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ABSTRACT 22 

 23 
The geographic provenance of minerals provides key insights into a range of geologic 24 

problems including the source of gem materials. The tourmaline supergroup is unparalleled in its 25 

ability to record and preserve extensive chemical signatures of its formational environment. To 26 

evaluate the likelihood that tourmalines of similar compositions from separate geographic 27 

localities could be differentiated, a multivariate statistical approach has been utilized on two 28 

complementary datasets. These chemical analytical datasets of copper-bearing “paraíba” 29 

tourmaline include a qualitative Laser Induced Breakdown Spectroscopy (LIBS) data set and a 30 

quantitative electron microprobe (EMP) data set. 31 

 32 
Fifty-four samples of copper-bearing tourmalines from known source locations from 33 

Brazil (São José de Batalha of Paraíba state and the neighboring Rio Grande do Norte state), 34 

from Mozambique, and from Nigeria, were analyzed using LIBS with a subset of these samples 35 

analyzed by EMP. Datasets obtained by each method were evaluated with multivariate statistics 36 

(PCA, PLSR). Although the sample set is limited, sequential PLSR modeling of the spectra 37 

clearly distinguished the four localities with high success: > 95% for LIBS and > 87% for EMP. 38 

The statistical analyses of the two techniques, LIBS and EMP, suggest that each technique 39 

emphasizes different elements for discrimination when considered in context of the available 40 

data. The elements Cu, Mn, Fe, Mg, Ti, Zn, K, H, Co, and V were significant in LIBS 41 

chemometric models. Statistically significant elements in EMP models were Mn, Cu, Al, Ca, K, 42 

and F. Each technique results in a robust determination for geographic provenance of 43 

tourmalines with comparible compositions. The significant distinguishing chemical elements 44 

reflect geochemical distinctions in each host environment that are imparted on the tourmaline. 45 
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Multivariate statistics applied to LIBS and EMP data provide an effective tool for provenance 46 

discrimination of paraíba tourmalines, distinguishing Brazilian-sourced samples from African-47 

sourced materials. These data provide new methods for separating the geographic origin of 48 

minerals with very similar composition such as demonstrated here for copper-bearing 49 

tourmalines.  50 

Keywords: tourmaline, provenance, Paraiba, LIBS, EMP 51 

 52 
INTRODUCTION 53 

 54 
The determination of the geographic origin (provenance) of minerals separated from their 55 

original host rock can provide significant insights to various geological processes. Provenance 56 

studies can relate to a geographic origin or locality, which may be associated with a spatially 57 

restricted geologic unit or to a host rock environment.  For example, provenance elucidates 58 

shifting patterns of modern and ancient sedimentation (e.g., Morton et al. 2005), provides key 59 

information on paleogeographic/tectonic reconstructions (e.g., von Eynatten and Gaupp 1999), 60 

establishes a basis for identification of valuable minerals mined in conflict zones (e.g., Hark et 61 

al. 2012; McManus et al. 2020) or the likely sources of some gemstones (e.g., Palke et al. 2018) 62 

and refines exploration strategies key to identifying sources of needed critical materials (e.g., 63 

Lohmeier et al. 2021). Additionally, geographic origin of gem materials is a complex and 64 

important problem in the world economy as companies and organizations strive to maintain and 65 

certify a supply chain free of conflict minerals. In other cases, substantial price differences of 66 

gemstones result from their different geographic origins. Commonly, mineral chemistry is 67 

utilized to provide provenance information. This chemical distinction is challenging when 68 
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differences among possible source areas are subtle or exhibit considerable overlap in chemical 69 

parameters or when age criteria alone are insufficient.  70 

Many minerals retain chemical signatures of their formational environment, but no mineral 71 

embeds the range of chemical fingerprints better than the minerals of the tourmaline supergroup. 72 

Even during a complex, multistage geologic history that can include crystallization, weathering, 73 

reburial, metamorphosis, regrowth and deformation, tourmaline retains textural and chemical 74 

signatures of its earlier evolutionary history (e.g., Henry and Guidotti 1985; Henry and Dutrow 75 

1996; van Hinsberg et al. 2011a,b). Tourmaline’s utility as a petrogenetic indicator stems, in 76 

part, from its (1) complex crystal chemistry, providing structural and chemical flexibility to 77 

incorporate a wide range of chemical constituents of multiple valence states and sizes, to imprint 78 

a signature of its chemical environment of formation, (2) stability over an extensive range 79 

pressures (P) and temperatures (T) encompassing nearly all crustal and upper-mantle conditions, 80 

(3) ability to form in widely varying rock and fluid compositions, and (4) minimal volume 81 

diffusion such that its imprinted chemical signature remains intact (see summaries by Henry and 82 

Dutrow 1996; Dutrow and Henry 2011; van Hinsberg et al. 2011b).  83 

The rich chemical signatures, coupled with its mechanical and chemical stability, make 84 

tourmaline a unique target for establishing new methodologies for provenance studies. In some 85 

instances, chemical distinctions among sources are subtle, yet critical to define.  An excellent test 86 

case, and one of economic interest, is the sourcing of copper-bearing tourmalines. Determining 87 

their geographic origin, or provenance, is challenging and has important financial implications. 88 

Copper-bearing elbaitic or liddicoatitic tourmaline is widely prized as a gemstone due to 89 

its vivid, saturated, ‘neon’ blue hues that are caused by the incorporation of Cu2+ as a 90 

chromophore (Fig. 1; e.g., Rossman et al. 1991). Originally discovered in the 1980s in Brazil 91 
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near the São José da Batalha Mine in the state of Paraíba (Koivula and Kammerling 1989) and 92 

later in the 1990s in the nearby state of Rio Grande do Norte (e.g., Fritsch et al. 1990; Shigley et 93 

al. 2001), these exquisite Cu-bearing specimens became known as Paraíba tourmalines (Fig. 1). 94 

Subsequently, other localities hosting similarly colored Cu-bearing tourmalines were found as 95 

elbaitic tourmaline in Nigeria in 2001 (Smith et al. 2001) and Mozambique in 2004 (Wentzell 96 

2004; Abduriyim and Kitawaki 2005; Laurs et al. 2008; Katsurada and Sun 2017). The African 97 

tourmalines were found originally in secondary alluvial deposits. Chemically, all of these 98 

tourmalines are classified as elbaite or fluor-elbaite species, with a general formula of Na 99 

(Li1.5Al1.5) Al6 (Si6O18) (BO3)3 (OH)3 (OH) or F replacing one OH (for species nomenclature see 100 

Henry et al. 2011; Henry and Dutrow 2018) and Cu2+ substituting into the octahedral site that 101 

typically accommodates Li-Al. In 2017, Cu-bearing fluor-liddicoatites – Ca (Li2Al) Al6 (Si6O18) 102 

(BO3)3 (OH)3 (F) - were discovered and were attributed to a locality in Mozambique (Katsurada 103 

and Sun 2017). The varietal name, “paraíba” tourmaline, is used to refer to any of the saturated 104 

blue, green, and violet tourmalines containing Cu2+ ±  Mn2+ as chromophores (LMHC 2012). 105 

Paraíba tourmaline sources for gemstones are difficult, if not impossible, to distinguish based on 106 

color alone. Yet, the Brazilian material from the original mine area can command prices that are 107 

5-10 times higher than those of their African counterparts of comparable quality and size. 108 

Consequently, provenance is an essential component of the tourmaline’s value as a gemstone.  109 

Major-element tourmaline “environmental” diagrams such as the Al-Fe-Mg ternary 110 

(Henry and Guidotti 1985) are not effective for determination of paraíba tourmaline sources 111 

because most have elbaitic composition except for the liddicoatitic tourmalines which are easily 112 

distinguished based on their elevated Ca contents. Consequently, this necessitates the use of 113 

other criteria such as minor and trace elements to potentially fingerprint the likely source of 114 
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paraíba tourmalines.  For gemmy paraíba tourmaline, most attempts at provenance evaluations 115 

rely on quantities of a limited number of trace and minor element constituents (e.g., Cu, Zn, Ga, 116 

Sr, Sn, Pb), obtained via LA-ICP-MS,  or isotopes, obtained via Secondary Ion Mass 117 

Spectrometry (Ludwig et al. 2011), that are plotted in simple binary or ternary diagrams or in a 118 

serial combination of these diagrams as a means to deconvolute the overlapping chemical 119 

signatures distinctive of a source (e.g., Abduriyim et al. 2006; Peretti et al. 2009; Palke et al. 120 

2018; Okrusch et al. 2016; see review by Katsurada et al. 2019). Although these types of 121 

provenance diagrams have met with varying degrees of success, they do not holistically consider 122 

the entire range of paraíba tourmaline chemistry available for provenance evaluation.  123 

This contribution explores use of a multivariate statistical approach for enhanced 124 

provenance determination that considers a wider spectrum of chemical information available 125 

from two distinctively different, but complementary, newly acquired chemical analytical datasets 126 

of paraíba tourmaline: Laser Induced Breakdown Spectroscopy (LIBS) spectra and electron 127 

microprobe (EMP) chemical analyses. The purpose of this study is to determine if multivariate 128 

statistics can reveal whether one or both datasets can be more effective or, at least 129 

complementary, provenance indicators for minerals with very similar compositions. 130 

 131 
METHODS 132 

 133 
The LIBS analytical sample set consists of 54 copper-bearing tourmalines with known 134 

provenance from four distinct localities (Fig. 2). Samples were obtained from highly reputable 135 

gem dealers specializing in paraíba tourmaline (See Appendix 1 for sample information). 136 

Representing Brazil are 24 grains from two localities: São José de Batalha, Paraíba state (SJdB; 137 

the original Paraíba locality; 6 grains, 5.93 carats (cts), color-zoned blue, purple) and Rio Grande 138 
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do Norte state (RGdN; 15 grains, color-zoned blue, purple; Fig. 2a,b). In addition, three samples 139 

displaying neon-blue colors are identified as from “Brazil” but with unknown specific localities, 140 

two samples are in matrix and one is a single crystal. Mozambique (Moz) is represented by 24 141 

tourmaline grains with a spectrum of colors including pink, blue, purple and green (total weight 142 

of 51.73 cts; see Fig. 2c). Nigeria (Nig) is represented by 11 grains (totaling 28.28 cts; Fig. 2d). 143 

Nigerian grains are largely green to blue green. Most rough crystals measured less than 1 cm in 144 

size and were without the matrix material.  145 

LIBS analyses 146 

LIBS is a relatively recent analytical technique that is finding utility in the geosciences 147 

(e.g., see reviews by Fabre 2020; Harmon and Senesi 2021). The information-rich spectra 148 

contain signatures of all elements in concentrations above detection limits (e.g., Cremers and 149 

Radziemski 2013), molecular emissions, select isotopic ratios (e.g., Smith et al. 2002; Doucet et 150 

al. 2011: Russo et al. 2011), and some structural information (Serrano et al. 2015) resulting in a 151 

detailed chemical fingerprint of the material analyzed. To take advantage of the rich chemical 152 

dataset embedded in tourmaline, this LIBS study uses the spectrum of relative peak intensities of 153 

each tourmaline rather than absolute quantities of individual elements within the tourmaline. 154 

Minimal sample preparation is required for LIBS (see e.g., McMillan et al. 2018; 155 

McMillan et al. 2019 for additional information). Rough samples were cleaned with isopropyl 156 

alcohol to remove oils and surface residue and air dried. Most tourmalines are individual grains 157 

or clusters of grains. Originally, samples were mounted on a plexiglass sheet with BlueTac to 158 

secure the grains; later the BlueTac was eliminated. The sheet was placed into the sample holder 159 

in the LIBS instrument chamber.  LIBS data were acquired prior to EMP data analyses to avoid 160 
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any possible contamination from EMP sample preparation such as polishing and carbon coating 161 

of the grains. 162 

Tourmalines were analyzed with an Applied Spectra J200 LIBS instrument, at 163 

Materialytics, Inc., fitted with a Q-switched Quantel ULTRA 100 Big Sky Nd:YAG laser 164 

operated at a fundamental wavelength of 266 nm and < 6 ns pulse width. The instrument utilized 165 

an Andor Mechelle ME 5000 spectrograph (λ/Δλ = 5000) and an Andor iStar ICCD (intensified 166 

charge coupled device) camera, model DH334T-18F-03.  Analytical conditions were a laser 167 

power of 150 mJ, with a delay of 0.5 microseconds between the time of the laser shot and light 168 

collection, a gate width (time of light collection) of 10 microseconds, and a nominal spot size of 169 

50 micrometers (subsequent analyses demonstrated a larger ablation pit of nearly 80 170 

micrometers). Spectra were obtained at 1 atm at room temperature in an argon atmosphere to 171 

confine the LIBS plasma and thus enhance emission intensity. Where grain size allowed, 64 172 

shots were obtained per sample in an 8 x 8 grid with spacing of 100 micrometers between shots – 173 

an area covering about 1 mm x 1 mm. An ancillary study suggested that 64 shots were optimal 174 

for characterizing the samples (McMillan et al. 2019). At each analytical location, a cleaning 175 

shot was done prior to the analytical shot. The spectral emission was collected over the  26,000+ 176 

channels of the detector/spectrometer system to assemble the spectrum in the wavelength range 177 

from 200 – 1000 nm for each analytical shot. Spectra were truncated at 771 nm which preserves 178 

the potassium peaks at 766.5 and 769.9 nm but masks the primary argon peaks at higher 179 

wavelengths.  Multiple shots per sample and their corresponding spectra are averaged and 180 

normalized to the mean peak intensity to produce a single spectrum per sample.  Averaging LIBS 181 

spectra helps mitigate variations caused by inherent shot-to-shot variability (McMillan and 182 

Dutrow, in press). Background correction was not applied. Intensities were converted to log 183 
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values for modeling purposes.  Where necessary, identification of LIBS peak positions utilized 184 

the on-line NIST database of optical emission lines (Kramida et al. 2022).  185 

Acquisition of such a large dataset requires statistical methods and/or machine-learning 186 

techniques for data analyses and interpretation. This study employs the multivariate statistical 187 

techniques Principal Component Analysis (PCA, Esbensen 2004) and Partial Least Squares 188 

Regression (PLSR; Wold et al. 2001; Esbensen 2004) to quantitatively classify spectra with 189 

reference to the geographical source of the tourmaline. The strong emission response of some 190 

major elements required masking of select peaks from the spectra to allow subtler chemical 191 

variations to be enhanced. For these tourmalines, masking of peaks for the elements Si, Al, Li, 192 

Na as well as the Ca peaks at 393.3, 396.8, and 422.7 nm resulted in improved models. While 193 

other multivariate statistical techniques may be advantageous, for this test case, methods used 194 

previously were followed (e.g., McMillan et al. 2018). 195 

Multivariate Statistical Modeling 196 

PCA is a dimension-reducing multivariate technique that calculates linear regressions, or 197 

Principal Components (PCs), through the data set in multivariate space (24,350 variables). A 198 

PCA score plot (sample analyses in n-dimensional space projected onto the plane of two 199 

principal components, e.g., PC 1 and PC 2) displays the spectral/compositional relationships of 200 

the dataset in the two directions of the principal components.  This comparison is used to 201 

determine the order in which the geographic localities (SJdB, RGdN, Moz, Nig) are modeled 202 

beginning with the compositionally most distinct group modeled first (Multari et al. 2010; 203 

Kochelek et al. 2015; McMillan et al. 2018).  204 

PLSR models were used to quantitatively discriminate between the samples of the 205 

locality of interest and all other localities.  PLSR is similar to PCA but includes the value of an 206 
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independent variable, in this case the Provenance Variable (PV), in the regression.  Spectra of 207 

samples from the locality of interest were assigned a Provenance Variable value of 1; spectra of 208 

samples from all other localities were assigned a PV value of 0. To calibrate the model, 50% of 209 

the spectra from the geographic localities were selected; spectra from the 50% remaining 210 

samples were used for test-set validation in a later step. Because the database contained one 211 

spectrum per sample, no individual sample was present in both the calibration and validation 212 

sets, although samples from a given geographic locality were present in both sets.  Statistical 213 

modeling was accomplished using the Unscrambler ® software by Camo.  The NIPALS 214 

(Nonlinear Iterative Partial Least Squares) algorithm was applied with 15 PLSR components; no 215 

weighting was applied to variables.  All models are mean-centered (see also McMillan et al. 216 

2018 for further discussion).  217 

To quantitatively assign a spectrum to a locality group, a numerical value that separates 218 

calculated Provenance Variable values for the two groups in the calibration set is defined: the 219 

Value of Apparent Distinction (VAD, Kochelek et al. 2015). The VAD is calculated as the value 220 

that gives the highest number of correctly assigned samples during calibration. Any sample with 221 

a calculated PV value greater than or equal to the VAD is classified as a tourmaline within the 222 

group of interest; those with calculated locality variables less than the VAD are classified as 223 

belonging to the group of the remaining localities.  Once a VAD is assigned, it does not change 224 

during validation. 225 

PLSR models were validated using test-set validation.  PV values are calculated for 226 

tourmaline spectra not used to calibrate the PLSR model. The VAD determined during 227 

calibration is used to predict whether each spectrum in the validation set belongs to the locality 228 

of interest or the group of the remaining localities.  The prediction accuracy is calculated as the 229 
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percent of correctly assigned test-set spectra for which locality information is known. For 230 

example, Model 1 evaluates São José da Batalha (SJdB) samples. Applying the VAD of 0.45 to 231 

the spectra not used in the calibration set, all of the São José da Batalha samples are predicted to 232 

be from this locality as well as one African sample, and the other samples are predicted to belong 233 

to the group of remaining samples (Fig. 3).  Thus, Model 1 is 96% successful, one sample is 234 

miscategorized. Once validated, the decision tree of PLSR plots is developed for each remaining 235 

group of samples (RGdN, Moz, Nig). 236 

Each PLSR model identifies spectra that belong to one group (i.e. the geographic 237 

locality).  After a group is distinguished, those samples are removed from the dataset and all 238 

subsequent models. In this case, São José da Batalha samples in Model 1 are removed. The order 239 

of the models may be critical to obtaining sufficient separation of samples. Each model is 240 

determined by choosing the compositionally most distinct group at each step, as defined by the 241 

relationships on a PCA score plot.  Because the most distinct group is always eliminated, the 242 

samples near the final decision tree are those with the most compositional similarities.  243 

Typically, samples in those groups are indistinguishable from each other when modeled in the 244 

presence of the other samples, but the small differences between them can be extracted and used 245 

to separate these groups when they are modeled in isolation after the other groups are removed. 246 

Electron Microprobe Analysis (EMP) 247 

To test the applicability of the multivariate statistical approach on widely available 248 

tourmaline compositional data from EMP, a subset of 15 tourmaline samples for which LIBS 249 

data were obtained (Fig. 4a-c; 5 grains – Brazil; 6 Mozambique; 4 Nigeria; and two additional 250 

samples), were analyzed by wavelength dispersive spectrometry using the JEOL 8230 electron 251 

microprobe at LSU.  Quantitative compositional analyses for major and minor elements were 252 
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obtained at an accelerating potential of 15kV and a 10 nA beam current using a 2-micrometer 253 

spot size, with Na analyzed first.  Natural minerals and synthetic materials were used as 254 

standards including andalusite (Al), diopside (Ca, Mg, Si), fayalite (Fe), chromite (Cr), kaersutite 255 

(Ti), rhodonite (Mn), willemite (Zn), chalcopyrite (Cu), galena (Pb), albite (Na), sanidine (K), 256 

fluorite or fluor-phlogopite (F), tugtupite (Cl) with synthetic Bi2Te3 (Bi), V-diopside glass (V), 257 

and GaAs (Ga). EMP detection limits are given in the Supplemental Data. Lithium, H or B 258 

cannot be effectively analyzed by the EMP and were not included in the data modeled. Two 259 

well-characterized elbaite tourmalines served as secondary standards.  Count times for major 260 

elements were 10 s on the peak, 20 s on the background and for minor and trace elements 60 s 261 

peak, 30 s background. Analytical precision is estimated to be ±1 percent relative for the major 262 

elements and ± 5 % for the minor elements. Where color zoning is apparent, analytical traverses 263 

were made across the samples; in other cases, 10 – 30 analytical spots per grain were randomly 264 

selected.  265 

Mineral formulae were normalized following the recommended procedures Henry et al. 266 

(2011) permitting B, H and Fe3+ to be calculated based on stoichiometry and charge balance and 267 

Li estimated by the procedures of Pesquera et al. (2016). Calculating atoms per formula unit 268 

(apfu) served as an additional quality check for EMP data but the normalized data are not used 269 

for the statistical analysis. To avoid calculation artifacts, oxide weight percentages of measured 270 

elements were used for multivariate statistical modeling and are given in the Supplemental Data. 271 

Evaluating the efficacy of multivariate statistical models for separating provenance of 272 

paraíba tourmaline using EMP data followed the same methodology as for separating the LIBS 273 

data. However, only 18 variables per chemical analysis are available for modeling. Although the 274 

data set comprised 295 analyses, only 15 samples were analyzed.  All analyses for each sample 275 
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were restricted to either the calibration or the validation set to ensure that the models focus on 276 

fundamental characteristics of the tourmalines rather than simply identifying analyses from the 277 

same sample. Because of the low number of samples, calibrations were based on analyses from 278 

2-4 samples per country and models were validated with two samples from each country. As a 279 

result, the calibration set comprised analyses from four (Mozambique), three (Brazil), or two 280 

(Nigeria) samples and the validation set comprised analyses from two samples from each 281 

country.   282 

RESULTS 283 

Copper-bearing tourmalines analyzed in this study included elbaite or fluor-elbaite 284 

species; no samples of the rare Cu-bearing fluor-liddicoatite species were included. 285 

Representative EMP analyses for each geographic locality are given in Table 1. Cu-bearing 286 

fluor-liddicoatites are Ca-dominant from Mozambique (Katsurada and Sun 2017) and their 287 

geographic origin is easily determined based on the Ca-dominance of the tourmaline.  288 

Multivariate statistics using LIBS data 289 

LIBS spectra (unmasked) for the Cu-bearing elbaites display prominent Na, Al, Si, Li, 290 

and B peaks, in addition to Cu and Mn peaks as expected (Fig. 5). In several samples, LIBS 291 

detected minor and trace elements such as K, Mg, Bi, Zn, Ga, and Sr. The presence of these 292 

elements were confirmed by previous LA-ICP-MS analyses of paraíba tourmaline (Z. Sun, 293 

personal communication). Although Ca and Mg are minor components, the high intensity of 294 

these emission lines reflects the relatively low ionization energy of the alkaline earth elements 295 

(Cremers and Radziemski 2013).   296 

The decision tree for these sample suites consists of three models (Fig. 6; Dutrow et al. 297 

2019).  In an initial PCA that includes all the tourmaline spectra from the four localities (São 298 
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José da Batalha, Brazil, SJdB; Rio Grande do Norte, Brazil, RGdN; Mozambique; and Nigeria), 299 

no single group clustered tightly and the groups overlapped in PC1-PC2 space (Fig. 7).  The 300 

SJdB spectra were chosen as the first group to model because the São José da Batalha, Brazil 301 

PLSR model had the highest success rate of all possible first models.  Model 1, which classifies 302 

spectra as either belonging to the SJdB group or to the group of all other tourmalines, is excellent 303 

(Fig. 6), despite the overlap of groups in PCA space (Fig. 7).  The calibration shows separation 304 

between the groups with a VAD of 0.45 (Fig. 3).  The validation is 96% successful, correctly 305 

classifying 25 of 26 samples.  The one false positive is a sample of Nigerian tourmaline 306 

classified as SJdB.  307 

The spectra of SJdB tourmalines were removed from all subsequent models.  Model 2 308 

classifies spectra as belonging to RGdN or to the group of all other tourmalines (Mozambique 309 

and Nigeria).  There is clear separation between the two groups in the calibration of Model 2 310 

(Fig. 3), which used a VAD  = 0.50 value.  The validation is 96% successful, correctly predicting 311 

the provenance of 22 of 23 samples (Fig. 3,6).  Again, one Nigerian sample yielded false positive 312 

results.  This sample is the same as that which was incorrectly classified as SJdB in Model 1. 313 

Finally, Model 3 discriminates between tourmaline spectra from Nigeria and 314 

Mozambique (Fig. 6).  Spectra are well-separated in the calibration with a VAD= 0.52 (Model 3; 315 

Fig. 3).  The calibration is 94% successful, correctly classifying 16 of 17 samples.  One Nigerian 316 

sample was misclassified as belonging to the Mozambique group; however, it is a different 317 

sample than the false positive sample in Models 1 and 2. The consistent misclassification of 318 

Nigerian samples suggests that the sample set is too small to be representative of the actual 319 

dispersion of compositions. Alternatively, on visual examination, this sample has a saw mark 320 

which may have left a surface contamination or varied the surface texture of the sample that 321 
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affected plasma properties.  Overall, the decision tree correctly classified 63 of 66 spectra (one 322 

spectrum per sample) resulting in an cumulative prediction accuracy of 95%.  The overall true 323 

positive rate (only considering the location assigned to PV 1) is 94% (16 of 17; Fig. 3). 324 

Based on the success of the previous geographic modeling, the geographic origin of two 325 

unknown Brazilian samples was predicted. Using the LIBS decision tree developed, both 326 

unknown samples classify as being from the Rio Grande do Norte, Brazil, locality. 327 

Multivariate statistics using EMP data 328 

A more widely used analytical technique for characterizing tourmaline mineral chemical 329 

is by electron probe microanalyses (EMP). As such, this multivariate statistical approach was 330 

developed using an EMP analytical dataset obtained for a subset of the tourmalines for which 331 

LIBS data had been acquired (see Supplemental Data for all oxide weight percentages used for 332 

multivariate statistics).  Importantly, in addition to the major elements, Cu, Mn and F are present 333 

in the tourmalines in amounts readily analyzed by the EMP. F is not easily detected by LIBS but 334 

is with EMP.  Vanadium, Cr and Pb are at, or below, EMP detection limits (Supplemental Data).  335 

Modeling EMP data with multivariate statistics followed similar procedures as the 336 

modeling for the LIBS data. Because of the smaller sample set size, both Brazilian localities 337 

were combined. The character of the EMP data set is different than the LIBS data set, in which 338 

each sample is represented by a single spectrum.  For EMP data, 10-30 points were analyzed for 339 

each of the 15 tourmaline samples (Brazil: 5; Mozambique: 6; Nigeria: 4) resulting in a total of 340 

295 analyses.  This data set captures the variability within each sample well, but there are too 341 

few samples to be representative of the variability within each country of origin. 342 

A PCA score plot for the calibration EMP analyses in the models shows good clustering 343 

for analyses of each tourmaline sample but lacks distinct clustering of samples from each country 344 
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(Fig. 8).  Some relationships are consistent with those found via LIBS.  For example, the 345 

Brazilian samples plot at negative values of PC2 over a large range of PC1 values. The Nigerian 346 

and Mozambican samples cover broad areas that intersect near the origin of the score plot.  347 

Analysis of more samples could help the PCA discern different relationships that might provide 348 

better separation of the groups. 349 

PLSR is a supervised method, where the variables (EMP analyses) are correlated with 350 

known Provenance Variables (PV).  Because of this, PLSR models can be successful, regardless 351 

of messy relationships in PCA.  Model 1 in the EMP decision tree (Fig. 9) separates Brazilian 352 

tourmaline analyses from the group of Mozambican and Nigerian samples.  The calibration is 353 

96% successful, correctly predicting the origin of 173 of 180 calibration samples with a VAD of 354 

0.51 (Fig. 10).  The validation is also 96% successful, correctly predicting the origin 110 of 115 355 

analyses.  Five Brazilian analyses are predicted to belong to the group of all others; there are no 356 

false positives.   357 

Model 2 is more complex.  The calibration (Fig. 10) establishes relatively consistent 358 

Provenance Variable values for Mozambican calibration analyses with an average near 1 359 

(average = 0.91, range = 0.36-1.36, standard deviation = 0.18).  In contrast, the PV values 360 

calculated for Nigerian samples, while less than 1, are different from each other.  One sample 361 

clusters at an average of 0.45 and the other with an average of 0.03 (Fig. 10).  Because one 362 

Nigerian sample has relatively high calculated PV values, the VAD that results in the best model 363 

success is 0.62.  This VAD value results in a calibration accuracy of 97% (112 correct 364 

predictions of 115), with two false negatives and one false positive.  However, this VAD value is 365 

not the best choice for the validation (Fig. 10).  A higher VAD would have yielded a higher 366 

success, as all of the Mozambican validated analyses have fairly high calculated PV values, as do 367 
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19 of the 40 Nigerian validation analyses.  This results in a prediction accuracy of 75% for this 368 

model (Fig. 9, 10; 56 of 75 analyses).  More samples with analytical data are needed to calculate 369 

more successful models.  Overall, the EMPA decision tree correctly predicts the country of 370 

origin of 87% of the analyses.   371 

DISCUSSION 372 

These combined results underscore the utility of multivariate analyses for separating 373 

likely geographic source localities of compositionally similar minerals as demonstrated by 374 

elbaitic tourmalines. Significantly, these outcomes result in separation of geographic localities 375 

using considerably different mineral chemical acquisition techniques. For both techniques, the 376 

high prediction accuracy of modeling suggests that even with a limited dataset, subtle variations 377 

in chemical components, when taken as a whole, can provide important signatures of the source 378 

region. While the power of the data-rich LIBS spectra coupled with multivariate statistics has 379 

been previously demonstrated for separating locality information (e.g., Hark et al. 2012; 380 

McMillan et al. 2012; Schenk and Almirall 2012; Kochelek et al. 2015; Gyftokostas et al. 2020), 381 

multivariate statistics has not been demonstrated as a useful tool for separating localities using 382 

the widely available EMP data. For the LIBS technique, intensity of the emission lines reflects a 383 

combination of the elemental abundance and the emissivity properties. Separating localities in 384 

this dataset required masking peaks from select major elements in part, because they hid more 385 

subtle and meaningful chemical variations. In contrast, for the quantitative EMP data, subtle 386 

differences in minor elements facilitated separation of geographic localities. However, because 387 

of the smaller sample suite, only broad categories could be distinguished. More EMP data from 388 

additional samples of each locality would further refine this procedure.  389 

Loading plots (Fig.11) exhibit the influence of each variable (elemental concentration for 390 
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EMPA and wavelength intensity for LIBS) on the direction of the principal component through 391 

the data set. Variables with values close to zero have minimal impact on the PC and are 392 

approximately the same in the samples as in the model.  Variables with high positive values 393 

strongly influence the direction of the PC, have different values in the samples, and increase in 394 

concentration/intensity in the positive direction of the PC on a score plot.  Variables with high 395 

negative values are similar except that they increase in concentration/intensity in the negative 396 

direction of the PC.  PCA models for each pair of localities were calculated for both LIBS and 397 

EMP datasets (Figs. 7 and 8, respectively); representative loading plots are presented in Figure 398 

11.  For the EMP data, score plots of PCA data indicated a more significant influence of 399 

elements Mn, Cu, Al, Ca, and F with lesser influences of K when separating sources (Fig. 11). 400 

Previous paraíba provenance determinations typically use the quantities of six elements (Cu, Zn, 401 

Ga, Sr, Sn, Pb), obtained by LA-ICP-MS, for discrimination of geographic source (e.g., 402 

Katsurada et al. 2019).  While Cu-Zn-Pb are more readily acquired by EMP and Ga to some 403 

degree, Pb and Sn are generally below EMP detection limits (typically <0.001 wt% oxide). 404 

Although these elements are below detection in EMP datasets, they are not for LIBS data 405 

acquisition. The dominant elements in LIBS loading plots are Cu, Mn, Fe, Mg, Ti, Zn, K, H, Co, 406 

V, Li, and Na. Interestingly, Ca, Sr, Sn, and Pb were not observed in loading plots for the LIBS 407 

data, suggesting these elements did not exert a major influence on the separation of localities for 408 

tourmalines studied here (Fig. 11). That implies less that there is something missing from LIBS, 409 

but, perhaps, that different elements may enhance geographic discrimination (e.g. K, Bi, Mn, F). 410 

Such information allows development of alternative diagrams for facilitating provenance 411 

determination with compositions determined by LA-ICP-MS.  Additionally, this study indicates 412 

that statistical analyses of the two techniques, LIBS and EMP, emphasize different elements. 413 
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Even with the analytical limitations of each technique, robust results for geographic provenance 414 

are attained. 415 

While the high success for discriminating provenance of remarkably similar tourmaline 416 

compositions is encouraging, there are caveats. The paraíba sample set analyzed here is 417 

relatively small with limited variability, in part due to the rarity and cost of materials. No Ca-418 

dominant Cu-bearing tourmalines were among those analyzed, although these are 419 

straightforward to distinguish chemically by their Ca concentrations. Not all Cu-bearing 420 

tourmalines analyzed display the characteristic “neon” blue hue of the prized Paraíba tourmalines 421 

(Fig. 1). Green, greenish-blue and violet hues were included in the sample sets to capture the 422 

likely range of chemical variability for Cu-bearing tourmalines. Additionally, a large area is 423 

needed for the optimal number of LIBS analyses coupled with the 80-micrometer spot size. If the 424 

sample is zoned, the LIBS analytical spot can include overlapping chemical zones unlike data 425 

obtained with the EMP. Other multivariate techniques such as Bayesian Statistics (e.g., 426 

McManus et al. 2018) or machine learning algorithms might enhance the discrimination further.  427 

Overall, these data demonstrate that spectra obtained by LIBS can be used to provide 428 

provenance discrimination when coupled with multivariate statistics. Analyses are rapid with 429 

minimal required sample preparation. Loading plots facilitate identification of important 430 

elements in discriminating sample localities and can be used to decipher potentially new criteria 431 

for provenance determination. Moreover, multivariate analyses of EMP data also allow 432 

categories to be differentiated based on more readily obtained chemical data. Application of the 433 

multivariate statistics to EMP data suggest that K, Bi, Mn and F may be additional provenance 434 

discriminators.  Together these data elucidate elements most useful for geographic discrimination 435 

of localities and the sourcing of paraíba tourmaline.  436 
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GEOLOGIC IMPLICATIONS 437 
 438 

Determining the provenance of mineral grains separated from their host rock has, for example, 439 

revolutionized paleogeographic reconstructions, and provided new data on uplift histories and 440 

drainage basin development. While many provenance studies rely on zircon ages, expanding the 441 

types of detrital minerals used for provenance determination adds new, unexpected opportunities 442 

for past geologic reconstructions – the tourmaline source rock types, and for some compositions, 443 

the geographic locality can be distinguished. Additionally, in this time of conflict minerals, it is 444 

critically important to be able to source conflict gems and metals. This study provides a case 445 

study for new methods that allow minerals of very similar compositions to be separated based on 446 

chemical parameters. This study shows, for the first time, the power of multivariate statistics 447 

applied to EMP data for separating tourmaline localities.   Multivariate statistics applied to LIBS 448 

and EMP data provide a robust tool for provenance discrimination of Paraiba tourmalines, 449 

distinguishing Brazilian-sourced samples from African-sourced materials. Accurate sourcing of 450 

gemstones has economic implications as does the sourcing of conflict stones, particularly when 451 

economic sanctions may be in place.  452 
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 593 
List of Figure Captions  594 
 595 
Figure 1. Photo of a rough and facetted Paraíba tourmaline displaying the desired brillant neon 596 

blue color. Crystal weighs 8.80 ct, from Brazil. The facetted stone is a 10.91 ct neon blue Paraiba 597 

tourmaline (no heat) from the Batalha mine, Brazil. Cut gem courtesy of a Private Collector and 598 

Mona Lee Nesseth, Custom Estate Jewels. Photo composite: Robert Weldon/© GIA. Used by 599 

permission of GIA. 600 

 601 

Figure 2. Selection of rough Paraiba tourmaline samples from the four localities used for LIBS 602 

investigation. (a) São José de Batalha, Brazil: Paraíba tourmaline samples with blue, green, 603 

purple and pink colors, and with notable color zoning, (b) Rio Grande do Norte, Brazil: Paraíba 604 

tourmaline samples with similar blue, green, purple, and pink colors,   (c) Mozambique: Paraíba 605 

tourmaline samples with blue, green, lavender and pink colors, and (d) Nigeria: Blue and green 606 

Paraíba tourmaline samples (see Appendix 1 for more details).  607 

 608 
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Figure 3. Graphs showing the calibration (left column) and validation (right column) results for 609 

the LIBS decision tree based on geographic locality. Samples used in the calibration set were not 610 

used in the validation set, leading to a different data distribution. The value of apparent 611 

distinction (VAD) determined in the calibration, shown as a dashed line, remains the same in the 612 

validation set. Note the change in scale. Each model indicates the number of samples correctly 613 

identified of the total number of samples from that locality and is given as a percent success. 614 

Because Mozambique is the final locality distinguished, it has the same success as the final 615 

model – Nigeria. Overall, 95% of validation spectra were correctly classified. See text for details. 616 

 617 

Figure 4. Selection of polished paraíba tourmaline samples, in epoxy, used for EMP data 618 

collection with sample numbers. (a) Color-zoned Brazilian paraíba tourmaline grain from the 619 

São José de Batalha (SJdB) and Rio Grande do Norte (BZ) localities. White arrow shows the 620 

location of a detailed EMP traverse. (b) Variety of colored Paraiba tourmaline grains from 621 

Mozambique. (c) Paraíba tourmaline grains from Nigeria. (see Table 1; Appendix 1; and 622 

Supplemental Data for more information). 623 

 624 

Figure 5. Representative LIBS spectrum from each of the four different localities for paraíba 625 

tourmaline, stacked to show alignment of peaks. Brazilian localities are separated into: Brazil, 626 

SJdB for São José de Batalha; and Brazil, RGdN for Rio Grande do Norte. Selected major and 627 

minor elements are labeled. The black vertical line combines a number of features, two Ca and 628 

two Al emission lines within the labeling line.  629 

 630 
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Figure 6. Decision tree for PSLR modeling of LIBS spectra for paraíba tourmalines shown with 631 

percent correctly predicted (success) for each locality.  After locality samples are modeled, they 632 

are removed from all subsequent models. Numerical value of 1 refers to samples belonging to 633 

that model dataset, 0 indicates all others. See Fig. 3 and text for details. 634 

 635 

Figure 7.  PCA score plot calculated using LIBS spectra of paraíba tourmaline samples from 636 

four localities, shown by different symbols.  Samples from different localities overlap and lack 637 

distinct data clustering per locality. PC1 accounts for 36% of the variance in the dataset; PC2 638 

accounts for 13%.  PCA plots are used to determine the sequence of PLSR models. 639 

 640 

Figure 8.  PCA score plot for all EMP analyses used in this study. Specific samples and 641 

localities are given in different colors and symbols by sample number. Analyses from each 642 

sample plot in discrete clusters, but clear distinctions between tourmalines from different 643 

countries are not apparent.  644 

 645 

Figure 9. PLSR decision tree based on EMP data with percent of the samples correctly identified 646 

as belonging to the known locality shown as success. Both localities in Brazil were grouped 647 

together because of the small sample set and represented by “Brazil”. See Fig. 6 for details. 648 

 649 

Figure 10.  Calibration (left) and validation (right) results for EMP decision tree. The dashed 650 

line indicates the selected VAD, value of apparent distinction. Each colored symbol represents a 651 

different locality as given. Overall, 87% of validation analyses were correctly classified. 652 

 653 
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Figure 11.  Representative loading plots for PCA models of tourmaline compositions by EMP 654 

(A. and B.) and LIBS (C. and D.).  Variables (elements for EMP and peaks for LIBS) that 655 

influence the direction of the principal component through the data set have high positive or 656 

negative values, depending on the direction of the influence.  These elements exist at different 657 

concentrations in the samples modeled.  Variables with values close to zero do not vary 658 

significantly among the samples.  659 

 660 

  661 
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Appendix Text 662 
Appendix 1: Tourmaline samples used in the LIBS and EMP study 663 
 664 

Sample 

location / 

region 

Sample number (all 

used for LIBS) 
EMP 

 

Sample 

type 

Description Source 

Brazil 

     
Rio Grande 
del Norte 18-BZ-Rgdn-bd-1  

Crystals 
(xls) 

chip, prismatic zoned 
crystals with pink core and 
blue rims; In Ab 

Dutrow 

Rio Grande 
del Norte 18-BZ-Rgdn-bd-2  xls 

billet with 2 lg xls, prismatic 
zoned xl - pink-blue, other 
chips with pink/blue/black, 
all low peaks 

Dutrow 

Rio Grande 
del Norte 18-BZ-Par-1  xl 1.5 cm xl, zoned - blue-pink, 

cats eye fibers on one side Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-2 x xl 1 cm xl, zoned - blue-pink Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-3  xl 1 cm xl, zoned - blue-pink. 

Half xl Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-4  xl 1 cm thin xl, zoned - blue-

pink Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-5  grain 0.5 cm xl, zoned - mostly 

pink some blue Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-6  grain 0.5 cm grain mostly dk pink Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-7  grain 0.5 cm grain mostly dk pink Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-8  grain 0.5 cm grain mostly dk pink Brian Cook (purchase) 

Rio Grande 
del Norte 18-BZ-Par-9 x grain 0.3 cm grain mostly dk pink Brian Cook (purchase) 

 Brazil – 
unknown 
region 

18-BZ-Par-unk - 1 x 4 grains t.s. billet, thin section Dutrow 

 Brazil – 
unknown 
region 

18-BZ-Par-unk - 2 x grain 2x2 cm single xl; zoned with 
pink/blue Dutrow 

           
São José de 
Batalha 19-BZ-SJdB-par-10 x grain 1 cm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 

São José de 
Batalha 19-BZ-SJdB-par-11  grain 3 mm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 



Revision 1.0 

 32 

São José de 
Batalha 19-BZ-SJdB-par-12 x grain 3 mm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 

São José de 
Batalha 19-BZ-SJdB-par-13  grain 3mm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 

São José de 
Batalha 19-BZ-SJdB-par-14 x grain 5 mm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 

São José de 
Batalha 19-BZ-SJdB-par-15  grain 3mm thin xl, zoned - blue-

pink 
Beija Flor Gems - Robert 
Van Wagoner (donation) 

  Mozambique        

  18-Moz-Par-1 
 

grain 1 cm pale blue with pink rim Paul Wild (donation) 

  18-Moz-Par-2 
 

grain blue - 6 mm Paul Wild (donation) 

  18-Moz-Par-3 
 

grain pale green-blue - 1 cm Paul Wild (donation) 

  18-Moz-Par-4 
 

grain pale green - I cm Paul Wild (donation) 

  18-Moz-Par-5 x grain blue-green  Paul Wild (donation) 

  18-Moz-Par-6 
 

grain pink - 5 mm Paul Wild (donation) 

  18-Moz-Par-7 
 

grain blue - green - 5 mm Paul Wild (donation) 

  18-Moz-Par-8 
 

grain pale-blue - 3mm Paul Wild (donation) 

  18-Moz-Par-9 
 

grain pale-blue green - 7 mm Paul Wild (donation) 

  18-Moz-Par-10 x grain light purple  Paul Wild (donation) 

  18-Moz-Par-11 
 

grain blue-green - 6 mm Paul Wild (donation) 

  18-Moz-Par-12 
 

grain pink - 1 cm Paul Wild (donation) 

  18-Moz-Par-13 
 

grain pale-green - 5 mm Paul Wild (donation) 

  18-Moz-Par-14 x grain blue-green  Paul Wild (donation) 

  18-Moz-Par-15 
 

grain light-blue- green - 7 mm Paul Wild (donation) 

  18-Moz-Par-16 
 

grain light-green - 1 cm Paul Wild (donation) 

  18-Moz-Par-17 
 

grain blue - 1 cm  Paul Wild (donation) 
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  18-Moz-Par-18 x grain blue  Paul Wild (donation) 

  18-Moz-Par-19 
 

grain pink - 7 mm Paul Wild (donation) 

  18-Moz-Par-20 x grain blue and pink  Paul Wild (donation) 

  18-Moz-Par-21 
 

grain green - 1 cm Paul Wild (donation) 

  18-Moz-Par-22 
 

grain pale-blue - 1 cm Paul Wild (donation) 

  18-Moz-Par-23 x grain pink  Paul Wild (donation) 

  18-Moz-Par-24 
 

grain light-blue - 1 cm Paul Wild (donation) 

    
 

      
  Nigeria 

 
    Paul Wild (donation) 

  18-Nig-Par-1 
 

grain dark green - 1.5 cm Paul Wild (donation) 
  18-Nig-Par-2 

 
grain green - 1 cm Paul Wild (donation) 

  18-Nig-Par-3 x grain green  Paul Wild (donation) 

  18-Nig-Par-4 
 

grain light blue-green 1 cm  Paul Wild (donation) 

  18-Nig-Par-5 
 

grain light green - 1 cm Paul Wild (donation) 

  18-Nig-Par-6 
 

grain light green - 5 mm Paul Wild (donation) 

  18-Nig-Par-7 x grain green  Paul Wild (donation) 

  18-Nig-Par-8 
 

grain light green - 5 mm Paul Wild (donation) 

  18-Nig-Par-9 x grain green  Paul Wild (donation) 

  18-Nig-Par-10 x grain green  Paul Wild (donation) 

  18-Nig-Par-11 
 

grain light green - 3 mm Paul Wild (donation) 

 665 



TABLE 1. Representative Paraiba tourmaline analyses of blue regions, average grain compositions and Maximum/Minimum values of the grains. 

Location Brazil, Rio Grande do Norte Brazil, São José de Batalha 
 

Mozambique 
 

Nigeria 
 Sample # 18-BZ-Par-2bc 

  

19-BZ-SJbB-12 
  

18-Moz-Par-20 
  

18-Nig-Par-10 
  

Analysis #12 
Grain 

average 
Max Min #15 

Grain 
average 

Max Min #8 
Grain 

average 
Max Min #10 

Grain 
Average 

Max Min 

  B2O3
a 11.07 11.03 

  
11.04 11.04 

  
11.05 11.08 

  
10.99 11.05 

  
  SiO2 37.32 37.39 37.96 36.93 37.45 37.46 38.22 36.95 38.09 38.16 38.51 37.53 37.60 37.93 37.93 37.16 

  Al2O3 41.75 40.79 42.00 38.82 41.25 41.47 42.23 40.92 40.72 41.10 42.79 40.56 41.08 41.06 41.66 40.56 

  TiO2 0.00 0.03 0.10 0.00 0.03 0.01 0.06 0.00 0.01 0.01 0.06 0.00 0.08 0.06 0.08 0.00 

  V2O3 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.02 0.00 

  Cr2O3 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 

  Fe2O3
 a 0.00 0.05 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  FeO 0.00 0.00 0.18 0.00 0.00 0.03 0.00 0.00 0.01 0.02 0.04 0.00 0.02 0.19 0.19 0.00 

  MnO 0.59 1.44 2.34 0.06 0.14 0.73 1.47 0.01 1.02 0.86 1.02 0.56 1.41 1.82 1.82 1.36 

  MgO 0.00 0.01 0.08 0.00 0.00 0.01 0.09 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 

  ZnO 0.00 0.45 2.24 0.00 0.00 0.08 0.51 0.00 0.15 0.15 0.19 0.04 0.03 0.00 0.05 0.00 

  CuO 1.47 1.03 1.89 0.34 1.41 0.98 1.67 0.44 0.40 0.32 0.42 0.18 0.36 0.23 0.50 0.20 

  Li2O b 1.84 1.82 
  

1.99 1.86 
  

1.99 1.97 
  

1.82 1.76 
  

  CaO 0.37 0.23 0.51 0.06 0.26 0.31 0.55 0.08 0.76 0.71 0.82 0.31 0.35 0.30 0.38 0.28 

  PbO 0.02 0.01 0.05 0.00 0.00 0.01 0.03 0.00 0.07 0.08 0.12 0.04 0.00 0.00 0.05 0.00 

  Na2O 2.08 2.14 2.57 1.87 2.05 1.98 2.19 1.82 1.99 1.97 2.08 1.90 1.97 2.09 2.15 1.97 

  K2O 0.02 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.00 

  Bi2O3 0.03 0.05 0.34 0.00 0.14 0.06 0.28 0.00 0.01 0.02 0.06 0.00 0.15 0.08 0.16 0.07 

  F 1.10 1.03 1.34 0.68 0.80 0.94 1.33 0.75 1.22 1.08 1.29 0.71 0.95 1.07 1.20 0.80 

  Cl 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 

  H2O a 3.25 3.32 
  

3.43 3.33 
  

3.09 3.14 
  

3.20 3.12 
  

Subtotal 100.89 100.83 
  

99.99 100.31 
  

100.60 100.68 
  

100.02 100.76 
  

  O=F 0.46 0.43 
  

0.34 0.40 
  

0.51 0.46 
  

0.40 0.45 
  

Total 100.43 100.40 
  

99.66 99.91 
  

100.09 100.23 
  

99.62 100.32 
  

 

     
15 Y+Z+T cation normalization 

 B site: B a 3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

 
                



T site: Si   5.861 5.893 
  

5.897 5.898 
  

5.990 5.985 
  

5.944 5.947 
  

   B 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

  Al    0.139 0.107 
  

0.103 0.102 
  

0.010 0.015 
  

0.056 0.053 
  

T site total 6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

 
                

Al (total) 7.726 7.575 
  

7.656 7.693 
  

7.548 7.597 
  

7.654 7.652 
  

 
                

Z site: Al 6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

   Cr3+ 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   V3+ 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   Fe3+ a 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   Mg 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

Z site total 6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

6.000 6.000 
  

 
                

Y site: Al 1.587 1.468 
  

1.553 1.591 
  

1.538 1.582 
  

1.598 1.599 
  

   Ti 0.000 0.003 
  

0.003 0.002 
  

0.001 0.001 
  

0.009 0.003 
  

   V3+ 0.000 0.000 
  

0.000 0.001 
  

0.000 0.001 
  

0.000 0.001 
  

   Cr3+ 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   Fe3+ a 0.000 0.006 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   Fe2+ 0.000 0.000 
  

0.000 0.004 
  

0.001 0.002 
  

0.002 0.009 
  

   Mn2+ 0.078 0.193 
  

0.019 0.097 
  

0.135 0.114 
  

0.188 0.211 
  

   Mg 0.000 0.003 
  

0.000 0.002 
  

0.003 0.001 
  

0.000 0.000 
  

   Zn 0.000 0.052 
  

0.000 0.009 
  

0.018 0.017 
  

0.004 0.001 
  

   Cu 0.174 0.123 
  

0.167 0.117 
  

0.047 0.037 
  

0.043 0.040 
  

   Li a  1.160 1.151 
  

1.257 1.178 
  

1.256 1.245 
  

1.155 1.137 
  

Y-site total 3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

 
                

X site: Ca 0.061 0.039 
  

0.045 0.052 
  

0.129 0.120 
  

0.058 0.052 
  

    Pb 0.001 0.000 
  

0.000 0.000 
  

0.003 0.003 
  

0.000 0.001 
  

    Na 0.633 0.653 
  

0.627 0.603 
  

0.607 0.599 
  

0.605 0.628 
  

    K 0.004 0.003 
  

0.001 0.002 
  

0.002 0.003 
  

0.003 0.003 
  

   Bi3+ 0.001 0.002 
  

0.006 0.002 
  

0.000 0.001 
  

0.006 0.005 
  

X-site vacancy 0.300 0.303 
  

0.322 0.340 
  

0.259 0.275 
  

0.328 0.311 
  

X-site total 1.000 1.000 
  

1.000 1.000 
  

1.000 1.000 
  

1.000 1.000 
  



 
                

V+W site: OH  3.401 3.488 
  

3.602 3.501 
  

3.245 3.286 
  

3.377 3.328 
  

 
                

   V site: OH a 3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

3.000 3.000 
  

   V site: O 0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

0.000 0.000 
  

   W site OH a 0.401 0.488 
  

0.602 0.501 
  

0.245 0.286 
  

0.377 0.328 
  

   W site: F 0.546 0.512 
  

0.398 0.467 
  

0.605 0.538 
  

0.474 0.505 
  

   W site: Cl 0.000 0.001 
  

0.000 0.001 
  

0.000 0.000 
  

0.000 0.000 
  

   W site O 0.053 0.000 
  

0.000 0.031 
  

0.150 0.176 
  

0.149 0.166 
  

V,W-site total 4.000 4.000 
  

4.000 4.000 
  

4.000 4.000 
  

4.000 4.000 
  

   
              

species 
Fluor-
elbaite 

Fluor-
elbaite 

  

Elbaite Elbaite 

  

Fluor-
elbaite 

Fluor-
elbaite 

  

Fluor-
elbaite 

Fluor-
elbaite 

  Notes: Minimum detection limits of minor and trace elements (in wt% oxides): TiO2 = 0.007; V2O3, Cr2O3 = 0.013; FeO, MnO, MgO = 0.016; ZnO = 0.026; PbO= 0.021; K2O = 0.009. 

a Calculated based on stoichiometry and/or charge balance. 
b Calculated based on the Li-estimation procedures of Pesquera et al. (2016) 
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