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ABSTRACT 19 

Apatite major and trace element chemistry is a widely used tracer of mineralization, as it 20 

sensitively records the characteristics of the magmatic-hydrothermal system at the time of its 21 

crystallization. Previous studies have proposed useful indicators and binary discrimination 22 

diagrams to distinguish between apatites from mineralized and unmineralized rocks; however, 23 

their efficiency has been found to be somewhat limited in other systems and larger scale datasets. 24 

This work applied a machine learning (ML) method to classify the chemical compositions of 25 

apatites from both fertile and barren rocks, aiming to help determine the mineralization potential 26 

of unknown system. Approximately 13,328 apatite compositional analyses were compiled and 27 

labeled from 241 locations in 27 countries worldwide, and three apatite geochemical datasets 28 

were established for XGBoost ML model training. The classification results suggest that the 29 

developed models (accuracy: 0.851–0.992; F1 score: 0.839–0.993) are much more accurate and 30 

efficient than conventional methods (accuracy: 0.242–0.553). Feature importance analysis of the 31 

models demonstrates that Cl, F, S, V, Sr/Y, V/Y, Eu*, (La/Yb)N, and La/Sm are important 32 

variables in apatite that discriminate fertile and barren host rocks and indicates that V/Y and Cl/F 33 

ratios and the S content, in particular,  are crucial parameters to discriminating metal enrichment 34 

and mineralization potential. This study suggests that ML is a robust tool for processing high-35 

dimensional geochemical data and presents a novel approach that can be applied to mineral 36 

exploration. 37 

Keywords: Apatite; Major and Trace Element; Machine Learning; Mineralization Potential; 38 

XGBoost 39 
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INTRODUCTION 40 

Apatite (Ca5[PO4]3[F,Cl,OH]) is a ubiquitous accessory mineral in most igneous and 41 

metamorphic rocks and derived clastic sediments and is relatively resistant to weathering 42 

(O'Sullivan et al., 2020). It is considered to be an ideal indicator mineral, given its chemical 43 

composition sensitivity to the crystallization environment (Bruand et al., 2017; Mao et al., 2016). 44 

Trace elements and volatile chemistry and isotopic signature of apatites can characterize diverse 45 

crystallization environments, including magmatic systems (Cao et al., 2022; Gao et al., 2020; Li 46 

et al., 2021; Long et al., 2023; Palma et al., 2019; Qu et al., 2021; Tang et al., 2021; Xu et al., 47 

2023; Zhang et al., 2021), low-grade metamorphic systems (Bea and Montero, 1999; El Korh et 48 

al., 2009; Henrichs et al., 2018; Nutman, 2007), and sedimentary environments (Joosu et al., 49 

2016). Accordingly, the trace element chemistry of apatite is widely used to characterize the 50 

lithology of source rocks (Belousova et al., 2002), including tracing detrital provenance (Bruand 51 

et al., 2017; Dill, 1994; O'Sullivan et al., 2018; O'Sullivan et al., 2020), and used to constrain 52 

petrogenetic process (Chu et al., 2009; La Cruz et al., 2020; Sun et al., 2022; Tollari et al., 2008; 53 

Zafar et al., 2019), especially for revealing the origin and evolution of magma (Gao et al., 2020; 54 

Meng et al., 2021; O'Reilly and Griffin, 2000) . Moreover, the major and trace element chemistry 55 

of apatite is applied to mineral exploration (Belousova et al., 2002; Cao et al., 2012; Mao et al., 56 

2016; Sha and Chappell, 1999; Xu et al., 2015). A series of indicators, including Sr/Y, Mn, 57 

Eu/Eu*, Th/U, La/Sm, and (Ce/Yb)N (Belousova et al., 2002), and several binary classification 58 

diagrams, such as Sr vs. F (Mn, Y, (La/Yb)N, Eu/Eu*), F/Cl vs. F (Azadbakht et al., 2018; Cao et 59 

al., 2012; Zhong et al., 2018), Cl vs. Eu/Eu* (Mao et al., 2016), V/Y vs. REE+Y, Cl vs. SO3, and 60 

87Sr/86Sr vs. Cl/F, are commonly used to diagnose the metallogenic fertility of magmatic rocks. 61 

(Xu et al., 2021). Unfortunately, as interest in apatite has recently increased and numerous major 62 
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and trace element data have been reported (Adlakha et al., 2018; Bruand et al., 2019; Cao et al., 63 

2022; Chakhmouradian et al., 2017; Chen and Zhang, 2018; Chen et al., 2019; Gao et al., 2020; 64 

Glorie et al., 2019; Henrichs et al., 2018; Hoshino et al., 2017; La Cruz et al., 2020; Li et al., 65 

2021; Liu et al., 2021; Long et al., 2023; Lupulescu et al., 2017; Meng et al., 2021; Mercer et al., 66 

2020; Palma et al., 2019; Qu et al., 2021; Sun et al., 2022; Tang et al., 2021; Xie et al., 2018; Xu 67 

et al., 2023; Yang et al., 2018; Zafar et al., 2019; Zhang et al., 2021), it is challenging to validate 68 

these individual indicators and binary discrimination techniques due to a large area overlap of 69 

compositional spots, suggesting that those traditional low-dimensional classifiers that seemed to 70 

work well in specific systems might be invalid in other systems or datasets of larger scales. 71 

Consequently, a novel data processing method that can handle high-dimensional compositional 72 

data is imperative for identifying robust indices to aid in exporing various systems for new 73 

mineral resources. 74 

The field of machine learning (ML) encompasses the use of computational algorithms to discern 75 

patterns within datasets, which can subsequently be applied to make predictions. ML offers a 76 

robust toolkit for decoding latent information within high-dimensional data. Over the past few 77 

years, there has been an explosion of interest in the applications of ML to solid Earth geoscience 78 

(Li et al., 2023). ML has been widely applied in earthquake phase detection and seismicity 79 

classification (Cianetti et al., 2021; Linville, 2022), geophysical data processing and image 80 

interpretation (Xiao et al., 2021), geophysical inversion (Cai et al., 2022), and multi-physical and 81 

multidisciplinary information integration. Given the complexity and diversity of geochemistry 82 

data, ML-based classification methods have emerged as a promising approach that outperforms 83 

conventional methods, especially in large-scale geological processes, such as in predicting 84 

mantle metasomatism worldwide (Qin et al., 2022), revealing source compositions of intraplate 85 
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basaltic rocks (Guo et al., 2021), identifying primary water concentrations in mantle pyroxene 86 

(Chen et al., 2021), determining the quartz-forming environments (Wang et al., 2021), and 87 

classifying the source rocks of detrital zircons (Zhong et al., 2023a, 2023b). In the field of 88 

mineral exploration, two studies tried to apply ML to characterize magma fertility based on 89 

zircon compositional data, aiming to identify porphyry copper mineralization potential (Zhou et 90 

al., 2022; Zou et al., 2022). Tan et al. (2023) employed partial least squares discriminant analysis 91 

(PLS-DA) to the apatite trace element dataset (4,298 data) to distinguish between apatites from 92 

different types of deposits and rocks. Their plots could not directly discriminate ore magmatic 93 

and hydrothermal apatites, but showed a great potential in classifying barren and ore magmatic 94 

apatites from granitoid-related deposits and highlighted the role of V, Eu, and Sr for 95 

classification. 96 

Here, three global datasets of the major and/or trace element chemistry of apatites were compiled 97 

from both mineralized and unmineralized rock samples, and a series of XGBoost models were 98 

trained to determine the mineralization potential. The classification results compared with 99 

traditional binary diagrams demonstrated an improvement in accuracy and efficiency in 100 

discriminating whether apatite is derived from a fertile rock suite or a barren suite. In addition, 101 

the feature importance analysis suggested that V/Y and Cl/F ratios and the S content are crucial 102 

to metal enrichment and mineralization. 103 
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DATA COMPILATION AND LABELING 104 

Data Compilation 105 

All of the apatite compositional data used for modeling were collected and compiled from 241 106 

locations in 27 countries worldwide (Figure 1) from preexisting literature. Each location 107 

included multiple samples and analyses. This raw dataset (Table S1) contains 13,382 rows of 108 

compositional data, including spot analyses and mean values for those references in which spot 109 

analyses were not given. Figure 2 shows an overview of the elements and geochemical 110 

parameters contained in this dataset. All the data and related sources can be found at 111 

https://github.com/YuyuJo/Supplementary-file-for-AM-9115R. 112 

Data Labeling 113 

Analyses of apatites collected from rock samples with obvious mineralization that formed in 114 

association with mineral deposits were labeled as “Mineralized.” The analyses of apatites in 115 

barren rocks were labeled as “Unmineralized.” Descriptions regarding the deposit and rock 116 

samples (including location, mineralization, and alteration information) can be easily found in 117 

the literatures when collecting apatite data. Based on these criteria, 9,104 and 4,278 analyses 118 

were labeled as “Mineralized” and “Unmineralized,” respectively. The deposit type of each data 119 

was also identified based on the classification in Mao et al. (2016). For data with “Mineralized” 120 

labels, their deposit types included porphyry (no. = 2,251), skarn (5,075), orogenic Au (875), 121 

carbonatite deposits (207), iron oxide Cu–Au (IOCG, 80), Kiruna type (IOA, 579), orogenic Ni–122 

Cu ± platinum group element (28), and epithermal Au–Ag (9).  123 
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Sub-Dataset Construction 124 

The raw dataset was divided into three subsets to further differentiate the role of major and trace 125 

elements. The analyses of samples containing CaO, P2O5, SO3, Cl, and F were selected as 126 

“Major” dataset, and the analyses of samples including trace elements were selected as “Trace” 127 

dataset. The analyses with both major and trace elements were set into the “Major and Trace” 128 

dataset. 129 

To preprocess the collected data, the initial step involved handling the missing values, whereby 130 

any element with missing values >60% of the entire column was excluded. After this filtering, 131 

the “Major” dataset comprised 5,618 analyses (Table S2). The features therein included CaO, 132 

P2O5, SO3, F, Cl, FeO, MnO, Na2O, SiO2, and Cl/F. The “Trace” dataset (Table S3) contained 133 

9,979 data and included V, Mn, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, 134 

Yb, and Lu. Additionally, certain geochemical parameters, which are considered significant for 135 

mineralization and magma evolution, were computed and added to the “Trace” dataset. These 136 

parameters included LREE, HREE, Sr/Y, V/Y, Ce/Nd, Eu*, Ce*N, EuN/Eu*N, Ce/Ce*, 137 

Eu/Eu*/Y, REE+Y, (La/Yb)N, and La/Sm. The “Major and Trace” dataset (Table S4) included 138 

2,448 analyses and 43 features (CaO, P2O5, SO3, F, Cl, FeO, Cl/F, SiO2, Na2O, MgO, Rb, Sr, Y, 139 

Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, Sr/Y, V/Y, Ce/Nd, Eu*, 140 

Ce*N, EuN/Eu*N, Ce/Ce*, Eu/Eu*/Y, REE+Y, (La/Yb)N, La/Sm, LREE, HREE). 141 

 142 
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METHODS 143 

ML Algorithms 144 

XGBoost is an ML system based on gradient tree boosting, which was originally proposed by 145 

Friedman (2001). It has gained widespread recognition in numerous ML and data mining 146 

challenges due to its ability to solve real-world-scale problems using minimal resources (Chen 147 

and Guestrin, 2016; Python et al., 2021). XGBoost is a distributed gradient boosting library that 148 

has been optimized for high efficiency and flexibility. Its flexibility is exemplified by its ability 149 

to handle sparse data with multiple possible causes, including missing values and frequent zeros. 150 

In addition, its parallel and distributed computing capabilities facilitate faster learning, enabling 151 

quicker model exploration. The highly scalable end-to-end tree boosting system allows for 152 

efficient scaling to larger datasets with minimal cluster resources (Chen and Guestrin, 2016). 153 

Moreover, the tree structure of XGBoost enables the identification of important features and 154 

enhances the interpretability of results (Azodi et al., 2020; Qin et al., 2022), which is beneficial 155 

in elucidating the relationship between apatite composition and mineralization and exploring the 156 

geochemical implications. 157 

XGBoost is an ML algorithm that operates under a gradient boosting framework. Its training 158 

methodology is additive, with each new tree added to fit the residuals of the prior predictions. 159 

The results of all the trees are summed up to obtain the final predictions. Given a dataset 160 

𝐷 = {(𝑥𝑖, 𝑦𝑖)} (|𝐷|  =  𝑛, 𝑥𝑖 ∈  𝑅𝑚, 𝑦𝑖 ∈  𝑅) with n examples and m features, the output of a 161 

tree ensemble model that uses K additive functions is predicted as a sum of k times scores: 162 

�̂�𝑖 = 𝜑(𝑥𝑖) = ∑ 𝑓𝑘(𝑋𝑖),   𝑓𝑘 ∈ ℱ,

𝐾

𝑘=1

                                            (1) 
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where ℱ = {𝑓(𝑥) = 𝑤𝑞(𝑥)} (𝑞: ℝ𝑚 → 𝑇, 𝑤 ∈ ℝ𝑇) represents the space of regression trees, the 163 

function q denotes the structure of each tree that maps an example to the corresponding leaf 164 

index, 𝑇 is the number of leaves in the tree, each 𝑓𝑘 corresponds to an independent tree structure 165 

q and leaf weights 𝑤, and 𝑤𝑖 represents the score on the i-th leaf (Chen and Guestrin, 2016). 166 

The following regularized objective is constructed and minimized to evaluate the quality of a tree 167 

structure q: 168 

 169 

ℒ(𝜑) =  ∑ 𝑙(�̂�𝑖

𝑖

, 𝑦𝑖) + ∑ Ω(𝑓𝑘)

𝑘

                                                 (2) 

 170 

where Ω(𝑓) = 𝛾Τ +
1

2
𝜆‖𝑤‖2. The regularization term penalizes the complexity of the model and 171 

helps to smooth the final learned weights to avoid overfitting. The parameter γ controls the 172 

degree of regularization, while λ controls the strength of the penalty. In this equation, 𝑙 is a 173 

differentiable convex loss function that measures the difference between the prediction �̂�𝑖 and 174 

the target 𝑦𝑖. 175 

Model Construction Processes 176 

A four-step modeling process was employed to construct a classification model that best fitted 177 

the apatite compositional data (Figure 3). 178 

Data Preprocess and Splitting. All three sub-datasets were used to train the classification 179 

models. Taking the “Trace” dataset as an example, the elemental data were used as input without 180 

any transformation. The inputed dataset was first split into “Features” and “Class” subsets, which 181 
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were uniformed as 0 (Unmineralized) and 1 (Mineralized) using the “LabelEncoder” function. 182 

Maintaining the original proportion of each class, both subsets were randomly split into training 183 

(80%) and test (20%) sets. 184 

XGBoost Modeling. To avoid overfitting, a fivefold cross-validation (Kohavi, 1995) was 185 

employed to train the model. The training set was divided into five folds of equal sizes, where 186 

four subsets were used to train the ML model, and the left-out fold was used for validation and 187 

classification evaluation. This process was repeated five times, with each validation fold being 188 

different, and the output score represented the mean value of all five predictions. 189 

Model Hyperparameter Tuning. A fivefold cross-validation approach was utilized in 190 

conjunction with a grid search strategy to optimize the XGBoost model. This strategy 191 

exhaustively generated candidates from a grid of parameter values and selected the candidate 192 

with the highest output scores, as evaluated by a predefined metric. Specifically, the goal of the 193 

grid search procedure was to identify the optimal combination of hyperparameters (eta, gamma, 194 

max depth, and alpha) and to generate 3,600 candidates from which the optimal model was 195 

selected. 196 

Model Validation and Evaluation. Predictions were obtained by applying the test set to 197 

the above optimal XGBoost model. To clearly observe the classification results, the predictions 198 

were generally displayed as a confusion matrix (Stehman, 1997), of which the rows represent the 199 

true number of each class (from labeled dataset) and the columns display the predicted number 200 

of each class. The commonly used classification metrics for evaluating the model performance 201 

can be calculated based on the confusion matrix. Here, the accuracy and the F1 score were used 202 

as the evaluation indicators of the model. For the convenience of description, true “Mineralized,” 203 

which was also predicted as “Mineralized,” is abbreviated as “MM”; true “Mineralized,” which 204 
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was falsely predicted as “Unmineralized,” is abbreviated as “MU”; true “Unmineralized,” which 205 

was also predicted as “Unmineralized,” is abbreviated as “UU”; and true “Unmineralized,” 206 

which was falsely predicted as “Mineralized,” is abbreviated as “UM.” 207 

Accuracy is a metric that measures the number of correctly predicted cases relative to the total 208 

number of samples used. It is calculated as the ratio of the number of correct predictions to the 209 

sum of all the utilized samples, which can be expressed as 210 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑀𝑀 + 𝑈𝑈

𝑀𝑀 + 𝑀𝑈 + 𝑈𝑈 + 𝑈𝑀
                                            (3) 

The F1 score is a measure of classification accuracy that combines precision and recall. 211 

Specifically, it is the harmonic mean of precision and recall and is expressed as 212 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                             (4) 

Precision is a measure of the accuracy of predictions, and it indicates the probability that a 213 

sample is truly positive among all samples predicted to be positive. Taking class “Mineralized” 214 

as an example, precision can be calculated as follows: 215 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀𝑀

𝑀𝑀 + 𝑈𝑀
                                                        (5) 

Recall is a measure of how well the classifier identifies the actual positive cases, and it indicates 216 

the probability that a sample predicted to be positive is actually positive. Taking class 217 

“Mineralized” as an example, recall can be calculated as follows 218 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑀𝑀

𝑀𝑀 + 𝑀𝑈
                                                            (6) 

 219 
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RESULTS 220 

Classification Results and Feature Importance 221 

A total of 14 XGBoost models were trained using three apatite compositional datasets based on 222 

different feature selection. Five models were trained using the “Major and Trace” dataset, and 223 

the number of selected features was 43, 35, 22, 12, and 6, respectively (Table 1). Two models 224 

were trained using the “Major” dataset. All the ten major elements were applied to train model 225 

M-1, while four selected elements to model M-2. The “Trace” dataset was thought to be 226 

important to identify mineralization and was thus employed to train seven XGBoost models. The 227 

related feature numbers were sequentially set as 33, 28, 21, 14, 7, 3, and 2. The classification 228 

results of these XGBoost models are displayed as confusion matrices. Figure 4 shows the results 229 

of the four representative models. Table 1 presents the F1 scores and accuracies of 14 models, 230 

which were calculated based on the classification confusion matrices. 231 

The relative importance of all the features used in each model was obtained from the XGBoost 232 

algorithm to determine the elements of apatite that are highly relevant to mineralization (Table 233 

1). Among all the models for the “Trace” dataset, V, Sr, Y, Eu, Ce, and Rb appeared most 234 

frequently in the top ten feature relative importance. Vanadium was particularly important in the 235 

rank. Of all five models in which V was selected, the relative importance of V was highest in 236 

four and ranked second in the remaining one. Some geochemical parameters also contributed to 237 

the rank, including Sr/Y, V/Y, Eu*, (La/Yb)N, and La/Sm. In the two models for the “Major” 238 

dataset, the content of SO3 showed the highest relative importance. However, the proportion of 239 

each feature was quite uniform. The features that played a key role in the models for the “Major 240 
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and Trace” dataset were somehow familiar to those in the models for the “Trace” dataset. In 241 

addition, Cl, F, and Cl/F were also noteworthy. 242 

 243 

Feature Selection and ML Model Performance Evaluation 244 

The variance of classification metrics presented in Table 1 has been shown to be related to the 245 

input dataset type and the number of selected features in the model. The highest F1 scores of the 246 

models are 0.9939 and 0.9933 obtained by models T-1 and M-T-1, respectively, while that of 247 

models trained by the “Major” dataset is 0.9259 obtained by model M-1. The accuracies of T-1 248 

and M-T-1 are 0.9900 and 0.9918, respectively, while that of M-1 is 0.9386. This indicates that 249 

the models trained using the “Trace” and “Major and Trace” datasets achieved better 250 

performance than those using the “Major” dataset.  251 

The classification results in Table 1 also suggest a positive correlation between feature number 252 

and model performance. As displayed in Figure 5, the XGBoost models achieved higher scores 253 

when they are trained on more elements and geochemical parameters, which was also observed 254 

in other research (Qin et al., 2022). For instance, the accuracy and F1 score increased from 255 

0.9146 and 0.8507 for model T-7 (no. of features = 2) to 0.9682 and 0.9474 for model T-5 (no. 256 

of features = 7) and 0.9939 and 0.9900 for model T-3 (no. of features = 33). 257 

Furthermore, feature selection also showed a salient effect on the model performance, as 258 

evidenced by models M-T-4 and T-3. The features selected to train model M-T-4 were almost 259 

the same as the crucial elements and geochemical parameters summarized in Section 4.1, leading 260 

to the result that although the model was trained only on 12 features, its score is slightly higher 261 
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than that of M-T-2 and M-T-3 that were trained on 35 and 22 features, respectively. This effect 262 

was even more pronounced in models trained using “Trace” datasets. Model T-4 was trained on a 263 

feature dataset consisting entirely of 14 rare-earth elements, but scored worse than model T-5 264 

(no. of features = 7). This indicates that REEs might not play a positive role in training the 265 

XGBoost model for discriminating between fertile and barren apatites in general. As shown in 266 

Figure 5, the performance of model T-3 trained on 21 features without REEs was better than that 267 

of T-2 trained with 28 features with REEs. 268 

On the whole, 10 of the 12 models could correctly classify more than 90% samples of the test set 269 

(accuracy > 0.9), indicating the excellent performance of the models in this study for 270 

distinguishing between “Mineralized” and “Unmineralized” apatites. Among all 14 models, 271 

model M-T-1 achieved the highest scores for both training and test sets. In the results of this 272 

model, all samples in the training set were correctly classified (accuracy = 1), and more than 273 

99% samples of the test set were correctly classified (accuracy = 0.9918). Elemental data 274 

obtained in practice might not be enough as those used for model M-T-1; however, model M-T-4 275 

can achieve a similar performance with an accuracy and an F1 score of 0.9878 and 0.900, 276 

respectively, when only using 9 elements (12 features). This demonstrates that the classification 277 

models in this study can work in a variety of situations. However, the XGBoost model 278 

performance sharply declined when the number of selected features decreased to 2 (Figure 5). 279 

Given the overall classification results, it was clear that the XGBoost models in this study can 280 

achieve excellent performance when proper feature selection was performed and can be applied 281 

in various scenarios. 282 
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DISCUSSION 283 

Limitation of Conventional Apatite Fertility Indicators 284 

Previous research has suggested that magmas characterized by high water content, high Sr/Y 285 

ratio, and high oxidation state play a vital role in the genesis of porphyry Cu deposits (Lu et al., 286 

2015; Richards, 2011; 2015). Recent investigations have indicated that chlorine and sulfur are 287 

crucial components of ore-forming fluids due to their ability to form complexes with ore metals, 288 

including Cu, Au, Pb, Zn, Fe, and Mo (Hsu et al., 2019; Xu et al., 2021; 2022). These 289 

geochemical signatures of magma could be inherited by apatite crystallized from such fertile 290 

magmas. Accordingly, various apatite fertility indicators, such as Sr/Y, (Ce/Yb)N, Cl/F, V/Y, and 291 

(Ce/Pb)N, have been proposed to distinguish between fertile and barren suites (Belousova et al., 292 

2002; Mao et al., 2016; Xu et al., 2021). In this study, the performance of several traditional 293 

apatite fertility indicators was evaluated using the raw dataset (Figure 6). However, the efficacy 294 

of these indicators in predicting mineralization at a global scale was found to be limited, despite 295 

their effectiveness in specific metallogenic systems, such as porphyry deposits; for instance, Xu 296 

et al. (2021) proposed three indicators in apatite that worked effectively in differentiating fertile 297 

and barren porphyries. However, it only showed the best accuracy of 0.553 (Figure 6a) when 298 

applied to the dataset in this study. More precisely, the Cl/F ratio-based classification (Figure 6a) 299 

yielded a true-positive rate (TPR) of 0.421 for fertile apatite and a true-negative rate (TNR) of 300 

0.580 for barren apatite. The biplot of V vs. Y (Figure 6b) has an accuracy, TPR, and TNR of 301 

0.261, 0.866, and 0.026, respectively, indicating its ability to identify fertile apatite but not 302 

barren apatite. Comparative scores are 0.423, 0.007, and 0.919 for Cl/F vs. (Ce/Pb)N biplot 303 

(Figure 6c), 0.242, 0.181, and 0.640 for V/Y vs. (Ce/Pb)N biplot (Figure 6d), and 0.299, 0.172, 304 
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and 0.750 for V/Y vs. Cl/F biplot (Figure 6e), indicating that the (Ce/Pb)N ratio might perform 305 

better in determining barren apatite. 306 

 307 

The traditional discrimination diagrams exhibit low accuracies (from 0.242 to 0.553) on a global 308 

scale dataset and could result in inconclusive findings and imprecise mineralization targets when 309 

applied to mineral exploration. As an increasing amount of geochemical data pertaining to 310 

apatite becomes publicly accessible, the limitations of individual geochemical indicators are 311 

becoming progressively conspicuous. One major limitation is the lack of transferability of a 312 

geochemical indicator that accurately identifies fertile rocks in one system to another. 313 

Additionally, traditional methods that combine limited indicators could not comprehensively 314 

introduce the underlying pattern of multiple elements and efficiently assess the metallogenic 315 

fertility. 316 

Accordingly, an ML model that can process high-dimensional geochemical data is considered to 317 

be a robust mineral exploration tool. The XGBoost models in this study are apparently more 318 

accurate and efficient than traditional elemental biplots with accuracies ranging from 0.8507 to 319 

0.9918, suggesting a higher success rate during prospecting and exploration. In addition, ML can 320 

simultaneously integrate all apatite trace element features and directly capture the relationships 321 

between geochemical data and mineralization. The advantage of this approach is the applicability 322 

of results to any geological environment, while the disadvantage is that it required a systematic 323 

and comprehensive apatite geochemical dataset from worldwide occurrences. With the growth in 324 

the volume of geochemical data on apatite from various deposit types, ML models trained on 325 

such datasets are likely to become more sophisticated and accurate. This is because ML 326 
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algorithms excel at identifying complex patterns and relationships in large datasets, which can 327 

lead to more precise discrimination of mineralization. As a result, hopes are high for the 328 

robustness of this ML approach in mineral exploration. With the continuous expansion of 329 

geochemical databases and the ongoing refinement of ML algorithms, further improvements in 330 

the performance of these models are expected. 331 

Model Application and Limitation 332 

To further substantiate the reliability of our model and elucidate its potential applications, a set 333 

of unlabelled apatite compositional data reported by Xu et al. (2021) was employed as a 334 

validation dataset (Table S5). These apatites were extracted from rock samples collected in 12 335 

distinct localities spanning Iran and western China (Tibet and Yunnan) which include both 336 

barren localities (Liuhe, Nanmuqie, Renduoxiang, Songgui, Wolong) and porphyry deposits 337 

(Beiya, Chongmuda, Jiama, Machangqing, Masjed Daghi, Qulong, Zhunuo). In an effort to strike 338 

a balance between feature quantity and model performance, we utilized the cost-effective model 339 

M-T-5 to predict the fertility of the host rocks of these apatites and the corresponding 340 

mineralization potential in the respective regions. To render these data points visually 341 

interpretable, Principal Component Analysis (Smith, 2002) was employed to reduce their 342 

dimensionality to two dimensions. Figure 7a illustrates that their distribution primarily aligns 343 

with the clusters of the “Major & Trace” subset, signifying the comprehensive spectrum covered 344 

by our established database. 345 

After applying model M-T-5 on the validation dataset and then organizing the resulting 346 

probability values and prediction results (Figure 7b-f and Table 2), the robus performance of our 347 

model was reconfirmed. As evident from Figure 7b and Table 2, apatites originating from fertile 348 
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rock occurrences in all seven instances were accurately identified, with five of them exhibiting a 349 

100% likelihood of mineralization, while the remaining two displayed probabilities exceeding 350 

70%. Additionally, four barren rock samples were predicted with high probabilities, whereas the 351 

prediction results for apatite from Renduoxiang displayed suboptimal performance. 352 

These cases emphasize the optimistic perspective for utilizing ML models and the compositional 353 

data of apatite to predict the mineralization potential in this region. However, it is crucial to note 354 

that our current database exhibits a degree of data imbalance, with a predominant proportion of 355 

apatite data from porphyry and skarn deposits. This imbalance may render our models more 356 

sensitive to these two systems. Hence, it is imperative to conduct a thorough examination of data 357 

distribution before deploying the models, and data clusters that substantially deviate from our 358 

database's distribution should be used judiciously. This highlights the need for larger-scale and 359 

more diverse datasets, which relies on contributions of more geological researchers. 360 

Geochemical Explanation for ML Model 361 

The feature importance ranks of 14 XGBoost models reveal that several indicators are highly 362 

relevant with mineralization based on our dataset, including Cl, F, S, V, Sr/Y, V/Y, Eu*, 363 

(La/Yb)N, and La/Sm. This is in consistent with the conclusions of previous studies (Lu et al., 364 

2015; Richards, 2011; 2015; Xu et al., 2021; 2022). Several observations of higher Cl and S 365 

contents in fertile than barren apatites (Chelle-Michou and Chiaradia, 2017; Xu et al., 2021; Zhu 366 

et al., 2018) and fluid inclusion studies (Sillitoe, 2010) highlighted the significance of chlorine 367 

and sulfur in supporting the transport and deposition of ore metals at magmatic hydrothermal 368 

systems (Duan et al., 2021; Wang et al., 2021a; Zheng et al., 2021). These two elements form 369 

ligands with ore metals, such as Cu, Au, Pb, Zn, Fe, and Mo, allowing their transport to the site 370 
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of ore deposition and are involved in causing hydrothermal alteration. Additionally, the V/Y 371 

ratio was proved to be high in apatite crystallized from ore-forming magma (Xu et al., 2021). 372 

The presence of elevated V contents in the host magma indicates high levels of dissolved H2O in 373 

the melt, which was also recognized as a crucial factor for mineralization (Chiaradia, 2014; Lu et 374 

al., 2015). The mechanism therein is that amphibole has a more wide-ranging crystallization 375 

sequence than titanomagnetite in high H2O content melt environment, leading to the retention of 376 

more V in the residual melt and the efficient extraction of Y from the melt into amphibole. 377 

Therefore, apatite crystallized from such magmas exhibited small negative Eu anomalies and 378 

high V/Y, reflecting early amphibole fractionation and suppression of plagioclase crystallization 379 

in hydrous melts (Davidson et al., 2007). Considering the feature importance analysis of this 380 

study and the suggestions of previous studies, Cl- and S-enriched hydrous magma seem to be 381 

crucial factors in metal enrichment and mineralization. 382 

IMPLICATIONS 383 

The XGBoost models developed in this study exhibit strong discriminatory power in 384 

distinguishing apatite samples from mineralized fertile suites and those from barren suites, with 385 

high accuracy and efficiency. This indicates that ML, when integrated with conventional 386 

geological and geochemical techniques, can offer a cost-effective and efficient approach to 387 

evaluate mineralization. Furthermore, this methodology holds potential for identifying fertile and 388 

barren magmas in other systems by other minerals, including quartz, zircon, and titanite. The 389 

versatility of ML models trained on different target variables can extend beyond solid Earth 390 

science to other fields. 391 
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In conclusion, this study demonstrates the efficacy of ML methods in capturing the intricate 392 

relationship between 43-dimensional apatite geochemical data and mineralization. The findings 393 

underscore the significant feasibility of ML in analyzing and processing high-dimensional data in 394 

solid Earth sciences, which could help elucidate underlying geological events.  395 

However, the application of ML methods also has potential pitfalls. Firstly, ML algorithms do 396 

not include an inferential component such as an adequate assessment of uncertainty (Frenzel, 397 

2023). Secondly, care of the breadth and representativeness of the data should be taken. Within 398 

different deposits of same type, factors such as the alteration degree of host rock and the mineral 399 

assemblage of apatite can significantly influence its composition. Furthermore, variations in the 400 

composition of rock samples from different locations in a deposit are noteworthy. Hence, the 401 

volume and representativeness of the data are of paramount importance. A small number of 402 

samples cannot adequately represent the characteristics of the entire deposit. Instead, a relatively 403 

large sample size is likely necessary to reasonably encompass the extent of the observed 404 

variability. In our database, there exists an imbalance in the quantity of "Mineralized" apatite 405 

data originating from different types of deposit. For instance, data from porphyry and skarn 406 

deposits are more abundant, while data from other deposit types are less represented. 407 

Consequently, this disparity may result in our model performing more effectively when applied 408 

to these two deposit types. Thirdly, interpretational pitfalls must be acknowledged. Owing to the 409 

influence of data imbalance and volume, it remains to be verified whether parameters identified 410 

by our models as highly sensitive to mineralization are equally effective across all ore systems.  411 

 412 
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FIGURE CAPTIONS 675 

FIGURE 1. Representative locations of apatite samples of which analyses were collected in this 676 

study. The green points indicate that the analyses were collected from apatites that formed in 677 

mineralized rocks and were labeled as “Mineralized.” The orange points indicate that the 678 

analyses were collected from apatites in unmineralized rock samples and were labeled as 679 

“Unmineralized.” 680 

 681 

FIGURE 2. Boxplots of major and trace elements and geochemical parameter data of apatite 682 

samples worldwide, expressed in wt.% (a) and ppm (b). The box represents the interquartile 683 

range (IQR), with the upper (75%) and lower (25%) quartiles demarcated. The outer whiskers 684 

extended to 1.5 times the IQR. A horizontal line within the colored box represents the median 685 

(50%). The black square symbols and circle symbols indicate the mean and outliers, respectively. 686 

 687 

FIGURE 3. Workflow for the XGBoost modeling in this research. Step I: The labeled apatite 688 

dataset (“Major and Trace,” “Major,” or “Trace” dataset) is read as input and preprocessed and 689 

then randomly split into training set (80%) and test set (20%) by the holdout method. Step II: 690 

The training set is applied to train the XGBoost model using the fivefold cross-validation 691 

method. Step III: The optimal hyperparameters are determined by grid search techniques with the 692 

fivefold cross-validation method. Step IV: The best model obtained by Step III is applied to the 693 

test set. The classification results will be used to evaluate the model performance. 694 
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FIGURE 4. Confusion matrices (left) and feature importance ranks (right) of four representative 696 

XGBoost models. The confusion matrices display the prediction results for each class. 697 

 698 

FIGURE 5. Correlation between feature selection and XGBoost model performance. n = number 699 

of selected features. 700 

 701 

FIGURE 6. Scatterplots of elemental ratios of fertile (“Mineralized”) and barren 702 

(“Unmineralized”) apatite in the raw dataset. 703 

 704 

FIGURE 7. Distribution patterns of the validation dataset (a) and prediction results generated by 705 

model M-T-5; (a) distribution patterns displayed after dimension reduction using PCA for the 706 

"Major & Trace" dataset and validation dataset; (b) prediction results compilation for each 707 

occurrence; (c-f) probabilities of mineralization for the Songgui, Liuhe, Machangqing, and 708 

Jiama. 709 

 710 
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APPENDIX 712 

The data sets and the code for the machine learning models developed in this study are available 713 

at https://github.com/YuyuJo/Supplementary-file-for-AM-9115R . 714 
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TABLE 716 

TABLE 1. Summary of XGBoost Model Metrics and Feature Importance Ranks 717 

    Training Set Test Set  

Model Dataset No. of 
Data 

No. of 
Fea.a 

F1b Accuracyc F1 Accuracy Top 10 feature importance 

M-T-
1 

“Major & 
Trace” 2448 43 1.0000 1.0000 0.9933 0.9918 Y, Rb, Cl, Eu, Ce/Ce*, Tm, 

V/Y, Zr, Sr/Y, Ce 
M-T-

2 
“Major & 

Trace” 2448 35 1.0000 1.0000 0.9850 0.9816 Y, V/Y, Rb, Cl, FeO, REE+Y, 
Sr/Y, Sr, Tb, Cl/F 

M-T-
3 

“Major & 
Trace” 2448 22 1.0000 1.0000 0.9884 0.9857 Rb, FeO, Y, Cl, V/Y, Eu, Sr, 

EuN/Eu*N, (La/Yb)N, Na2O 
M-T-

4 
“Major & 

Trace” 2448 12 0.9996 0.9995 0.9900 0.9878 V/Y, Cl, Cl/F, Y, Sr/Y, F, 
(La/Yb)N, Sr, Eu, La/Sm 

M-T-
5 

“Major & 
Trace” 2448 6 0.9987 0.9985 0.9733 0.9673 V/Y, Cl/F, (La/Yb)N, Sr/Y, 

Eu, SO3 

M-1 “Major” 5618 10 0.9921 0.9933 0.9259 0.9386 SO3, Cl/F, Na2O, MnO, F, Cl, 
SiO2, FeO, P2O5, CaO 

M-2 “Major” 5618 4 0.9308 0.9424 0.8391 0.8639 SO3, F, Cl/F, Cl 

T-1 “Trace” 9979 33 1.0000 1.0000 0.9939 0.9900 Eu*, V, Tb, Rb, Mn, Ce/Ce*, 
(La/Yb)N, Sr/Y, Sr, Ce 

T-2 “Trace” 9979 28 1.0000 1.0000 0.9849 0.9750 
V, Sr/Y, Eu/Eu*/Y, Ce/Ce*, 

La/Sm, (La/Yb)N, Tb, Pr, Dy, 
Sr 

T-3 “Trace” 9979 21 0.9998 0.9996 0.9912 0.9855 V, Ce/Ce*, Eu*, Zr, Sr, Ce*N, 
V/Y, Rb, Mn, (La/Yb)N 

T-4 “Trace” 9979 14 0.9955 0.9926 0.9593 0.9319 Nd, Yb, La, Dy, Tb, Ce, Gd, 
Tm, Lu, Er 

T-5 “Trace” 9979 7 0.9919 0.9866 0.9682 0.9474 V, Sr/Y, Sr, Y, Ce, V/Y, Eu 

T-6 “Trace” 9979 3 0.9601 0.9345 0.9543 0.9243 V, Sr, Y 

T-7 “Trace” 9979 2 0.9215 0.8626 0.9146 0.8507 Eu, Ce 
aNumber of elements and geochemical parameters used in the model. bCalculated by Equation 4. 718 

cCalculated by Equation 3. 719 
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TABLE 2. Prediction Results of Model M-T-5 Applied to Unlabeled Validation Set  721 

Occurrence Sample source given by Xu et 
al. (2021) 

Prediction results of apatite 
composition 

Probability of 
barren rock 

Probability of 
Mineralization 

Beiya Porphyry-skarn Cu-Au 30% 70% 
Chongmuda Porphyry-hydrothermal Cu-Mo 0 100% 

Jiama Porphyry-skarn Cu-Au 0 100% 
Machangqing Porphyry Cu-Au 25% 75% 

Masjed 
Daghi Porphyry Cu-Mo 0 100% 

Qulong Porphyry Cu-Mo 0 100% 
Zhunuo Porphyry Cu 0 100% 

Renduoxiang Barren porphyry 50% 50% 
Liuhe Barren granodiorite 74% 26% 

Nanmuqie Barren porphyry 89% 11% 
Songgui Barren porphyry 98% 2% 
Wolong Barren granodiorite 100% 0 
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FIGURE 1 724 
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FIGURE 2 728 
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FIGURE 3 731 
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FIGURE 4 734 
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FIGURE 5 736 
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