Trace element fractionation in magnetite as a function of Fe depletion from ore fluids at the Baijian Fe-(Co) skarn deposit, eastern China: Implications for Co mineralization in Fe skarns

Guang Wen1,2, Jian-Wei Li1,2*, Albert H. Hofstra3, Daniel E. Harlov2,5,6, Xin-Fu Zhao1,2, Heather A. Lowers3, Alan E. Koenig4

1State Key Laboratory of Geological Processes and Mineral Resources, China

2University of Geosciences, Wuhan 430074, China

3School of Earth Resources, China University of Geosciences, Wuhan 430074, China

4U.S. Geological Survey, DFC, MS-963, P.O. Box 25046, Denver, Colorado 80225

5Newmont, Technical Services, 10101 East Dry Creek Road, Englewood, Colorado, USA, 80112

6Deutsches GeoForschungsZentrum – GFZ, Telegrafenberg, 14473 Potsdam, Germany

7Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 South Africa

* E-mail: jwli@cug.edu.cn
ABSTRACT

Magnetite is common in various magmatic and hydrothermal ore deposit types, and its trace element geochemistry has become increasingly used in ore genesis studies and mineral exploration. While fractional crystallization has been shown to influence the chemistry of igneous magnetite, the extent to which this process regulates the trace element composition of hydrothermal magnetite remains poorly understood. In this study, we analyzed trace elements in hydrothermal magnetite from the Baijian Fe-(Co) skarn deposit in eastern China and used Rayleigh and equilibrium fractionation modeling to demonstrate the importance of magnetite precipitation in controlling fluid and magnetite chemistry during Fe skarn mineralization.

The Baijian Fe-(Co) skarn deposit has 3 stages of magnetite. From early Mag-1 to later Mag-2 and Mag-3, the concentrations of compatible elements (Ni and V) decrease, whereas those of incompatible elements (Zn, Mn and Co) increase. There are obvious trends of increasing incompatible/compatible element ratios (e.g., Co/Ni, Zn/V, and Zn/Ni) and decreasing compatible/incompatible element ratios (e.g., V/Mn, Ni/Mn, and V/Co) from Mag-1 to Mag-3, with strong correlations between each of these ratios. Such systematic trace element variations in successive stages of magnetite can be best explained by increasing degrees of fractional crystallization with time. The wide range of incompatible/compatible element ratios (spanning 2-4 orders of magnitude) in Mag-2 and Mag-3 suggests that magnetite crystallization follows a process akin to Rayleigh fractionation.

Results from this study highlight the significant role that magnetite
crystallization during skarn formation has on the trace element chemistry of this mineral. Moreover, as the crystallization of magnetite progresses, the Co/Fe ratio of residual hydrothermal fluids is elevated, which favors the precipitation of Co in late-stage sulfides. This process helps to explain why some Fe skarn deposits as well as magnetite-rich IOA and IOCG deposits are potentially important economic sources for Co, currently necessary as one component in Li-ion batteries.

Key words: Magnetite geochemistry; Rayleigh fractionation; Cobalt mineralization; Iron skarn
INTRODUCTION

Magnetite is a common accessory mineral in a wide range of rocks and is a major mineral phase in a variety of hydrothermal ore deposit types, such as Fe skarns, Kiruna type iron oxide-apatite (IOA) deposits, and iron oxide-copper-gold (IOCG) deposits (Nadoll et al., 2014; Dare et al., 2014; Hu et al., 2014; Huang et al., 2018; Reich et al., 2022; Zhang et al., 2023). Magnetite has an inverse spinel structure and can accommodate a range of trace elements into its structure. It is resistant to mechanical breakdown and low temperature weathering/alteration, thus making it a powerful tool in igneous petrology and provenance studies (Grigsby, 1990; Lindsay, 1991; Dare et al., 2014; Canil and Lacourse, 2020; Luo et al., 2022). Recent studies have demonstrated the utility of magnetite trace element geochemistry as an important indicator for ore genesis studies and mineral exploration (Dupuis and Beaudoin, 2011; Nadoll et al., 2012; Dare et al., 2015; Knipping et al., 2015; Duparc et al., 2016; Canil et al., 2016; Pisiak et al., 2017; Ward et al., 2018; Huang and Beaudoin, 2019; Song et al., 2021; Zeng et al., 2022; Zhang et al., 2020).

The melt/fluid composition has been considered as the primary control on magnetite chemistry. In igneous systems, the melt composition can be significantly modified by the process of fractional crystallization (Gast, 1968). This process allows the residual melt, and thus magnetite crystallizing from it, to be depleted in compatible elements and enriched in incompatible elements. For example, Dare et al. (2014) found that compatible elements (Mg, Ni, Co, V, and Cr) in magnetite gradually decrease while incompatible elements (Ga, Ge, Hf, Mn, Mo, Nb, Sc, Sn, Ta, Ti, W, Zn,
and Zr) increase going from the lower to upper zones of the layered intrusions, such as the Bushveld Complex and Sept Iles. They interpreted this variation trend in terms of fractional crystallization of olivine, pyroxene, and magnetite. To date, however, few studies have investigated the effect of fractional crystallization on the composition of magnetite in hydrothermal regimes, and it remains unclear whether progressive precipitation of magnetite has a significant effect on fluid and mineral chemistry in hydrothermal magnetite deposits, such as Fe skarn, IOA, and IOCG deposits.

Iron skarns are among the largest skarn deposits in the world, with many containing >1 billion tons of ore (Meinert et al. 2005 and references therein). Iron skarns often contain significant quantities of Co, a technologically important metal in high demand, which occurs as a co-product or by-product (Einaudi et al., 1981; Rose et al., 1985; Meinert et al. 2005; Slack et al., 2017; Zhao et al., 2019; Wei et al., 2021; Yan et al., 2021; Shi et al., 2023). Magnetite is the predominant ore mineral in Fe skarns, while sulfides, although minor, serve as the primary host for Co in these deposits (Slack et al., 2017; Zhao et al., 2019; Wei et al., 2021; Yan et al., 2021; Shi et al., 2023). In this study, we analyze the trace element composition of magnetite from the Baijian Fe-(Co) skarn deposit in the North China Craton (NCC). Building upon recent experimental findings on magnetite-fluid trace element partitioning (Tauson et al., 2015, 2017; Smagunov et al., 2021), we perform Rayleigh and equilibrium fractionation modeling in order to illustrate how progressive magnetite precipitation influences both the fluid and magnetite chemistry during formation of an Fe skarn.
Furthermore, we discuss the key role that magnetite precipitation has on Co enrichment in late-stage sulfides.

GEOLOGICAL BACKGROUND

Regional geology

The Baijian Fe skarn deposit is located in the northeastern part of the Handan-Xingtai district in the central NCC. It is bounded to the north by southern margin of the Central Asian Orogenic Belt and to the south by the Dabie-Sulu ultra-high pressure belt (Fig. 1). The NCC was formed and subsequently stabilized at ca. 1.85 Ga following the collision between the Western and Eastern Blocks along the Trans-North China Orogen (Zhao et al., 2005). The Handan-Xingtai district is characterized by unmetamorphosed Paleozoic marine sedimentary rocks of ~3,500 m thickness that are underlain by the Precambrian crystalline basement (Fig. 1). The Cambrian strata consist of limestones, sandstones, and shales, which are conformably overlain by early Ordovician dolomites. Middle Ordovician strata conformably overlie the early Ordovician dolomites and consist chiefly of evaporite-bearing carbonates. Carboniferous and Permian shales, mudstones, siltstones, sandstones and coal beds, with a total thickness of 1,300 to 1,600 m, unconformably overlie the Ordovician sequences and are mainly exposed in the eastern part of the district.

The Paleozoic sedimentary rocks are intruded by several major plutons and associated numerous smaller stocks and dikes, which are dominated by diorite, monzodiorite or syenite (Fig. 1). The Handan-Xingtai district hosts more than 100 Fe...
skarn deposits that combined have total Fe reserves over 900 million tons (Mt). Those deposits are hosted in the diorite and monzodiorite intrusions, along the contact zones between the intrusions and surrounding carbonate sequences, or within fracture zones of the carbonate proximal to the intrusions. Zircon U-Pb geochronological studies have shown that the district-wide intrusions are early Cretaceous in age that were emplaced in the interval of 136 ± 2 to 128.9 ± 0.9 Ma (Sun et al., 2014; Deng et al., 2015; Sun et al., 2019a). Geochemistry and Sr-Nd-Hf isotope data indicate that they formed as a result of mixing between crustal-derived and enriched mantle-derived magmas, which originated during the thinning and destruction of mantle lithosphere beneath the NCC. This process was ultimately triggered by subduction of the paleo-Pacific plate underneath the eastern China continental margin (Chen et al., 2004; Chen et al., 2008; Shen et al., 2013).

Deposit geology

The Baijian Fe-(Co) skarn deposit has proven reserves of 112 million tons (Mt) ore at an average grade of 47.6 % Fe and contains 17,186 t Co as by product (Zhao, 2013). Drill cores reveal the ore hosting sedimentary rocks at Baijian Fe skarn are the middle Ordovician Majiagou Formation and Cixian Formation (Fig. 2), which mainly consist of dolomitic limestone and limestone with interlayered evaporites. The deposit is related to a fine grained, pinkish-gray, monzodiorite stock, which consists of amphibole, plagioclase, K-feldspar, and quartz, with minor to trace amounts of magnetite, titanite, fluorapatite, and zircon. The monzodiorite stock has experienced
extensive albitization. The most intensely albitized rocks consist of albite (70–80 vol.%), amphibole, plagioclase, K-feldspar, epidote, pyroxene, calcite, and titanite, along with minor magnetite and fluorapatite. A diorite porphyry intrudes the Fengfeng Formation but is not associated with hydrothermal alteration or mineralization.

The Baijian skarn deposit consists of two major Fe bodies (No.1 and No.2) that developed at or proximal to the contact zone between the monzodiorite intrusion and dolomitic limestone of the Middle Ordovician Majiagou Formation (Fig. 2). Both orebodies strike northwest and have flat lenticular to stratiform morphologies. No.1 ore body is 1,450 m long and, 500 m wide, and ranges from a few to 138 m thick. It occurs 450 to 1000 m below the present ground surface. The ore body extends upwards from the monzodiorite contact into the dolomitic limestones of the Majiagou and Cixian Formations (Fig. 2). No.2 ore body is 1,200 m long, 600 m wide, has an average thickness of 9 m and occurs at a depth of 580 to 750 m below the surface. The ore body follows the contact between the monzodiorite and dolomitic limestones of the Majiagou Formation.

Skarns are variably developed in the contact zones. Endoskarn mostly occurs as irregular veins within the albitized, monzodiorite stock. The endoskarn veins are typically a few centimeters wide, consisting chiefly of pyroxene with minor amounts of fluorapatite, albite, and calcite. The pyroxene in the endoskarn belongs to diopside (Di)-hedenbergite (Hd) series, ranging in composition from Di$_{89}$Hd$_{11}$ to Di$_{70}$Hd$_{30}$ (Wen et al., 2020). Exoskarn is massive in the lower part of the contact zone (Fig. 2), which consists of an early prograde and a late retrograde assemblage. The prograde
Skarn assemblages are dominated by pyroxene (Figs. 3A) with minor olivine, titanite, and fluorapatite. Pyroxene in the exoskarn is diopside-rich (Di$_{75-97}$Hd$_{3-24}$) (Wen et al., 2020). The retrograde skarn assemblages are composed of tremolite, phlogopite, and serpentine that commonly overprint or replace the prograde skarn minerals. Magnetite is the predominant ore mineral (Figs. 3B-F). It is disseminated through the exoskarn close to the intrusive contact and as massive bodies close to enclosing marble. Sulfides mainly occur in the upper part of ore bodies in the vicinity of marble. The sulfides are dominated by pyrite locally associated with traces of chalcopyrite and sphalerite. They are disseminated through the magnetite ores (Figs. 3E and F). Drill core logs reveal a general zonation pattern from massive pyroxene skarn close to the intrusive contact, followed by a magnetite-tremolite-phlogopite assemblage in the middle, and a distal magnetite-pyrite-calcite-serpentine assemblage close to marble.

SAMPLES AND METHODS

Three samples of massive pyroxene skarn and 21 samples of magnetite ore were collected for this study. Polished sections were examined using a petrographic microscope and SEM at the United States Geological Survey (USGS) in Denver. The massive pyroxene skarn samples are dominated by diopsidic pyroxene (> 90 vol.%) with minor disseminated magnetite (Fig. 3A). The magnetite ore samples can be categorized into two types based on their mineral assemblages: (1) magnetite ore associated with the retrograde skarn assemblage (n=11) and (2) magnetite ore associated with sulfides (n=10). Ore samples from the retrograde skarn contain 60 to
90 vol.% magnetite, and various amounts of tremolite, phlogopite, and serpentine; sulfides are absent (Figs. 3B-D). Ore samples containing sulfides consist of massive magnetite (>vol. 70%) with small amounts of pyrite and calcite that occur as disseminations or in veinlets; retrograde minerals are absent or present locally (Fig. 3E-F).

Trace element concentrations in magnetite were determined by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the USGS (Denver). Analyses were conducted using a Photon Machines Analyte G2 LA system (193 nm, 4 ns excimer) attached to a Perkin Elmer DRC-e ICP-MS. Depending on the size of the magnetite grains targeted, ablation was carried out using a spot size of 40 or 65 micrometers at 8 J/cm². Single spot analyses were ablated using 10 and 13 pulses/sec (10 and 13 Hz). Ablated materials were transported via a He carrier gas to a modified glass mixing bulb where He and sample were mixed coaxially with Ar prior to the ICP torch. Concentration calculations were conducted using the protocol of Longerich et al. (1997). Signals were calibrated using USGS GS-series basaltic glasses GSD-1g and GSE-1g (Nadoll and Koenig, 2011). Reference materials were analysed 5 to 10 times at the beginning of each analytical session and monitored throughout the session for drift. Signals were screened visually for heterogeneities such as micro-inclusions or zoning. The Fe content of an ideal stoichiometric magnetite was used as the internal standard (Dare et al., 2012).

Additionally, five least-altered samples were collected from the Baijian monzodiorite for major elements and cobalt concentration analysis. Samples were
cleaned with deionized water, subsequently crushed and powdered in an agate mill. Both major elements and cobalt concentration analysis were conducted at the ALS Mineral (Guangzhou) Co. Ltd, Guangzhou, China. The major oxides were measured by an X-ray fluorescence (XRF) spectrometer. The lithium borate fusion method was used and the relative standard deviations are better than 5%. Whole-rock cobalt concentrations were analyzed by ICP-MS with an Agilent 7900. For each sample, 50 mg of sample powder (200 mesh) was digested in Teflon bombs with perchloric, nitric and hydrofluoric acids. The residue was leached with dilute hydrochloric acid and diluted to volume. It was then analyzed by ICP-MS. Results were corrected for spectral inter-element interferences.

RESULTS

Magnetite petrography

Three types of magnetite were identified in this study based on their distribution in the drill core logs and textural relationships with other minerals observed in polished thin sections. Type 1 (Mag-1) is found in massive pyroxene skarn (Fig. 3A) and occurs as inclusions within, or in interstices between, the pyroxene crystals (Fig. 4A-B). It is subhedral, ranging in diameter from 200 μm to 1 mm and commonly contains mineral inclusions mainly of fluorapatite and pyroxene (Fig. 4C). The aforementioned textural relationships indicate broadly coeval formation of magnetite and pyroxene. Type 2 magnetite (Mag-2) occurs in the magnetite ore associated with the retrograde skarn assemblage (Fig. 3B-D). It is subhedral to euhedral, ranges in diameter from 500 μm to 1 cm. It is intergrown with retrograde minerals such as
tremolite, phlogopite, and serpentine, which locally replace prograde pyroxene and
olivine (Fig. 4D-I). Type 3 magnetite (Mag-3) occurs in magnetite ore associated with
sulfides (Fig. 3E-F). It is subhedral to euhedral, 500 μm to 5 mm in size, and coexists
with pyrite and calcite (Fig. 4J). Some Mag-3 grains are replaced by hematite, calcite,
and siderite (Fig. 4K-L). The textural relations suggest that overall, Mag-1 predates
Mag-2 that formed earlier than Mag-3.

Trace element compositions of magnetite

Results from LA-ICP-MS spot analysis of magnetite (n = 257) are listed in
appendix table A1 and are displayed on Figure 5. Most of the spots analysed revealed
variable concentration in Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. Mag-1 has high
concentrations of Ti, V, Ni, Cr, and Ga and relatively low concentrations of Mg, Mn,
and Zn (Fig. 5). Mag-2 contains significantly lower concentrations of Ti, V, Ni, Cr,
and Ga but higher concentrations of Mg, Mn and Zn (Fig. 5). Mag-3 has the lowest
concentration of Ti, V, Ni, Cr and Ga but the highest concentration of Mg, Mn, and Zn.
Cobalt is enriched in Mag-2 relative to Mag-1 and Mag-3 (Fig. 5). Compared with the
other two equivalents, Mag-3 has a wider range of Co contents (Fig. 5). The Zn/Ni
ratios are positively correlated with Zn/V and Co/Ni ratios, whereas the reverse trend
is not only observed between Zn/Ni and V/Mn, but also with Ni/Mn, V/Co, and Ni/Cr
ratios (Fig. 6). It is noted that the Zn/Ni, Zn/V, and Co/Ni ratios increase progressively,
whereas V/Mn, Ni/Mn, V/Co, and Ni/Cr ratios decrease gradually from Mag-1
through Mag-2 to Mag-3 (Fig. 6).
Whole-rock compositions of the monzodiorite

Whole rock compositions of the monzodiorite samples (n=5) are listed in appendix table A2. The least altered samples of monzodiorite have 59.6–60.0 wt.% SiO$_2$, 16.5–16.9 wt.% Al$_2$O$_3$, 2.4–2.8 wt.% MgO, 5.1–6.2 wt.% Na$_2$O, 3.4–4.1 wt.% K$_2$O, 3.4–4.2 wt.% CaO, and 4.5–5.1 wt.% FeO$_{total}$. These samples contain 10.8–14.5 ppm Co (avg.= 12.4) with Co/Fe ratio ranging from 290×10$^{-6}$ to 364×10$^{-6}$ (avg. =333×10$^{-6}$). The average Co/Fe ratio of the monzodiorite samples are comparable to that of the Fe skarn associated with magmatic rocks from the Handan-Xingtai district (avg. Co/Fe =351×10$^{-6}$, n=35; Sun et al., 2019b) but are lower than that of the bulk continental crust (avg. Co/Fe ratio =511×10$^{-6}$; Rudnick and Gao et al., 2003).

DISCUSSION

Efficient Fe precipitation

Iron solubility in hydrothermal fluids is sensitive to temperature, salinity and acidity (Chou and Eugster, 1977; Whitney et al., 1985; Kwak et al., 1986; Simon et al., 2004). For chloride solutions equilibrated with granitoid rocks, Whitney et al. (1985) experimentally demonstrated that a temperature decrease from 500 to 400 °C can cause a tenfold decrease in the Fe concentration, whereas a threefold decrease in fluid salinity produces a commensurate decrease in the Fe concentration as temperature decreases from 600 to 400 °C. Additionally, the experimental and theoretical studies of Chou and Eugster (1977) showed that a tenfold decrease in the acid concentration
(mHCl) would produce a hundredfold decrease in the Fe concentration (mFeCl₂) in supercritical chloride solutions equilibrated with magnetite. Therefore, ore fluids in Fe skarn systems ought to precipitate a major part of their Fe in response to: (1) cooling as fluids move across steep geothermal gradients in the contact zone (e.g., Meinert et al., 2005); (2) mixing with meteoric water with consequent decreases in temperature and salinity (e.g., Pons et al., 2009); and (3) neutralization of acidic fluids by reaction with enclosing marble (Holser and Schneer, 1961). Collectively, these factors facilitate efficient Fe precipitation. The Fe-phases precipitated from ore fluids can be oxides, silicates, sulfides, or carbonates depending on the activities of oxygen, silica, sulfur, and carbon dioxide in the fluids (Whitney et al., 1985). In the case of the Baijian Fe-(Co) skarn deposit, the gangue consists of Mg-rich silicates such as diopsidic pyroxene, tremolite, and serpentine that contain minor Fe. More importantly, these minerals are volumetrically minor relative to magnetite in the ore bodies (Fig. 2). Other Fe-bearing phases such as hematite, siderite, and pyrite are all subordinate and only locally present. Thus, most of the Fe in the ore fluids precipitated as magnetite during formation of the Baijian Fe-(Co) deposit.

Modeling of trace element fractionation in magnetite

Among the physiochemical parameters, fluid composition is considered to be the primary factor controlling trace element chemistry of magnetite (Nadoll et al., 2014). As magma-derived fluids move through the contact zone, intense magnetite precipitation is expected to occur along the fluid pathways (Fig. 7). High degree
fractional crystallization of magnetite would have progressively modified the fluid composition and therefore the chemical composition of magnetite crystallized. To evaluate the effect of magnetite precipitation on fluid and mineral chemistry in the Baijian Fe-(Co) skarn deposit, we conducted modeling of Rayleigh and equilibrium fractionation. These models assume that hydrothermal fluids exsolved from cooling intrusions are confined by hot marble during skarn formation, which has exceedingly low hydraulic conductivity (Woessner and Poeter, 2020). In the case of Rayleigh fractionation, magnetite crystals are removed from contact with the fluid after they form. In the case of equilibrium fractionation, the fluid remains at all times in equilibrium with magnetite and elements exchange continuously between magnetite and fluid.

Rayleigh and equilibrium fractionation models. Rayleigh fractionation models are formulated using the equations below (the original equation is from Rayleigh, 1896):

\[
\frac{C_{\text{fluid}}^j}{C_{\text{fluid}}^Fe} \frac{C_{\text{fluid}}^{j(0)}}{C_{\text{fluid}}^{Fe(0)}} = F^{K_d(j)-1},
\]

\[
\frac{C_{\text{fluid}}^i}{C_{\text{fluid}}^j} \frac{C_{\text{fluid}}^{i(0)}}{C_{\text{fluid}}^{j(0)}} = F^{K_d(j)-K_d(i)},
\]

\[
\frac{C_{\text{Mag}}^j}{C_{\text{Mag}}^Fe} \frac{C_{\text{Mag}}^{j(0)}}{C_{\text{Mag}}^{Fe(0)}} = F^{K_d(j)-1},
\]

\[
\frac{C_{\text{Mag}}^i}{C_{\text{Mag}}^j} \frac{C_{\text{Mag}}^{i(0)}}{C_{\text{Mag}}^{j(0)}} = F^{K_d(j)-K_d(i)},
\]

where F is the fraction of Fe in the fluid (1>F>0); j and i are two trace elements of interests; \(C_{\text{fluid}}^j\), \(C_{\text{fluid}}^i\), and \(C_{\text{fluid}}^Fe\) are concentrations of j, i and Fe in the fluid, respectively; \(C_{\text{fluid}}^{j(0)}\), \(C_{\text{fluid}}^{i(0)}\), and \(C_{\text{fluid}}^{Fe(0)}\) are concentrations of j, i, and Fe in the initial fluid, respectively; \(C_{\text{Mag}}^j\), \(C_{\text{Mag}}^i\), and \(C_{\text{Mag}}^Fe\) are the concentrations j, i, and Fe
in magnetite, respectively; $C_{Mag}^{j(0)}$, $C_{Mag}^{i(0)}$, and $C_{Mag}^{Fe(0)}$ are the concentrations of j, i, and Fe in magnetite equilibrated with the initial fluid, respectively; $K_d(j)$ and $K_d(i)$ are the magnetite-fluid distribution coefficients for j and i, which are defined as:

$$K_d(j) = \frac{C_{Mag}^{j}}{C_{Mag}^{Fe}} \times \frac{C_{Mag}^{Fe}}{C_{Mag}^{j(0)}}$$

and

$$K_d(i) = \frac{C_{Mag}^{i}}{C_{Mag}^{Fe}} \times \frac{C_{Mag}^{Fe}}{C_{Mag}^{i(0)}}$$

Because of the low abundance of trace elements in hydrothermal magnetite and the stoichiometric control of Fe for this mineral (Nadoll et al., 2014; Dare et al., 2014; Wen et al., 2017), C_{Mag}^{Fe} and $C_{Mag}^{Fe(0)}$ are assumed to be equal. Equation (3) can then be reduced to:

$$C_{Mag}^{j}/C_{Mag}^{j(0)} = F K_d(j)^{-1} \quad \text{Eqn. (5)}$$

In the Rayleigh fractionation model, equations (1) and (2) respectively describe the variation of j/Fe and j/i ratios in the fluid, whereas equations (4) and (5) respectively describe the variation of the j/i ratio and j content in magnetite.

The equilibrium fractionation models are formulated using the equations (e.g., Sharp, 2007):

$$\frac{C_{fluid}^{j}}{C_{fluid}^{j(0)}} = 1/[K_d(j) + F \times (1 - K_d(j))] \quad \text{Eqn. (6)}$$

$$\frac{C_{fluid}^{i}}{C_{fluid}^{i(0)}} = K_d(i) + F \times (1 - K_d(i))/[K_d(j) + F \times (1 - K_d(j))] \quad \text{Eqn. (7)}$$

$$\frac{C_{Mag}^{j}}{C_{Mag}^{j(0)}} = 1/[K_d(j) + F \times (1 - K_d(j))] \quad \text{Eqn. (8)}$$

$$\frac{C_{Mag}^{i}}{C_{Mag}^{i(0)}} = K_d(i) + F \times (1 - K_d(i))/[K_d(j) + F \times (1 - K_d(j))] \quad \text{Eqn. (9)}$$

The variable definitions in equations (6-9) are the same as those in the previous equations described above. Given that C_{Mag}^{Fe} equals $C_{Mag}^{Fe(0)}$, equation (8) can be simplified to:

$$C_{Mag}^{j}/C_{Mag}^{j(0)} = 1/[K_d(j) + (1 - K_d(j)) \times F] \quad \text{Eqn. (10)}$$
In the equilibrium fractionation model, equations (6) and (7), respectively, describe the variation of \(j/Fe \) and \(j/i \) ratios in the fluid, whereas equations (9) and (10), respectively, describe the variation of the \(j/i \) ratio and \(j \) content in magnetite.

Fractionation of V, Cr, Mn, Co, Ni, and Zn in magnetite. The following elements, V, Cr, Mn, Co, Ni and Zn, were selected for modeling because: (1) They are among the main discrimination elements for magnetite from various settings (Nadoll et al., 2014) and their concentrations in magnetite are generally above the detection limits of LA-ICP-MS; (2) Their concentrations are low in the host dolomitic limestone and limestone as well as in the gangue minerals such as diopsidic pyroxene, tremolite, phlogopite, and serpentine (Wen, 2017), such that fluid-rock reactions and the precipitation of gangue minerals has a limited influence on the budget of these elements in the hydrothermal fluid; and (3) The distribution coefficients for these elements between magnetite and chloride solutions are available (Ilton and Eugster, 1989; Tauson et al., 2015, 2017; Smagunov et al., 2021).

The experimental investigation of Ilton and Eugster (1989) showed that Mn and Zn are incompatible relative to Fe in magnetite in equilibrium with chloride solutions at 600 to 800 °C and 200 MPa. Recent experimental partitioning studies by Tauson et al. (2015, 2017) and Smagunov et al. (2021) confirmed the incompatibility of Mn and Zn along with Co in magnetite equilibrated with chloride solutions at 450 °C and 100 MPa with the oxygen fugacity \((fO_2)\) close to the magnetite-hematite buffer. Corresponding distribution coefficients are as follows: \(K_d(Mn) = 0.009 \pm 0.002; \)
\(K_d(Zn) = 0.0017 \pm 0.0008; \) and \(K_d(Co) = 0.16 \pm 0.07. \) Their experiments further
demonstrate the high compatibilities of V and Ni and similar compatibility of Cr relative to Fe in magnetite with distribution coefficients of $K_d(V) = 6.6 \pm 3.8$; $K_d(Ni) = 3 \pm 1.5$; and $K_d(Cr) = 1.2 \pm 1$. We used the mean distribution coefficients for V, Cr, Mn, Co, Ni, and Zn between magnetite and fluid from Tauson et al. (2015, 2017) and Smagunov et al. (2021) for the Rayleigh and equilibrium fractionation modeling. The $P, T, \text{ and } fO_2$ conditions for these distribution coefficients are comparable to those during magnetite mineralization at Baijian (Wen 2017) and other skarn Fe deposits worldwide (e.g., Meinert, 1984; Rose et al., 1985; Pons et al., 2009; Li et al., 2019).

In both the Rayleigh and equilibrium fractionation models, Mn, Zn, and Co concentrations increase slowly as magnetite precipitation proceeds (Fig. 8A, C). The modeling results are consistent with the trace element compositions of magnetite from the Baijian Fe-(Co) skarn deposit that show a slight increase in the average Mn and Zn concentrations from early Mag-1 to late Mag-3 (Fig. 5). The average concentration of Co increases from Mag-1 to Mag-2 but decreases from Mag-2 to Mag-3 coexisting with pyrite (Figs. 3E-F; Fig. 5), which suggests that pyrite fixes Co more efficiently than magnetite (Dare et al., 2012, 2014; Zhao and Zhou, 2015). It is noteworthy that decreasing temperature generally results in decreasing trace element abundances in magnetite (Dare et al., 2014). Independent evidence that temperature decreased during precipitation of Mag-1 to Mag-3 is provided by decreases in the Ti concentration of magnetite (Fig. 5), which can be used as a proxy for temperature (Dare et al., 2014). The measured increases in the concentration of incompatible Mn, Zn, and Co from Mag-1 to Mag-2/Mag-3 suggests that the effects of magnetite fractional crystallization
were greater than cooling. In contrast, the Cr concentration of magnetite is insensitive to magnetite fractional crystallization in both of the models (Fig. 8A, C). Thus, the measured decrease in the Cr concentration from Mag-1 to Mag-3 is probably due to decreasing temperature.

The compatible elements, V and Ni, in magnetite behave differently between the two models, with their concentrations decreasing more rapidly by Rayleigh fractionation than by equilibrium fractionation (Fig. 8A, C). In the Baijian deposit, the sharp decrease in the concentration of V and Ni from Mag-1 to Mag-3 (more than 2 orders of magnitude different; Fig. 5) is best explained by Rayleigh fractionation (Fig. 8A), because with 60% of the Fe in the fluid consumed by magnetite precipitation there is over a hundred-fold decrease in the concentration of V in the magnetite (calculated with $K_d(V) = 6.6$; Fig. 8A). It is worth noting that if the maximum distribution coefficient for V ($K_d(V) = 10.4$) is applied in Rayleigh fractionation modeling, achieving such a hundred-fold decrease in V concentration in the magnetite would only require 40% of the Fe to be consumed by magnetite precipitation. Alternatively, the decrease in V and Ni from Mag-1 to Mag-3 may be attributed to a decrease in temperature, though the extent to which temperature affects abundances of V and Ni in the magnetite would require further experimental studies.

Compared to their abundances, the ratios of trace elements in magnetite are much less affected by temperature (Ilton and Eugster, 1989; Smagunov et al., 2021) and thus, most likely, reflect variations in the fluid chemistry. In our samples, the ratios of incompatible to compatible elements, such as Co/Ni, Zn/Ni, and Zn/V, and
compatible to incompatible elements, such as V/Mn, Ni/Mn, and Ni/Cr, remain relatively constant in Mag-1 when compared to Ti (Fig. 9). However, these ratios vary over 2 to 4 orders of magnitude in Mag-2 and Mag-3 as Ti has a narrow range of concentrations (Fig. 9). Since a narrow range in Ti concentrations is indicative of a narrow temperature range, the large variations in metal cation ratios for Mag-2 and Mag-3 must be due to changing metal cation ratios in the fluid. As Mag-2 and Mag-3 represent the main stages of magnetite mineralization, the ore fluids must have undergone high degrees of magnetite precipitation during these stages. During Rayleigh fractionation (Fig. 8B), once 90% of the Fe had precipitated as magnetite there is a circa thousand-fold increase in the Zn/Ni and Co/Ni ratios in the residual fluid and magnetite. Raleigh fractionation can, therefore, explain the large range of metal ratios in Mag-2 and Mag-3. In comparison, equilibrium fractionation is less efficient in fractionating the metal ratios in magnetite (Fig. 8D). Overall, there are obvious trends of increasing incompatible/compatible element ratios (e.g., Co/Ni, Zn/V and Zn/Ni; Fig. 6) and decreasing compatible/incompatible element ratios (e.g., V/Mn, Ni/Mn and V/Co, Fig. 6) from Mag-1 to Mag-3. These ratios are strongly correlated with each other (Fig. 6). Such trends and correlations are best explained by increasing degrees of magnetite fractional crystallization.

IMPLICATIONS

Interpretations of magnetite trace element data

Previous studies have suggested that the trace element composition of
hydrothermal magnetite is mainly controlled by fluid chemistry, temperature, oxygen fugacity, fluid-rock interactions, and co-precipitation of other minerals (Dare et al., 2012, 2014; Nadoll et al., 2014). Based on such relationships, magnetite trace element geochemistry has been used to decipher the properties and evolution of magnetite-forming fluids. In this study, we further demonstrate that efficient magnetite precipitation is a significant process leading to large variations in its trace element composition. Such a process should not be overlooked in interpreting magnetite trace element data, especially in hydrothermal systems that generate magnetite-rich ores such as Fe skarn, IOCG, and IOA deposits. For example, a decreasing V concentration in magnetite has been interpreted to reflect the increasing fO_2 of the ore-forming fluids. Alternatively, a decreasing magnetite V concentration can be readily explained by progressive precipitation of magnetite. Similarly, low Ni/Cr ratios (< 1, Dare et al., 2014) and high Co/Ni values (Acosta-Góngora, et al. 2014) are considered indicators for magnetite of igneous origin and magnetite associated with Cu-U (±Co) Fe oxide breccia systems, respectively. However, they are also typical for magnetite that crystalized from a fluid that underwent intense magnetite precipitation, as exemplified by the Baijian Fe skarn (e.g., majority of Mag-3, Figs. 6B and F, Table A1), and therefore could be interpreted differently.

Cobalt mineralization in Fe skarns

Pyrite, which is the main host of Co in the Baijian Fe-(Co) deposit, is paragenetically later than the main stage of magnetite mineralization (Wen, 2017).
Because magnetite preferentially consumes Fe over Co from ore fluids as magnetite precipitates, the Co/Fe ratio of the residual fluid increases. In the Rayleigh fractionation model, precipitation of 90% of the Fe in magnetite produces about a seven-fold increase in the Co/Fe ratio of the fluid (Equation 1; Fig. 7A). High fluid Co/Fe ratios would facilitate substitution of Co for Fe in pyrite via the reaction: $\text{Co}^{2+} + \text{FeS}_2 (\text{pyrite}) \rightarrow \text{Fe}^{2+} + (\text{Fe}, \text{Co})\text{S}_2 (\text{Co-rich pyrite})$. Cobalt sulfides may form when the fluid is exhausted in Fe or during late-stage hydrothermal recrystallization of Co-rich pyrite (Qiu et al., 2021). Such increases in fluid Co/Fe ratios can explain the common occurrence of Co-rich pyrite and Co sulfides in numerous other Fe skarn deposits around the world (Einaudi et al., 1981; Rose et al., 1985; Meinert et al., 2005; Nimis et al., 2014; Slack et al., 2017; Zhao et al., 2019; Wei et al., 2021; Yan et al., 2021; Shi et al., 2023). Notably, other magnetite-dominant deposit types such as IOCG and IOA deposits also contain appreciable Co-rich sulfides (Williams et al., 2005), such as the Ernest Henry IOCG deposit in the Cloncurry district of Australia (Mark et al., 2000) and the Los Colorados IOA deposit in northern Chile (Reich et al., 2016). These large tonnage deposits contain large amounts of hydrothermal magnetite and small amounts of late stage Co-rich sulfides. This would support our conjecture that magnetite precipitation could play an important role in elevating fluid Co/Fe ratios and the subsequent precipitation of Co-rich sulfides in these magnetite-dominant ore deposits. The formation of Co-rich pyrite and Co sulfides is required for economic Co exploitation.

The average Co/Fe ratio of magnetite ($\text{Co}/\text{Fe} = 83 \times 10^{-6}$; Table A1) and the
magnetite-fluid Co/Fe partition coefficient ratio \(K_d(Co) = 0.16\pm0.07 \); Smagunov et al. 2021), were used to calculate the average Co/Fe ratio for the Baijian ore fluid of \((517\pm226) \times 10^6\), which is comparable to that of the monzodiorite (avg. \(333\times10^6\), represented by the average values of the least altered samples, Table A2). This consistency indicates that Co/Fe fractionation between aqueous fluids and magmas is insignificant, as suggested by Williams-Jones and Vasyukova (2022). If the magmatic fluids that form Fe skarns have Co/Fe ratios that are similar to those of related plutons, then deposits with significant Fe reserves (>50 Mt Fe) have the potential to contain substantial amounts of Co. In the case of Baijian, mass balance calculations suggest that the 53.3 Mt of Fe (112 Mt ore at 47.6 wt.% Fe) in this deposit may contain 17,749 t of Co. This calculated Co content is close to the Baijian deposit’s Co reserve (17,186 t), approximately 1/40 of global Co reserves (700,000 t; USGS, 2020). Our findings underscore the importance of assessing Co resources in Fe skarn deposits, as they can potentially contribute significant production to meet the ongoing demand for this metal.

FUNDINGS AND ACKNOWLEDGMENTS

This study was financially supported by the National Key Research and Development Program of China (No. 2023YFF0804200) and the National Natural Science Foundation of China (No. 42172101; No. 42321001; No. 41802114). We thank Xiaodong Deng, Xiaoye Jin, Yang Li, Yi Sun, Yaoqian Wu and Ming Bai for their help during the fieldwork. We thank U.S. Geological Survey reviewer Corey...
Meighan for comments and suggestions. Insightful reviews provided by Dr. Michael Anenburg and an anonymous reviewer are greatly appreciated, which significantly enhanced this manuscript. Editorial handling by Dr. Denis Fougerousse is acknowledged. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

REFERENCES CITED

Chen, B., Tian, W., Jahn, B.M., and Chen, Z.C. (2008) Zircon SHRIMP U–Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang,
North China craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos, 102, 118-137.

Dupuis, C. and Beaudoin, G. (2011) Discriminant diagrams for iron oxide trace
element fingerprinting of mineral deposit types. Mineralium Deposita, 46, 319-335.

Huang, X.W., and Beaudoin, G. (2019) Textures and chemical compositions of magnetite from iron oxide Copper-Gold (IOCG) and Kiruna-Type iron Oxide-Apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes. Economic Geology, 114, 953-979.

Longerich HP, Jackson SE, and Gunther D (1997) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte

Implications for the mechanism of lithospheric thinning of the North China Craton. Ore Geology Reviews, 57, 363-374.

Figure and table captions

Figure 1. Geologic map of the Handan-Xingtai district (IGSNC and HGI, 1976) showing the distribution of Fe skarn deposits and associated granitoid intrusions in Ordovician carbonates. The inset shows the major tectonic units of the North China Craton and the location of the Handan-Xingtai district. Abbreviations: CAOB = Central Asian Orogenic Belt; YZC = Yangtze Craton.

Figure 2. A representative cross section of the Baijian Fe skarn deposit showing drill holes, rock units, and the morphology of the two major orebodies.

Figure 3. Representative photographs showing the textures and mineralogy of the samples used in this study. (A) Sample of massive pyroxene skarn, consisting of over 90 vol.% diopsidic pyroxene. (B-D) Samples of magnetite ores associated with retrograde skarn assemblages. These samples contain variable amount of phlogopite, tremolite and serpentine; (E-F) Samples of magnetite ore associated with sulfides. Pyrite occurs as disseminations within massive magnetite. Calcite veinlets locally replace magnetite. Mineral abbreviations: Px-pyroxene; Mag-magnetite; Phl-phlogopite; Tr-tremolite; Srp-serpentine; Py-pyrite; Cal-calcite.

Figure 4. BSE images showing typical features of magnetite observed in the
samples studied. (A) Subhedral magnetite enclosed in a pyroxene crystal; (B-C) Magnetite contains abundant mineral inclusions of apatite and pyroxene; (D-E) Magnetite intergrown with tremolite, which replaces pyroxene; (F) Magnetite and phlogopite replacing pyroxene; (G-I) Magnetite intergrown with serpentine, which locally replaces olivine; (J) Magnetite mantled by pyrite and calcite; (K) Magnetite replaced by calcite and hematite; (L) Calcite and siderite veinlets and replacements in magnetite. Mineral abbreviations: Ap-apatite; Px-pyroxene; Mag-magnetite; Phl-phlogopite; Tr-tremolite; Srp-serpentine; Py-pyrite; Cal-calcite; Ol-Olivine; Hem-hematite; Sid-siderite.

Figure 5. Box plot showing the abundance of trace elements in magnetite.

Figure 6. Plots of Zn/Ni vs. Zn/V (A), Zn/Ni vs. Co/Ni (B), Zn/Ni vs. V/Mn (C), Zn/Ni vs. Ni/Mn (D), Zn/Ni vs. V/Co (E), and Zn/Ni vs. Ni/Cr (F). The Zn/Ni ratios are positively correlated with Zn/V and Co/Ni ratios (A-B) and are negatively correlated with V/Mn, Ni/Mn, V/Co, and Ni/Cr ratios (C-F). From Mag-1 through Mag-2 to Mag-3, the Zn/Ni, Zn/V, and Co/Ni ratios increase progressively (A-B), whereas the V/Mn, Ni/Mn, V/Co, and Ni/Cr ratios decrease gradually (C-F).

Figure 7. Schematic illustration of ore fluids migrating through the contact zone in the Baijian Fe skarn deposit. The Fe-charged ore fluids undergo significant magnetite precipitation at the initial mineralization front and final mineralization front, which is confined by the marble halo. As magnetite continues to precipitate, the ore fluids undergo progressive Fe depletion with escalating degrees of fractionation between compatible elements (V and Ni) and incompatible elements (Mn, Zn, and Co). These
fractionations in the ore fluids are recorded in magnetite formed in the ore zone (T2 and T3 magnetite). See the text for further explanation. Abbreviation: Mag-magnetite; Py-pyrite.

Figure 8. Rayleigh (A, B) and equilibrium (C, D) curves for trace elements and trace element ratios during magnetite fractional crystallization in a closed system. The magnetite-fluid distribution coefficients for each trace element are assumed to be constant during the fractional crystallization process.

Figure 9. Plots of Ti vs. Zn/V (A), Co/Ni (B), V/Mn (C), Ni/Mn (D), V/Co (E), and Ni/Cr (F). These trace element ratios remain relatively constant in Mag-1 but vary over 2 to 4 orders of magnitude in Mag-2 and Mag-3 within a narrow range of Ti concentrations.

Appendix

Appendix Table A1. Trace element data of magnetite from the Baijian Fe skarn.

Appendix Table A2. Whole-rock major element compositions and Co concentration of the ore-related monzodiorite.