MINERALOGICAL SOCIETY OF AMERICA, SPECIAL PAPER 1, 1963 INTERNATIONAL MINERALOGICAL ASSOCIATION, PAPERS, THIRD GENERAL MEETING

THE CRYSTAL STRUCTURE OF DACHIARDITE

G. GOTTARDI AND W. M. MEIER

Instituto di Mineralogia dell'Università, Pisa, Italy, and Technikum, Winterthur and Institut für Kristallographie und Petrographie der ETH, Zurich, Switzerland

Abstract

Structural work on mordenite suggested a possible structure for dachiardite, a rare zeolite. This trial structure has been confirmed by 2-dimensional Fourier syntheses.

The crystals are monoclinic with space group B2/m or Bm. The framework structure of dachiardite is closely related to the mordenite structure. There are comparatively wide channels along both the *b* and *c* axes.

Dachiardite is a rare zeolite which occurs in association with mordenite on Elba, Italy. Its composition, (K, Na, $Ca_{\frac{1}{2}})_5Al_5Si_{19}O_{48} \cdot 12H_2O$, is very nearly that of mordenite. The crystal data of the two zeolites are as follows:

Dachardite (D)	Mordenite (M)
monoclinic ¹	orthorhombic
<i>a</i> =18.73 Å	a = 18.13 Å
b = 10.30 Å	b = 20.49 Å
$c = 7.54 \text{ Å} \gamma = 107^{\circ}54'$	c = 7.52 Å
Space group: $B2/m$ or Bm	Cmcm or Cmc2

The relationship between the unit cells of D and M, as illustrated in Fig. 1, was first noted by Gottardi (1960)

The structure of M is based on characteristic chains shown in Fig. 2 (Meier, 1961). These chains can be linked in two different ways to give the aluminosilicate frameworks of M and D. Figure 3 shows the resultant frameworks in projection along [001]. The trial structure of D (involving framework atoms

 $_{\rm 1}$ The first monoclinic setting is used in this paper for convenience.

only) gave an initial R-factor of 0.37 for the hk0 reflections. Two-dimensional Fourier and difference maps confirmed the general features of the framework

FIG. 2. Mordenite chain.

and indicated probable positions for the cations and some of the water molecules. The R-factor for the hk0 reflections of the structure with cations and water has been reduced to 0.22 in the course of 4 cycles of refinement by means of difference maps. (The Rfactor for the aluminosilicate framework alone is 0.30). Fourier projections along [010] and [100] were also computed and helped to confirm the structure.

The structure of D is penetrated by a 2-dimensional system of comparatively wide channels. The main channels run parallel to the c axis and are interconnected by channels parallel to the b axis. The free openings of these channels are about 4 Å. The observed twinning of D can be readily explained on the basis of the aluminosilicate framework.

Three-dimensional refinement using low-temperature data of the sodium form of D is in progress. A more detailed account of our work will be published in Zeitschrift für Kristallographie.

References

GOTTARDI G. (1960) Sul dimorfismo mordenite-dachiardite. Period. Mineral. 28, 183.

MEIER W. M. (1961) The crystal structure of mordenite. Zeit. Krist. 115, 439.

≺ «

FIG. 3. Projections of the framework structures of M and D.