which also depends on the dielectric constant of 
pure water (eH2O). Equation-of-state coefficients have been developed for hundreds of aqueous 
species and are part of the data file for the programs SUPCRT92 (Johnson et al. 1992) and 
CHNOSZ (Dick et al. 2008).
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Equation (11) emphasizes that the dielectric constant at pressure and temperature is a critical 
parameter for evaluating the standard Gibbs energies of aqueous species at high pressures and 
temperatures. However, extensive sets of experimental values of eH2O have only been measured 
to about 0.5 GPa and 550 °C (Heger et al. 1980). A synthesis of these values together with 
estimates from the Kirkwood equation (Pitzer 1983) is incorporated in SUPCRT92 which 
enables prediction to 0.5 GPa and 1000 °C (Shock et al. 1992). A more recent synthesis, also 
based on the Kirkwood equation has been extrapolated to 1.0 GPa and 1,200 K (Fernandez et al. 
1997). The limitation of SUPCRT92 calculations to 0.5 GPa has long been a severe roadblock 
to the application of quantitative aqueous geochemistry to deep crustal and mantle conditions. 
Methods for making calculations at higher pressures up to 3.0 GPa are summarized below.

Much progress has been made in recent years by extrapolating experimental solubilities and 
individual equilibrium constants to pressures substantially greater than the 0.5 GPa limitation 
of SUPCRT92 (Manning 1994, 1998, 2004; Caciagli 2003; Dolejs and Manning 2010). 
Empirical extrapolations can be carried out by taking advantage of the approximate linearity 
of many equilibrium constants when plotted in terms of the logK versus the log rH2O at a given 
temperature, where rH2O is the density of water. An example for the solubility product of calcite 
is shown in Figure 9. Extrapolation of equilibrium constants as in Figure 9, together with other 
aqueous phase equilibria involving dissolved oxidized carbon species enables prediction of 
solubility and aqueous speciation involving aqueous ions at elevated pressure and temperature 
without using Equations (10) and (11). 

Evaluation of the aqueous ion activity coefficients in Equation (10) at pressures and 
temperatures to 0.5 GPa and 550 °C is carried out using the extended Debye-Hückel equation 
for NaCl-bearing fluids (Helgeson et al. 1981). For example, the activity coefficient of the 
carbonate ion is calculated according to

2
3
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2 0.5
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NaCl
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Figure 9. Predicted equilibri-
um constants for the solubil-
ity product of calcite. Values 
at 2-5 kbar (1 kbar = 0.1 GPa) 
calculated from SUPCRT92 
(Johnson et al. 1992); values 
at higher pressure linearly 
extrapolated. The solubility 
product is lower than calcite 
solubility in H2O due to spe-
ciation of carbon in the aque-
ous phase.
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where Z refers to the charge on the carbonate ion (−2), Ag and Bg refer to Debye-Hückel 
coefficients that are properties of pure water (Helgeson and Kirkham 1974a,b); 0

NaCla  refers to 
the ion-size parameter for NaCl solutions, I refers to the ionic strength, and bg,NaCl represents the 
extended term parameter for NaCl solutions. Using smoothed values of the dielectric constant 
from Helgeson and Kirkham (1974a), Franck et al. (1990), and Fernandez et al. (1997), it is 
possible to obtain estimates of Ag and Bg (Fig.  10). Values of the extended term parameter  
bg,NaCl are subject to substantial uncertainty at elevated pressures and temperatures, but can be 

B)	
  

A)	
  

Manning	
  et	
  al	
  Figure	
  10	
  

Figure 10. Predicted values of the Debye-Hückel parameters Aγ and Bγ, based on estimates of the dielectric 
constant of water from Helgeson et al. (1974a, 1981), Franck et al. (1990) and Fernandez et al. (1997)  
(1 kbar = 0.1 GPa).
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estimated from correlation with the density of water to give the preliminary estimates shown 
in Figure 11.

Taken together, equilibrium constants such as those shown in Figure 10 and Debye-Hückel 
parameters such as those shown in Figures 10 and 11 can be used to estimate the solubilities of 
carbonate minerals in water. As an example, the solubility of calcite is shown in Figure 12 at 500 
°C as a function of pressure. The predicted solubility of calcite can be compared with a variety 
of published experimental studies (Walther 1986; Fein 1989; Caciagli 2003). It can be seen 
that the predicted curve agrees well with the data from Fein and Walther (1989), but is higher 
than the data from Walther and Long (1986), and is in agreement with the lowest solubilities 
reported by Caciagli and Manning (2003). The steep increase in solubility between 0.1 and 0.5 
GPa noted by Caciagli and Manning (2003) tapers off to a much slower rate of increase with 
pressure approaching 3.0 Gpa at 500 °C. In this range of pressures, the predominant reaction 
controlling the solubility of calcite is given by

	 CaCO3 + H2O = Ca+2 + 2OH− + CO2,aq	 (13)
                                                             calcite

The calculated pH values vary from 7.8 at 0.1 GPa to 5.4 at 3.0 GPa, yet less than 5% of the 
dissolved carbon is present as HCO3

− and CO3
2− in the fluids.

It should be emphasized that the theoretical curve shown in Figure 12 is completely 
predicted based on the established standard Gibbs free energy of formation of calcite (Berman 
1988), the estimated equilibrium constants for 

	 H2O = H+ + OH−	 (14)

and reactions (2), (3), and (13), extrapolated to elevated pressures as described above with the 
density model and the estimated aqueous ion activity coefficients discussed above. As noted 
above, the extrapolations for the logK values were based on SUPCRT92 predictions to 0.5 GPa 
using published equations of state for aqueous CO2, HCO3

−, and CO3
2− (Shock et al. 1989, 

1997). However, the density extrapolation for the water dissociation reaction (Eqn. 13) was 
based on an independent summary of experimental values (Marshall and Franck 1981).

 
 
 
 
 
 

Manning et al Figure 11 

Figure 11. Predicted values of the ex-
tended term parameter (bγ,NaCl) based 
on preliminary extrapolations of the 
values given in Helgeson et al. (1981) 
using empirical correlations with the 
density of water (1 kbar = 0.1 GPa).
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CO2-H2O mixing and miscibility

Above a temperature of about 350 °C and pressures higher than the H2O liquid-vapor 
saturation curve, H2O and CO2 are fully miscible (Fig. 13). Full miscibility therefore occurs 
at most conditions relevant for studies of the deep carbon cycle—much of the crust and all 
of the mantle—and fluids may be much richer in oxidized carbon than in the more “dilute” 
systems discussed above. However, complexities arise in fluids with additional components. 
While there is a substantial literature devoted to the thermodynamic behavior of the binary CO2-
H2O system, much remains to be done to improve our understanding of more compositionally 
relevant fluids expected in deep environments. 

Experimental and theoretical constraints on the CO2-H2O binary. The mixing of CO2 
and H2O is highly nonideal (Eqn. 9), so considerable effort has been dedicated to generating 
experimental and theoretical constraints for use in petrology. Experimental studies take two 
approaches. A variety of methods has been used to obtain direct measurement of volumes of 
mixing in homogeneous CO2-H2O fluids (Todheide and Franck 1963; Takenouchi and Kennedy 
1964; Sterner and Bodnar 1991; Seitz and Blencoe 1999). Experimental challenges generally 
limit these studies to low pressure. Studies utilizing synthetic fluid inclusions hold promise for 

Figure 12. Predicted solubility of cal-
cite in water as a function of pressure 
at 500 °C. The calculations were car-
ried out using equilibrium constants 
for carbon-bearing species extrapo-
lated using the density of water and 
aqueous activity coefficients calculat-
ed using Equation (12) and the Debye-
Hückel parameters in Figures 10 and 
11 (1 kbar = 0.1 GPa) (see text).

 
 
 
 
 
 

Manning et al Figure 12 

300

H2O-CO2
critical
curve

H2O-CH4
critical
curve

H2O L+V
CP

H2O

200

200 250 300
Temperature (°C)

Pr
es

su
re

 (M
Pa

)

350 400

100

0

Manning et al Figure 13

Figure 13. Pressure-temperature dia-
gram showing critical curves for H2O-
CO2 and H2O-CH4 mixing, after Lieb-
scher (2010). The boiling curve for H2O 
(H2O L+V) terminates at the critical 
point (CP H2O). At pressure higher than 
CP H2O and assuming equilibrium, the 
binary systems H2O-CO2 and H2O-CH4 

exist as two phases at temperature lower 
than the critical curve, or as a single flu-
id phase at temperature higher than the 
critical curve. In the two-phase field, an 
H2O-rich liquid coexists with a C-rich 
vapor. The composition of the fluid var-
ies along each binary critical curve.
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extending PVT measurements to higher pressures (e.g., Sterner and Bodnar 1991; Frost and 
Wood 1997). An alternative is study of displacement of mineral equilibria as a function of fluid 
composition in mixed volatile systems. Building on pioneering work by Greenwood, Metz, 
Skippen, and co-workers (e.g., Greenwood 1967; Metz and Trommsdorff 1968; Skippen 1971), 
a number of investigators have provided high-pressure constraints on the mixing properties 
of the CO2-H2O binary (Eggert and Kerrick 1981; Jacobs and Kerrick 1981a; Aranovich 
and Newton 1999). Theoretical approaches also offer promise (Brodholt and Wood 1993; 
Destrigneville et al. 1996).

The experimental data and theoretical results serve as constraints for equations of state of 
CO2-H2O fluid mixtures. The literature on this topic is so large that even its review papers are 
too numerous to list completely. Useful compilations, contributions and critiques can be found 
in Ferry and Baumgartner (1987), Duan et al. (1996), and Gottschalk (2007).

CO2-H2O-NaCl and other complex fluids. Addition of NaCl to CO2-H2O yields an extensive 
region of immiscibility in the ternary system (e.g., Heinrich 2007). Experimental studies in 
this system were reviewed by Liebscher (2007). Extension of low-P experiments (Gehrig et 
al. 1979; Anovitz et al. 2004; Aranovich et al. 2010) to 0.5 GPa and beyond (Kotelnikov and 
Kotelnikova 1990; Johnson 1991; Frantz et al. 1992; Joyce and Holloway 1993; Gibert et al. 
1998; Shmulovich and Graham 1999, 2004) indicates the presence of a miscibility gap between 
low density CO2-H2O rich vapor and NaCl-H2O-rich brine at a wide range of crustal and mantle 
P and T. Experimental studies on CaCl2-CO2-H2O yield similar results (Zhang and Frantz 1989; 
Shmulovich and Graham 2004). Equations of state for ternary system have been constructed 
based on experiment and theory (Bowers and Helgeson 1983a,b; Duan et al. 1995), allowing 
computation of simple phase equilibria involving one or two fluid phases.  

Figure 14a shows an example of the isothermal, isobaric ternary at 0.9 GPa and 800 °C. 
A single, miscible fluid phase occurs in the H2O-rich portion of the system. Phase separation 
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Figure 14. (A) Phase relations in the system H2O-CO2-NaCl at 0.9 GPa, 800 °C (Shmulovich and Graham 
1999), in mol%. Abbreviations: H, halite, L, liquid, V, vapor. The unshaded region marks stability of a 
single fluid phase, which varies continuously from liquid like (L) to vapor-like (V). Light shading denotes 
fields where two phases coexist at equilibrium: liquid-vapor (L + V), halite-liquid (H + L), and halite-vapor 
(H + V); selected coexisting compositions are indicated by dashed tie lines in the L + V field. Dark shading 
denotes the liquid-vapor-halite (L + V+ H) field, in which the compositions of all three phases are fixed at 
the apices. (B) Comparison of relations in the systems H2O-CO2-NaCl (solid lines, shading as in A) and 
H2O-CO2-CaCl2 (dashed line) at 0.1 GPa, 500 °C (Liebscher 2010). The two-phase field is larger for CaCl2 
than for NaCl.
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occurs at < 65 mol% H2O, yielding an NaCl-rich brine and a CO2-rich vapor. At these conditions, 
the brine phase attains halite saturation at ~60 mol% NaCl, whereas halite saturates in the vapor 
phase at only ~1 mol% NaCl in fluids with > 72 mol% CO2. As illustrated in Figure 14b, 
replacement of NaCl by CaCl2 significantly expands the miscibility gap, all else equal.

Variations in the topology of the ternary system are illustrated in Figure 15, which shows 
that the miscibility gap is expected to persist for a wide range of crustal and mantle conditions, 
even for low-salinity CO2-H2O fluids. Newton and Manning (2002) hypothesized that, in the 
presence of calcite, H2O-NaCl fluids may coexist with a hydrous, saline CaCO3 liquid at 800-
1000 °C, 1.0 GPa (Fig. 16). In general, extensive immiscibility in the NaCl-CO2-H2O ternary 
system has fundamental importance for carbon transport in the crust and mantle. It requires that, 
in relatively H2O-poor systems, CO2 is largely partitioned into a low-density vapor phase that 
may move separately from a dense, saline brine (Touret 1985; Skippen and Trommsdorff 1986; 
Trommsdorff and Skippen 1986; Newton et al. 1998; Heinrich et al. 2004).

Shmulovich et al. (2006) reported experimental data and a model for quartz solubility 
in CO2-H2O fluids containing different salts. However, there is currently insufficient data to 
constrain models that include the properties of ternary fluids in this system and ionic species. 
Though preliminary models have been constructed (e.g., Duan et al. 1995), more accurate and 
complete data and models are needed for treating complex reactive flow problems in crustal 
and mantle settings.
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Figure 15. Variation in phase relations in the system H2O-CO2-NaCl with pressure and temperature, after 
Heinrich et al. (2004). Inset shows apices of the ternary compositional space. Abbreviations: L, liquid; V, 
vapor; H, halite. Shading as in Figure 14. Tie-lines omitted for clarity.
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It is generally assumed that non-polar molecules such as CO2 are poor solvents. However, it 
has been hypothesized that CO2-rich fluids are responsible for element metasomatism in several 
geologic contexts. For example, petrologic observations of some granulites require a fluid phase 
with low H2O activity that is capable of dissolving and redistributing important major and trace 
elements. Newton et al. (1980) argued that a silicate melt could not explain observations, and 
proposed a CO2-rich fluid instead. Although supported by evidence from CO2-rich fluid inclu-
sions, petrologic considerations were problematic (Lamb and Valley 1987; Yardley and Valley 
1997). The requirement that such a fluid was responsible for metasomatic transfer of presumed 
low-solubility elements such as alkalis and Th poses further challenges. Similar proposals have 
been made for REE and other element metasomatism in mantle xenoliths (Berkesi et al. 2012).

The immiscibility between brine and vapor in the H2O-CO2-NaCl system even at very 
high P and T potentially solves this conundrum (Touret 1985; Newton et al. 1998; Newton and 
Manning 2010). In this hypothesis, metasomatism takes place in the presence of a two-phase 
fluid. The CO2-rich vapor phase has wetting properties that lead to its selective entrapment 
as fluid inclusions, while the brine phase is a powerful solvent responsible for observed 
metasomatism (Gibert et al. 1998). Both phases contain CO2, but partitioning between the 
phases differs depending on P, T, and composition. Such two-phase systems may be more 
important in crustal metamorphism than has previously been appreciated.

Mineral solubility and solute structure in CO2-H2O fluids. The presence of CO2 strongly 
influences mineral solubility and material transport by crustal and mantle aqueous fluids 
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Figure 16. Semi-quantitative phase relations in the pseudo-ternary system CaCO3-NaCl-H2O at 1 GPa (in 
mol%, after Newton and Manning 2002a). Newton and Manning hypothesized critical mixing between a 
hydrous, NaCl-bearing carbonate liquid and a CaCO3-rich brine at ~1000 °C and 30 mol% NaCl, 25 mol% 
CaCO3 (CP). A hydrous carbonate liquid in equilibrium with calcite at 1000 °C (composition X) will, upon 
cooling to 950 °C (point P), exsolve a concentrated salt solution (point P′). Both fluids will crystallize 
calcite upon further cooling over a narrow temperature interval. At P″, only the CaCO3-rich brine phase re-
mains, and deposits most of solute CaCO3 in cooling only 200 °C further. A calcite-saturated fluid that con-
tains more NaCl (composition Y), but cooling from the same starting temperature of 1000 °C, will avoid the 
two-fluid region and deposit nearly all of its substantial dissolved carbonate in isobaric cooling past 800 °C.
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(Walther and Helgeson 1980). Because CO2 is non-polar (Fig. 1), its addition to H2O lowers 
the solvent dielectric constant at constant P and T (Walther and Schott 1988; Walther 1992), 
indicating that dilution of H2O by CO2 reduces the number of H2O molecules that solvate 
solutes dissolved in the fluid.

The disruption of ion hydration by CO2 in high P-T fluids was studied by Evans et al. 
(2009) using EXAFS on RbBr-H2O-CO2 fluids to 579 °C and 0.26 GPa. The fluids were trapped 
as synthetic fluid inclusions in corundum. In CO2-free solutions, the number of nearest neighbor 
oxygen atoms (in hydrating H2O molecules) decreased from 6 ± 0.6 to 1.4 ± 0.1 as T increased 
from 20 to 534 °C, and P to ~0.3 GPa. At XCO2 = 0.08, Evans et al. (2009) infer decreases of 16 
and 22% in the number of nearest-neighbor oxygen atoms at 312 and 445 °C, respectively. This 
decrease suggests that CO2 addition leads to a reduced extent of ion hydration.

In their study of calcite solubility in H2O-CO2 fluids, Fein and Walther (1987) found that 
at constant pressure and temperature, calcite solubility initially increases with increasing XCO2 

(Fig. 8). It reaches a maximum at XCO2 = 0.025 to 0.05 and then decreases. Taking the calcite 
dissolution reaction to be

	 CaCO3 + 2H+ = Ca+2 + CO2,aq + H2O	 (15)
                                                                calcite

they inferred that the initial isothermal, isobaric solubility increase is due to reaction (2) 
progressing to the right. Although H2O activity declines with increasing CO2, the rise in CO2 

evidently counters the drop in H2O activity (Eqn. 9). Fein and Walther (1987) suggested that the 
decline in calcite solubility is due to diminished extent of hydration of Ca+2 in solution.

Similar effects lead to a decrease in quartz solubility with increasing XCO2. Solute silica 
does not form complexes with CO2, so changes in H2O activity are chiefly responsible for 
solubility variations with XCO2 at a given P and T. Walther and Orville (1983) suggested that 
H2O solvation of dissolved silica could be assessed by writing the quartz dissolution reaction as:

	 SiO2 + nH2O = Si(OH)4·(n−2)H2O	 (16)
                                                                 quartz                              solute complex

The equation includes two moles of H2O as hydroxyl and n−2 moles of molecular, solvation 
H2O per mole of solute silicon. At constant P and T, the number of H2O of solvation can be 
determined from quartz solubility data by the relation n = 

4 2 2Si(OH) ·( 2)H O H Olog / lognd a d a− . Early 
work lacked sufficient precision to derive the silica hydration state. Walther and Orville (1983) 
concluded that, assuming all silica dissolved as monomeric Si(OH)4, n ≈ 4 (i.e., two molecular 
H2O of solvation) for many conditions, though uncertainties in n were at least ±1. Later studies 
yielded n of 3.5 or 2 (Shmulovich et al. 2006; Akinfiev and Diamond 2009), or suggested that 
n decreases with increasing XCO2 at constant P and T (Newton and Manning 2000; Shmulovich 
et al. 2001). 

Improved accuracy of this approach has been attained by taking advantage of new and 
more precise equations of state for H2O-CO2 fluids (e.g., Aranovich and Newton 1999) and by 
accounting explicitly for aqueous silica polymerization (e.g., Zotov and Keppler 2000, 2002; 
Newton and Manning 2002b, 2003). Newton and Manning (2009) determined quartz solubility 
in H2O-CO2 fluids at 800 °C and 1.0 GPa. Using experimentally constrained models of H2O 
activity and mixing of silica monomers and dimers, they determined that n = 4.0 for their 
experiments and all previous high-quality data at different P and T. They also obtained n = 7.0 
for silica dimers. These results indicate that, regardless of silica species, there are two solvating 
H2O molecules per Si in H2O-CO2 fluids for a large range of crustal metasomatic processes. 
This result is somewhat surprising because it implies that the hydration state of aqueous silica 
does not change over a wide range of XCO2. Evidently, within the limits of XCO2 studied so far, 
the decline in silica solubility with increasing CO2 concentration means that there is always 
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sufficient molecular H2O to supply the two H2O molecules associated with each dissolved Si. 
The simple model for silica solubility in mixed H2O-CO2 fluids aids study of crustal mass 
transfer (e.g., Ferry et al. 2011).

REDUCED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T

CH4 and CO solubility in H2O

Gas solubilities in H2O generally decrease with rising temperature, but this is only true up 
to a certain temperature along the vapor-liquid saturation (boiling) curve for H2O. Solubility 
minima vary among gases (Shock et al. 1989; Shock and McKinnon 1993; Plyasunov and 
Shock 2001). In the case of methane, the solubility minimum occurs at about 100 °C as shown 
in Figure 17. It can also be seen in Figure 17 that there is increasing experimental disagreement 
in the solubility of methane with increasing temperature, and the scatter seems to maximize 
at higher temperatures. The curve in Figure 17 is calculated with thermodynamic data and 
revised HKF equation-of-state parameters from Plyasunov and Shock (2001), who also used 
experimental high-temperature enthalpy of solution data and partial molal heat capacity data for 
CH4,aq in their regression procedure. Note that the calculated equilibrium constant for methane 
dissolution is an order of magnitude less negative at 300 °C than at the solubility minimum at 
100 °C, suggesting that significant amounts of methane can be lost from solution in cooling 
portions of hydrothermal systems.

Carbon monoxide is similar in solubility to CH4, as indicated by the curves in Figure 18, 
and both gases are considerably less soluble than CO2. Note that the minimum logK for the CO 
dissolution reaction is a little lower in temperature than that for CH4, but that both minima are at 
considerably lower temperatures than that for CO2, which occurs at about 175 °C. Although the 
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Figure 17. Experimental data (symbols) and calculated (curve) values for the equilibrium constant for the 
reaction CH4,g = CH4,aq along the H2O boiling curve.
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curves differ by about 1.5 log units at 0 °C, they tend to converge with increasing temperature 
and are within 0.7 log units of one another at 350 °C. As a result, there are highly variable 
consequences for exsolution of gases during cooling of hydrothermal fluids.

As with CO2, CH4 and CO become fully miscible with H2O at T greater than about 350 °C 
and modest pressure (Fig. 13). Thus, in most crustal and mantle contexts, binary fluids are stable 
as a single phase for all compositions. Numerous equations of state based on experiment and 
theory have been derived to describe the behavior of these fluids. Gottschalk (2007) provides a 
recent review of the topic.

Further similarities between CH4-H2O and CO2-H2O (and likely CO-H2O as well) can be 
found in the role played by the addition of NaCl. As in the CO2-H2O system discussed above, 
addition of NaCl leads to unmixing into two fluid phases, a H2O-rich brine, and a CH4-rich 
vapor (Fig. 19). Generally, it can be expected that the similarity in CH4-H2O and CO2-H2O 
mixing properties should lead to very similar geochemical behavior of the molecular carbon 
species in aqueous solutions. For example, it can be anticipated that the effect of CH4 on quartz 
solubility is similar to that of CO2 as described by Newton and Manning (2009), all else equal.

Kinetic inhibition of CH4 formation

In many crustal fluids, coexisting CO2 and CH4 are not in equilibrium with each other 
(e.g., Janecky and Seyfried 1986; Shock 1988, 1990; Charlou et al. 1998, 2000; McCollom 
and Seewald 2001). Disequilibrium is most pronounced at temperatures below about 500 °C 
(Shock 1990, 1992), which are relevant to low-grade metamorphism, hydrothermal systems, 
sedimentary basins, and subduction zones. The underlying reasons for this disequilibrium state 
lie in the difficulty of breaking bonds and transferring the eight electrons required for CO2 and 
CH4 to react reversibly. Consequently, stable equilibrium between CO2 and CH4 is in many 
cases attained only at high P and T. In many hydrothermal systems, and throughout sedimentary 
basins, CH4 is so slow to form that it persists in concentrations that are far from equilibrium 
with redox conditions determined by coexisting mineral assemblages.

As shown in Figure 20, the kinetic inhibition of CO2-CH4 equilibration produces a “window 
of opportunity” for metastable persistence of a wide array of aqueous organic compounds at 
conditions where C-O-H fluids at equilibrium would otherwise consist almost entirely of CO2, 
CH4, H2O, and H2. Although organic compounds are less stable than CO2 or CH4 depending 
on the prevailing oxidation-reduction conditions, the sluggish kinetics allow them to persist 
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Figure 18. Equilibrium constants for disso-
lution of CO2, CO, and CH4 in water along 
the H2O boiling curve. The curve for CH4 
is the same as that shown in Figure 17, and 
the curves for CO2 and CO are similarly 
constrained by experimental data (Shock et 
al. 1989; Shock and McKinnon 1993). At 
similar fugacities, CO and CH4 would exhib-
it similar solubilities, which would be lower 
than the corresponding solubility of CO2.
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within this window for millions to billions of years. This metastability is why petroleum, 
coal, kerogen, bitumen, and other forms of organic matter persevere in sedimentary and low-
grade metamorphic rocks, and why organic compounds are often encountered in hydrothermal 
systems. Slow reaction rates also help explain why there are organic compounds present in 
carbonaceous meteorites billions of years after their formation through complex processes in 
the condensing solar nebula and on the parent bodies of the meteorites. In fact, metastable 
organic compounds are relatively abundant throughout the Solar System, especially in the outer 
reaches populated by icy satellites and comets, which appear to have extensive inventories of 
organic compounds.

Even though organic compounds persist in metastable states, they continue to react in 
response to thermodynamic driving forces. In many cases, reactions among organic compounds 
reach metastable equilibrium states, in which the organic compounds attain ratios consistent 
with equilibrium constants for reactions written among them. These metastable states were 
first recognized in data from natural systems (Shock 1988, 1989, 1994; Helgeson et al. 1993), 
which led to experimental tests first with hydrocarbons (Seewald 1994) and then with organic 

Figure 19. Phase relations in the systems H2O-CH4-NaCl at 50 MPa (Liebscher 2010). A two-phase field in 
which NaCl-rich aqueous brine coexists with CH4-rich vapor is persists over a wide range of temperature. 
[Reproduced from Liebscher (2010) Geofluids, Vol. 10, p. 3-19, by permission of John Wiley & Sons.]



Carbon in Aqueous Fluids at Crustal & Upper Mantle Conditions 131

acids, alcohols, and ketones (Seewald 2001; McCollom and Seewald 2003a,b; see McCollom 
2013). Recently it was shown that many conversions between alkanes and alkenes, alkenes 
and alcohols, and alcohols and ketones are reversible reactions at temperatures and pressures 
of upper-crustal hydrothermal systems (Yang et al. 2012; Shipp et al. in press). Abundances of 
organic compounds in sedimentary basins suggest that, in some cases, metastable equilibrium 
states also include CO2 (Shock 1988, 1989, 1994; Helgeson et al. 1993), leading to the 
hypothesis that abiotic organic synthesis in hydrothermal systems proceeds from CO2 to organic 
compounds (Shock 1990, 1992; Shock and Schulte 1998; McCollom and Seewald 2007; Shock 
and Canovas 2010; McCollom 2013).

Reduced carbon and aqueous fluids at high P and T

Burial metamorphism of organic compounds. Resilient compounds derived from plants 
(lignin) and microbes (long-chain carboxylic acids) progressively transform on burial. Because 
of the slow pace of methane formation, organic acids and other dissolved components that 
might not otherwise persist are added to coexisting fluid (and gas if present). There are many 
pathways for these transformations, and a host of products. Oxidation of organic carbon and de-
carboxylation of preexisting carboxyl groups in organic matter yield CO2. Small organic acids 
are released during petroleum and coal formation (followed, perhaps, by their decarboxylation). 
Hydrolytic disproportionation processes transform hydrocarbons. Alkanes, alkenes, alcohols, 
ketones, aldehydes, and other compounds are generated through aqueous organic transforma-
tion reactions. Finally, methane and other small organic compounds are released during the con-
version of lignin to coal. While much attention has been focused on these transformations in the 
context of the origin and evolution of coal and petroleum deposits, the same processes operate 
on even small concentrations of organic matter that are insufficient to generate large deposits. 
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Figure 20. Fugacity of H2 versus temperature at 50 MPa. Solid curves show values of log fH2 buffered by 
the mineral equilibria fayalite-quartz-magnetite (FMQ), pyrite-pyrrhotite-magneite (PPM), and hematite-
magnetite (HM). Dashed curves correspond to contours of log (fCO2/fCH4) equal to 2, 0, and −2. Dotted 
vertical line at 500 °C demarcates hypothetical boundary between stable equilibrium in the C-H-O system 
(T > 500°C), and kinetic inhibition of CO2 reduction to CH4 where metastable equilibrium states between 
CO2 and aqueous organic compounds may prevail (T < 500 °C). Shaded area corresponds to the region 
where synthesis of aqueous organic compounds in metastable states may be most easily detected. After 
Shock (1992).
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Significantly, it is only in the last few decades that H2O has been recognized as a reactant or 
product involved in many of these organic transformations. This view challenges the traditional 
assumption that water is a passive participant in the physical movement of organic compounds 
in sedimentary basins (Hoering 1984; Shock 1988, 1989, 1994; Helgeson et al. 1993, 2009; 
Lewan 1997; Lewan and Ruble 2002; Lewan and Roy 2011; Reeves et al. 2012).

Lignin, which makes up plants’ structural parts (e.g., wood), has evolved to be resistant to 
attack. The biosynthesis of lignin by plants starts with three aromatic alcohol building blocks 
(monolignols) that are derived from phenylalanine (see structures in Fig.  21). Biosynthetic 
processes in plant cells generate polymers of these alcohols through processes that are slowly 
being revealed (Davin and Lewis 2005). In the polymerization process, the overall stoichiometry 
of lignin structures largely reflects that of the monolignols, with only slight modifications. 
As a consequence, the model lignin molecules shown in Figure 21 plot near the locations of 

p-coumaryl  alcohol

coniferyl alcohol

sinapyl alcohol

lignin D
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Figure 21. Structures of aromatic alcohols (A-C) that are the building blocks of lignin, and two model 
lignin structures (D-E). Lignin D has the overall stoichiometry of C90H93O33; that of E is C272H290O88. Both 
are plotted in the ternary diagram shown in Figure 22.



Carbon in Aqueous Fluids at Crustal & Upper Mantle Conditions 133

the monolignols in the C-H-O ternary diagram shown in Figure 22. Taken together, the open 
symbols in Figure 22 represent the plant material available for incorporation into sedimentary 
basins. 

In the case of lignin, burial in sedimentary basins leads to the generation of the low-
rank coal lignite. Plotting compositions of lignin and lignite coal in Figure 22 reveals that the 
transformation of lignin to lignite is accompanied by a decrease in the relative abundance of 
hydrogen. The most direct pathway for hydrogen loss is by the liberation of methane. Note that 
a vector drawn from the location where methane plots in the diagram connects the compositions 
of buried plant material with those of lignite 1, the lowest ranking coal composition. Where it 
occurs, removal of methane from lignin pushes the residual solid composition toward lignite. 
Reference to Figure 21 shows that numerous methoxy (-OCH3) groups are present in models 
for lignin, suggesting that methanol might also be a product of coal formation. The vector 
extending from methanol shows that lignin would evolve toward the composition of bituminous 
coal. Any combination of methane and methanol production during lignin transformation drives 
the residual solid material into the compositional range bounded by the arrowheads of the two 
solid vectors (Fig. 22). The methane and methanol produced will be dissolved in aqueous fluids 
that coexist with this organic transformation process, and some of the methane can also exist 
as natural gas.

Higher coal ranks—bituminous coal and anthracite—plot near the carbon apex of the 
ternary diagram shown in Figure 22. The transformation of lignite into these higher ranks 
of coal requires the removal of oxygen, which can occur in several ways, some more likely 
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Figure 22. C-H-O ternary diagram showing the compositions of the monolignols from which lignin is 
synthesized by plants, the model lignin fragments shown in Fig. 21, and the composition of various coal 
compositions. Solid arrows show how loss of methane would drive the trajectories of the remaining solid 
organic matter as its composition transforms toward that of lignite coal. Increasing rank of coal from lignite 
to bituminous to anthracite requires loss of O and H, which can be accomplished by dehydration, or by 
release of acetic acid as indicated by the dashed arrow. Combinations of these vectors outline the transition 
of lignin to coal in sedimentary basins, and require loss of methane and water or acetic acid, or perhaps 
other small organic solutes.
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than others. One is the release of O2; however, this process seems unlikely in highly reduced 
sedimentary basins, because if O2 were released it would likely react immediately with reduced 
constituents in the system (e.g., reduced forms of S, Fe, N, or C). Effective ways to remove 
oxygen during elevation of coal rank are the production of CO2 and/or H2O, shown by dashed 
vectors in Figure 22. In the case of dehydration, numerous hydroxyl groups are candidates for 
this process (Fig. 21); however, acetic acid lies on this same vector, making it difficult to resolve 
the effects of dehydration from those resulting from acetic acid production. Fluids associated 
with some coal deposits are enriched in acetic and other small organic acids (Fisher and Boles 
1990). In summary, the transformation reactions leading to coal accompany the alteration of 
lignin in any sedimentary rock. They lead to the release of methanol, acetic acid, other small 
organic solutes, and methane to sedimentary basin fluids.

Major resilient constituents of microbial membranes are long-chain carboxylic acids. It is 
widely thought that during the organic transformations that accompany burial and heating of 
sediments, these acids undergo decarboxylation. When a carboxyl group is cleaved from the 
rest of the molecule, CO2 and long-chain alkanes are generated (Cooper and Bray 1963; Jurg 
and Eisma 1964; Robinson 1966; Kvenvolden and Weiser 1967; Smith 1967; Shimoyama and 
Johns 1971, 1972; Philippi 1974; Snape et al. 1981; Kissin 1987; Hunt et al. 2002). Tie lines in 
Figure 23 show how several carboxylic acids (indicated by carbon numbers) can decarboxylate 
into CO2 and an alkane. As examples, acetic acid (2 in Fig. 23) produces CO2 and methane via

	 CH3COOH → CH4 + CO2	 (17)

and hexadecanoic acid (16 in Fig. 23) would yield CO2 and pentadecane via

	 C15H31COOH → C15H32 + CO2	 (18)

The products of decarboxylation reactions lie along the C-O and C-H binaries of the ternary 
diagram in Figure 23. This geometry emphasizes that decarboxylation is a disproportionation 
reaction, because in each case the products are one compound with bulk carbon oxidation state 
that is more oxidized (CO2) and one with carbon that is more reduced (an alkane) than in the 
reacting acid. 
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Figure 23. C-H-O ternary diagram showing 
the consequences of decarboxylation reac-
tions of normal and aromatic carboxylic ac-
ids identified by carbon number (1 = formic, 
2 = acetic, 6 = hexanoic, 7 = benzoic, 8 = 
phenylacetic, 9 = hydrocinnamic, 16 = hexa-
decanoic). Each decarboxylation is a dispro-
portionation, and tie-lines connect each acid 
with its oxidized and reduced products.
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The production of hydrocarbons and CO2 by acid decarboxylation is advantageous to the 
geochemist, because organic acids are far more soluble in water than are hydrocarbons, and it 
is easier to model the chemistry and transport of aqueous acids as hydrocarbon precursors than 
it is to model the hydrocarbons themselves. Recognition of this situation led researchers to 
investigate the rates of carboxylic acid decarboxylation. Initial results showed highly variable 
rates depending on the composition of the experimental container used (Kharaka et al. 1983; 
Palmer and Drummond 1986). Palmer and Drummond (1987) determined that the least catalytic 
surface to use is gold, and that has been the standard for subsequent work. Early studies focused 
on acetic acid, which is among the most abundant organic acids found in oilfield brines and 
other deep fluids; rates were determined by quantifying its decreasing concentration (Kharaka 
et al. 1983). Subsequently, researchers attempted to show mass balance in their experiments, 
with the hope of demonstrating equal concentrations of methane and CO2 generated by the 
decarboxylation reaction (Eqn. 17). In some cases it could be argued that roughly similar 
abundances of methane and CO2 were produced, giving some confidence that decarboxylation 
rates could be established (Palmer and Drummond 1986; Bell and Palmer 1994; Bell et al. 
1994). However, the composition of the experimental solution, the presence of minerals, and 
the presence or absence of a gas headspace in the experiments also allowed processes other than 
decarboxylation to occur. These variables were explored in detail by McCollom and Seewald 
(2003a,b), who used mineral assemblages to control the oxidation state of their experiments, 
and maintained careful control of mass balance.

When put to the test, the elegant simplicity of decarboxylation runs into difficulties in 
explaining the fate of organic acids in geologic fluids. As revealed by analysis of natural samples 
and laboratory experiments, the transformations undergone by aqueous organic compounds 
are more complicated. McCollom and Seewald (2003b) showed, for example, that the 
decarboxylation reaction could explain the fate of acetic acid in the presence of the assemblage 
pyrite + pyrrhotite + magnetite at 325 °C and 35 MPa, but that at the same conditions, the 
mineral assemblages hematite + magnetite or hematite + magnetite + pyrite drove the oxidation 
of carbon in acetic acid, probably via the overall reaction

	 CH3COOH + 2H2O → 2CO2 + 4H2	 (19)

McCollom and Seewald (2003b) also showed that, at the same conditions and in the presence of 
the same mineral assemblages, valeric acid (C4H9COOH) transformed by a variety of reaction 
pathways. One such pathway was the degradation of valeric acid to formic acid and butene 
(C4H8) in the presence of hematite + magnetite, implying an overall reaction such as

	 C4H9COOH → C4H8 + HCOOH	 (20)

At the high P and T of these experiments, formic acid rapidly converts to CO2 and H2 (McCollom 
and Seewald 2001, 2003a; Seewald et al. 2006) via

	 HCOOH → CO2 + H2	 (21)

At more reduced conditions consistent with the pyrite + pyrrhotite + magnetite assemblage, 
McCollom and Seewald (2003b) showed that butene would be rapidly reduced to butane 
(C4H10), via

	 C4H8 + H2 → C4H10	 (22)

which, together with the conversion of formic acid to CO2 (Eqn. 21), would produce the 
misleading appearance of direct decarboxylation.

As indicated by these reactions and reference to Figure 23, the generation of formic acid is 
not colinear with a carboxylic acid reactant and the alkane product containing one less carbon. 
As an example, a line connecting pentane (C5H12) and formic acid (HCOOH) would not pass 
through hexanoic acid (C5H11COOH; 6 in Fig. 23). Instead, hexanoic acid plots above this line, 
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implying that the addition of H2 is required in the overall reaction, which is indeed the case as 
given by

	 C5H11COOH + H2 → C5H12 + HCOOH	 (23)

If formic acid breakdown followed Equation (21), then H2 would be consumed and produced in 
the overall process, again giving the misleading impression of direct decarboxylation. 

In principle, during transformation of membrane biomolecules it would also be possible 
for other C-C bonds to be broken, allowing the formation of acetic, propanoic or other small 
carboxylic acids together with correspondingly shorter alkanes. The extent of decarboxylation, 
deformylation, and other reactions could then determine the fates of these acids, which 
tend to accumulate in oil-field brines and other aqueous fluids co-produced with petroleum 
(Shock 1988, 1989, 1994; Helgeson et al. 1993; Seewald 2001, 2003). The mechanisms of 
decarboxylation reactions at the molecular level are currently under investigation (Glein and 
Shock, unpublished data).

Reduced carbon in aqueous fluids at greater depths. Graphite is the dominant crystalline 
form of reduced carbon at conditions of the middle and lower crust and upper mantle. It may 
be produced by a variety of pathways, such as metamorphism of organic matter, reduction of 
carbonate minerals, partial melting, or infiltration of externally derived carbon-bearing fluids 
(Nokleberg 1973; Andreae 1974; Perry and Ahmad 1977; Rumble et al. 1977; Wada et al. 1994; 
Luque et al. 1998). The composition of fluids coexisting with graphite-bearing rocks varies 
strongly with P, T, fluid composition, and oxygen fugacity (French 1966; Ohmoto and Kerrick 
1977; Huizenga 2001, 2011; Huizenga and Touret 2012). A simple way to explore variations in 
graphite solubility is to track variations in the graphite saturation surface in the C-O-H ternary 
system (Fig.  24). Each ternary diagram in Figure 24 is constructed at a fixed P and T, but 
fO2 varies with composition within the plot. The carbon content in a graphite-saturated fluid 
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Figure 24. Predicted solubility of graphite in C-O-H fluids at a range of conditions of crustal metamor-
phism. Shaded region in each ternary (A-F) denotes the graphite + fluid stability field. Graphite solubility 
varies with fluid composition along the lower, curved boundary of the two-phase field and can be surpris-
ingly high even in H2O-rich fluids. Assumes ideal mixing of molecular species; after Spear (1993) and 
Ferry and Baumgartner (1987).
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corresponds to the curve passing from the C-O binary to the C-H binary. Figure 24 illustrates 
that graphite-saturated fluid composition is variable at fixed P and T: graphite solubility is lower 
in CH4-rich fluid than in CO2-rich fluid, and minimum graphite solubilities occur in initially 
pure H2O. Comparison of the ternaries also confirms that graphite solubility varies with P and 
T. An important conclusion to be drawn from the ternary diagrams is that, at many conditions, 
the solubility of graphite, nominally a refractory phase, can be surprisingly high. 

In general, devolatilization of graphite-bearing rocks will produce dissolved, reduced carbon 
at a concentration limited by the solubility of graphite at the ambient fO2. The relative abundance 
of carbon and its distribution among dominant carbon-bearing molecular components such as 
CH4, CO2, and COS species, will vary strongly with P and T. For example, in the presence of 
graphite at relatively reducing conditions, a C-O-H-S fluid coexisting with the model mineral 
assemblage biotite + K-feldspar + pyrite + pyrrhotite will have total carbon concentration and 
species abundances that are strong functions of T at constant P (Fig. 25; Ferry and Baumgartner, 
1987). Carbon concentrations are higher at oxidizing conditions, where virtually all carbon is 
present as CO2.

Where reducing conditions prevail in the lower crust and upper mantle, the predominant 
dissolved form of carbon is generally CH4. This conclusion is supported by fluid inclusions 
containing CH4 from regional metamorphic terranes (e.g., Sisson and Hollister 1990; Huff and 
Nabelek 2007). Interestingly, CH4 appears to be quite common as a solute in subduction-zone 
settings (Zheng et al. 2000, 2003; Fu et al. 2001, 2002, 2003a,b; Shi et al. 2005). 

Numerous studies have shown that CH4 (and hydrocarbons) can form at high pressures 
and temperatures (Kenney et al. 2002; Kutcherov et al. 2002; Scott et al. 2004; Kolesnikov 
et al. 2009; Sharma et al. 2009; Marocchi et al. 2011). But in many settings where CH4 is 
recorded as a component of metamorphic fluids, the temperature of entrapment does not 
exceed 500 °C, which raises the question of why it has formed despite the kinetic inhibition 
of methane formation at these temperatures. Rates of abiogenic methanogenesis may be 
increased by catalysis involving mineral surfaces in the host rock. Much geochemical research 
on heterogeneous catalysis has been motivated by observations that abundant reduced gases 

Figure 25. Fluid composition and species abundances in equilibrium with biotite + K-feldspar + pyrite + 
pyrrhottite + graphite, as a function of temperature at 0.35 GPa. Fluid composition and speciation varies 
strongly from relatively reducing (left) to oxidizing (right) conditions. Assumes ideal mixing of molecular 
species; after Spear (1993) and Ferry and Baumgartner (1987).
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are produced during serpentinization of olivine-rich ultramafic rocks, with metal oxides, Fe-
Ni alloys, and Fe-Ni sulfides as byproducts (Schrenk et al. 2013). A range of experimental 
studies has demonstrated the effectiveness of these catalytic effects on accelerating the rate of 
alkanogenesis (Horita and Berndt 1999; Foustoukos and Seyfried 2004; Fu et al. 2008). 

CONCLUDING REMARKS

Our understanding of the chemistry of aqueous carbon is advanced at conditions relevant for 
the shallow geologic environments; however, much remains to be done to extend this framework 
to the higher-pressure systems relevant to Earth’s deep carbon cycle. Most progress has been 
made in development and application of equations of state for molecular fluids. Unfortunately, 
this simple framework is inadequate for treating many problems of mass transfer, where other 
species (ions, metal carbonates, organic acids, etc.) must be taken into account. The problem 
is compounded by limits in the application of HKF theory to ≤ 0.5 GPa, and relatively few 
experimental investigations at the requisite high pressures. This situation is especially true for 
reduced carbon species: even if such species are metastable with respect to CH4, the kinetic 
inhibition of CH4 formation means that they may be important in many deep systems of interest.

Nevertheless, recent advances hold promise for progress in this field. Developments of 
hydrothermal piston-cylinder and hydrothermal diamond-anvil cell approaches to mineral 
solubility and fluid characterization now allow for robust, routine experimental work at high P 
and T. In addition, recognition of the comparative simplicity of H2O behavior at high P and T 
has led to exploitation of simple correlations of mineral solubility and homogeneous equilibria 
with H2O density. These advances are opening for the first time the realm of deep fluid flow to 
robust aqueous geochemical methods. The combined experimental and theoretical avenues thus 
promise new insights into the terrestrial deep carbon cycle in the coming years.
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