1	Word count: 10584
2	Revision 1
3	Correlation between Si-Al disorder and hydrogen-bonding distance variation in
4	ussingite (Na ₂ AlSi ₃ O ₈ OH) revealed by one- and two-dimensional multi-nuclear NMR
5	and first-principles calculation
6	
7	Xianyu Xue* and Masami Kanzaki
8	Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori Japan
9	* Corresponding author; E-mail: <u>xianyu@misasa.okayama-u.ac.jp</u>
10	Tel: 81-858-43-3824
11	
12	Submitted to Am Mineral 2023.3.23.
13	Revised 2023.5.17.
14	
15	Abstract
16	Ussingite (Na ₂ AlSi ₃ O ₈ OH) is a mineral with a unique interrupted framework structure
17	and strong hydrogen bonding. It contains 4-, 6- and 8- membered tetrahedral rings
18	resembling feldspars, but, unlike the latter, is partially depolymerized. There are four
19	crystallographically unique tetrahedral (T) sites, two of which (T1, T2) are Q^4 (i.e., having
20	4 next nearest neighbor (NNN) T sites), and the other two (T3, T4) are Q^3 (i.e., having 3
21	NNN T sites), each with NNN (in brackets) of T1(1T2, 1T3, 2T4), T2(1T1, 2T3, 1T4),
22	T3(1T1, 2T2), T4(2T1, 1T2). There is one unique OH site in the T4-O8-H…O2-T3
23	configuration, where O8 and O2 are nonbridging oxygens (NBO). In the ordered structure,

24	T1 is fully occupied by A1, and the other three T sites by Si. Previous X-ray and neutron
25	diffraction and ¹ H and ²⁹ Si NMR studies gave contradictory conclusions regarding Si-Al
26	disorder. In this study, we were able to unambiguously clarify the issue via comprehensive
27	one- and two-dimensional ¹ H, ²⁹ Si, ²⁷ Al and ²³ Na NMR and first-principles calculation. It
28	was revealed that there is \sim 3% Si-Al disorder that occurs between neighboring T1-(O)-T2
29	site, such that the formation of Al-O-Al linkage and $Al(Q^3)$ are avoided. The disorder was
30	found to result in development of $Si(Q^3)$ sites with a variety of NNN including 3Al and 3Si,
31	and neighboring OH sites having significantly shorter and longer hydrogen-bonding
32	distances than in the ordered structure, with ¹ H chemical shifts near 15~16 ppm and 11 ppm,
33	in addition to a main peak near 13.9 ppm. Good correlation was found between ¹ H
34	chemical shift, hydrogen-bonding (O-H, H···O and O···O) distances, and Si-O distances in
35	the Si-O-H…O-Si linkage. This suggests that Si-Al disorder is correlated with variation in
36	hydrogen-bonding distances via through-bond transmission of bond valence variations.
37	This could be a universal phenomenon also applicable to other hydrous minerals. The
38	revelation of preferential partition of Al in Q^4 over Q^3 sites to avoid the formation of Al-
39	OH and Al-NBO provides insight into their behavior in other partially depolymerized
40	hydrous aluminosilicate systems, such as glasses and melts.
41	
42	Introduction
43	
44	Ussingite (Na ₂ AlSi ₃ O ₈ OH) is a mineral characterized by a unique interrupted framework
45	structure and strong hydrogen bonding (Fig. 1). It has been found in limited localities in the
46	world, as a secondary mineral in pegmatite in the Lovozero and Khibina massifs of the

47	Kola Peninsula, Russia, in the Ilimaussaq intrusion, Greenland, and in sodalite xenoliths in
48	an alkalic gabbro-syenite complex in Mont Saint-Hilaire, Canada. Its chemical composition
49	has been reported to be close to the ideal formula (c.f., Anthony et al.).
50	The crystal structure of ussingite has been determined by single-crystal X-ray diffraction
51	(XRD) (Rossi et al., 1974) and powder neutron diffraction (Williams and Weller, 2012). It
52	has a space group P-1, Z=2 with lattice parameters: $a = 7.2474(1)$ Å, $b = 7.6813(1)$ Å, $c =$
53	8.6432(1) Å, $\alpha = 90.835(1)^{\circ}$, $\beta = 99.771(1)^{\circ}$, $\gamma = 122.581(1)^{\circ}$ at 4 K (Williams and Weller,
54	2012). The structure contains 4-, 6- and 8- membered tetrahedral rings resembling feldspars,
55	but, unlike the latter, is partially depolymerized. There are nine crystallographically unique
56	oxygen sites, seven of which are bridging oxygens that each link two tetrahedral (T) cations,
57	and the remaining two (O2, O8) are nonbridging oxygens (NBO) that each bond to one T
58	cation and to one H via O-H or H \cdots O bond. The bulk NBO/T (NBO per tetrahedral cation),
59	a parameter describing the degree of depolymerization of the system, is 0.5. There are four
60	T sites, two of which (T1, T2) are Q^4 (i.e., having 4 next nearest neighbor (NNN) T sites),
61	and the other two (T3, T4) are Q^3 (i.e., having 3 NNN T sites). Their NNN environments
62	(in brackets) are T1(1T2,1T3,2T4), T2(1T1,2T3,1T4), T3(1T1,2T2), T4(2T1,1T2), so that
63	the T3/T4 sites are not NNN to one another, but are each surrounded by three T1/T2 sites.
64	There is only one unique H site located in the T4-O8-H…O2-T3 linkage, with O8-H,
65	H···O2 and O8···O2 distances of 1.070(8), 1.412(7) and 2.481(5) Å at 4 K (Williams and
66	Weller, 2012).
67	The crystal structure of ussingite from X-ray diffraction (Rossi et al., 1974) did not show
68	any Si-Al disorder. In the ordered structure, T1 is occupied by Al, and the other T sites by
69	Si. Possibility of Si-Al disorder was suggested by Ribbe (1974), who noted that exchange

70	of 5% of Al in T1 site with Si in T3 site resulted in better fit to an empirical equation for T-
71	O bond distances. Oglesby and Stebbins (2000) reported ²⁹ Si MAS and ¹ H- ²⁹ Si CP (cross
72	polarization) MAS NMR results for ussingite, and attributed three observed peaks at -96.5,
73	-87.7 and -83.8 ppm to the T2, T3 and T4 sites of the ordered structure. No indication of
74	disorder was shown. Johnson and Rossman (2004) reported ¹ H MAS NMR spectra for
75	ussingite that contain a main peak near 13.9 ppm and two smaller peaks around 15.9 ppm
76	and 11.0 ppm. It is well known that the ¹ H chemical shift is correlated with hydrogen-
77	bonding distance. The authors noted that the main peak is close to that expected from the
78	ordered structure. They interpreted the peak near 15.9 ppm to be a result of Si-Al disorder
79	between T1 and T3 site as suggested by Ribbe (1974), but could not assign the 11.0-ppm
80	peak. Williams and Weller (2012), however, reported that the structure from powder
81	neutron diffraction shows no disorder in Si-Al distribution or H position. Thus, previous
82	studies gave contradictory conclusions regarding Si-Al disorder in ussingite.
83	The aim of this study was twofold: The first was to completely clarify the state of Si-Al
84	disorder and how it is related to hydrogen-bonding distance variation in ussingite via a
85	comprehensive one- (1D) and two-dimensional (2D) multi-nuclear NMR measurement and
86	first-principles calculation. The second was to use ussingite as a model compound to gain a
87	general crystal chemical understanding of (1) the partition behavior of Al/Si and nature of
88	OH in partially depolymerized aluminosilicate systems, and (2) the relationship between Si-
89	Al disorder and hydrogen-bonding distance variation. Previous studies of partially
90	depolymerized anhydrous and hydrous aluminosilicate glasses have suggested that Al tends
91	to partition into Q^4 species than less polymerized Q^3 species (e.g., Allwardt et al., 2003;
92	Neuville et al., 2004; Xue and Kanzaki, 2008). In prehnite (Ca ₂ Al ^{VI} (Al ^{IV} Si ₃)O ₁₀ (OH) ₂), a

93	mineral containing mixed Q^4 and Q^2 sites, tetrahedral Al (Al ^{IV}) was also found to
94	preferentially partition into Q^4 site (Stebbins, 1992). If the proposed Si-Al disorder between
95	T1 and T3 site in ussingite were valid, it would imply the existence of unfavorable $Al(Q^3)$.
96	Insight into the relationship between Si-Al disorder and hydrogen-bonding distance is also
97	of broad interest, because the latter is an important factor governing the physical properties
98	of minerals, and many hydrous silicate minerals show Si-Al disorder.
99	
100	Experimental and Calculation Methods
101	
102	Sample description and characterization
103	Two ussingite samples were examined: Sample one (purchased from Mineral Street) was
104	from Alluaiv Mt, Lovozero, Kola Peninsula, Russia. Sample two (purchased from eBay)
105	was described as from Greenland. Both samples are fine-grained polycrystalline aggregates
106	of ussingite with a pale purple color (see supplementary Fig. 1s). A portion of each sample
107	was powdered for XRD and NMR measurements. Raman and electron microprobe (EPMA)
108	measurements were also made on selected fragments. The powder XRD, Raman, EPMA
109	and NMR measurements all revealed only ussingite phase.
110	The chemical composition of ussingite was quantitatively analyzed using a JEOL JXA-
111	8530F field-emission electron microprobe (FE-EPMA). An accelerating voltage of 15 kV, a
112	low beam current of 1 nA and a beam diameter of 10 μ m was used to minimize damage to
113	the sample. The resultant compositions for both samples are within uncertainty of the ideal
114	formula (see Table 1). The water content of ussingite in sample 1 was also estimated by ${}^{1}\text{H}$

MAS NMR to be 3.1(1) wt%, which agrees well with that (2.98 wt%) expected from theideal formula.

The Raman spectra in the high-frequency region exhibit broad bands with at least three
maxima (1800~1870, 2390, 2620 cm⁻¹), which is typical of strong hydrogen bonding (see
supplementary descriptions and Fig. 2s for details).

120

121 NMR spectroscopy

122 NMR measurements were performed on a standard-bore Bruker 9.4 T Avance NEO

123 NMR spectrometer, using a 3.2 mm (for 1 H and 29 Si) or 1.9 mm (for 23 Na and 27 Al) HX

124 MAS probe. The chemical shifts for ¹H and ²⁹Si were referenced externally to

125 tetramethylsilane (TMS); those for ²³Na and ²⁷Al were referenced, respectively, to 1M

126 NaCl solution and 1M Al(NO₃)₃ solution, all reproducible to better than about ± 0.1 ppm.

127 Detailed pulse sequences, spin-lattice relaxation time constants (T_1) measured, and

acquisition and processing parameters for the reported NMR spectra can be found in

supplementary Figure 3s and Tables 1s and 2s. Only an outline is described below.

130 ¹H MAS NMR spectra were obtained at a range of spinning rates up to 24 kHz with a

131 sufficiently long recycle delay of 400 s (sample 1) or 150~300 s (sample 2), using the

132 DEPTH2 sequence (Cory and Ritchey, 1988) for background suppression. The ${}^{1}\text{H}$ T₁ were

133 found to be 44~81 s and 28~45 s for peaks of ussingite in sample 1 and 2, respectively.

134 Single-pulse ²⁹Si MAS NMR spectra were obtained at a spinning rate of 20 kHz using a

135 1.8 µs-pulse (45° flip angle) and a recycle delay time of 4500 s, with proton decoupling

136 using the swept-frequency-TPPM sequence (Thakur et al., 2008). The long recycle delay

137 was used because of long 29 Si T₁ (7630~11750 s).

138	¹ H- ²⁹ Si CP MAS NMR spectra were acquired for both samples at a spinning rate of 10
139	kHz and a range of contact times from 1 to 20 ms. A recycle delay of 150 s (sample 1) or
140	60 s (sample 2) with swept-frequency-TPPM proton decoupling during acquisition were
141	used.
142	2D ¹ H- ²⁹ Si HETCOR spectrum was obtained for sample 1 using the efficient
143	$^{1}\text{H} \rightarrow ^{29}\text{Si} \rightarrow ^{1}\text{H}$ double CP MAS technique (Ishii and Tycko, 2000) at a spinning rate of 24
144	kHz with a relaxation delay of 100 s. No decoupling was applied.
145	2D rotor-synchronized ¹ H double-quantum (DQ) MAS NMR spectrum was acquired on
146	sample 1 using the POST-C7 scheme (Hohwy et al., 1998) at a spinning rate of 14.7 kHz
147	and recycle delay of 100 s, with a DQ excitation/reconversion duration of 408 μ s each.
148	²⁷ Al and ²³ Na MAS NMR spectra were acquired at a spinning rate of 20 kHz with a
149	pulse width of 0.3 μ s (²⁷ Al) or 0.4 μ s (²³ Na) (both about 30° tip angle for selective central
150	transition) and a recycle delay time of 2 s. No proton decoupling was applied. Spectrometer
151	deadtime (~6.5 μ s) resulted in a rolling baseline, which was improved by linear prediction.
152	For ²⁷ Al, a further spline baseline correction was also applied.
153	High-resolution 2D rotor-synchronized ²⁷ Al and ²³ Na triple-quantum (3Q) MAS NMR
154	spectra were obtained for both samples at a spinning rate of 20 kHz and recycle delay time
155	of 20~26 s (²⁷ Al) or 30 s (²³ Na) using the efficient SPAM (soft-pulse added mixing)-
156	3QMAS pulse scheme (Amoureux et al., 2005; Gan and Kwak, 2004). No decoupling was
157	applied. The chemical shift reference in the isotropic dimension follows the universal
158	scaling convention of Amouroux and Fernandez (1998).
159	Simulation of the NMR spectra was performed using the SOLA program in the Bruker

160 Topspin 4.1.4. package.

161

162 First-principles calculation

163	First-principles density functional theory calculations of energy and NMR parameters
164	were performed using the Quantum-ESPRESSO (QE) package (version 7.0)(Giannozzi et
165	al., 2017; Giannozzi et al., 2009), similar to our previous studies (Kanzaki and Xue, 2016;
166	Xue et al., 2017). Both the ordered ussingite structure of ideal composition (Z=2, 32 atoms
167	in one unit cell) and models for Si-Al disorder were studied. For the latter, models for one
168	pair of Al-Si exchanged between a T1 site and each of its NNN (1T2, 1T3, 2T4), as well as
169	between a pair of remote T1 and T2 site in a $2 \times 2 \times 2$ supercell (containing 16 formulae
170	and 256 atoms) were examined. This corresponds to 6.25% (1/16) of the Al exchanged with
171	Si. The size of the $2 \times 2 \times 2$ supercell was found to be sufficient to produce isolated
172	disordered structure.
173	For each calculation, the structure (both cell parameters and atomic coordinates) was
174	first relaxed at 1 bar using the PWscf code of the QE package. NMR chemical shielding
175	and electric field gradient (EFG) tensors were then calculated using the Gauge-Including
176	Projector-Augmented Wave (GIPAW) method (Pickard and Mauri, 2001) implemented in
177	the QE-GIPAW package (version 7.0). The PBEsol functional within the generalized
178	gradient approximation (GGA) for the exchange-correlation energy (Perdew et al., 1996;
179	Perdew et al., 2008) and the following PAW-pseudopotentials from the PSlibary (Dal
180	Corso, 2014) were used for both calculations: Si.pbesol-n-kjpaw_psl.0.1.UPF, Al.pbesol-n-

- 181 kjpaw_psl.0.1.UPF, O.pbesol-n-kjpaw_psl.0.1.UPF, Na.pbesol-spn-kjpaw_psl.0.2.UPF,
- 182 H.pbesol-kjpaw_psl.0.1.UPF). A Monkhorst-Pack grid of $2 \times 2 \times 2$ for the Brillouin zone
- 183 sampling was used for the ordered ussingite, and a comparable grid size of $1 \times 1 \times 1$ was

184	used for models of $2 \times 2 \times 2$ supercell with Al-Si disorder. A kinetic energy cutoff
185	(ecutwfc) of 50 Ry and a charge density cutoff (ecutrho) of 300 Ry, and SCF energy
186	convergence threshold of 10^{-14} Ry were used for all the reported data.
187	In order to test whether these parameters were sufficient, we also performed test
188	calculations on ordered ussing ite using a finer grid of 4 \times 4 \times 4 at ecutwfc from 50 to 80 Ry
189	in step of 10 Ry, with ecutrho set to six times of ecutwfc. The calculation results with
190	parameters above differ from that with a higher ecutwfc of 80 Ry by ≤ 0.1 ppm in ¹ H, ²⁹ Si
191	and ^{27}Al chemical shielding ($\sigma_i),$ by ≤ 0.03 MHz for ^{23}Na and ^{27}Al quadrupolar coupling
192	constant (C _Q), and by ≤ 0.02 for ²³ Na and ²⁷ Al electric field gradient (EFG) asymmetry
193	parameter (η_Q), but by 3~4 ppm for σ_i^{Na} . The difference in σ_i^{Na} between the two Na sites
194	differs by 0.2 ppm. Thus, the results were satisfactory for all but σ_i^{Na} , and still the
195	difference in σ_i^{Na} between different Na sites might still be useful.
196	Our previous study for similar calculation on several silicate minerals showed that
197	experimental ²⁹ Si and ¹ H chemical shifts (δ_i^{Si} , δ_i^{H}) were reproduced within ±2 and ±1 ppm
198	or better for tetrahedral Si and OH, respectively, with agreement in relative difference
199	generally better for local structures of greater similarity (Xue et al., 2017). In this study, we
200	also performed calculation for low-albite (NaAlSi ₃ O ₈ , space group P-1 (Smith et al., 1986))
201	in the same way as for ussingite, using a grid of $2 \times 2 \times 2$, for comparison. We have
202	referenced δ_i^{Si} and δ_i^{H} to ordered ussingite (using the strongest peak in the experimental
203	NMR spectra) to focus on variations brought about by Si-Al disorder. This yielded
204	calculated δ_i^{Si} for low-albite that differ from the experimental values (Sanchez-Munoz et al.,
205	2022) by -1.2~-3.3 ppm. The δ_i^{Al} and δ_i^{Na} were referenced to the experimental value for

206	low-albite (δ_i^{Al} : 63.0 ppm, δ_i^{Na} : -8.95 ppm (=average of two values (-8.7, -9.2 ppm)
207	obtained at magnetic fields of 9.4 and 19.6 T)(Sanchez-Munoz et al., 2022).
208	
209	Results
210	
211	²⁹ Si MAS and ¹ H- ²⁹ Si MAS NMR. The ²⁹ Si MAS NMR spectrum of sample 1,
212	obtained at a spinning rate of 20 kHz with swept-frequency-TPPM proton decoupling,
213	contains three main peaks near -84.1, -87.9 and -96.5 ppm, with the two peaks near -84.1
214	and -96.5 ppm much broader (Fig. 2). The signal to noise (S/N) ratio of the spectrum is
215	relatively poor, despite long acquisition time (~10 days) due to long 29 Si T ₁ .
216	¹ H- ²⁹ Si CP MAS NMR spectra acquired at contact times from 1 to 20 ms at a spinning
217	rate of 10 kHz were found to give increasing intensities for all peaks with contact time.
218	Only the spectra at a contact time of 20 ms are shown, which are similar for the two
219	samples (Fig. 2). Like the ²⁹ Si MAS NMR spectrum, the ¹ H- ²⁹ Si CP MAS NMR spectra
220	also contain three main peaks near -84.1, -87.9 and -96.5 ppm. The peak near -87.9 ppm
221	was found to be particularly sensitive to proton decoupling, and narrower peak width was
222	obtained with the swept-frequency-TPPM decoupling scheme than CW (continuous wave)
223	or TPPM decoupling. The better S/N ratio of the CP spectra allowed smaller features to be
224	clearly revealed. The peak near -84.1 ppm clearly contain multiple components, that near -
225	96.5 ppm exhibits splitting, and all three main peaks each contain a low-frequency tail.
226	Furthermore, there are also two small, well-resolved peaks near -81.0 and -91.6 ppm (Fig.
227	2).

228	The well-established empirical correlation between δ_i^{Si} and Q^n and the Al/Si constituents
229	in their NNN (c.f., Kirkpatrick, 1988; Stebbins and Xue, 2014) suggests that the three
230	groups of main peaks near -84.1, -87.9 and -96.5 ppm can each be attributed to Q ³ (1Si,2Al),
231	Q ³ (2Si,1Al) and Q ⁴ (3Si,1Al), as are expected for the T4, T3 and T2 sites in the ordered
232	structure of ussingite, and also assigned by Oglesby and Stebbins (2000). The two weaker
233	peaks near -81.0 and -91.6 ppm can be attributed to $Q^3(3Al)$ and $Q^3(3Si)$, respectively.
234	These assignments are in agreement with first-principles calculation result described below.
235	Oglesby and Stebbins (2000) also reported ²⁹ Si MAS and ¹ H- ²⁹ Si CP MAS NMR spectra
236	for ussingite, but could not observe features other than three main peaks, with the two
237	peaks of Q ³ partially overlapping. The broader peak widths of their spectra could have been
238	caused by dipolar coupling, because they were measured at a lower spinning rate of 2.5~3
239	kHz, and no proton decoupling seems to have been applied.
240	The ¹ H- ²⁹ Si CP spectra with the longest contact times of 12 and 20 ms were simulated to
241	obtain relative abundances among Q^3 sites. Although CP in general yields relative
242	intensities that are dependent on the relative Si-H distances, the different Q ³ sites are
243	expected to have similar CP dynamics (Oglesby and Stebbins, 2000). Their relative
244	intensities in the CP spectra with contact times of 12 and 20 ms were found to be close to
245	each other, and also close to that of the ²⁹ Si MAS NMR spectrum (in which only the two
246	main Q ³ peaks are clearly recognizable), suggesting it is a reasonable approximation. The
247	simulation was made utilizing information from 2D ¹ H- ²⁹ Si HETCOR spectrum (described
248	below), in which different components are better resolved, and included 17 pseudo-Voigt
249	components: one for $Q^3(3A1)$, seven for $Q^3(1Si,2A1)$, three for $Q^3(2Si,1A1)$, one for $Q^3(3Si)$,
250	and five for $Q^4(3Si,1Al)$ (see supplementary Fig. 4s and Table 3s for an example).

Simulation for the central band region only and that also including the weak spinning
sidebands were both performed, and gave similar relative abundances. Only the former is
reported in Table 2.

254

¹H MAS and 2D ¹H DQ MAS NMR. ¹H MAS NMR spectra of sample 1 and 2 255 256 acquired at a range of spinning rates from 5 to 24 kHz all contain a main peak near 13.9 257 ppm with a small low-frequency shoulder near 13.3 ppm, a group of three partially resolved 258 peaks with approximately 1:2:1 intensity ratio in the range of 15~16 ppm, and another 259 weaker peak near 11.1 ppm (see Figure 3 for the spectra at 24 kHz). The peak widths of all 260 peaks become narrower at higher spinning rates, indicating line broadening due to ¹H-¹H 261 dipolar coupling. They are overall broader for sample 2 than sample 1 at a given spinning 262 rate, which could be due to different level of paramagnetic impurities. There is also another 263 weak peak near 4.4 ppm, which has a much shorter T_1 (< 5 s) than the other peaks, and also 264 loses intensity after extensive sample spinning, suggesting it is due to surface-absorbed water. These ¹H MAS NMR spectra overall resemble, but have better resolution than, those 265 266 reported by Johnson and Rossman (2004) at lower spinning rates (6 and 12 kHz). From 267 hereafter, only peaks in the 11 to 16 ppm range will be described. 268 The ¹H MAS NMR spectra were simulated using 7 pseudo-Voigt components: four in the 15~16 ppm range (as revealed by 2D ¹H-²⁹Si HETCOR spectrum described below), two 269 270 for the main peak near 13.9 ppm and its shoulder, and one near 11 ppm (see supplementary 271 Fig. 5s and Table 4s for an example). Simulation for the central band region only and that 272 also including weak spinning sidebands were both performed and yielded similar relative 273 abundances. Only the former is reported in Table 3.

274	Information about the relative ¹ H - ¹ H proximity was obtained from 2D ¹ H DQ MAS
275	NMR spectrum for sample 1 (Fig. 4a). A spin pair that experience dipolar coupling (as a
276	result of spatial proximity) will yield two peaks with a DQ frequency in the F_1 dimension
277	equal to the sum of their respective frequencies in the F_2 dimension. Peaks between two
278	spins of different frequencies will be referred to as cross peaks, and those of equal
279	frequencies as diagonal peaks. In addition to a diagonal peak for the strongest ¹ H peak near
280	13.9 ppm, cross peaks between the main peak near 13.9 ppm and each of the other peaks
281	(three partially resolved peaks in the 15~16 ppm range and the 11 ppm-peak) are clearly
282	recognized. Weaker cross peaks among peaks in the 15~16 ppm range, and weaker cross
283	peak between the 11 ppm and 15~16 ppm peaks are also present. This indicates all the
284	observed peaks arise from protons in the same phase (ussingite).

285

2D ¹H-²⁹Si HETCOR. The 2D ¹H-²⁹Si HETCOR spectrum acquired for sample 1 at a 286 287 spinning rate of 24 kHz and a contact time of 8 ms is shown in Figure 5a. It provides information about relative H-Si proximity. Peaks will be observed only between ¹H and 288 ²⁹Si spin pairs that are dipolar coupled due to close proximity. All the observed ²⁹Si peaks 289 290 are found to be correlated with one or more of the ¹H peaks attributable to ussingite, 291 suggesting they all arise from Si in the ussingite structure. As the ideal ordered structure is expected to produce only three ²⁹Si peaks, this is a clear indication of deviation from the 292 293 ideal ordered structure. Furthermore, because T3/T4 sites only have NNN of T1/T2, the observation of ²⁹Si peak of Q³(3Al) can be achieved only if some Al are transferred from 294 295 T1 to T2 site, but cannot be accounted for by disorder between T1 and T3 site as suggested previously. The symmetric development of ²⁹Si peaks of both Q³(3Al) and Q³(3Si), which 296

297	requires extra Al in T2 site and extra Si in T1 site simultaneously, suggests that these peaks
298	arise from Si-Al disorder (exchange) between T1 and T2 site, rather than deviation in
299	stoichiometry (excess Si or Al), consistent with the EPMA result.
300	The spatial relationship between the different H and Si sites is revealed by the specific
301	correlations in the 2D 1 H- 29 Si HETCOR spectrum. We will focus on 29 Si peaks of Q ³ (-80
302	to -92 ppm), as OH is located in between a T4 and T3 site. It can be recognized from Figure
303	5a that the strongest ¹ H peak, near 13.9 ppm, exhibits cross peaks with the two main ²⁹ Si
304	peaks near -84.1 and -87.9 ppm that are attributable to Q ³ (1Si,2Al), Q ³ (2Si,1Al),
305	respectively. This is in accord with the configuration T4(1Si,2Al)-OH…O-T3(2Si,1Al) in
306	the ordered structure. The group of 1 H peaks at 15 ~ 16 ppm can be clearly recognized to
307	consist of four peaks in the 2D spectrum: Two of them each correlate only with one or two
308	weak ²⁹ Si peaks that contribute to shoulders of the main peak near -87.9 ppm (attributable
309	to $Q^3(2Si,1Al)$), and the other two are each correlated only with two weak ²⁹ Si peaks that
310	contribute to shoulders of the main peak near -84.1 ppm (attributable to $Q^3(1Si,2Al)$). The
311	$^{1}\mathrm{H}$ peak near 11 ppm shows cross peaks with two weak $^{29}\mathrm{Si}$ peaks near -81.0 and -91.6
312	ppm, which are attributable to $Q^3(3A1)$ and $Q^3(3Si)$, respectively. Therefore, one of the
313	correlated Si for each of the four 1 H peaks near 15~16 ppm has NNN different from those
314	of T3/T4 in the ordered structure (i.e., one $Q^3(2Si,1Al)$ and one $Q^3(1Si,2Al)$), and both of
315	the correlated Si for the ¹ H peak near 11 ppm differ from the latter, and thus must be NNN
316	to T sites with Si-Al disorder. Again, as T3/T4 sites only have NNN of T1/T2, this is
317	consistent with Si-Al disorder between T1 and T2 site. Furthermore, because the single T2
318	NNN of T4 and single T1 NNN of T3 in the T4(2T1,1T2)-OH…O-T3(1T1,2T2) linkage
319	are linked to each other via BO (see further descriptions below), the cross peaks of ²⁹ Si

- 320 $Q^{3}(3AI)$ and $Q^{3}(3Si)$ with a common proton can only arise from Si-Al exchange between
- **321** neighboring T1-(O)-T2 site.
- 322 The correlations for the five ¹H peaks related to disorder can be summarized as below
- 323 (also labelled in Fig. 5a):
- **324** 1. (¹H) 15.8 ppm (²⁹Si) -83.1 & -85.5 ppm: Q³(1Si,2Al)-(OH···O)-Q³(1Si,2Al)

326 3. (¹H) 15.54 ppm - (²⁹Si) -88.6 & -88.6 ppm:
$$Q^{3}(2Si,1Al)$$
-(OH···O)- $Q^{3}(2Si,1Al)$

327 4. (¹H) 15.1 ppm - (²⁹Si) -87.9 & -89.3 ppm:
$$Q^{3}(2Si,1Al)$$
-(OH···O)- $Q^{3}(2Si,1Al)$

328 5. (¹H) 11.1 ppm - (²⁹Si) -81.0 & -91.6 ppm:
$$Q^{3}(3AI)$$
-(OH···O)- $Q^{3}(3Si)$

- **329** The hydrogen bond (O-H \cdots O) has been shown in bracket above, because the ¹H-²⁹Si
- 330 HETCOR spectrum alone cannot distinguish between Si-OH and Si-O…H due to the
- 331 relatively strong hydrogen bonding. Nevertheless, this information can be gained from

332 comparison with first-principles calculation result (see below).

333

²⁷AI MAS and 2D 3QMAS NMR. The ²⁷AI MAS and 3QMAS NMR spectra of sample 334 335 1 are shown in Figures 6 and 7, respectively. Those of sample 2 are similar (not shown). In 336 the ordered structure of ussingite, Al occupies only T1 site. Both the central band and spinning sidebands of the ²⁷Al MAS NMR spectrum can be reasonably (though not 337 perfectly) simulated with a single set of parameters (δ_i^{Al} , C_0^{Al} , and η_0^{Al})(see Table 4 and 338 339 Fig. 6), although a larger line broadening is required for the central band than the spinning 340 sidebands. However, the 2D 3QMAS NMR spectrum exhibits somewhat varying MAS 341 peak shapes at different isotropic peak positions (Fig. 7). The projection in the isotropic 342 dimension is also somewhat asymmetric with a small high-frequency tail. These spectral

features indicate the presence of some distribution of NMR parameters, consistent with
local structural disorder around Al. No further attempt will be made to evaluate
quantitatively their distribution.

346

²³Na MAS and 2D 30MAS NMR. The ²³Na MAS and 30MAS NMR spectra of 347 348 sample 1 are shown in Figure 8. Those of sample 2 are similar (not shown). In the ordered 349 structure of usingite, there are two Na sites, with Na1 in six coordination and Na2 in five 350 coordination. The 2D 3QMAS NMR spectrum revealed two well resolved peaks in the 351 isotropic dimension, consistent with the presence of two Na sites (Fig. 8a). The MAS 352 projections of these two peaks were each simulated with a single set of parameters to best reproduce both the peak maximum position in the isotropic dimension (δ_1^{Na}), and positions 353 354 of discontinuities (e.g., peak maxima and shoulders) in the MAS projection (see Fig. 8b, Table 4). The central band of the 1D²³Na MAS NMR spectrum was also reasonably, 355 356 though not perfectly, simulated with these two sets of parameters (see Fig. 8b). Among the two peaks, the one with smaller δ_i^{Na} may be attributed to Na1, according to the known 357 correlation between δ_i^{Na} and Na coordination number (cf. Xue and Stebbins, 1993), which 358 359 is consistent with first-principles calculation result described below. However, the MAS 360 projections for the two peaks in the 2D 3QMAS NMR spectrum clearly both deviate from 361 the peak shape for a single site (see Fig. 8b), suggesting a distribution of NMR parameters 362 due to local structural disorder. No further attempt will be made to evaluate quantitatively 363 their distribution.

364

365 First-principles calculation results

366	Geometry and energy of relaxed structures. The relative energies and unit-cell
367	volumes at 0 K of fully relaxed structures for the ideal ordered ussingite and five disorder
368	models that each contain one Al exchanged with a Si in a different site in a $2 \times 2 \times 2$
369	supercell are listed in Table 5. The calculated unit-cell volumes for the ordered structure
370	and five disorder models only differ slightly, and are larger than that from X-ray diffraction
371	under ambient condition (Rossi et al., 1974) and neutron diffraction at 4 K (Williams and
372	Weller, 2012) by 0.3~0.4% and 1.1~1.2%, respectively. Among the five disorder models,
373	model 1 (Si-Al exchange over T1-O-T2) gave the lowest energy that is 28~69 kJ/mol lower
374	than models 2 to 5. Therefore, model 1 is energetically the most favorable and thus most
375	plausible model.
376	As mentioned in the Introduction, previous studies of partially depolymerized
377	aluminosilicate glasses indicated Al tends to partition into Q^4 species than less polymerized
378	Q ³ species. Also, the formation of Al-O-Al linkage has been known to be energetically
379	unfavorable (Al avoidance principle) (Lowenstein, 1954). Among the five disorder models,
380	model 1 is the only one that yields no energetically unfavorable Al-O-Al linkage or $Al(Q^3)$.
381	Model 5 for Si-Al exchange between two remote T1-T2 site results in Al-O-Al linkage.
382	Models 3 and 4 for Si-Al exchange over T1-O-T4 result in both Al-O-Al and Al(Q ³)-OH.
383	Model 2 for Si-Al exchange over T1-O-T3 is somewhat counter-intuitive: Although a
384	simple Si-Al exchange would result in $Al(Q^3)$ -NBO, after structural relaxation, $Al(Q^3)$ -OH
385	was produced instead, because H shifted to become closer to Al (also see below). Thus, the
386	trend in energy for the five disorder models is consistent with the known tendency of less
387	favorable development of Al-O-Al and preference of Al for Q ⁴ than Q ³ site.

388	To facilitate understanding of the calculated NMR parameters, below we examine how
389	the Si-Al disorder affects the local environments of Si, Al and OH for disorder model 1.
390	Si-Al exchange over one T1-O-T2 alters the NNN Al/Si constitutes for three T3 and
391	three T4 sites (see Fig. 9), resulting in three Si in T3 sites changing NNN from Q ³ (2Si,1Al)
392	to one $Q^{3}(3Si)$ and two $Q^{3}(1Si,2Al)$, and three Si in T4 sites changing NNN from
393	$Q^{3}(1Si,2Al)$ to one $Q^{3}(3Al)$ and two $Q^{3}(2Si,1Al)$. The NNN of Si in all the T2 sites remain
394	$Q^4(3Si,1Al)$ and that of the Si exchanged into a T1 site is also $Q^4(3Si,1Al)$. The NNN of Al
395	in all the T1 sites remain $Q^4(4Si)$, and that of the A1 exchanged into a T2 site is also
396	Q^4 (4Si). Therefore, the NNN of Si and Al in Q^4 sites remain unchanged.
397	In the ordered structure, OH is in the T4(1Si,2Al)-OH \cdots O-T3(2Si,1Al) configuration.
398	The change in NNN environments of the six T3/T4 affects five OH sites that are each
399	linked to one or two of these T3/T4 sites via O-H or $H \cdots O$ bond (see Fig. 9 and Table 6),
400	resulting in the following altered configurations:
401	1: T4(1Si,2Al)-O···HO-T3(1Si,2Al) (for H252 in Table 6)
402	2: T4(1Si,2Al)-OH…O-T3(1Si,2Al) (for H245 in Table 6)
403	3: T4(2Si,1Al)-OH…O-T3(2Si,1Al) (for H241 in Table 6)
404	4: T4(2Si,1Al)-OHO-T3(2Si,1Al) (for H250 in Table 6)
405	5: T4(3Al)-OH…O-T3(3Si) (for H249 in Table 6)
406	Thus, as a result of Si-Al disorder, 4 OH sites (1 to 4 above) now have T4/T3 on both
407	sides having the same NNN (both (1Si,2Al) or both (2Si,1Al)), and the 5 th OH has T4 and
408	T3 on either side having NNN of 3Al and 3Si, respectively. These changes are
409	accompanied by significant changes in hydrogen-bonding distances: much shorter for
410	configurations 1 to 4, and longer for configuration 5 (see Table 6). Furthermore, for

411 configurations 1 and 4 above, H shifts position so that OH is bonded to T3 rather than T4412 site in the relaxed structure.

413

414	²⁹ Si and ¹ H NMR results. The calculated ²⁹ Si NMR results for disorder model 1 and
415	ordered structure are shown in Table 7 and Figure 10. The δ_i^{Si} has been referenced by
416	setting the peak for Q ³ (2Si,1Al) in the ordered structure to the observed value of -87.94
417	ppm for the narrowest peak. The ordered structure produced three ²⁹ Si NMR peaks for
418	$Q^{3}(1Si,2Al), Q^{3}(2Si,1Al)$ and $Q^{4}(3Si,1Al)$, which reasonably reproduced the observed main
419	peaks (within about 1 ppm), but cannot account for the additional peaks.
420	For the disorder model 1, the three main groups of ²⁹ Si peaks now each contain a
421	distribution of δ_i^{Si} , including a smaller peak well shifted (by -2.1 and -1.3 ppm for
422	$Q^{3}(1Si,2Al)$ and $Q^{3}(2Si,1Al)$; -3.5 ppm for $Q^{4}(3Si,1Al)$) from the average position, which
423	may account for the observed multiple components and low-frequency tails in the ¹ H- ²⁹ Si
424	CP spectra. Two additional peaks due to $Q^3(3Al)$ and $Q^3(3Si)$ are also produced, and are
425	respectively within 1.4 and 0.9 ppm of the observed two small peaks. All the main features
426	observed in the experimental NMR spectra are reproduced within about 1~3 ppm, which is
427	the typical uncertainty of such calculation.
428	In Figure 10 and supplementary Figure 6s, contributions from each of the four T sites
429	are also shown. As described above, the exchange of Si-Al over T1-O-T2 resulted in
430	changes of NNN for three T4 and three T3 sites. The latter are the origin for the two extra
431	peaks of $Q^3(3A1)$ and $Q^3(3Si)$ and the smaller peaks that contribute to low-frequency
432	extremes of the main peaks of $Q^3(1Si,2Al)$ and $Q^3(2Si,1Al)$. For Q^4 , although all Si have

- 433 NNN of Q^4 (3Si,1Al), the Si in T1 site has lower frequency than those in T2 sites, and may
- 434 account for the observed low-frequency tail.

The calculated ¹H NMR results for disorder model 1 and ordered structure are shown in 435 Table 6 and Figure 11. The ordered structure produces a single ¹H peak, which is used as a 436 reference for δ_i^H (13.85 ppm). For the disorder model 1, four OH sites with significantly 437 larger δ_i^{H} (15.6~16.1 ppm), and one with a smaller δ_i^{H} (11.7 ppm) are developed. They are 438 439 all within 0.6 ppm of the respective experimentally observed peaks. The remaining OH sites give an average δ_i^{H} (13.7 ppm) close to that of the ordered structure, and show a 440 distribution from 13.3 to 13.9 ppm, with one OH site in particular displaced further to low 441 442 frequency. Thus, the observed features in the experimental ¹H NMR spectra are well 443 reproduced. The four OH sites that contribute to the 15~16 ppm peaks and one to the 11 444 ppm peak are, respectively, adjacent to one and two of the six T3/T4 sites that are NNN of 445 the Si-Al exchanged T1-(O)-T2 sites (also see Fig. 9). Cross peaks in 2D ¹H-²⁹Si HETCOR spectra can also be predicted. In the relaxed 446 447 structure, each H is within 2.26~2.63 Å of the two Si(Q^3) in the Si-O-H···O-Si linkage, and at > 4 Å to other Si. Therefore, within the spectral region for 29 Si Q³, only correlation of 1 H 448 with the two nearest $Si(Q^3)$ sites have significant contribution. From the configurations 449 450 described in the preceding section, the disorder model 1 predicts correlations that are the same as observed in the 2D ¹H-²⁹Si HETCOR spectrum (see corresponding labels in Fig. 5a 451 and b). This allows the observed ²⁹Si NMR peaks to be assigned (see Table 7), assuming 452 453 the observed order in δ_i^{Si} for a given configuration is the same as that of the calculation. Similarly, cross peaks in 2D ¹H DQ NMR spectrum can be predicted. In the relaxed 454 structure, each H is within 4.4~4.6 Å of two other H, and at > 7 Å from other H, so that 455

456	only the correlation with two nearest H sites need to be considered to account for the main
457	peaks. The simulated spectrum (Fig. 4b) shows that each of the five H sites in the 15~16
458	and 11 ppm region exhibit cross peaks only with the main peak, which again is consistent
459	with the observed spectrum. Among the peaks in the 15~16 ppm, the peak with the lowest
460	$\delta_{i}^{\rm H}$ (labelled "4") is the only one that is correlated with the low-frequency shoulder (rather
461	than the peak maximum) of the main peak, again matching well with the observed spectrum.
462	Therefore, the 1D ²⁹ Si (CP) MAS and ¹ H MAS NMR spectra and 2D ¹ H- ²⁹ Si HETCOR
463	and ¹ H DQ MAS NMR spectra are all well reproduced by disorder model 1.
464	Although the calculation results for the other less plausible disorder models will not be
465	described in detail, it is worth mentioning model 2, as Si-Al disorder between T1 and T3
466	has been proposed by Ribbe (1974), and also used by Johnson and Rossman (2004) to
467	account for the observed ¹ H NMR peak(s) in the 15~16 ppm region. For the latter, Johnson
468	and Rossman (2004) explained that the substitution of Si by Al in T3 site causes under-
469	bonding of O2(-Al) and thus increase in hydrogen-bonding strength. However, our first-
470	principles calculation for model 2 revealed that after structural relaxation, H shifted toward
471	Al to form Al-OH, yielding a ¹ H chemical shift of 9.3 ppm, lower than that of the ordered
472	structure. Therefore, the energetically less favorable model of disorder over T1 and T3 not
473	only cannot explain the observed ²⁹ Si NMR spectra, but also cannot account for the ¹ H
474	NMR spectra.

475

476 ²⁷Al NMR results. The calculated ²⁷Al NMR parameters for the ordered structure and 477 disorder model 1 of ussingite and low-albite are tabulated in Table 8. The calculated δ_i^{Al} 478 (60.1 ppm), C_Q^{Al} (3.7 MHz), η_Q^{Al} (0.89) and δ_1^{Al} (65.6 ppm) for the ordered ussingite are in

479	reasonable agreement (within 0.4 ppm, 0.7 MHz, 0.1, and 1.6 ppm, respectively) with those
480	derived from the experimental data (see Table 4). The Al in T1 sites of the disorder model 1
481	yield average values close to those of the ordered structure, with a small distribution of
482	values for each. The single Al in T2 site gave somewhat larger $\delta_i{}^{Al}$ (61.9 ppm) and $\delta_l{}^{Al}$
483	(67.0 ppm) values, and C_Q^{Al} (3.6 MHz) and η_Q^{Al} (0.74) within the range for Al in T1 sites.
484	These results are broadly consistent with the experimental data that show moderate
485	variation in NMR parameters and a small high-frequency tail in the isotropic projection of
486	2D 3QMAS NMR spectrum.
487	
488	²³ Na NMR results. The calculated ²³ Na NMR parameters for the ordered structure and
489	disorder model 1 of ussingite and low-albite are tabulated in Table 9. The calculated
490	parameters for the two Na sites in the ordered ussingite are each close to the average values
491	for disorder model 1. Both show similar C_Q^{Na} for the two Na sites, with Na1 yielding a
492	larger $\eta_Q{}^{Na}$ (close to 1) and smaller $\delta_i{}^{Na}$ than Na2. This supports the assignment of the peak
493	with smaller δ_i^{Na} from the experimental data to Na1. The deviation in the calculated

494 (average) values of δ_i^{Na} , C_0^{Na} and η_0^{Na} from the experimental NMR data are 2.5 ppm,

495 0.3~0.7 MHz and 0.2, respectively. The deviation in the difference of δ_i^{Na} between the two

496 Na sites is smaller (0.0 ppm), which mimic trend for the calculated 23 Na chemical shielding

497 in test calculations described earlier.

498 The individual parameters for each Na site in disorder model 1 show relatively large

- 499 variations (especially in δ_i^{Na} , δ_1^{Na} and η_Q^{Na}): Na1: δ_i^{Na} of -3.2~3.8 ppm, C_Q^{Na} 2.1~3.4 MHz,
- 500 η_Q^{Na} of 0.2~1.0 and δ_1^{Na} of 4.7~19.4 ppm; Na2: δ_i^{Na} of 0.2~7.3 ppm, C_Q^{Na} of 2.0~2.4 MHz,
- 501 η_0^{Na} of 0.3~0.9, and δ_1^{Na} of 8.9~16.9 ppm. The large, and partially overlapping ranges in

502	$\delta_i{}^{Na}$ and $\delta_l{}^{Na}$ for the two sites suggest that the two resolved peaks in the isotropic dimension
503	of 2D 3QMAS NMR spectrum may each include contribution from the other Na site,
504	although caution should be taken in interpreting the calculated $\delta_i^{\ Na}$ values. The large range
505	in $\eta_Q^{\ Na}$, together with variations in other parameters, may account for the significant
506	deviation from typical quadrupolar peak shape for a single site for the MAS projection of
507	each peak in the 2D 3QMAS NMR spectrum. These results are, thus, broadly consistent
508	with the experimental ²³ Na NMR results and indicate local structural disorder around Na
509	accompanying Si-Al disorder.
510	
511	Discussions
512	
513	Nature and extent of Si-Al disorder in ussingite
514	The 1D and 2D ²⁹ Si and ¹ H NMR results unambiguously revealed that there are more
515	peaks from ussingite than are accountable by an ordered structure with ideal composition.
516	In particular, the observation of ²⁹ Si peaks attributable to $Q^3(3Al)$ and $Q^3(3Si)$, and the
517	specific correlations for five smaller ¹ H peaks in the 2D ¹ H- ²⁹ Si HETCOR spectrum can be
518	accounted for only by Si-Al disorder between T1 and T2 site, but not by Si-Al disorder
519	between T1 and T3 site, as proposed previously, or by deviation in stoichiometry (excess Si
520	or Al). The stoichiometric composition was also confirmed by EPMA analysis.
521	Furthermore, the correlation of ²⁹ Si peaks of $Q^3(3Al)$ and $Q^3(3Si)$ with a common ¹ H peak
522	suggests that Si-Al disorder occurs between neighboring T1-(O)-T2 site.
523	The first-principles calculation confirmed that Si-Al disorder over T1-O-T2 (disorder
524	model 1) is energetically the most favorable, and also well reproduced all the observed

525 NMR features. It further revealed detailed spatial relationship: The Si-Al exchange over 526 T1-O-T2 altered NNN environments of Si in three T3 and three T4 sites, which are the origin of the observed extra ²⁹Si peaks of $Q^3(3Al)$ and $Q^3(3Si)$, as well as the low-frequency 527 shoulders/tails on the two main peaks of $Q^3(1Si,2Al)$ and $Q^3(2Si,1Al)$. The observed four 528 extra ¹H peaks near 15~16 ppm and one near 11 ppm originate from five OH sites bonded 529 530 or hydrogen-bonded to these six T3/T4 sites, contributing to the observed correlations in the 2D ¹H-²⁹Si HETCOR spectrum. 531 The extent of Si-Al disorder can be estimated from quantitative simulation results of 1 H 532 and ²⁹Si NMR spectra described earlier. According to disorder model 1, exchange of one 533 (out of 16) Al with Si over T1-O-T2 results in one Si of $Q^3(3Al)$ and one of $Q^3(3Si)$ (out of 534 32 Q³ sites), and also four (out of 16) OH sites with δ_i^H of 15~16 ppm, and one near 11 535 536 ppm. Thus, the extent of Si-Al disorder, i.e., the proportion of Al in T1 site of the ordered 537 structure that has exchanged with Si in T2 site, is expected to be equal to twice the proportion of Si of $O^{3}(3AI)$ or $O^{3}(3Si)$ among all O^{3} sites, and also equal to the proportion 538 539 of protons (among all protons) that contribute to the peak near 11 ppm, and also equal to 540 1/4 of the proportion of all protons that contribute to peaks in the 15~16 ppm range in ${}^{1}\text{H}$ MAS NMR spectra. From ²⁹Si NMR, the extent of Si-Al disorder was obtained separately 541 from the relative intensity (among Q^3) of the peak of $Q^3(3AI)$ and that of $Q^3(3Si)$ in the ¹H-542 543 ²⁹Si CP MAS NMR spectra with long contact times (12 and 20 ms) (see Table 2). The somewhat larger relative intensity for $Q^3(3AI)$ than $Q^3(3Si)$ is most likely due to somewhat 544 545 faster CP rate, as a result of shorter Si-H distance, for the former. The average of the two 546 values is expected to be less susceptible to such effect. The result is 3.4(0.8)% and 3.3(0.9)% Si-Al disorder for sample 1 and 2, respectively (see Table 2). From ¹H NMR, it 547

548	was estimated separately from the sum of relative intensities for peaks in the 15~16 ppm
549	range and from that near 11 ppm. The result is 2.7(0.4)% and 2.8(0.6)% Si-Al disorder for
550	sample 1 and 2, respectively (see Table 3). Thus, both the ²⁹ Si and ¹ H NMR data yielded
551	consistent estimation of the extent of Si-Al disorder of $\sim 3\%$ for both samples.
552	For comparison, we also made similar estimation using the ¹ H NMR result reported by
553	Johnson & Rossman (2004) for ussingite from IIimaussaq, Greenland. The result is 2% Si-
554	Al disorder (see Table 3), which is 1/4 of their inference, but close to those from the present
555	study.
556	The extent of Si-Al disorder is expected to be temperature dependent. The similar values
557	derived for ussingite from two different localities may indicate similar hydrothermal
558	temperature conditions in their genesis.
559	
559 560	Correlation between Si-Al disorder and hydrogen-bonding distance variations
559 560 561	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a
559 560 561 562	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance
559 560 561 562 563	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation.
559 560 561 562 563 564	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H…O distances, Si-O(-H) and Si-O(…H) distances, and δ_i^H
559 560 561 562 563 564 565	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H…O distances, Si-O(-H) and Si-O(…H) distances, and δ_i^H are plotted against O…O distance for the Si-O-H…O-Si linkage. Good correlation is
559 560 561 562 563 564 565 566	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H…O distances, Si-O(-H) and Si-O(…H) distances, and δ _i ^H are plotted against O…O distance for the Si-O-H…O-Si linkage. Good correlation is observed among the hydrogen-bonding distances and δ _i ^H , with stronger hydrogen bonding
559 560 561 562 563 564 565 566 566	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H…O distances, Si-O(-H) and Si-O(…H) distances, and δ _i ^H are plotted against O…O distance for the Si-O-H…O-Si linkage. Good correlation is observed among the hydrogen-bonding distances and δ _i ^H , with stronger hydrogen bonding yielding shorter H…O and O…O distances, longer O-H distance, and larger δ _i ^H . Such a
559 560 561 562 563 564 565 566 567 568	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H···O distances, Si-O(-H) and Si-O(···H) distances, and δ _i ^H are plotted against O···O distance for the Si-O-H···O-Si linkage. Good correlation is observed among the hydrogen-bonding distances and δ _i ^H , with stronger hydrogen bonding yielding shorter H···O and O···O distances, longer O-H distance, and larger δ _i ^H . Such a correlation is well known for inorganic and organic compounds (c.f., Johnson and Rossman,
559 560 561 562 563 564 565 566 566 567 568 569	Correlation between Si-Al disorder and hydrogen-bonding distance variations The combined NMR experiment and first-principles calculation allowed us to reveal a clear picture for the correlation between Si-Al disorder and hydrogen-bonding distance variation. In Figure 12, the O-H and H…O distances, Si-O(-H) and Si-O(…H) distances, and δ _i ^H are plotted against O…O distance for the Si-O-H…O-Si linkage. Good correlation is observed among the hydrogen-bonding distances and δ _i ^H , with stronger hydrogen bonding yielding shorter H…O and O…O distances, longer O-H distance, and larger δ _i ^H . Such a correlation is well known for inorganic and organic compounds (c.f., Johnson and Rossman, 2004; Xue and Kanzaki, 2009). More intriguing is that the Si-O(H) and Si-O(…H) bond

571	correlated with changes in the hydrogen-bonding distances. There is a clear pattern of
572	alternating increase and decrease in bond distance along the Si-O-H…O-Si linkage. Similar
573	observation of alternating changes in bond distance along a general hydrogen-bonding
574	system X–D–H···A–Y (D: hydrogen bond donor; A: hydrogen bond acceptor) has been
575	reported previously (e.g., Mohri, 2006) and may be a representative feature of strong
576	hydrogen bonding.
577	The origin of the variation in hydrogen-bonding and Si-O(-H, \cdots H) distances may be
578	traced to variation in the NNN environments of the two Si sites on either end of the
579	hydrogen bond as a result of Si-Al disorder over T1-O-T2. This is clear from the correlation
580	between Si-O(-H, …H) distances and the difference in the number of NNN Al between the
581	two Si sites, with smaller contrast tends to bring the two distances closer to each other (Fig.
582	12d).
583	These observations can be well accounted for by the bond valence model, which
584	requires the sum of bond valences around any ion to be equal to the valence of the ion
585	(valence sum rule) to ensure local charge neutrality, with the bond valence being a function
586	of bond distance (e.g., $S_{ij} = exp((R_0-R_{ij})/B)$, where S_{ij} and R_{ij} are the bond valence and bond
587	distance between atom i and j, and R_0 and B are constant parameters) (cf. Brown, 2002).
588	The effect of changes in NNN environments of Si (as a result of Si-Al disorder over T1-O-
589	T2) on the hydrogen-bonding distances has, thus, been transmitted via bond valence
590	(distance) changes along the bonding network, in such a way so that all the bond distances
591	along the Si-O-H…O-Si linkage are inter-correlated. The fact that OH is bonded to
592	T4(1Si,2Al), rather than T3(2Si,1Al) in the ordered structure can also be understood from
593	bond valence consideration.

594 595 Implications 596 597 The complete clarification of the nature and extent of Si-Al disorder in ussingite, which 598 could not be unambiguously determined so far despite X-ray diffraction (Rossi et al., 1974), neutron diffraction (Williams and Weller, 2012), and ²⁹Si (Oglesby and Stebbins, 2000) and 599 600 ¹H NMR studies (Johnson and Rossman, 2004), is in itself of significance in understanding 601 the crystal chemistry of ussingite, a mineral with an unique interrupted framework structure. 602 Moreover, the insights gained have implications far beyond that as outlined below. 603 604 Effect of Si-Al disorder on hydrogen-bonding variations in general. Particularly 605 impressive are the findings of this study on the extent to which Si-Al disorder can bring 606 about on the variation in hydrogen-bonding distance, and the crystal chemical insights 607 gained into the correlation between NNN environments of Si and hydrogen-bonding 608 distance variation. This is most likely a general phenomenon also applicable to other 609 hydrous minerals. 610 Many hydrous aluminosilicate minerals, including important mantle minerals, such as 611 topaz-OH (Xue et al., 2010), phase egg (Xue et al., 2006), aluminous phase E, phase C 612 (=superhydrous phase B and phase D (Pamato et al., 2015) show Si-Al disorder. Much 613 attention has been paid to the hydrogen-bonding behavior of these hydrous minerals, as it 614 may have a significance influence on various physical properties. However, the effect of Si-615 Al disorder on the hydrogen-bonding distance have been largely overlooked. A systematic 616 investigation over a wide range of hydrous aluminosilicate minerals is warranted.

617

618	Si/Al partitioning tendency in partially depolymerized aluminosilicate system. The
619	partition behavior of Al/Si over different Q ⁿ species, especially between Q ⁴ and more
620	depolymerized Q ⁿ species is an issue of great interest in understanding the structure and
621	properties of aluminosilicate melts/glasses. The confirmation that the Si-Al disorder in
622	ussingite in fact occurs over T1-O-T2 that avoids the formation of Al-O-Al and $Al(Q^3)$ is
623	consistent with trend observed so far for partially depolymerized anhydrous and hydrous
624	aluminosilicate glasses (e.g., Allwardt et al., 2003; Neuville et al., 2004; Xue and Kanzaki,
625	2008), and provided crystal chemical insight into such trend.
626	
627	Nature and hydrogen-bonding strength of OH in (alumino)silicate system. Johnson
628	and Rossman (2004) and Williams and Weller (2012) both mentioned interest in using
629	ussingite as a model for OH defects in nominally anhydrous albite (and other plagioclase
630	feldspar minerals). However, the two minerals turned out to have very different OH
631	environments: whereas ussingite exhibits strong hydrogen bonding, that in albite is much
632	weaker (δ_i^H 4~6 ppm) (Johnson and Rossman, 2004). This "negative" result carries an
633	important, though often neglected implication, i.e., the key role of (de)polymerization, or
634	the presence/absence of network modifying cations (other than H). Whereas albite is fully
635	polymerized, ussingite is partially depolymerized with NBO/T (0.5) in the range for natural
636	andesitic magma. SiOH groups in alkali and alkaline earth silicate glasses have been found
637	to have stronger hydrogen bonding and thus larger δ_i^H (4~17 ppm) than that of silica
638	glasses ($\delta_i^{\rm H} \sim 3$ ppm), and the fraction with stronger hydrogen bonding (larger $\delta_i^{\rm H}$) increases
639	with decreasing field strength of the network modifying cation (from Ca/Mg to Li to Na),

640 which has been interpreted as enhanced hydrogen bonding by NBO as hydrogen-bond 641 acceptor (Xue and Kanzaki, 2004). The observation of much stronger hydrogen bonding in 642 ussingite than in albite is consistent with, and provides crystal chemical insight into such 643 observation. Other hydrous silicate minerals with strong hydrogen bonding, such as 644 pectolite (NaCa₂Si₃O₈OH) and serandite (NaMn₂Si₃O₈OH), also have depolymerized 645 structure containing network-modifying cations of low field strength (Na). Ussingite, as an 646 aluminosilicate mineral, is also valuable in revealing the preferential formation of SiOH over Al^{IV}OH. It is worth mentioning for completeness that for depolymerized minerals 647 containing network modifying cations of higher field strength (e.g., Ca, Mg, Al^{VI}), such as 648 649 amphibole, humite group minerals and prehnite, OH tends to bond only to network 650 modifying cations, forming MOH (free OH) groups that often have weak hydrogen bonding. 651 The presence of free OH in depolymerized Ca-Mg (alumino)silicate glasses has also been 652 reported (e.g., Xue and Kanzaki, 2004; Xue and Kanzaki, 2009). Therefore, the 653 presence/absence of network-modifying cations and its field strength are important factors 654 controlling the nature and hydrogen bonding strength of OH in both minerals and glasses. 655 With that criterion, ussingite is not a good model for albite and other fully polymerized 656 minerals, but a valuable model for partially depolymerized aluminosilicate minerals and 657 glasses/melts containing network modifying cations of low field strength. 658

659 Importance of local structural relaxation around disorder/defect sites. It is not rare
660 to encounter publications that attempted to infer the location of defects based on geometry
661 of the ordered structure, but were subsequently proved to be wrong, because structural

relaxation around defects may significantly alter the local geometry (cf. Xue et al., 2017 for

a review of an example for olivine).

664	This study represents another case study. It was revealed that for Al-Si exchange over
665	T1-O-T2 of ussingite, the hydrogen bonding O8…O2 distance in the T4-O8-H…O2-T3
666	linkage can vary by ~0.1 Å ($\delta_i^{\rm H}$ by ~5 ppm) depending on the NNN of T3/T4 sites.
667	Furthermore, for some configurations, H shifts toward T3 so that O2 becomes the hydrogen
668	bond doner. Such variations would be difficult to identify using diffraction techniques, but
669	should be important in understanding its physical properties. Also, as mentioned above,
670	Johnson and Rossman (2004) used Si-Al disorder between T1 and T3 to account for the
671	observed ¹ H NMR peak(s) with larger δ_i^{H} . However, our calculation revealed that the
672	resultant δ_i^{H} is smaller than that of the ordered structure due to shift of H position toward
673	Al accompanying structural relaxation. First-principles calculation is particularly helpful in
674	revealing the locally relaxed structure.
675	Finally, this study has demonstrated that the combined comprehensive 1D and 2D multi-
676	nuclear NMR measurements and first-principles calculation is effective in revealing
677	detailed spatial relationship around disorder in minerals, which would be difficult to gain
678	from any other single technique.
679	
680	Acknowledgements
681	We thank two anonymous reviewers for constructive comments, and Tsutomu Ota for
682	assistance with EPMA analysis. The purchase of the Bruker Avance NEO NMR
683	spectrometer, which made this study possible, was supported by JSPS grant (Kiban-A, No.

684 17H01174 to XX) and operational expenses grant from Okayama University.

685 686 **References Cited** 687 Allwardt, J.R., Lee, S.K., and Stebbins, J.F. (2003) Bonding preferences of non-bridging O atoms: Evidence from ¹⁷O MAS and 3OMAS NMR on calcium aluminate and low-688 silica Ca-aluminosilicate glasses. American Mineralogist, 88(7), 949-954. 689 690 Amoureux, J.-P., and Fernandez, C. (1998) Triple, quintuple and higher order multiple 691 quantum MAS NMR of quadrupolar nuclei Solid State Nuclear Magnetic Resonance, 692 10(4), 211-223. 693 Amoureux, J.P., Delevoye, L., Steuernagel, S., Gan, Z., Ganapathy, S., and Montagne, L. 694 (2005) Increasing the sensitivity of 2D high-resolution NMR methods applied to 695 quadrupolar nuclei. Journal of Magnetic Resonance, 172(2), 268-278. 696 Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. Handbook of Mineralogy. 697 Mineralogical Society of America, Chantilly, VA 20151-1110, USA, 698 http://www.handbookofmineralogy.org/. 699 Brown, I.D. (2002) The chemical bond in inorganic chemistry: The Bond valence model. 700 278 p. Oxford Science Publications. 701 Dal Corso, A. (2014) Pseudopotentials periodic table: From H to Pu. Computational 702 Materials Science, 95, 337-350. 703 Gan, Z.H., and Kwak, H.T. (2004) Enhancing MQMAS sensitivity using signals from 704 multiple coherence transfer pathways. Journal of Magnetic Resonance, 168(2), 346-705 351. 706 Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, 707 R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal 708 Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., 709 Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., 710 Kawamura, M., Ko, H.Y., Kokalj, A., Kucukbenli, E., Lazzeri, M., Marsili, M., 711 Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, 712 L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., 713 Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., and Baroni, 714 S. (2017) Advanced capabilities for materials modelling with QUANTUM 715 ESPRESSO. Journal of Physics-Condensed Matter, 29(46). 716 Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., 717 Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S.d., Fabris, S., 718 Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., 719 Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A.,

720	Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A.,
721	Umari, P., and Wentzcovitch, R.M. (2009) QUANTUM ESPRESSO: a modular and
722	open-source software project for quantum simulations of materials. Journal of
723	Physics: Condensed Matter, 21(39), 395502.
724	Hohwy, M., Jakobsen, H.J., Eden, M., Levitt, M.H., and Nielsen, N.C. (1998) Broadband
725	dipolar recoupling in the nuclear magnetic resonance of rotating solids: A
726	compensated C7 pulse sequence. Journal of Chemical Physics, 108(7), 2686-2694.
727	Ishii, Y., and Tycko, R. (2000) Sensitivity enhancement in solid state ¹⁵ N NMR by indirect
728	detection with high-speed magic angle spinning. Journal of Magnetic Resonance,
729	142(1), 199-204.
730	Johnson, E.A., and Rossman, G.R. (2004) An infrared and ¹ H MAS NMR investigation of
731	strong hydrogen bonding in ussingite, Na2AlSi3O8(OH). Physics and Chemistry of
732	Minerals, 31(2), 115-121.
733	Kanzaki, M., and Xue, X. (2016) Cation distribution in Mg-Zn olivine solid solution: a ²⁹ Si
734	MAS NMR and first-principles calculation study. Journal of Mineralogical and
735	Petrological Sciences, 111, 292-296.
736	Kirkpatrick, R.J. (1988) MAS NMR spectroscopy of minerals and glasses. In F.C.
737	Hawthorne, Ed. Spectroscopic Methods in Mineralogy and Geology, 18, p. 341-403.
738	Mineralogical Society of America, Washington, D.C.
739	Lowenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and
740	aluminates. American Mineralogist, 39, 92-96.
741	Mohri, F. (2006) A molecular orbital explanation of bond distance variation caused by
742	hydrogen bond formation. Journal of Molecular Structure-Theochem, 770(1-3), 179-
743	184.
744	Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
745	volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.
746	Neuville, D.R., Cormier, L., and Massiot, D. (2004) Al environment in tectosilicate and
747	peraluminous glasses: A ²⁷ Al MQ-MAS NMR, Raman, and XANES investigation.
748	Geochimica et Cosmochimica Acta, 68(24), 5071-5079.
749	Oglesby, J.V., and Stebbins, J.F. (2000) ²⁹ Si CPMAS NMR investigations of silanol-group
750	minerals and hydrous aluminosilicate glasses. American Mineralogist, 85, 722-731.
751	Pamato, M.G., Myhill, R., Ballaran, T.B., Frost, D.J., Heidelbach, F., and Miyajima, N.
752	(2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous
753	aluminosilicate. Nature Geoscience, 8(1), 75-79.
754	Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation
755	made simple. Physical Review Letters, 77(18), 3865-3868.

756	Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A.,
757	Zhou, X., and Burke, K. (2008) Restoring the Density-Gradient Expansion for
758	Exchange in Solids and Surfaces. Physical Review Letters, 100(13), 136406.
759	Pickard, C.J., and Mauri, F. (2001) All-electron magnetic response with pseudopotentials:
760	NMR chemical shifts. Physical Review B, 63(24), 245101.
761	Ribbe, P.H. (1974) A comparison of bonding effects in ussingite and low albite. American
762	Mineralogist, 59, 341-344.
763	Rossi, G., Tazzoli, V., and Ungaretti, L. (1974) The crystal structure of ussingite. American
764	Mineralogist, 59, 335-340.
765	Sanchez-Munoz, L., Florian, P., Gan, Z.H., and Munoz, F. (2022) Order-Disorder Diversity
766	of the Solid State by NMR: The Role of Electrical Charges. Minerals, 12(11).
767	Smith, J.V., Artioli, G., and Kvick, Å. (1986) Low albite, NaAlSi ₃ O ₈ : Neutron diffraction
768	study of crystal structure at 13 K. American Mineralogist, 71, 727-733.
769	Stebbins, J.F. (1992) Nuclear Magnetic Resonance Spectroscopy of Geological Materials.
770	MRS Bulletin, 17(5), 45-52.
771	Stebbins, J.F., and Xue, X. (2014) NMR spectroscopy of inorganic Earth materials. In F.C.
772	Hawthorne, Ed. Spectroscopic Methods in Mineralogy and Geology, 78, p. 605-653.
773	Mineralogical Society of America, Washington, D.C.
774	Thakur, R.S., Kurur, N.D., and Madhu, P.K. (2008) An analysis of phase-modulated
775	heteronuclear dipolar decoupling sequences in solid-state nuclear magnetic resonance.
776	Journal of Magnetic Resonance, 193(1), 77-88.
777	Williams, E.R., and Weller, M.T. (2012) A variable-temperature neutron diffraction study
778	of ussingite; a strong asymmetric hydrogen bond in an aluminosilicate framework.
779	Physics and Chemistry of Minerals, 39(6), 471-478.
780	Xue, X., and Kanzaki, M. (2004) Dissolution mechanisms of water in depolymerized
781	silicate melts: Constraints from ¹ H and ²⁹ Si NMR spectroscopy and ab initio
782	calculations. Geochimica et Cosmochimica Acta, 68(24), 5027-5057.
783	(2008) Structure of hydrous aluminosilicate glasses along the diopside - anorthite join: a
784	comprehensive one- and two- dimensional ¹ H and ²⁷ Al NMR study Geochimica et
785	Cosmochimica Acta, 72(9), 2331-2348.
786	Xue, X., and Kanzaki, M. (2009) Proton distributions and hydrogen bonding in crystalline
787	and glassy hydrous silicates and related inorganic materials: insights from high-
788	resolution solid-state NMR spectroscopy. Journal of the American Ceramic Society,
789	92(12), 2803-2830.

- Xue, X., Kanzaki, M., and Fukui, H. (2010) Unique crystal chemistry of two polymorphs of
 topaz-OH: a multi-nuclear NMR and Raman study. American Mineralogist, 95, 12761293.
- Xue, X., Kanzaki, M., Fukui, H., Ito, E., and Hashimoto, T. (2006) Cation order and
 hydrogen bonding of high-pressure phases in the Al₂O₃-SiO₂-H₂O system: An NMR
- and Raman study. American Mineralogist, 91, 850-861.
- Xue, X., Kanzaki, M., Turner, D., and Loroch, D. (2017) Hydrogen incorporation
 mechanisms in forsterite: New insights from ¹H and ²⁹Si NMR spectroscopy and first-
- 798 principles calculation. American Mineralogist, 102(3), 519-536.
- Xue, X., and Stebbins, J.F. (1993) ²³Na NMR chemical shifts and local Na coordination
 environments in silicate crystals, melts and glasses. Physics and Chemistry of
- 801 Minerals, 20, 297-307.

803

804	Figure captions
805	Figure 1. Crystal structure of ussingite from neutron diffraction (Williams and Weller,
806	2012). Blue and grey tetrahedra represent SiO ₄ and AlO ₄ tetrahedra, respectively. Red
807	and pink spheres represent oxygen and hydrogen atoms, respectively. The black box
808	delineates the unit cell dimension. The four crystallographycally unique T sites, two Na
809	sites, and the O8-H \cdots O2 hydrogen bond are also shown. Drawn using the Vesta
810	program (Momma and Izumi, 2011).
811	Figure 2. ²⁹ Si MAS NMR spectrum of ussingite sample 1 at a spinning rate of 20 kHz, (a)
812	and ¹ H- ²⁹ Si CP MAS NMR spectra at a spinning rate of 10 kHz and contact time of 20
813	ms for sample 1 (b) and sample (2)(c).
814	Figure 3. ¹ H MAS NMR spectra at a spinning rate of 24 kHz for ussingite sample 1 (a) and
815	2 (b).
816	Figure 4. 2D rotor-synchronized ¹ H DQ MAS NMR spectrum for ussingite sample 1 at a
817	spinning rate of 14.7 kHz using the POST-C7 scheme with total projections shown for
818	both dimensions (a), and schematic 2D ¹ H DQ MAS NMR spectrum predicted from
819	first-principles calculation for ussingite disorder model 1 (b). For (b), the projection at
820	the top is the 1D spectrum shown in Fig. 11b, and cross peak positions in the 2D area
821	are simply shown as circles for ¹ H- ¹ H pairs within 4 Å. The red line in both is a guide

822	for diagonal peaks. The labels 1 to 5 in both correspond to H in the five configurations
823	affected by Si-Al disorder described in the text.
824	Figure 5. 2D ¹ H- ²⁹ Si HETCOR spectrum for ussingite sample 1 using the ¹ H \rightarrow ²⁹ Si \rightarrow ¹ H
825	double CP scheme at a spinning rate of 24 kHz and a contact time of 8 ms with total
826	projections shown for both dimensions (a), and schematic 2D $^{1}\text{H}-^{29}\text{Si}$ HETCOR
827	spectrum predicted from first-principles calculation for ussingite disorder model 1 (b).
828	For (b), projections in the two dimensions are the 1D spectra shown in Fig. 10b and
829	11b, and cross peak positions in the 2D area are simply shown as circles for ${}^{1}\text{H}-{}^{29}\text{Si}$
830	pairs in the Si-OH \cdots O-Si linkage. The labels 1 to 5 in both correspond to the five
831	configurations affected by Si-Al disorder described in the text.
832	Figure 6. ²⁷ Al MAS NMR spectra (a : full range with intensity truncated for the central band,
833	c: central band) for ussingite sample 1 at a spinning rate of 20 kHz, and the respective
834	simulated spectra using parameters in Table 4 (b, d).
835	Figure 7. 2D rotor-synchronized ²⁷ Al SPAM-3QMAS NMR spectrum of ussingite sample 1
836	at a spinning rate of 20 kHz with total projections shown for both dimensions.
837	Figure 8. 2D rotor-synchronized ²³ Na SPAM-3QMAS NMR spectrum of ussingite sample
838	1 at a spinning rate of 20 kHz with total projections shown for both dimensions (a),
839	and 1D ²³ Na MAS NMR spectra for ussingite sample 1 at a spinning rate of 20 kHz, its

840	simulated spectrum, sum of F_2 cross sections (F_1 range: 7.0~12.5 ppm for peak 1;
841	12.5~18.0 ppm for peak 2) for each of the two peaks labelled in (a) and the respective
842	simulated spectrum as labelled (b). All simulations used parameters in Table 4.
843	Figure 9. Local structure around the Al-Si exchanged T1-O-T2 linkage for ussingite
844	disorder model 1. For clarity, whereas SiO_4 and AlO_4 tetrahedra for T1 and T2 are
845	shown as blue and grey tetrahedra as in Figure 1, the SiO ₄ tetrahedra for their NNN T4
846	sites are shown in brown, and those for T3 sites are shown in purple. The five H sites
847	that are bonded or hydrogen-bonded to these T3 and T4 sites are shown as black circles.
848	The H sites are labeled as in Figures 4b and 5b. Drawn using the Vesta program
849	(Momma and Izumi, 2011).
850	Figure 10. ¹ H- ²⁹ Si CP MAS NMR spectrum for ussingite sample 1 (same as Fig. 2b) (a),
851	and predicted ²⁹ Si spectra for disorder model 1 (b) and ordered structure (c) of
852	ussingite from first-principles calculation. For the latter two, an arbitrary Lorentzian
853	line broadening of 20 Hz was applied.
854	Figure 11. ¹ H MAS NMR spectrum for ussingite sample 1 (same as Fig. 3a) (a), and
855	predicted spectra for disorder model 1 (b) and ordered structure (c) of ussingite from
856	first-principles calculation. For the latter two, an arbitrary Lorentzian line broadening
857	of 20 Hz was applied.

858	Figure 12. Plot of O-H and H···O distances (a), ¹ H isotropic chemical shift (δ_i^{H}) (b), and
859	Si-O(-H) and Si-O(\cdots H) distances (c) as a function of O \cdots O distance, and Si-O(-H)
860	and Si-O(\cdots H) distances as a function of the difference in the number of Al in the
861	NNN of the two Si (Q ³) sites (d) for Si-O-H···O-Si linkages in disorder model 1 and
862	ordered structure of ussingite from first-principles calculation as labeled.
863	

	1 5	8
Sample	Sample 1	Sample 2
	Oxides (wt%)	
SiO ₂	59.23(0.50)	58.92(0.32)
Al_2O_3	16.30(0.21)	16.38(0.20)
CaO	0.03(0.03)	0.02(0.03)
Na ₂ O	20.29(0.47)	20.79(0.33)
K ₂ O	0.05(0.05)	0.02(0.02)
Total	95.91(0.40)	96.14(0.50)
Cations per 8	.5 O atoms for anhy	drous components
Si	3.01(0.01)	3.00(0.01)
Al	0.98(0.01)	0.98(0.01)
Ca	0.00(0.00)	0.00(0.00)
Na	2.00(0.05)	2.05(0.03)
Κ	0.00(0.00)	0.00(0.00)
Total	6.00(0.04)	6.04(0.02)
Note: 9 points	were averaged for ea	ach sample with the

864 Table 1. Electron microprobe analysis result for ussingite

Note: 9 points were averaged for each sample with the standard deviation reported in brackets.

865

		Relative intensity (%)				Extent of Si-Al disorder (%)			
Sample	Contact time (ms)	Q ³ (3Al) (-81 ppm)	Q ³ (1Si,2Al) (-83~-86 ppm)	Q ³ (2Si,1Al) (-88~-89 ppm)	Q ³ (3Si) (-91.6 ppm)	Method 1 ^a	Method 2 ^a	Average	Standard deviation
C	20	2.08	49.08	47.53	1.31	4.15	2.62	2.4	0.8
Sample 1	12	1.97	49.67	47.01	1.35	3.94	2.70	5.4	
Samula 2	20	1.87	48.76	48.04	1.33	3.75	2.65	2.2	0.0
Sample 2	12	2.22	49.62	46.89	1.27	4.45	2.53	3.3	0.9

867 Table 2. Relative peak intensities among Q^3 and extent of Si-Al disorder in usingite from ¹H-²⁹Si CP MAS NMR

Notes: Each group of peaks includes one (-81 ppm), seven (-83~-86 ppm), three (-88~-89 ppm) and one (-91.6 ppm) component(s). Extent of Si-Al disorder refers to the proportion of Al in T1 site (of the ordered structure) that has exchanged with Si in T2 site.

^a Method 1: Estimated to be equal to twice the relative intensity (among all Q^3) of peak due to $Q^3(3AI)$; Method 2: Estimated to be equal to twice the relative intensity of peak due to $Q^3(3Si)$ (see text for explanation).

~	Spinning rate	ning rate Relative intensity (%)			Extent of Si-Al disorder (%)			
Sample	(kHz)	15~16 ppm	13~14 ppm	11 ppm	Method 1 ^a	Method 2 ^a	Average	Standard deviation
Samula 1	24	9.57	87.55	2.89	2.39	2.89	2.7	0.4
Sample 1	20	9.64	87.15	3.21	2.41	3.21	2.1	0.4
G1. 2	24	8.72	88.00	3.27	2.18	3.27	2.0	0.6
Sample 2	20	9.27	87.38	3.35	2.32	3.35	2.8	0.6
J&R ^b	6 &12	8	90	2	2	2	2	0

869 Table 3. Relative intensities and extent of Si-Al disorder in ussingite from ¹H MAS NMR

Notes: Each group of peak includes four (15~16 ppm), two (13~14 ppm) and one (11 ppm) component(s). Extent of Si-Al disorder refers to the proportion of Al in T1 site (of the ordered structure) that has exchanged with Si in T2 site.

^a Method 1: Estimated to be 1/4 of the total relative intensity of peaks in the 15~16 ppm range (among all peaks); Method 2: Estimated to be equal to the relative intensity of the 11-ppm peak.

^b Reported by Johnson & Rossman (2004) for a sample from IIimaussaq, Greenland.

870

Site	$\delta_i (ppm)$	C_Q (MHz)	η_{Q}	$\delta_1 (ppm)^a$	$\delta_1 \text{ obs (ppm)}^a$	
Al	60.45(0.2)	3.02(0.04)	0.82(0.04)	64.1	64.0	
Na1	-2.9(0.2)	2.69(0.04)	1.00(0.02)	9.8	9.8	
Na2	2.1(0.2)	3.02(0.04)	0.41(0.04)	14.7	14.7	

873 Table 4. ²⁷Al and ²³Na NMR parameters of ussingite from simulation of MAS NMR spectra

872

Note: Because of the distribution of parameters for both ²⁷Al and ²³Na, the estimated values should be regarded as a rough average value.

^a δ_1 and δ_1 obs are the peak position expected from the estimated parameters, and the peak maximum position actually observed, in the isotropic (F₁) dimension of 3QMAS NMR

spectra, with
$$\delta_1 = \delta_i - \frac{10}{17} \delta_Q$$
, and $\delta_Q = -10^5 \times \frac{3(4I(I+1)-3)}{(4I(2I-1))^2} \times \left(\frac{C_Q}{\nu_Q}\right)^2 \times \left(1 + \frac{\eta_Q^2}{3}\right)$,

where I is the spin quantum number (5/2 for 27 Al, 3/2 for 23 Na), and v₀ is the resonance frequency (104.27 MHz for 27 Al, 105.84 MHz 23 Na).

Model	Si-Al exchange	$\Delta E(kJ/mol)$	$\Delta E(kJ/mol)$	$V(A^3)$
Ordered	none	0		3204.47
Disorder model 1	T1-(O)-T2	28.44	0	3208.09
Disorder model 2	T1-(O)-T3	56.72	28.28	3206.28
Disorder model 3	T1-(O)-T4	80.46	52.01	3207.56
Disorder model 4	T1-(O)-T4	83.05	54.61	3207.40
Disorder model 5	remote T1-T2 pair	96.97	68.52	3208.24
Experiment (XRD, ambient condition) ^a	_			3195.44
Experiment (ND, 4 K) ^b				3170.36

874 Table 5. Enthalpy difference (ΔE) and volume (V) at 1 bar for different ussingite models

Note: all values refer to that of $2 \times 2 \times 2$ supercell.

^a from Rossi et al. (1974).

^b Neutron diffraction (ND) from Williams & Weller (2012).

H site no. ^a	$\sigma_i^{\rm H}$ (ppm) ^b	$\begin{array}{c} \delta_i^{\mathrm{H}} \\ (ppm)_{b} \end{array}$	Sin1-On1-Hn…On2-Sin2	Sin1(NNN) ^d	Sin2(NNN) ^d	R(Sin1- On1)(A)	R(On1- Hn)(A)	R(On2- Hn)(A)	$\begin{array}{c} R(On1\cdots On2) \\ (A) \end{array}$	R(On2- Sin2)(A)	∠On1-Hn- On2(°)	δ_i^{H} ,exp (ppm)
					Ordered stru	icture						
	14.89	13.85	Si11-O27-H31…O15-Si9	T4(1Si,2Al)	T3(2Si,1Al)	1.636	1.094	1.374	2.467	1.598	177.167	13.85
					Disorder mo	del 1						
241(3)	12.96	15.78	Si81-O209-H241…O121-Si73	T4(2Si,1Al)	T3(2Si,1Al)	1.617	1.164	1.264	2.428	1.606	177.124	15.54
245(2)	12.77	15.97	Si85-O213-H245…O125-Si77	T4(1Si,2Al)	T3(1Si,2Al)	1.623	1.190	1.233	2.422	1.617	177.755	15.47
249(5)	17.03	11.71	Si89-O217-H249…O113-Si65	T4(3Al)	T3(3Si)	1.654	1.057	1.455	2.511	1.584	175.919	11.1
250(4)	13.10	15.64	Si66-O114-H250O218-Si90 ^c	T3(2Si,1Al)	T4(2Si,1Al)	1.620	1.160	1.279	2.438	1.610	178.126	15.1
252(1)	12.63	16.11	Si68-O116-H252····O220-Si92 ^c	T3(1Si,2Al)	T4(1Si,2Al)	1.618	1.204	1.210	2.414	1.617	178.131	15.8
11 other 1	H sites (wi	th NNN of	f Si on both ends unaffected by Si-A	Al disorder):								
mean	14.99	13.75	Sin1-On1-Hn····On2-Sin2	T4(1Si,2Al)	T3(2Si,1Al)	1.636	1.091	1.379	2.469	1.598	177.180	13.85
maxim um	15.40	13.98		T4(1Si,2Al)	T3(2Si,1Al)	1.637	1.095	1.397	2.478	1.600	177.546	
minimu m	14.76	13.34		T4(1Si,2Al)	T3(2Si,1Al)	1.634	1.082	1.367	2.462	1.596	176.995	

Table 6. ¹H chemical shift and bond distances and angles in the Si-O-H…O-Si linkage of ussingite from first-principles calculation 876

^a Numbers in brackets correspond to configuration numbers labelled in Figures 4b, 5b and 6, and described in the text. ^b σ_i^{H} . ¹H isotropic shielding; δ_i^{H} : ¹H isotropic chemical shift referenced to the experimental value (13.85 ppm) for the strongest peak of usingite, i.e., $\delta_i^{H} = 13.85 + 14.89 - \sigma_i^{H}$. ^c The O-H bond has shifted from T4 to T3 side for H250 and H252.

^d Bold letters highlight T3 and T4 sites whose NNN are different from that of the ordered structure.

877

T site	Si site no.	$\sigma_{i}^{Si} (ppm)^{a}$	δ_i^{Si} ,calc (ppm) ^a	δ_i^{Si} ,exp (ppm) ^b	NNN ^c
			Low-albite	a 'a a '	
T1m		455.35	-107.75	-104.5	Q4(3Si,1Al)
T2o		445.85	-98.25	-96.8	Q4(3Si,1Al)
T2m		441.41	-93.81	-92.6	Q4(2Si,2Al)
		Ussin	gite, ordered struc	ture	
T2		445.28	-97.68		Q4(3Si,1Al)
Т3		435.54	-87.94	-87.94	Q3(2Si,1Al)
T4		431.16	-83.56		Q3(1Si,2Al)
		Ussin	ngite, disorder mod	lel 1	
T1	33	449.22	-101.62	-98.7	Q4(3Si,1Al)
All Si i	n T2 (15 sites)	:			
T2	mean	445.68	-98.08	-96.5	Q4(3Si,1Al)
	maximum	446.98	-97.31		
	minimum	444.91	-99.38		
Т3	65	440.12	-92.52	-91.6	Q3(3Si)
Т3	68	433.29	-85.69	-85.5	Q3(1Si,2Al)
Т3	77	432.18	-84.58	-85.0	Q3(1Si,2Al)
Т3	66	436.94	-89.34	-89.3	Q3(2Si,1Al)
Т3	73	436.03	-88.43	-88.6	Q3(2Si,1Al)
All Si i	n T3 of Q ³ (2Si	,1Al) (i.e., all Si	i in T3 except 65,68	,77) (13 sites):	
Т3	mean	435.76	-88.16	-87.9	Q3(2Si,1Al)
	maximum	436.94	-87.62		
	minimum	435.22	-89.34		
T4	81	437.09	-89.49	-88.6	Q3(2Si,1Al)
T4	89	427.17	-79.57	-81.0	Q3(3Al)
T4	90	435.74	-88.14	-87.9	Q3(2Si,1Al)
T4	85	431.15	-83.55	-83.3	Q3(1Si,2Al)
T4	92	430.48	-82.88	-83.1	Q3(1Si,2Al)
All Si i	n T4 of Q ³ (1Si	,2Al) (i.e., all Si	in T4 except 81,89	,90) (13 sites):	
T4	mean	431.18	-83.58	-84.1	Q3(1Si,2Al)
	maximum	431.81	-82.88		
	minimum	430 48	-84 21		

878 Table 7. ²⁹ Si chemical sh	ft from first-principles calculation
--	--------------------------------------

^a σ_i^{Si} : ²⁹Si isotropic shielding; δ_i^{Si} , calc: calculated ²⁹Si isotropic chemical shift referenced to the experimental value (δ_i^{Si} , exp) for the narrow peak near -87.94 ppm of ussingite, i.e., $\delta_i^{Si} = -$ 87.94+435.54-σ_i^{Si}.

^b Experimental data for albite from Sanchez-Munoz et al., 2022. ²⁹Si peaks in experimental data of ussingite assigned according to the order of chemical shift in ¹H-²⁹Si HETCOR.

^c Bold letters highlight T1 site occupied by Si, and T3 and T4 sites whose NNN are different from that of the ordered structure.

879

Table 8. ²⁷ Al NMR parameters from first-principles calculation							
Al site	$\sigma_{i}^{Al} \left(ppm ight)^{a}$	$\delta_i^{\rm Al}(ppm)^{a}$	C_Q^{Al} (MHz) ^b	$\eta_Q{}^{Al}$	$\delta_1^{Al} (ppm)^{c}$		
Al site G_i (ppm) O_i (ppm) C_Q (MHZ) η_Q O_1 (ppm) Low albite Image: C_Q (MHZ) η_Q O_1 (ppm) Image: C_Q (MHZ) η_Q O_1 (ppm) Al 515.36 63.00 2.04 0.53 Image: C_Q (MHZ) $Image: C_Q (MHZ) Image: C_Q (MHZ) $							
Al	515.36	63.00	2.04	0.53			
	Ussingite, ordered structure						
Al	518.28	60.08	3.67	0.89	65.60		
	Us	singite, disord	er model 1				
Al in T1 (16	sites):						
mean	518.22	60.14	3.75	0.82	65.78		
maximum	518.83	60.81	4.43	0.98	68.20		
minimum	517.55	59.53	3.10	0.59	63.42		
Al in T2	516.42	61.94	3.62	0.74	66.97		
	Table 8. 27 AlAl siteAlAlAlAlIn T1 (16meanmaximumminimumAl in T2	Table 8. 27 Al NMR parameterAl site $\sigma_i^{Al} (ppm)^a$ Al515.36UsAl518.28UsAl in T1 (16 sites):mean518.22maximum518.83minimum517.55Al in T2516.42	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline Table 8. 27Al NMR parameters from first-principles calculation $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\begin{tabular}{ c c c c c } \hline Table 8. 27Al NMR parameters from first-principles calculation $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		

^a σ_i^{Al} : ²⁷Al isotropic shielding; δ_i^{Al} : ²⁷Al isotropic chemical shift using low albite as a secondary reference, i.e., $\delta_i^{Al} = 63.0+515.36-\sigma_i^{Al}$. The experimental data of low-albite (δ_i^{Al} : 63.0 ppm; C_Q^{Al} : 3.22 MHz; η_Q^{Al} : 0.65) from Sanchez-Munoz et al. (2022) are used for δ_i^{Al} referencing. ^b For C_Q^{Al} , only the absolute values are shown.

^c δ_1^{Al} : peak position in the isotropic (F₁) dimension of 3QMAS NMR spectrum expected.

881

Na site	$\sigma_{i}^{Na}\left(ppm\right)^{a}$	$\delta_i^{\text{Na}}(ppm)^a$	C_Q^{Na} (MHz) ^b	$\eta_{Q}{}^{Na}$	$\delta_1^{Na} \left(ppm \right)^c$			
Low albite								
albite	569.07	-8.95	2.42	0.54				
Ussingite, ordered structure								
Na1	560.61	-0.49	2.21	0.98	8.02			
Na2	554.85	5.27	2.27	0.62	12.91			
Ussingite, disorder model 1								
<u>Na1 sites (16)</u>	<u>):</u>							
mean	560.52	-0.40	2.39	0.81	8.80			
maximum	563.32	3.80	3.43	0.99	19.39			
minimum	556.32	-3.20	2.05	0.17	4.71			
<u>Na2 sites (16)</u>	<u>):</u>							
mean	555.50	4.63	2.28	0.61	12.39			
maximum	559.92	7.29	2.44	0.92	16.90			
minimum	552.83	0.20	1.99	0.30	8.85			

883 Table 9. ²³Na NMR parameters from first-principles calculation

^a σ_i^{Na}: ²³Na isotropic shielding; δ_i^{Na}: ²³Na isotropic chemical shift using low albite as a secondary reference, i.e., δ_i^{Na} = -8.95+569.07-σ_i^{Na}. For comparison, the experimental data of low albite derived from NMR spectra at two magnetic fields of 9.4 and 19.6 T by Sanchez-Munoz et al. (2022) are δ_i^{Na}: -8.7~-9.2 ppm; C_Q^{Na}:2.59~2.64 MHz; η_Q^{Na}: 0.25~0.28. The average experimental δ_i^{Na} value was used for referencing.

^b For C_Q^{Na} , only the absolute values are shown.

^c δ_1^{Na} : peak position in the isotropic (F₁) dimension of 3QMAS NMR spectrum expected.

893

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 8

Fig. 9

913 **Fig. 12**

- 914
- 915
- 916
- 917