Introduction
Acknowledgments
Teaching Strategies
Using Cooperative Learning to Teach Mineralogy (and Other Courses, Too!) LeeAnn Srogi & Lynda Baloche
Physical Properties of Minerals and Determinative Techniques, An Introduction to Cooperative Learning <i>Ken Bladh</i>
Mineral Classification—What's in a Name? David W. Mogk
A Term-Long Mineralogy Lab Practical Exam Kurt Hollocher
Field Notes David W. Mogk
Accessing Mineralogical Information
Exercises with Mineral Names, Literature and History Francis Ö. Dudás
 Exercises with Mineral Names, Literature and History <i>Francis Ö. Dudás</i>
 Exercises with Mineral Names, Literature and History <i>Francis Ö. Dudás</i>
 Exercises with Mineral Names, Literature and History <i>Francis Ö. Dudás</i>
Exercises with Mineral Names, Literature and History <i>Francis Ö. Dudás</i>
Exercises with Mineral Names, Literature and History <i>Francis Ö. Dudás.</i>

CONTENTS

Making Solid Solutions with Alkali Halides (and Breaking Them)

Phase Fun with Feldspars: Simple Experiments to Change the Chemical Composition, State of Order, and Crystal System Guy L. Hovis
Determination of Chemical Composition, State of Order, Molar Volume, and Density of a Monoclinic Alkali Feldspar using X-ray Diffraction Guy L. Hovis
Exercises in the Geochemical Kinetics of Mineral-Water Reactions: The Rate Law and Rate-Determining Step in the Dissolution of Halite <i>Michael A. Velbel.</i>
Heat Capacity of Minerals: A Hands-on Introduction to Chemical Thermodynamics David G. Bailey
Phase Diagrams in Vivo Erich U. Petersen
Experiments on Simple Binary Mineral Systems John D. Winter
Crystallography
Computer Generated Crystals with SHAPE Kenneth J. Brock
Miller Indices and Symmetry Content: A Demonstration Using SHAPE, A Computer Program for Drawing Crystals Michael A. Velbel
Crystal Measurement and Axial Ratio Laboratory George R. McCormick
The Use of Natural Crystals in the Study of Crystallography Roger T. Steinberg
The Metrical Matrix in Teaching Mineralogy Gerald V. Gibbs201
From 2D to 3D: I. Escher Drawings, Crystallography, Crystal Chemistry, and Crystal "Defects" <i>Peter R. Buseck</i>
From 2D to 3D: II. TEM and AFM Images Peter R. Buseck
A Fun and Effective Exercise for Understanding Lattices and Space Groups Dexter Perkins
Construction of Crystal Models and Their Granhic Equivalents

Building Crystal Structure Ball Models Using Pre-drilled Templates: Sheet Structures, Tridymite, and Cristobalite <i>Kurt Hollocher</i>	
Directed-Discovery of Crystal Structures Using Ball and Stick Models David W. Mogk	
Optical Mineralogy	
Minerals and Light Edward F. Stoddard	
Experiments in Crystal Optics Hans Dieter Zimmermann	
Laboratory Exercises and Demonstration with the Spindle Stage Mickey E. Gunter	
Crystal Chemistry	
Introduction to the SEM/EDS or "Every composition Tells a Story" John T. Cheney & Peter D. Crowley	
Color in Minerals <i>M. Darby Dyar</i> 323	
Minerals, Geology and Society	
Better Living through Minerals: X-ray Diffraction of Household Products Barb Dutrow	
Asbestos: Mineralogy, Health Hazards and Public Policy Helen M. Lang & Sid P. Halsor	
Introduction to the Properties of Clay Minerals Stephen Guggenheim	
Mineral Separation and Provenance Lab Exercise Mary Roden-Tice	
Selected References for Teachers of Mineralogy	