Word Count: 3535

Revision 2

1	Micro- structural and compositional evolutions during transformation
2	from biotite to berthierine: Implications for phyllosilicates alteration
3	process
4	JIAXIN XI ^{1,2,3} , YIPING YANG ^{1,2} , HONGPING HE ^{1,2,3*} , HAIYANG XIAN ^{1,2} , WEI TAN ^{1,2} , RUI
5	LI ⁴ , JIANXI ZHU ^{1,2,3} , HUIFANG XU ⁵
6	¹ CAS Key Laboratory of Mineralogy and Metallogeny / Guangdong Provincial Key
7	Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry,
8	Chinese Academy of Sciences, Guangzhou 510640, China
9	² CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
10	³ University of Chinese Academy of Sciences, Beijing 100049, China
11	⁴ Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese
12	Academy of Sciences, Guiyang 550081, China
13	⁵ Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton
14	Street, Madison, Wisconsin 53706, USA
15	

16 *Correspondence to: H.P. He (hphe@gig.ac.cn)

17

ABSTRACT

18	The composition and microstructure of phyllosilicates are prone to
19	transformation due to their great sensitivity to surrounding physicochemical changes.
20	Berthierine $[(R^{2+}, R^{3+}, \Box)_6(Si, Al)_4O_{10}(OH)_8]$ (\Box represents octahedral vacancy) is a
21	typical ferromagnesian phyllosilicate that commonly occurs in ferruginous rocks of
22	shallow-marine habitats and has been used as an indicator of local depositional and/or
23	hydrothermal activity in marine environments. However, little is known about the
24	formation and mineralogy of nonmarine berthierine, particularly in volcanic systems.
25	Using high-angle annular dark-field scanning transmission electron microscopy
26	(HAADF-STEM), we have identified a berthierine twin structure within weakly
27	altered biotite in a rhyolite from Long Valley, California, USA. The presence of
28	nanoscale Fe-rich layers in the host biotite is revealed by energy-dispersive
29	spectroscopy and electron energy loss spectroscopy (EELS). The HAADF-STEM
30	pictures with atomic resolution demonstrate that the Fe-rich layers are composed of
31	twinning berthierine layers rather than a single chlorite layer. The transformation of
32	biotite to berthierine requires the dissolution of a tetrahedral (T) layer and the
33	introduction of a new TO (O represents octahedral sheet) structure into the biotite
34	stacking sequence, resulting in substituting one biotite layer (i.e., TOT) with two
35	twinning berthierine layers (i.e., TO-OT). Observations based on morphology indicate
36	that the transformation began at the biotite defect locations (such as screw dislocation,
37	edge dislocation, and microcleavage fracture), concurrent with the rearrangement of
38	metal cations. During the fluid alteration of biotite, berthierine was produced via an

39	interface-coupled dissolution-reprecipitation process. The EELS analyses further
40	demonstrate that the Fe-rich biotite promotes the production of berthierine as the
41	principal alteration product in low-temperature environments. Additionally, this study
42	suggests that the combination of HAADF-STEM and EELS is effective for
43	identifying nanominerals and elucidating their formation and alteration mechanisms.
44	Keywords: HAADF-STEM, EELS, biotite, berthierine twin, alteration mechanism
45	

46

INTRODUCTION

47 Berthierine is a ferromagnesian phyllosilicate with a 1:1 layer structure like 48 lizardite (Bailey 1988; Xu and Veblen, 1996). Similar to chlorite, berthierine has a 49 stacking sequence of alternating tetrahedral and octahedral sheets with a stoichiometry of $[(R^{2+}, R^{3+}, \Box)_6(Si, Al)_4O_{10}(OH)_8]$ (Bailey and Brown 1962; 50 Longstaffe 2003), in which Fe^{2+} is the primary octahedral cation, with flexible 51 substitution of Fe³⁺, Mg²⁺, and Al³⁺ for Fe²⁺ (Guggenheim et al. 2006). Berthierine, 52 53 frequently found in modern tropical shallow-marine sediments, is generated either by 54 the direct precipitation from seawater or by the transformation of kaolinite and 55 goethite (Porrenga 1965; Kodama and Foscolos 1981; Iijima and Matsumoto 1982; 56 Edward et al. 1996; Wise 2007). Note that berthierine is also found in nonmarine 57 environments, such as Arctic desert soils (Kodama and Foscolos 1981), coal swamps 58 (Iijima and Matsumoto 1982), laterite belts (Toth and Fritz 1997), volcanic massive 59 sulfide deposits (Slack et al. 1992), floodplains (Hornibrook and Longstaffe 1996), 60 delta sediments (Taylor 1990), granite pegmatite (Wise 2007), metamorphic rocks

61 (Slack et al. 1992; Xu and Veblen 1996), and extrusive rocks (Li et al. 2014 and

62 reference therein).

63 Berthierine is commonly regarded as a local indicator of marine environmental 64 change (e.g., Houten and Purucker 1984; Huggett et al. 2010). Accordingly, its 65 specific microstructure, which is sensitive to changes in temperature, burial depth, 66 water content, and ion (e.g., Si and Fe cations) concentration in its formation 67 environments, has received considerable attention (Li et al. 2014 and reference 68 therein). Previous studies show that Al-rich phyllosilicates, such as kaolinite (Iijima 69 and Matsumoto 1982), muscovite (Slack et al. 1992), illite (Sheldon and Retallack 70 2003), glauconite (Mu et al. 2015), and aluminosilicate glasses (Lee and 71 Chatzitheodoridis 2016), can be converted to berthierine via hydrothermal activity 72 with additional Fe ions. Conventionally, nonmarine berthierine is proposed to form 73 below ~ 160 °C, corresponding to a burial depth of less than ~ 2.5 km (Li et al. 2014), 74 in good agreement with the calculations based on the thermodynamic data of 75 chamosite and berthierine (Xu 1993). Changes in environmental conditions can cause 76 berthierine to additionally transform into interstratified chamosite/berthierine phases, 77 and then (Fe-) chlorite (e.g., Xu et al. 1993; 1996).

Although nonmarine berthierine is a potential environmental indicator of volcanogenic sedimentary and late metamorphic processes of volcanic rocks (Sheldon and Retallack, 2003; Li et al. 2014), little is known about its production process and the mechanism involved (Li et al. 2014). Nonmarine berthierine has a complicated structure and composition comparable to other serpentine-group minerals; as a result,

83 it is frequently confused with chamosite or serpentine (Brindley 1968; Longstaffe 84 2003; Li et al. 2014). Traditional investigation techniques, such as powder X-ray 85 diffraction and scanning electron microscope (SEM), cannot identify phyllosilicate 86 species with sufficient precision due to their low resolution. In addition, the instability 87 of berthierine under a focused electron beam, as well as the dynamic diffraction effects of parallel electron beams (Amouric et al. 1981; Olivés Baños and Amouric 88 89 1984), makes it difficult to obtain atomic-scale structural and compositional 90 information using transmission electron microscopy (TEM) in order to distinguish 91 berthierine from chamosite/serpentine.

92 The high-angle annular dark-field scanning transmission electron microscope 93 (HAADF-STEM) can provide an image of crystals with incoherent atomic resolution 94 (Pennycook 2002; Xu et al. 2016). Meanwhile, HAADF-STEM images will 95 effectively simplify the location of atom column positions, resulting in an approximately twofold improvement in resolution over high-resolution TEM images 96 97 (Xu et al. 2014; Yang et al. 2021). Without the effect of crystal thickness on image 98 contrast (Pennycook, 2002), the intensity of atom columns can directly reflect their 99 mean atomic number (Z), which can be used to determine the crystal structures of 100 nanominerals (Xu et al. 2014; 2015; 2016; Xi et al. 2022; Yang et al. 2022a, b). 101 Additionally, electron energy loss spectroscopy (EELS) can provide an atomic-scale 102 composition and redox state information with energy resolutions as low as 1 eV 103 (Garvie et al. 1994; Garvie and Buseck 1998; Xu 2000; Aken et al. 2002).

104 Thus, we used a combination of HAADF-STEM and EELS to investigate

105	berthierine in a weakly altered biotite phenocryst of rhyolite from Long Valley,
106	California, USA (Varga et al., 1990; Christensen and Depaolo, 1993). Weakly altered
107	biotite preserves nanoscale alteration rims recording microstructural and
108	compositional evolution processes very well. Our study reveals that a high iron
109	content considerably influences the biotite transformation pathway and facilitates the
110	formation of berthierine in a low-temperature environment. This is the first report
111	about the formation of nanoscale interstratified twinning berthierine layers in biotite,
112	shedding light on the biotite-to-berthierine transformation process.

113

114 SAMPLE DESCRIPTION AND EXPERIMENTAL METHODS

115 The biotite samples were recovered from rhyolite in the Long Valley Caldera, 116 California, USA. The Long Valley magmatic system is distributed east of the Sierra 117 Nevada along the western edge of the Basin and Range Province (Fig. 1) (Metz and 118 Mahood, 1991). The caldera remains thermally active, with numerous hot springs and 119 fumaroles, and has undergone considerable deformation due to earthquakes and other 120 disturbances. A major explosive eruption at 0.73 Ma formed the caldera with the 121 basalt that is referred to the precaldera high-silica rhyolite lava. Biotite is the 122 predominant mafic phenocryst in the lavas and ash-fall deposits of the magmatic 123 system (Fig. 2a-b) (Metz and Mahood 1991). These xenocrystal biotite particles 124 produced from the depths show euhedral morphology (Andersson and Eklund 1994; 125 Ginibre et al. 2002). Isotopic analyses and mineralogical observations reveal a low 126 degree of alteration in samples collected from the same area, as evidenced by the

127	absence of bulk quantities of alteration products (Varga et al. 1990; Metz and Mahood
128	1991; Christensen and Depaolo 1993). Optical microscopy (Fig. 2a-b) and SEM
129	analyses reveal thin altered rims at the boundaries of biotite and kaersutite (Fig. S1a-c)
130	(Fig. 3a-c); (Andersson and Eklund 1994; Ginibre et al. 2002). To display various
131	mineral species, a polarizing filter combined with a lambda compensator was used,
132	which made the displayed-color different from the original interference colors of
133	minerals. These observations demonstrate that the majority of mineral phenocrysts,
134	including biotite and kaersutite, have thin altered rims at the grain boundaries (Fig.
135	S1ac).

136 The chemical composition of biotite was determined using a JEOL JXA-8230 137 electron probe microanalyzer (EPMA) (Japan). In addition, the ZAF correction 138 method was used for data reduction. Standard materials used for data correction were 139 provided by Structure Probe, Inc., (SPI) Supplies (United States), with orthoclase for 140 K, albite for Na, BaF₂ for F, chrome-diopside for Si and Ca, olivine for Mg, magnetite 141 for Fe, rutile for Ti, rhodonite for Mn, and pure aluminum metal for Al. The average 142 formula of biotite was calculated according to the electron probe microanalysis, which 143 is as follows:

144 $(K_{0.89}Na_{0.08})_{\Sigma=0.97}(Fe_{1.61}Ti_{0.27}Mg_{0.95}Mn_{0.03})_{\Sigma=2.86}(Si_{2.84}Al_{1.16})_{\Sigma=4.00}O_{10}[F_{0.08}Cl_{0.02}(OH)_{1.90}]_{\Sigma=2.00}$

An FEI Scios Dual-beam system was utilized to obtain SEM images and focused
ion beam (FIB) cross-sections (ThermoFisher Scientific, United States). Thin sections
cut from the edge of the biotite particle (marked by the yellow frame in Figs. 3e and

149	S1d, e) using FIB were used to investigate the alteration structure at the boundary of
150	the biotite phenocrysts. STEM, energy-dispersive X-ray spectroscopy (EDS), and
151	EELS experiments were then conducted at 200 kV voltage using an FEI Talos F200S
152	field-emission transmission electron microscope (ThermoFisher Scientific, United
153	States). The TEM is coupled with a HAADF detector, two Super X high-resolution
154	energy-dispersive spectrometers, and a Gatan 1077 EELS spectrometer. Z-contrast
155	images were taken using a camera length of 160 mm to maximize the contrast
156	variations between the different atoms in the HAADF images (Xu et al. 2014, 2015).
157	A Gatan Digital Micrograph (version 3.50) was used to remove the contrast noise
158	induced by the amorphous materials in the HAADF-STEM images, generate EELS
159	mapping images with background correction, and perform data fitting. The
160	semi-quantitative EDS analytical lines were as follows: Na- K_{α} , Mg- K_{α} , Al- K_{α} , Si- K_{α} ,
161	K- K_{α} , Ti- K_{α} , Mn- K_{α} , and Fe- K_{α} . For comparison, the intensities of Si (K α) peaks at
162	~1.75 keV (Fig. 6b-c) were retained to be equivalent. Notably, the O content computed
163	from the stoichiometry of cations in the sample differed from the actual value in the
164	EDS data.

165

166 PHASE OBSERVATION AND IDENTIFICATION

167 Morphology observation

168 The SEM (Fig. 3d) and TEM (Fig. 4a) images show that biotite and adjacent 169 plagioclase are separated by a ~50-nm wide crack that was filled with secondary clay 170 minerals with an irregular morphology (black arrow in Fig. 4b), indicating the

171 presence of weak alteration at the edge of biotite particles. The enlarged STEM image 172 reveals that interlayer defects (indicated by the yellow arrows in Fig. 4c) paralleling 173 the basal plane of the host biotite exhibit different contrasts than the well-crystallized 174 host biotite.

175 The two-dimensional TEM lattice fringes (Fig. 5a-b) and selected-area electron 176 diffraction (SAED) patterns produced from well-crystallized and interlayer defect 177 zones in the biotite along the [110] zone axis display distinctive characteristics (Figs. 178 4a and 5b, insets). The sharp and bright diffraction spots in the SAED pattern (Fig. 4a, 179 inset) suggest that the well-crystallized host biotite possesses a 1M structure (regions A and C in Fig. 5a). In contrast, the interlayer defect domain shows a fast Fourier 180 181 transform (FFT) pattern with streaking and diffusion feature in the hkl ($k \neq 3n, n$ is 182 an integer) rows along the [001] zone axis (Fig. 5b, inset). The corresponding TEM 183 images (Figs. 4c and 5a-b) show distinct contrast regions within the host 1M biotite 184 (marked by the yellow arrows in Figs. 4c and 5a-b), while the interlayer defect 185 domains and the well-crystallized host biotite had a similar crystallographic 186 orientation (i.e., the [001] zone axis).

187 Co

Compositional analysis

The EDS spectra obtained from well-crystallized and interlayer defect domains (Fig. 6a) exhibit distinct K, Mg, Al, and Fe signal intensities (Fig. 6b and c). Notably, a significant enrichment of Fe is evident in the bright zone (Fig. 6b), whereas practically all metal cations, mainly Fe and K, exhibited a low signal intensity in the deeper layers (Fig. 6c).

193	In addition, the EELS mapping reveals a considerable enrichment of Fe in the
194	high-contrast areas (Fig. 7a-b). Furthermore, the electron energy loss near-edge
195	structure (ELNES) of the Fe $L_{3,2}$ -edges reveals different valence states of Fe in the
196	well-crystallized biotite domain (i.e., the dark domain, frame 1 in Fig. 7b) and the
197	interlayer defect domains (i.e., bright domain, frame 2 in Fig. 7b). After being
198	normalized according to the intensity of the Fe- L_3 edge, the bands at 705–730 eV (Fig.
199	7c) exhibit distinct shapes and energy shift. In addition, the spectral peaks of frame 2
200	(the red line in Fig. 7c) have lower energy than those of frame 1 (the black line in Fig.
201	7c). Moreover, the spectra of well-crystallized biotite exhibit a single peak at 710.06
202	eV, but the spectrum of the interlayer defect exhibits a poorly resolved doublet with
203	peaks at 709.67 and 711.22 eV, respectively. Notably, the valence state of Fe affects the
204	ELNES characteristics of the Fe $L_{3,2}$ edges (e.g., Xu 2000; Aken and Liebscher 2002).
205	The discrepancy in Fe- $L_{3,2}$ ELNES suggests that the valence states of Fe in defective
206	domains and biotite areas are distinct. Accordingly, the ratios can be obtained using the
207	integral signals at 708.85–710.95 and 719.65–721.75 eV in the EELS spectra after
208	background subtraction from the Fe $L_{3,2}$ -edges (Garvie and Buseck 1998; Aken et al.
209	1998; Aken and Liebscher 2002). According to our calculations, well-crystallized
210	biotite has ~30% Fe^{3+} and ~70% Fe^{2+} , whereas interlayer defect domains consist of
211	~40% Fe^{3+} and ~60% Fe^{2+} .
212	According to EELS and EDS analyses, the average chemical formula of the

According to EELS and EDS analyses, the average chemical formula of the interlayer defect domains is $[Fe^{2+}_{1.82}Fe^{3+}_{1.20}Mg_{1.09}Al_{0.65}Ti_{0.30}]_{\Sigma=5.06}[Si_{3.26}Al_{0.74}]_{\Sigma=}$ 4.00O₁₈, whereas the EDS values were calibrated using the composition of the host

215 biotite as determined by EPMA. Although iron cations typically occupy the 216 octahedral positions in phyllosilicates, we find that Fe^{2+} continues to be the 217 predominant octahedral cation in these interlayer defect domains.

218 HAADF-STEM observation

219 Bright (or dark) lines in a HAADF image with Z contrast indicate phases 220 composed of elements with high (or low) atomic numbers. The SAED pattern (Fig. 5b) 221 and HAADF-STEM images (Fig. 8) demonstrate that the interlayer defect domains 222 and the well-crystallized 1M biotite host have a common crystallographic orientation 223 along the [001] zone axis. Due to the relatively high contents of Fe and Ti in biotite, 224 all the bright lines are classified as octahedral (O) sheets, and the separated spots 225 sandwiched by O sheets are interlayer K^+ . The tetrahedral (T) sheets adjacent to the O sheets are connected to the K⁺ plane, and the spots indicating atoms in the T sheets are 226 227 invisible due to their low contrast and resolution limit (Fig. 8). Consequently, the 228 interlayer defect domains are characterized by two bright O sheets with a ~4 Å 229 spacing sandwiched by TOT layers (Fig. 8b). In conjunction with compositional 230 analyses, these interstratified layers are identified as two berthierine-like layers with 231 TO-type structure (red arrows in Fig. 8c). These TO units are paired, forming a 232 structure with mirror-symmetry that parallels the basal plane of biotite (Fig. 8b). 233 When the berthierine twin structure develops in pairs, a Z-shaped structure is likely to 234 form (Fig. 9a-b). In this instance, the transformation from biotite (Fig. 9c) to 235 berthierine twin layers terminated at the contact of the paired berthierine twin 236 structure (Fig. 9d), leading to the formation of a jagged joint in the Z-shaped structure

237 (Fig. 9b-d). These interstratified layers are brighter than the host biotite layers,

- 238 suggesting their higher Fe content.
- 239

240 DISCUSSION

241 Identification of berthierine interstratification

Biotite has a stacking sequence of TOT-K with ~ 10 Å lattice spacing (Fig. 9c), 242 243 (e.g., Veblen and Ferry 1983; Xu et al. 1996). Chlorite has a TOT-O structure and ~14 244 Å lattice spacing (Fig. 9e), while berthierine has a TO structure and \sim 7 Å lattice spacing (Fig. 9d) (Lee and Peacor 1985; Bailey 1988). Biotite is typically transformed 245 246 into chlorite in the majority of natural occurrences (e.g., Veblen and Ferry 1983; Xu et 247 al. 1996). Previous studies have established two models for transforming biotite into 248 phyllosilicate minerals of the TOT-O type. The model 2TOT \rightarrow 1TOTO, which 249 proposes the conversion of two biotite layers into one TOT-O layer by forming an O 250 sheet and removing the two T sheets of one TOT biotite layer (e.g., Eggleton and 251 Banfield 1985; Xiao and Chen 2020), is widely accepted as the mechanism of biotite 252 chloritization. And the 1TOT \rightarrow 1TOTO model, creating an extra O sheet in the 253 interlayer region between two TOT layers of biotite, has been proposed to be unlikely 254 according to the investigations of chlorite in numerous igneous and metamorphic 255 rocks (e.g., Veblen 1983; Veblen and Ferry 1983). In particular, the present study 256 demonstrates a new route of biotite-to-berthierine transformation via the $1TOT \rightarrow 2TO$ 257 (twinning) mechanism. The alteration begins with the formation of interstratified 258 berthierine monolayers at biotite defects, followed by the transformation of a biotite

259 TOT layer into two TO layers (TO-OT) of berthierine.

260	The presence of \sim 4 Å spacing between two octahedral sheets in the HAADF–
261	STEM images of biotite is the key evidence for distinguishing the twinning
262	berthierine layers from a single chlorite layer (Figs. 9b and 10a). If the replacement of
263	interlayer $K^{\scriptscriptstyle +}$ by a newly formed brucite-like O sheet leads to the formation of TOT-O
264	structure (Fig. S3b) as described in the model proposed by Wang et al. (2019), the
265	stacking sequence in altered products would change from the original TO_1T -K- TO_2T
266	to $TO_1T-O_3-TO_2T$ (1, 2, and 3 denote three different octahedral sheets), and the newly
267	formed O_3 sheet would be equidistant to O_1 and O_2 (Fig. S3b). The spacing between
268	O_1 and O_3 should be ~7 Å, the same as that between O_2 and O_3 (Fig. 9e). Note that the
269	STEM images show that the spacing between adjacent O sheets in the interlayer
270	defect domains is ~4 Å, whereas the distance between adjacent O sheets in biotite is
271	~10 Å (Figs. 8b and 9b). The presence of ~4 Å spacing demonstrates that the twining
272	layer of berthierine in the modification product has a TO-OT stacking pattern.

273

274 Formation mechanism of berthierine structure in biotite

The present study demonstrates that berthierine can form at the nanoscale level in the rhyolite of the Long Valley Caldera, although berthierine has yet to be widely observed there. Previous studies have proved that annite (i.e., the end member of biotite with Fe cations occupying all octahedral sites) can transform to berthierine in an environment with a high activity ratio of $a(Fe^{2+})/a(H^+)$ and $a(Fe^{2+})/a(Mg^{2+})$ (Xu 1993; Li et al. 2014). It is hypothesized that the Fe content is a crucial element

281	determining the activity and transformation products of biotite during its
282	transformation into berthierine. Chemical analysis suggests that the studied biotite
283	$\{(K_{0.89}Na_{0.08})_{\Sigma=0.97}(Fe_{1.13}^{2+}Fe_{0.48}^{3+})_{\Sigma=0.97}(Fe_{1.13}^{2+}Fe_{0.13}^{3+})_{\Sigma=0.97}(Fe_{1.13}^{2+}Fe_{0.13}^{3+})_{\Sigma=0.97}(Fe_{1.13}^{2+}Fe_{0.13}^{$
284	$Ti_{0.27}Mg_{0.95}Mn_{0.03})_{\Sigma=2.86}(Si_{2.84}Al_{1.16})_{\Sigma=4.00}O_{10}[F_{0.08}Cl_{0.02}(OH)_{1.90}]_{\Sigma=2.00}\} \ \text{is enriched in } Ch_{0.02}(OH)_{1.90}]_{\Sigma=2.00}$
285	Fe, with ~51% mole fraction of annite ([KFe ₃ (AlSi ₃ O ₁₀)(OH) ₂]) (Guggenheim et al.
286	2007). Consequently, high proportions of Fe can be released during the dissolution of
287	the host biotite, which significantly increases the ratios of $a(Fe^{2+})/a(H^+)$ and
288	$a(Fe^{2+})/a(Mg^{2+})$ in an ambient environment, facilitating the formation of berthierine as
289	an alteration product of the studied biotite. In addition, thermodynamic studies have
290	placed the stable temperature range of berthierine between 40 and 120 $^\circ C$ (Nelson and
291	Roy 1958; Bostick 1978; Ahn and Peacor 1985; Hillier and Velde 1992; Mosser-Ruck
292	et al. 2010), while berthierine transforms into chlorite at 160–190 °C or a burial depth
293	of >2.5 km (Iijima and Matsumoto 1982; Xu 1993; Bertoldi et al. 2007). The low
294	formation temperature of berthierine is consistent with the fact that the alteration of
295	biotite occurs near the surface following the eruption of local rhyolitic magma and the
296	diagenesis of rhyolite (Varga et al. 1990). Hence, this study suggests that a high Fe
297	concentration in biotite and a near-surface alteration environment favor the
298	transformation of biotite-to-berthierine over chlorite.

The transformation from biotite to berthierine twinning layers most likely occurred via an interface-coupled dissolution-reprecipitation process (Figs. 10b and 11). This process can achieve complete structural and chemical reorganization only with a slight modification of the parent structure via cation and anion exchange

303 (Putnis 2009). Similar solid-solid transformation processes have been suggested by 304 some studies, such as the transformation from the serpentine structure to the chlorite 305 structure by shifting Si and H atoms (Xu and Veblen 1996), and the formation of 306 hydroxyapatite structure via the Cl-ion exchange in the calcium and strontium 307 chlorapatite crystals (Yanagisawa et al. 1999). Our HR(S)TEM observations show 308 that the two mirror-symmetry TO layers in the berthierine twinning structure and the 309 TOT-K layers in the host biotite of 1M polytope share the same crystallographic 310 orientation (Fig. 8b). This suggests that the newly formed berthierine inherits the 311 crystallographic orientation of dissolved biotite throughout the transformation (Figs. 312 4b and 8b). At the onset of biotite transformation, defects (Fig. 11a) such as 313 dislocations and microcleavage planes (indicated by the yellow triangles in Fig. 10a), 314 with a flexible structure and relatively high surface energy, initiate the transformation (e.g., Min, 1992; Lu et al., 2016). Meanwhile, interlayer ions K⁺ and Si in exposed 315 316 Si-O tetrahedra are readily released during alteration (Lu et al., 2016), which 317 facilitates the dissolution of T sheets in defect-rich biotite (Kuwahara and Yaoki, 318 1995). The dissolution is accompanied or followed by the nucleation of berthierine at 319 the defective planes of the parent biotite via cation rearrangement and structural 320 matching (Putnis and Putnis 2007; Putnis 2009) (Fig. 11b). Due to the loss of cations 321 in their O sheets, Fe-poor layers form, and the released cations reprecipitate as Fe-rich 322 layers attached to the Fe-poor layers (Figs. 8a and 11b). The gradual alteration at the 323 biotite-berthierine interface may result in the complete transformation of biotite into 324 berthierine.

325

344

326	IMPLICATION
327	As an evolution product of phyllosilicates, secondary berthierine is a potential
328	indicator of surrounding environments, such as temperature, oxygen fugacity, and
329	redox state of late alteration in local extrusive rocks. Berthierine is often less stable
330	than chlorite on/near the surface (Blanc et al. 2015), although it may be the major
331	alteration product of Fe-rich phyllosilicates in moist environments at a shallow burial
332	depth (<1.6 km) and low temperature (<160 °C) (e.g., Wilson et al. 2006). Given that
333	berthierine can be easily confused with chamosite or serpentine (Brindley 1968;
334	Longstaffe 2003; Li et al. 2014), the present study implies that berthierine may be a
335	common phase as alteration product of Fe rich biotite when carefully investigated
336	with HAADF-STEM and EELS.
337	It is believed that an interface-coupled dissolution-reprecipitation process (Putnis
338	2009) in a solvent-mediated environment dominates the biotite-to-berthierine
339	transformation mechanism. Defect areas in the original biotite provide high-energy
340	planes that facilitate reactions, including the dissolution of exposed T sheets,
341	reprecipitation of new O sheets, and nucleation of berthierine twin structures. The
342	novel microstructural evidence sheds new light on the evolution of 2:1-type to
343	1:1-type phyllosilicate minerals during mineral-fluid reactions that may have occurred

345 be also involved in other minerals' transformation processes, such as the replacement

during metasomatism and weathering processes. Such transformation mechanism may

346 of serpentine minerals by chlorite and the conversion from chlorapatite to

347 hydroxyapatite.

348	This study demonstrates that HAADF-STEM is a more effective approach than
349	XRD and TEM for in situ identifying alteration products. With the help of lattice
350	spacing determination, contrast comparison of HAADF-STEM images, and
351	high-resolution EELS spectra, we successfully depicted the atomic arrangements of
352	biotite and the interface texture between the berthierine twin structure and host biotite.
353	Accordingly, we argue that those cutting-edge techniques (e.g., HAADF-STEM and
354	EELS) with high spatial and energy resolutions are highly important for disclosing
355	clay minerals' structures at the nanoscale, and can be extended to other minerals and
356	materials with complicated microstructure and related phase transformation.
357	
358	ACKNOWLEDGMENTS
359	This work was financially supported by the National Natural Science Foundation
360	of China (Grant Nos. 41921003, 41825003, and 42072044) and Science and

361 Technology Planning Project of Guangdong Province, China (2020B1212060055).

362

363 REFERENCES

Ahn, J.H., and Peacor, D.R. (1985) Transmission electron microscopic study of
diagenetis chlorite in Gulf Coast argillaceous sediments. Clays and Clay
Minerals, 33, 228–236.

Amouric, M., Mercuriot, G., and Baronnet, A. (1981) On computed and observed
HRTEM images of perfect mica polytypes. Bulletin de Minéralogie, 104, 298–
369 313.

370	Andersson, U.B., and Eklund, O. (1994) Cellular plagioclase intergrowths as a result
371	of crystal-magma mixing in the Proterozoic Åland rapakivi batholith, SW
372	Finland. Contributions to Mineralogy and Petrology, 117, 124–136.
373	Bailey, R.A., Dalrymple, G.B., and Lanphere, M.A. (1976) Volcanism, structure, and
374	geochronology of Long Valley caldera, Mono County, California. Journal of
375	Geophysical Research, 81, 725–744.
376	Bailey, S.W. (1988) X-ray diffraction identification of the polytypes of mica,
377	serpentine, and chlorite. Clays and Clay Minerals, 36, 193–213.
378	Bailey, S.W., and Brown, B.E. (1962) Chlorite polytypism: I. Regular and semi
379	random one-layer structures. American Mineralogist, 47, 819-850.
380	Bertoldi, C., Dachs, E., and Appel, P. (2007) Heat-pulse calorimetry measurements on
381	natural chlorite-group minerals. American Mineralogist, 92, 553-559.
382	Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E., Fialips, C.I., Made,
383	B., and Giffaut, E. (2015) A generalized model for predicting the thermodynamic
384	properties of clay minerals. American Journal of Science, 315, 734-780.
385	Bostick, N.H., Cashman, S.M., McCulloh, T.H., and Waddell, C.T. (1978) Gradients
386	of vitrinite reflectance and present temperature in the Los Angeles and Ventura
387	Basins, California. Pecific, section SEPM, 65–96.
388	Bourdelle, F., Benzerara, K., Beyssac, O., Cosmidis, J., Neuville, D.R., Brown, G.E.,
389	and Paineau, E. (2013) Quantification of the ferric/ferrous iron ratio in silicates
390	by scanning transmission X-ray microscopy at the Fe $L_{2,3}$ edges. Contributions to
391	Mineralogy and Petrology, 166, 423–434.
392	Brindley, G.W., Bailey, S.W., Faust, G.T., Forman, S.A., and Rich, C.I. (1968)
393	Report of the nomenclature committee (1966-67) of the clay minerals society.
394	Clays and Clay Minerals, 16, 322–324.

- Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of
 temperature. Clay Minerals, 23, 471–485.
- Chamberlain, K.J., Morgan, D.J., and Wilson, C.J.N. (2014) Timescales of mixing
 and mobilisation in the Bishop Tuff magma body: Perspectives from diffusion
 chronometry. Contributions to Mineralogy and Petrology, 168, 1–24.
- Christensen, J.N., and Depaolo, D.J. (1993) Time scales of large volume silicic
 magma systems: Sr isotopic systematics of phenocrysts and glass from the
 Bishop Tuff, Long Valley, California. Contributions to Mineralogy and
 Petrology, 113, 100–114.
- 404 Dora, M.L., and Randive, K.R. (2015) Chloritisation along the Thanewasna shear
 405 zone, Western Bastar Craton, Central India: Its genetic linkage to Cu-Au
 406 mineralisation. Ore Geology Reviews, 70, 151–172.
- Edward, E.R.C., Hornibrook, E.R.C., and Longstaffe, F.J. (1996) Berthierine from the
 Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays and Clay
 Minerals, 44, 1–21.
- Garvie, L.A.J., and Buseck, P.R. (1998) Ratios of ferrous to ferric iron from
 nanometre-sized areas in minerals. Nature, 396, 667–670.
- Garvie, L.A.J., Craven, A.J., and Brydson, R. (1994) Use of electron energy-loss
 near-edge fine structures in the study of minerals. American Mineralogist, 79,
 414 411–425.
- Ginibre, C., Wörner, G., and Kronz, A. (2002) Minor- and trace-element zoning in
 plagioclase: Implications for magma chamber processes at Parinacota volcano,
 northern Chile. Contributions to Mineralogy and Petrology, 143, 300–315.
- Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A.,
 Formoso, M.L.L., Galán, E., Kogure, T., and Stanjek, H. (2007) Summary of

420	recommendations of nomenclature committees relevant to clay mineralogy:
421	Report of the association internationale pour l'etude des argiles (AIPEA)
422	nomenclature committee for 2006. Clay Minerals, 42, 575–577.
423	Hillier, S., and Velde, B. (1992) Chlorite interstratified with a 7 Å Mineral: An
424	example from offshore Norway and possible implications for the interpretation
425	of the composition of diagenetic chlorites. Clay Minerals, 27, 475–486.
426	Hornibrook, E.R.C., and Longstaffe, F.J. (1996) Berthierine from the lower cretaceous
427	clearwater formation, Alberta, Canada. Clays and Clay Minerals, 44, 1–21.
428	Huggett, J.M., Gale, A.S., and Mccarty, D. (2010) Petrology and palaeoenvironmental
429	significance of authigenic iron-rich clays, carbonates and apatite in the Claiborne
430	Group, Middle Eocene, NE Texas. Sedimentary Geology, 228, 119–139.
431	Iijima, A., and Matsumoto, R. (1982) Berthierine and charosite in coal measures of
432	Japan. Clays and Clay Minerals, 30, 264–274.
433	Kodama, H., and Foscolos, A.E. (1981) Occurrence of berthierine Canadian Arctic
434	Desert soils. Cannadian Mineralogist, 19, 279–183.
435	Kuwahara, Y. (1995) Dissolution process of phlogopite in acid solutions. Clays and
436	Clay Minerals, 43, 39–50.
437	Lee, J.H. (1985) Ordered 1:1 interstratification of illite and chlorite: A transmission
438	and analytical electron microscopy study. Clays and Clay Minerals, 33, 463–467.
439	Lee, M.R., and Chatzitheodoridis, E. (2016) Replacement of glass in the Nakhla
440	meteorite by berthierine: Implications for understanding the origins of
441	aluminum-rich phyllosilicates on mars. Meteoritics and Planetary Science, 51,
442	1643–1653.

- Li, X.G., Liu, Q.F., Cheng, H.F., Kang, Y.X., and Sun, B. (2014) Chemical
- 444 constituent, structure and formation environment of berthierine. Bulletin of
 445 Mineralogy, Petrology and Geochemistry, 33, 116–123.
- 446 Longstaffe, F.J. (2003) Berthierine, 104 p. Springer, Berlin.
- Lu, Y., Wang, R., Lu, X., Li, J., and Wang, T.T. (2016) Reprint of Genesis of
 halloysite from the weathering of muscovite: Insights from microscopic
 observations of a weathered granite in the gaoling region, Jingdezhen, China.
 Applied Clay Science, 119, 59–66.
- Metz, J.M., and Mahood, G.A. (1991) Development of the long valley, California,
 magma chamber recorded in precaldera rhyolite lavas of glass mountain.
 Contributions to Mineralogy and Petrology, 106, 379–397.
- 454 Min, N.B. (1992) Growth mechanisms in real crystals. Journal of Synthetic Crystals,
 455 21, 217–229.
- Mosser-Ruck, R., Cathelineau, M., Guillaume, D., Charpentier, D., Rousset, D.,
 Barres, O., and Michau, N. (2010) Effects of temperature, pH, and iron/clay and
 liquid/clay ratios on experimental conversion of dioctahedral smectite to
 berthierine, chlorite, vermiculite, or saponite. Clays and Clay Minerals, 58, 280–
 291.
- Mu, N., Schulz, H.M., Fu, Y.J., Schovsbo, N.H., Wirth, R., Rhede, D., and van Berk,
 W.V. (2015) Berthierine formation in reservoir rocks from the Siri oilfield
 (Danish North Sea) as result of fluid-rock interactions: part I. Characterization.
 Marine and Petroleum Geology, 65, 302–316.
- 465 Nelson, B.W., and Roy, R. (1958) Synthesis of the chlorites and their structural and
 466 chemical constitution. American Mineralogist, 43, 07–725.

- 467 Olivés Baños, J., and Amouric, M. (1984) Biotite chloritization by interlayer
- brucitization as seen by HRTEM. American Mineralogist, 69, 869–871.
- 469 Pennycook, S.J. (2002) Structure determination through Z-contrast microscopy.
- 470 Advances in Imaging and Electron Physics, 123, 173–206.
- 471 Porrenga, D.H. (1965) Chamosite in recent sediments of the Niger and Orinoco
 472 Deltas. Geological Magazine, 44, 400–403.
- 473 Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and
 474 Geochemistry, 70, 87–124.
- Putnis, A., and Putnis, C.V. (2007) The mechanism of reequilibration of solids in the
 presence of a fluid phase. Journal of Solid State Chemistry, 180, 1783–1786.
- Sheldon, N.D., and Retallack, G.J. (2003) Low oxygen levels in earliest Triassic soils:
 Comment and reply. Geology, 30, 919–922.
- 479 Sillitoe, R.H. (2010) Porphyry copper systems. Economic Geology, 105, 3–41.
- 480 Slack, J.F., Jiang, W.T., Peacor, D.R., and Okita, P. (1992) Hydrothermal and
- 481 metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide
 482 deposit, Timmins, Ontario. Canadian Mineralogist, 30, 1127–1142.
- Taylor, K.G. (1990) Berthierine from the non-marine wealden (early cretaceous)
 sediments of south-east England. Clay Minerals, 25, 391–399.
- Toth, T.A., and Fritz, S.J. (1997) An Fe-berthierine from a cretaceous laterite: part i.
 characterization. Clays and Clay Minerals, 45, 564–579.
- 487 van Aken, P.A., and Liebscher, B. (2002) Quantification of ferrous/ferric ratios in 488 minerals: New evaluation schemes of Fe L_{23} electron energy-loss near-edge 489 spectra. Physics and Chemistry of Minerals, 29, 188–200.

- van Aken, P.A., Liebscher, B., and Styrsa, V.J. (1998) Quantitative determination of
 iron oxidation states in minerals using Fe L23 edge electron energy-loss
 near-edge structure spectroscopy. Physics and Chemistry of Minerals, 25, 323–
 327.
- 494 Van Houten, F.B., and Purucker, M.E. (1984) Glauconitic peloids and chamositic
 495 ooids Favorable factors, constraints, and problems. Earth-Science Reviews, 20,
 496 211–243.
- 497 Varga, R.J., Bailey, R.A., and Suemnicht, G.A. (1990) Evidence for 600 year-old
 498 basalt and magma mixing at Inyo Craters volcanic Chain, Long Valley Caldera,
 499 California. Journal of Geophysical Research, 95, 441–450.
- Veblen, D.R. (1983) Microstructures and mixed layering in intergrown wonesite,
 chlorite, talc, biotite, and kaolinite. American Mineralogist, 68, 566–580.
- Veblen, D.R., and Ferry, J.M. (1983) A TEM study of the biotite-chlorite reaction and
 comparison with petrologic observations. American Mineralogist, 68, 1160–
 1168.
- Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., and
 Shibata, M. (2006) The effect of iron on montmorillonite stability. (II)
 Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323–336.
- Wise, M.A. (2007) Crystallization of "pocket" berthierine from the Pulsifer granitic
 pegmatite, Poland, Maine, USA. Clays and Clay Minerals, 55, 583–592.
- Xi, J.X., Yang, Y.P., Ma, L.Y., He, H.P., Xu, H.F., Zhu, J.X., and Wei, J.M. (2022)
 The composition and growth mechanism of coexisting 4M2 and 4A8 biotite
 polytypes from rhyolite of Long Valley Caldera, California. Clays and Clay
 Minerals, 70, 48–61.

- Xiao, B., and Chen, H.Y. (2020) Elemental behavior during chlorite alteration: New
 insights from a combined EMPA and LA-ICP-MS study in porphyry Cu
 systems. Chemical Geology, 543, 1–12.
- 517 Xu, H.F. (1993) Transmission electron microscopy study of the nonperiodic structures
 518 in silicate minerals (Ph.D. dissertation). Johns Hopkins University, Baltimore
 519 Maryland.
- Xu, H.F. (2000) Using electron energy-loss spectroscopy (EELS) associated with
 transmission electron microscopy to determine oxidation states of Ce and Fe in
 minerals. Geological Journal of China Universities, 6, 137–144.
- Xu, H.F., and Veblen, D.R. (1996) Interstratification and other reaction
 microstructures in the chlorite-berthierine series. Contributions to Mineralogy
 and Petrology, 124, 291–301.
- Xu, H.F., and Veblen, D.R. (1996) Interstratification and other reaction
 microstructures in the chlorite-berthierine series. Contributions to Mineralogy
 and Petrology, 124, 291–301.
- Xu, H.F., Jin, S.Y., and Noll, B.C. (2016) Incommensurate density modulation in a
 Na-rich plagioclase feldspar: Z-contrast imaging and single-crystal X-ray
 diffraction study. Acta Crystallographica Section B, Structural Science, Crystal
 Engineering and Materials, 72, 904–915.
- Xu, H.F., Shen, Z.Z., and Konishi, H. (2015) Natural occurrence of monoclinic Fe₃S₄
 nano-precipitates in pyrrhotite from the Sudbury ore deposit: A Z-contrast
 imaging and density functional theory study. Mineralogical Magazine, 79, 377–
 385.
- Xu, H.F., Shen, Z.Z., Konishi, H., and Luo, G.F. (2014) Crystal structure of
 Guinier-Preston zones in orthopyroxene: Z-contrast imaging and ab inito study.
 American Mineralogist, 99, 2043–2048.

- Xu, H.F., Zhang, Y., and Veblen, D.R. (1996) Periodic and nonperiodic
 interstratification in the chlorite-biotite series. American Mineralogist, 81, 1396–
 1404.
- Yanagisawa, K., Rendón-Angeles, J.C., Ishiwara N., and Oishi, S. (1999) Topotaxial
 replacement of chlorapatite by hydroxyapatite during hydrothermal ion exchange.
 American Mineralogist, 84, 1861–1869.
- Yang, Y.P., He, H.P., Tan, W., Tao, Q., Yao, J.M., Xian, H.Y., Li, S.Y., Xi, J.X.,
 Zhu, J.X., and Xu, H.F. (2022a) Incorporation of incompatible trace elements
 into molybdenite: Layered PbS precipitates within molybdenite. American
 Mineralogist, 107, 54–64.
- 550 Yang, Y.P., He, H.P., Xian, H.Y., Xi, J.X., Wu, X., Chen, A.Q., Zhu, J.X., and Xu,
- H.F. (2022b) Periodic and non-periodic stacking in molybdenite (MoS2)
 revealed by STEM. American Mineralogist, 107, 997–1006.

553

554 Figure Captions

FIGURE 1. Geological map of the Long Valley Caldera, located in California,
USA (modified after Bailey, 1976; and Christensen and Depaolo, 1993). The
sampling place is indicated by the yellow star.

558 FIGURE 2. Optical images of rhyolite from Long Valley, California, USA, with 559 an accessory plate (550 nm retardation) inserted. Phenocrysts including (a) biotite 560 (Bio), titanomagnetite (Mt), potassium feldspar (Kfs), and (b) kaersutite (Krs) are 561 surrounded by xenomorphic plagioclase (Pl).

562 FIGURE 3. BSE images of biotite particles and focused ion beam (FIB) - sampled

563 position. The associated minerals are kaersutite (Krs) in (a) and titanomagnetite (Mt)

- 564 in (b). The main inclusions in biotite particles are titanomagnetite (Mt) and apatite (Ap)
- 565 in (b) and zircon (Zrn) in (c), respectively. (d) A biotite particle with a length of over

566 250 μm and a width of over 200 μm. (e) Enlarged image of the red square in (d),
567 showing the FIB area (marked by the yellow square).

FIGURE 4. STEM images of the biotite FIB section. (a) STEM image of the FIB 568 569 section. A crack separates the biotite (left side of the section) from plagioclase (right 570 side of the section). The inset figure shows the selected-area electron diffraction 571 pattern of the 1M polytype along the [110] axis zone, derived from biotite. (b) Enlarged 572 TEM image of the biotite and crack in (a), as indicated by the red square, displaying 573 the edge of the biotite section with fracture and secondary clay minerals having curved 574 morphology. (c) Enlarged STEM image of the square c in (b), showing numerous 575 defects in the host biotite. The yellow and red arrows in (b) and (c) indicate typical 576 defects with higher and lower contrast relative to biotite, respectively.

577 FIGURE 5. TEM images and the corresponding diffraction (FFT) pattern of 578 **biotite.** (a) The TEM image shows distinct contrast regions, in which the yellow arrows 579 point to defective domains. Regions with different contrasts are separated by defects, 580 as shown by the A, B, and C regions in biotite that have a high contrast, low contrast, and medium contrast, respectively. (b) Enlarged image of the area marked by the red 581 dotted square in (a). The arrows indicate two stacking faults with a disordered atomic 582 583 arrangement. The local FFT pattern of the defect area shows a 1M polytype of biotite 584 with a streak feature in $k \neq 3n$ rows.

585 FIGURE 6. STEM image and energy-dispersive spectroscopy (EDS) results of 586 biotite. (a) Z-contrast STEM image of the biotite domain with dense defects. Black 587 arrows mark the domains with a lower contrast while the white arrows denote the 588 domains with a higher contrast. (b, c) EDS spectra collected from two representative 589 areas with different defect densities in (a), of which square 1 shows a relatively higher 590 contrast while square 2 displays a lower contrast in comparison to a biotite region. 591 The horizontal lines for comparison show that the intensities of O and Si peaks in (b) 592 and (c) are almost equal to each other, while the intensities of K, Mg, Al, and 593 particularly Fe peaks in (b) are higher than those in (c).

594 FIGURE 7. EELS spectra of the biotite domains with lattice defects, Fe mapping

and the ELNES-edge structure at the Fe $L_{3,2}$ -edges. (a) TEM image of biotite with defects. The yellow square was investigated via EELS; (b) Fe mapping of the studied area based on the EELS result; (c) spectra collected from the red squares 1 and 2 in (b). The spectra reveal different shapes and peak positions of the Fe-edge between squares 1 and 2.

- 600 FIGURE 8. Two-dimensional STEM images of biotite. (a) STEM image of biotite
- 601 with Fe-rich and Fe-poor domains marked by white and black arrows, respectively. (b) 602 High-resolution STEM image of the red square b in (a), revealing the co-existence of 1M-polytype biotite domains with a lattice spacing of ~10 Å and defect layers with a 603 604 lattice spacing of ~24 Å (i.e., 10 Å + 4 Å + 10 Å). The yellow arrows that connect the 605 octahedral cations of adjacent layers show the consistent stacking sequence of the 606 defective domains with the host biotite domains. (c) Structural diagram of the interstratified domains marked by the red square in (b); the pink triangles represent 607 Mg^{2+} in the octahedral sheet (O), purple triangles represent Fe^{2+} in the O sheet, green 608 triangles represent Fe^{3+} in the O sheet, and yellow balls represent interlayer K cations. 609 610 The brighter lines (or transverse extending spots) are O sheets, the darker spots 611 adjacent to O sheets are tetrahedral sheets (T), and the bright spots between two TOT 612 units of biotite are interlayer K⁺ columns.

613 FIGURE 9. (HR)STEM images showing adjacent interstratified layers and 614 corresponding atomic arrangement of the host biotite and the twin layers of 615 berthierine. (a) STEM image revealing twin centrosymmetric-like crystals within the 616 two pairs of interstratified domains. (b) Enlarged HAADF- STEM image of the squared region in (a). (c) TOT-type layers of biotite, with Mg^{2+} and Fe^{3+} (and vacancies) 617 618 as the dominant octahedral cations. (d) Interstratified-twin layers of berthierine (marked by the red arrows). These layers with a trioctahedral TO-type structure are 619 Fe^{2+} -rich. (e) TOT-O structure of chlorite. The definitions of the symbols in the 620 621 structural diagram (c-e) of the interstratified domains are the same as in Fig. 8.

622 FIGURE 10. STEM image of defect termination, showing the transformation

from one normal biotite layer to the twin layers of berthierine. The red square in (a) 623 624 reveals an extra octahedral sheet inserted into the TOT structure of the biotite. The 625 yellow arrow denotes a dislocation line. Transformation process of the biotite layer into 626 two berthierine layers in (a), as illustrated by the diagram in (b). 627 FIGURE 11. Schematic models illustrating the formation mechanism of the interstratified berthierine layers. (a) Deformation, microcleavage, and dislocation in 628 the host biotite, which might serve as fluid channels and initial alteration sites. (b) 629 Alteration takes place with an increase of Fe³⁺ content in the biotite layers, resulting in 630 the replacement of interlay K^+ by newly formed octahedral sheets. Different structural 631

632 adjustments lead to the formation of two different types of berthierine-related structures

633 (c) and (d), as displayed in Figs. 8 and 9, respectively. The definitions of the symbols in

634 the structural diagram of the interstratified domains are the same as in Fig. 8.

