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Abstract 21 

Pyrite is a ubiquitous mineral in many ore deposits and sediments, and its trace 22 
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element composition is mainly controlled by temperature, oxygen fugacity, pH, 23 

compositions of fluids and host rock composition. A Discriminant Analysis (DA), 24 

based on multi-element compositions of pyrite, distinguish iron oxide-apatite (IOA), 25 

iron oxide copper-gold (IOCG), skarn Cu-(Fe), porphyry Cu-Mo, orogenic Au, 26 

volcanic-hosted massive sulfide (VMS), sedimentary exhalative (SEDEX) deposits 27 

and barren sedimentary pyrite. Testing of the DA classifier yield an accuracy of 98% 28 

for IOA, 96% for IOCG, 91% for skarn Cu-(Fe), 94% for porphyry Cu-Mo, 87% for 29 

orogenic Au, 84 % for VMS, 96% for SEDEX and 85% for barren sedimentary pyrite. 30 

Furthermore, Neural Network, Support Vector Machine and Random Forest, were 31 

performed for selecting the optimum classifier more accurately. In these three 32 

techniques, the Support Vector Machine yield the highest overall accuracy (98% for 33 

IOA, IOCG, skarn Cu-Fe and porphyry Cu-Mo, and 97% for orogenic Au, VMS, 34 

SEDEX and barren sedimentary pyrite), and thus is an appropriate technique in 35 

predicting pyrite types. 36 

Keywords: Pyrite; trace elements; discrimination diagrams; machine learning  37 

 38 

1. Introduction 39 

  Metallogenetic models for different ore deposit types exert a major influence 40 

on ore exploration especially when the surface geology or geochemistry fails to reveal 41 

details about the deposit at depth. For example, minor disseminated pyrite from a 42 

sericite alteration zone in a drill hole could be related to a porphyry Cu-Mo deposit, a 43 

VMS system, an epithermal Au zone, or barren pyrite unrelated to an ore system 44 
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(Revan et al. 2014; Gregory et al. 2019; Chugaev et al. 2022 and references therein). 45 

Each of the mineralization type demands a different approach to exploration. Thus, a 46 

reliable method of distinguishing the type of ore deposits enhances the efficiency of 47 

mineral exploration. For newly discovered deposits with unclear deposit geology, the 48 

prediction of ore deposit type is helpful in understanding the process of the 49 

mineralization. 50 

The global tectonics controls the formation of various ore deposits is the basis 51 

for their classification (e.g., Groves et al. 2005; Lydon 2007; Santosh and Groves 52 

2022). Most of the deposit types considered in this study formed at destructive plate 53 

margins and are related to magmatic and/or associated hydrothermal systems. These 54 

deposits include porphyry Cu-Mo, skarn Fe-(Cu), orogenic Au, and IOA systems. 55 

Mineral deposits that form in constructive plate margins include some styles of IOCG 56 

systems. After classification based on the tectonic environment, the major mineral 57 

deposit types are further characterized by ore mineralogy, alteration, and host-rock 58 

associations (e.g., Hedenquist et al. 2000; Goodfellow 2007).  59 

The IOCG comprise a diverse group of deposits viewed as iron oxide-associated 60 

deposits (Groves et al. 2010). IOA are sometimes classified as the Cu-poor end 61 

member of the IOCG system, although their genetic association remains controversial 62 

(Knipping et al. 2015a, b). IOCG deposits have abundant low-Ti iron oxides and have 63 

a close temporal relationship with the related intrusions (Groves et al. 2010). IOCG 64 

deposits have Cu ± Au as economic metals, which are formed by 65 

magmatic-hydrothermal processes. In contrast to IOCG system, IOA deposits 66 



4 
 

typically lack economic Cu ± Au, and are associated with calc-alkaline magmatism 67 

(Knipping et al. 2015a, b; Mao et al. 2016). 68 

Skarn Cu-(Fe) deposits are characterized by pervasive calc-silicate alteration 69 

(typically garnet and pyroxene) through magmatic-hydrothermal fluids at the margins 70 

of felsic intrusions (e.g., Einaudi et al. 1981; Meinert et al. 2005). Skarn deposits are 71 

commonly polymetallic with a wide range of grades and tonnages. Among the seven 72 

major skarn ore types (Fe, Au, Cu, Pb-Zn, W, Mo, and Sn), many types are parts of 73 

larger porphyry systems (Meinert et al. 2005; Ray 2013). Porphyry Cu-Mo deposits 74 

are large magmatic-hydrothermal deposits associated with intermediate to felsic 75 

porphyritic intrusions (Seedorff et al. 2005; Sillitoe 2010). The deposits typically 76 

contain hundreds of millions of tons of ore with low grades (generally <1% Cu and 77 

<0.1% Mo). Porphyry Cu-Mo are derived from I-type granites (Dilles et al. 2014) that 78 

possess variable degree of alkalinity (e.g., Barr et al. 1976) and states of oxidation 79 

(Cao et al. 2014).  80 

Orogenic Au deposits encompass all epigenetic, structurally hosted, gold vein 81 

systems in metamorphic terranes (Groves et al. 1998; Mao et al. 2016). The deposits 82 

normally contain between 20 and 40 million tons of ore with average Au grade of 7.6 83 

g/t (Dubé and Gosselin 2007). Most gold orebodies form at crustal depths (5–10 km), 84 

although deeper (~20 km) and shallower (~5 km) deposits are recognized (Groves 85 

1993).  86 

VMS and SEDEX deposits are significant sources of base metals such as copper, 87 

zinc, and lead, as well as precious metals like gold and silver (Galley et al. 2007). 88 
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VMS deposits are formed as a result of submarine volcanic activity, which occur in 89 

clusters or following the tectonic plate boundaries (Galley et al. 2007; Piercey 2009). 90 

VMS deposits are typically hosted in volcanic or volcaniclastic rocks, including basalt, 91 

andesite, rhyolite, and volcanic breccias (Praveen et al. 2020). SEDEX deposits are 92 

typically associated with extensional tectonic settings, such as rift basins, foreland 93 

basins, or passive margins (Large et al. 2005). They are typically hosted in 94 

fine-grained clastic sedimentary rocks, such as shale, siltstone, and mudstone and 95 

associated with the interaction of hydrothermal fluids in marine basins (Cooke et al. 96 

2000; Chen et al. 2003; Large et al. 2005).  97 

Pyrite is a ubiquitous mineral in various rocks and an essential constituent in 98 

many ore deposits (e.g., Huston et al. 1995b; Large et al. 2009; Reich et al. 2013, 99 

2016; Gregory et al. 2015; Tardani et al. 2017). In spite of its relatively chemical 100 

composition, pyrite contains trace elements as solid solution or micro-particles (Reich 101 

et al. 2005, 2013; Deditius et al. 2009, 2011). The trace element composition of pyrite 102 

is mainly controlled by temperature, oxygen fugacity, pH and compositions of fluids 103 

and wall rocks, as well as the metal sources and depositional mechanisms (Huston et 104 

al. 1995a; Abraitis et al. 2004; Tardani et al. 2017). Therefore, pyrite trace elements 105 

discriminate different types of ore deposits (e.g., Huston et al. 1995b; Large et al. 106 

2009; Reich et al. 2013, 2016; Gregory et al. 2015; Tardani et al. 2017). Binary 107 

element scatter plots of pyrite chemistry have been used to distinguish pyrite from 108 

different ore deposits (Loftus-Hills and Solomon 1967; Bajwah et al. 1987; Bralia et 109 

al. 1979). However, these diagrams have significant compositional overlaps. 110 
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Therefore, multi-element discrimination diagrams involving several different 111 

elements may help in discriminating the ore deposit type. 112 

In this paper, we process a total of 3287 trace element spot measurement of 113 

pyrite from IOA (iron oxide-apatite), IOCG (iron oxide copper-gold), skarn Cu-(Fe), 114 

porphyry Cu-Mo, orogenic Au, VMS (volcanic-hosted massive sulfide), SEDEX 115 

(sedimentary exhalative) deposits and barren sedimentary pyrite with Discriminant 116 

analysis (DA), and build discrimination diagrams to identify and visualize the 117 

distinctions among different types of deposits. Despite the pyrite composition is 118 

affected by various factors, data from different analysis spots could record their 119 

complicated crystallization environment. Therefore, the discrimination model 120 

constructed investigate the various factors that controlling the pyrite composition, and 121 

distinguish different ore deposit types. Furthermore, we discuss the performance of 122 

three machine learning algorithms, i.e., Artificial Neural Network, Support Vector 123 

Machine and Random Forest, for selecting the optimum classifier to distinguish 124 

different types of deposits more accurately. 125 

 126 

2. Methods 127 

2.1 Data collection  128 

The data set was collected from publications covering different mineralization 129 

systems (Fig. 1; Table 1). Most of the pyrite data are from laser ablation-inductively 130 

coupled plasma mass spectrometry (LA-ICP-MS) although the interlaboratory 131 

variations in analytical methods, standards, and instruments cause varying detection 132 
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limits obtained from different laboratories (Supp Table 1). Data on pyrite from the Los 133 

Colorados IOA deposit is from secondary ion mass spectrometry (SIMS) and electron 134 

probe microanalysis (EPMA). 135 

2.2 Pretreatment of data 136 

Concentrations of 23 elements in the pyrite were collected. Since some elements 137 

are below the detection limits or not reported in some articles, we mainly focus on the 138 

residual 12 elements, including Co, Ni, Cu, Zn, As, Se, Ag, Sb, Te, Au, Pb and Bi. The 139 

geochemical data of pyrite from different deposit types is shown in Supp Table 2. The 140 

residual 12 elements are sometimes absent in the reported data of pyrite and hardly 141 

contribute to indicator characterization. Previous researchers provide multiple 142 

approaches and offer various replacement options to deal with such values (e.g., 143 

Filzmoser et al. 2009; Hron et al. 2010; Grunsky et al. 2013). In order to avoid the 144 

potential effects of outliers and respect the compositional nature of the database, the 145 

IRMI (iterative model-based imputation) algorithm developed by Templ et al. (2011) 146 

was used to impute the null data. Initial guesses of the missing values were taken to 147 

be equal to the median of the corresponding data column, and random noise was 148 

added to the final best estimate of each value to preserve randomness. Data for each 149 

deposit type was treated separately. To deal with data below the detection limit, we 150 

use the random imputation of the raw values with a normal distribution with both 151 

mean and standard deviation equal to the detection limit (van den Boogaart and 152 

Tolosana-Delgado 2013; Frenzel et al. 2016). Negative values resulting from this 153 

imputation procedure may be adjusted simply by changing their sign. Te and Au were 154 
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not analyzed (or reported) in all of the SEDEX deposit. Therefore, medians reported 155 

by Gregory et al. (2019) for SEDEX deposit were used for all the SEDEX analyses. 156 

This has probably overestimated the ability of the classifier to identify SEDEX 157 

analyses, because the same value for Te and Au was used by all the SEDEX samples. 158 

However, Gregory et al. (2019) also used the medians to deal with Te content which is 159 

not analyzed. They suggest that SEDEX pyrite has distinctly higher Cu, Sb and Pb 160 

concentrations compared to most other deposits, so it is thought that Te is not 161 

particularly important for SEDEX classification. To minimize the influence of 162 

micro-inclusions on trace elements of pyrite, data with higher than 1% Zn, 1% Cu, 1% 163 

Ni, 1% Pb, 2% As, and 2% Co were screened. 164 

Finally, a total of 3287 analyses from 7 ore deposit types were used as follows: 165 

IOA (126 analyses, 18 samples from 2 localities), IOCG (279 analyses, 21 samples 166 

from 4 localities), skarn Cu-(Fe) (203 analyses, 19 samples from 3 localities), 167 

porphyry Cu-Mo (419 analyses, 32 samples from 4 localities), orogenic Au (386 168 

analyses, 36 samples from 10 localities), VMS (353 analyses, 46 samples from 5 169 

localities), SEDEX (693 analyses, 43 samples from 2 localities) deposits and barren 170 

sedimentary pyrite (828 analyses, 55 samples from 13 localities) (Table 1; Supp Table 171 

3). 172 

2.3 Classification methods 173 

2.3.1 Discriminant Analysis  174 

To find the optimum criteria for discriminating deposits using pyrite trace 175 

element compositions, we employed the Discriminant Analysis (DA) in SPSS® 176 
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software. DA is a multivariate statistical technique that projects multivariate data into 177 

a lower dimensional space to achieve the best group separation (Flury 1997; 178 

Makvandi et al. 2016; Chen et al. 2019). The Discriminant Analysis calculates a set of 179 

linear discriminant functions that are combinations of the original variables (i.e., 180 

element concentrations) that maximize the differences between the predefined groups, 181 

which allow the samples to be plotted in the discriminant space so that group 182 

separation can be visualized and investigated. Before data processing, the data set was 183 

logarithmic transformed, by simply taking the logarithm of the variables. Although 184 

the logarithmic transformed vectors are still constrained in a sub-space (Filzmoser et 185 

al. 2018; Buccianti and Grunsky 2014), no variable will be sacrificed during the 186 

transformation and the original geochemical sense of the variables could be possessed 187 

(Wang et al. 2014). Many researchers have also used logarithmic transformation to 188 

normalized the data set (Mao et al. 2016; Hu et al. 2022). 189 

2.3.2 Machine learning algorithm 190 

The multilayer perceptron (MLP): MLP is used in this study and therefore the 191 

term “artificial neural network (ANN)” here refers to MLP. An MLP consists of 192 

several layers, an input layer, an output layer and one or more hidden layers. The 193 

nodes in each layer are called neurons, and the neurons between each layer are 194 

connected by adjustable weights and biases. Activate functions are used in hidden 195 

neurons for non-linear mapping. The MLP optimizes the objective problem by 196 

adjusting the weights and biases iteratively. 197 

Support Vector Machine (SVM): Different from traditional methods that 198 
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minimize the empirical training error, SVM attempts to find the optimum separating 199 

hyperplane by maximizing the margin between the hyperplane and the training data 200 

(Kuo et al. 2013). For nonlinear classification task, SVM introduces the kernel 201 

functions for nonlinear mapping. SVM was initially designed for binary classification 202 

problem but can be further extended to multiclass classification task using 203 

“one-versus-all” or “one-versus-one” approach. In this study, the SVM classifier 204 

developed for pyrite type recognition uses “one-versus-one” approach. For K class 205 

classification task, the “one-versus-one” approach developed an SVM between any 206 

two classes, resulting in a total K(K-1)/2 number of SVM. Given an unlabeled sample, 207 

the class with the most votes is identified as the class of this sample. 208 

Random forest (RF): RF is an ensemble machine learning algorithm introduced 209 

by Breiman (2001), which solve classification and regression problem. RF is a 210 

collection of decision trees. The decision tree is a hierarchical model constructed by 211 

recursively partitioning the feature space of a dataset into single class subspaces 212 

(Myles et al. 2004).  213 

RF uses bootstrap sampling to construct n different decision trees based on n 214 

subsets generated from original dataset. Furthermore, the decision trees in RF only 215 

select a fixed number of features randomly to increase the difference between 216 

decision trees. The final decision of RF is the majority predictions of trees.  217 

2.3.3 Machine-learning model development 218 

Standardization of the data set is a common requirement for many machine 219 

learning estimators. To eliminate the spurious relationships between the compositions, 220 
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the centered log-ratio transformation (clr) is used (Filzmoser et al. 2018; Buccianti 221 

and Grunsky 2014) to normalize the compositional data. The normalization method 222 

could be seen in Buccianti and Grunsky (2014) and Wang et al. (2014). And after the 223 

clr transformation, the dataset is normalized into [0,1]  following the equation 224 

presented as: 𝑥 = ௫ି௫௫ೌೣି௫ before the machine learning training process.  225 

It is necessary to evaluate the optimum hyperparameters of the machine learning 226 

models, for which a 5-fold cross validation process was used with Bayesian 227 

optimization (BO) for hyperparameters optimization purpose, where each fold of 228 

validation dataset consisted of a randomly selected 20% of training dataset and the 229 

objective function of BO used the average overall error rate obtained on the 5 230 

validation sets. Bayesian optimization technique is provided by MATLAB. The 231 

splitting process still followed the aforementioned standard. For developing RF model, 232 

the number of trees (ntree) and the number of features selected in each split (mtry) 233 

need to be determined. The optimizable hyperparameters of SVM includes the 234 

regularization coefficient (C) and the kernel size (σ). As for MLP, designing its 235 

topology is essential, and therefore the number of hidden layer (numL) and the 236 

number of hidden neurons in each layer (numH) were considered to be optimized. The 237 

searching spaces of these hyperparameters were presented in Table 3. Table 4 shows 238 

the BO optimized hyperparameters for each category. 239 

In addition, the misclassification cost matrix of SVM classifier was also 240 

optimized to address the issue of imbalanced dataset. The misclassification cost 241 

matrix is given as: 242 
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൦ 0 𝑐ଵଶ𝑐ଶଵ 0 𝑐ଵଷ 𝑐ଵସ𝑐ଶଷ 𝑐ଶସ𝑐ଷଵ 𝑐ଷଶ𝑐ସଵ 𝑐ସଶ 0 𝑐ଷସ𝑐ସଷ 0 ൪ (1) 243 

where 𝑐 represents the cost (or penalty) of misclassifying type 𝑖 into type 𝑗 244 

(false negative of type 𝑖). Since the SVM classifier developed in this study uses “one 245 

versus one” approach, where 6 sub-SVMs (6 = ସ∗ଷଶ ) were developed for each category. 246 

Therefore, following the method suggested by Savu-Krohn et al. (2011), the false 247 

negative penalty 𝑐 and false positive penalty 𝑐 obeys the following relationship: 248 ൜𝑐 = 1 − 𝑐0 < 𝑐 < 1  (2) 249 

As a result, the optimization of the misclassification cost matrix presented in 250 

equation (1) is identical to the optimization of 6 false negative penalties in the upper 251 

triangle of the matrix, ሼ𝑐ଵଶ, 𝑐ଵଷ, 𝑐ଵସ, 𝑐ଶଷ, 𝑐ଶସ, 𝑐ଷସሽ. Considering the distribution of 252 

datasets, the searching range of these penalty values were presented in Supp Table 4. 253 

Since we attempt to assign those classes with less training samples with larger 254 

weights, the cost of misclassifying a class with less training samples into a class with 255 

more samples were designed to be at least 0.5. As for two classes with similar sample 256 

sizes, the misclassification cost between them should be around 0.5, and therefore was 257 

searched within [0.4,0.6]. 258 

Furthermore, during the penalty optimization process, the previously obtained 259 

hyperparameters were used and remained fixed. The BO optimized penalty values for 260 

category A and B were presented in Table 5 and Table 6.  261 

After the optimization processes, all of the classifiers were trained again on the 262 

whole training dataset (including the validation dataset) using the optimized 263 
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hyperparameters and subsequently evaluated on testing dataset. All the models were 264 

developed and tested on MATLAB. 265 

 266 

3. Results 267 

Co and Ni concentrations for pyrite from IOA and IOCG deposits are 268 

considerably higher than those in other metallogenic systems and barren sedimentary 269 

rocks (Fig. 2; Table 2). Large variations of Zn and Pb concentrations exist between the 270 

different pyrite groups (Fig. 2). Pyrite from the IOA deposit and SEDEX deposit have 271 

the highest Pb contents, whereas pyrite from porphyry Cu-Mo deposit has the lowest 272 

Pb contents. Pyrites from porphyry Cu-Mo deposits have the lowest As contents. 273 

Pyrites in IOA contain Se similar to that of IOCG, porphyry Cu-Mo, orogenic Au, 274 

SEDEX, VMS deposit and sedimentary rocks, whereas pyrite from the skarn Fe-Cu 275 

deposit has the lowest Se contents. Sb contents of the pyrite for the porphyry Cu-Mo 276 

deposits has the lowest Sb concentrations. Pyrite is generally poor in Te, although 277 

pyrites from the VMS deposits contain Te contents of up to 2925 ppm. All other 278 

pyrites contain Te < 278.5 ppm. The highest values of gold are observed in pyrites 279 

from IOCG and orogenic Au deposits while Au contents in pyrite from other deposits 280 

are low or below the detection limit. Bi content in pyrite varies from sub-detection 281 

limit to 2077 ppm, with the highest values in pyrite from VMS deposits. 282 

To sum up, Co and Ni in pyrite from IOA and IOCG deposits are almost an order 283 

of magnitude higher than those in pyrite from the other deposits (Fig. 2). VMS pyrite 284 

is more enriched in silver, Se, Te and Bi while porphyry Cu-Mo deposits display 285 
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distinctly lower Arsenic, Pb and Sb values. Barren sedimentary pyrite is commonly 286 

enriched in Cu, Zn and Pb compared with ore-related pyrite. Hence, trace elements of 287 

pyrite have the potential to discriminate the various deposit types. 288 

 289 

4. Discussion 290 

4.1 Co-Ni discrimination diagrams 291 

Co/Ni ratio >1 in pyrite has been attributed to high-temperature, 292 

magmatic-hydrothermal systems (e.g., Bralia et al. 1979; Bajwah et al. 1987; Koglin 293 

et al. 2010). In contrast, a low Co/Ni ratio <1 indicates felsic magmatic or a 294 

sedimentary origin for pyrite (Loftus-Hills and Solomon 1967; Koglin et al. 2010). 295 

Previous studies have defined overlapping compositional fields for pyrite from 296 

different deposits based on their Co/Ni ratios (Fig. 3; Reich et al. 2016), indicating 297 

that Co/Ni ratio is not an effective tool to discriminate deposit types.  298 

4.2 Discrimination analysis of pyrite through DA 299 

The ore deposit types and barren sedimentary rocks are first divided into two 300 

categories according to their geological environments and each category consists of 4 301 

types of pyrites. 302 

4.2.1 Magmatic-hydrothermal deposits (category A) 303 

The IOA, IOCG, skarn Cu-(Fe) and porphyry Cu-Mo deposit are associated with 304 

volcanic and intrusive rocks. The skarn and porphyry deposits have similar ore 305 

elements, mineral assemblages, alteration zones and fluid sources (Meinert et al. 2005 306 

and references therein; Reich et al. 2013; Keith et al. 2022). IOA and IOCG deposits 307 
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sometimes occur in the same metallogenic belt, such as in the case of the Chilean iron 308 

belt. Although the genesis of IOA deposits, whether they are magmatic or 309 

hydrothermal in origin is a long-standing controversy, the magmatic-hydrothermal 310 

fluid is considered to play an important role in the mineralization process (Knipping 311 

et al. 2015a, 2015b). The close spatial association among IOA, IOCG and iron skarn 312 

ores sometimes leads to misjudgments of these ore types (Allen et al. 1996; Mao et al. 313 

2011; Nold et al. 2014; Bilenker et al. 2016; Harlov et al. 2016; Jonsson et al. 2016; 314 

Hu et al. 2020 and references therein).  315 

The discrimination diagram (Fig. 4; Supp Table 5) based on discriminant 316 

functions effectively separate the IOA and IOCG deposits from the skarn Cu-(Fe) and 317 

porphyry Cu-Mo deposits. There is overlap between skarn Cu-(Fe) and porphyry 318 

Cu-Mo deposit (Fig. 4). Sillitoe (2010) considered that the skarn Cu-(Fe) and 319 

porphyry Cu-Mo deposits could form through the evolution of a single 320 

magmatic-hydrothermal system. The overlap in the discrimination diagram also 321 

demonstrates the similarities in their fluid and metal source.  322 

4.2.2 Orogenic Au, VMS, SEDEX deposits and barren sedimentary rocks 323 

(category B) 324 

SEDEX and barren sedimentary pyrite form in the sedimentary environment and 325 

share similarities of trace element characteristics (Fig. 2). There is a controversy on 326 

the genesis of orogenic Au deposit related to the fluid and metal source (Bath et al. 327 

2013; Lawrence et al. 2013; Goldfarb and Groves 2015; Spence-Jones et al. 2018). 328 

Therefore, distinguishing pyrite from the orogenic Au, VMS, SEDEX deposits and 329 
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barren sedimentary rocks is not only important for the construction of metallogenetic 330 

model, but may also be helpful in mineral exploration. 331 

As shown in Fig. 4, discriminant functions separate VMS and orogenic Au 332 

deposits from the SEDEX deposit and barren sedimentary rocks. However, the VMS 333 

shows overlap with orogenic Au deposit. It should be noted that VMS deposits could 334 

be divided into different subtypes (Urals-, Kuroko-, Cyprus-, Besshi-), which formed 335 

in different environment, but only Cyprus- and Urals-type deposits represent the VMS 336 

deposit.  337 

4.2.3 Evaluation of the discrimination analysis 338 

 To evaluate the Discriminant Analysis, a stratified sampling construct the 339 

training data set by sampling four-fifths of the data from each deposit type, and the 340 

remaining one-fifth data of the same ratios of deposit types acted as a test data set 341 

(Supp Table 3). The training data set was used to build the classifier, and the test data 342 

set was used to evaluation.  343 

Using the classification functions (Supp Table 6), most of the literature data are 344 

classified with high accuracy, see Supp Table 7. Apart from the test dataset, five 345 

replicated sampling 20% from the whole data set was used to evaluation. The 346 

sampling is done randomly. The literature data are correctly classified with high 347 

accuracy (98% for IOA, 96% for IOCG, 91% for skarn Cu-(Fe), 94% for porphyry 348 

Cu-Mo, 87% for orogenic Au, 84 % for VMS, 96% for SEDEX and 85% for barren 349 

sedimentary pyrite). 350 

The DA builds discrimination diagrams used to visualize the distinctions among 351 
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different types of deposits evaluate the contribution of each variable to identify the 352 

type of ore deposits. However, the relatively low accuracy for category B warrants 353 

more accurate methods to predict ore deposit types. 354 

4.3 Discrimination of pyrite based on machine learning 355 

Prior to the development of classification model, both category A and B were 356 

randomly split into training and testing datasets with a proportion of 80% and 20%, 357 

that is, 818 and 209 sets of data were used for training and testing for category A and 358 

1806 and 454 sets of data were used for the same purpose for category B. To ensure 359 

the fairness, each subtype of pyrite is split according to the aforementioned ratio. For 360 

instance, for the total 126 IOA samples, 99 samples (nearly 80%) were used as 361 

training purpose, and the remaining 25 samples were split into testing dataset. The 362 

splitting of training and test dataset is done by random, respecting the hierarchical 363 

data structure. The number of the training and test data from each deposit could be 364 

seen in Supp Table 3.  365 

4.3.1 Evaluation of models 366 

The performance of the model was evaluated using confusion matrix, ROC curve 367 

and accuracy. Accuracy of the model is obtained by calculating: 368 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑁𝑜. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

The confusion matrix shows the predicted and actual classification. The ROC 369 

curve shows the tradeoff between the true positive rate (TPR) and false positive rate 370 

(FPR) of a classification model, given by: 371 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 
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𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 

where TP refers to No. of true positive samples, FN denotes the No. of false 372 

negative samples, FP represents false positives and TN means true negatives. 373 

4.3.2 Results and Discussion 374 

The classification accuracies of the three machine learning models were 375 

summarized in Table 7. The ROC curves and confusion matrix on each general 376 

category were presented in Fig. 5 and Fig. 6.  377 

The confusion matrix presented in Fig. 5 illustrated that SVM can perfectly 378 

recognize the IOA and porphyry Cu-Mo type of pyrite. All IOA and porphyry Cu-Mo 379 

testing samples were correctly identified with no false positive, while the identified 380 

skarn Cu-(Fe) and IOCG samples both had 2 false positive. Furthermore, according to 381 

the results presented in Table 7, although all these three models achieved relatively 382 

high classification accuracy, SVM still has the strongest classification ability by 383 

achieving an overall accuracy of 98%. This can also be proved from the ROC curve 384 

given in Fig. 6, where SVM has the largest area under curve (AUC). 385 

The pyrites in general category B are a little more difficult to be distinguished. 386 

According to the confusion matrix presented in Fig. 5, the VMS type of pyrite was the 387 

most difficult to be identified for all the three models, since the obtained classification 388 

accuracies of which were relatively low compared to other types. RF demonstrated a 389 

perfect classification performance on SEDEX pyrite, with no false negative or false 390 

positive. However, the ROC curves in Fig. 6 demonstrated that SVM is the most 391 

suitable model in estimating pyrite type. The summarized results presented in Table 7 392 
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also illustrates the superiority of SVM in estimating the pyrite types in category B, 393 

which ranked the 1st among all models with an overall accuracy of 97%, although all 394 

these three models achieved relatively high classification accuracy.  395 

As a result, the machine learning classifier, especially SVM is useful for 396 

identifying ore deposit type. The higher overall accuracy of SVM illustrates the 397 

superiority of machine learning models in estimating the pyrite types compared to 398 

Discriminant analysis. However, Discriminant analysis provides clear and easily 399 

interpretable results, which typically requires less computational resources and 400 

training time compared to RF, especially when dealing with large datasets. 401 

 402 

5. Implications 403 

This study adopted data on pyrite from IOA, IOCG, skarn Cu-(Fe), porphyry 404 

Cu-Mo, orogenic Au, VMS, SEDEX deposits and barren sedimentary pyrite, and 405 

through the application of statistical technique, we constructed discrimination 406 

diagrams from Discriminant analysis. The calculated discriminant functions highlight 407 

distinct multi-element differences among pyrite from various types of deposit. 408 

Furthermore, three machine learning algorithms, i.e., Artificial Neural Network, 409 

Support Vector Machine and Random Forest, are performed for the purpose of 410 

selecting the optimum classifier to distinguish different types of deposits more 411 

accurately. The accuracy demonstrates that pyrite trace element data combined with 412 

Support Vector Machine is a useful tool to discriminate ore types. 413 

A weakness of the four current discriminator is the variability in the number of 414 
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deposits and the amount of data from each site. IOA and SEDEX deposit are based on 415 

samples from two localities. This may suggest that pyrite trace element concentrations 416 

for IOA and SEDEX deposit are not fully representative of the ranges for the ore 417 

systems. Tl, Sn and W may be useful element in discriminating the deposit types. 418 

These elements were not included in the classifier because of a general lack of data in 419 

most data sources.  420 
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Figure captions 772 

 773 

Figure 1 World map showing the location of samples in this study. 774 

 775 

Figure 2 Box plots showing trace element contents of pyrite for each ore deposit. 776 

Line = median value; box = 25th–75th percentile; open circles = outliers (within 3 777 

box length). Whiskers are drawn to the last data point that extends 1.5 times the 778 

length of the box toward the maximum and minimum. 779 

 780 

Figure 3 Scatter plot of Co versus Ni in pyrite from different ore deposit types. 781 

 782 

Figure 4 Discrimination diagrams for pyrite from category A (a) and category B 783 

(b). 784 

 785 

Figure 5 Confusion Matrix for Category A (the top three, 1 = IOA, 2 = IOCG, 3 786 

= Skarn Cu-(Fe) deposit, 4 = Porphyry Cu-Mo deposit) and Category B (the bottom 787 

three, 1 = SEDEX, 2 = Barren sedimentary rocks, 3 = Orogenic Au deposit, 4 = 788 
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VMS). 789 

 790 

Figure 6 ROC curves for Category A (BLUE = RF, GREEN = ANN, RED = 791 

SVM) and Category B (BLUE = RF, GREEN = ANN, RED = SVM). 792 
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Table captions 794 

 795 

Table 1 Summary of sample locations from different ore deposit types. IOA: iron 796 

oxide-apatite, IOCG: iron oxide copper-gold, VMS: volcanic-hosted massive sulfide, 797 

SEDEX: sedimentary exhalative. 798 

 799 

Table 2 Summary of trace element data for pyrite from different ore deposit 800 

types. SD = standard deviation. 801 
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Table 1 Summary of training and test analyses from different ore deposit types used for Discrimination Analysis. 

Deposit type Deposit/locality name Reference Analyses 
Number of 

training  
analyses 

Number of 
test  

analyses 

Total  
analyses 

IOA 
IOA 

Los Colorados, Chile 
Nihe, China 

Reich et al. 2016 
Che 2014; Liu 2019 

48 
78 

37 
62 

11 
16 

126  
  

IOCG Candelaria-Punta del Cobre district, Chile del Real et al. 2020 162 130 32 

279 
IOCG Marcona, Peru Li et al. 2017 27 21 6 
IOCG Mina Justa, Peru Li et al. 2018 38 30 8 
IOCG Laoshankou, China Liang et al. 2021 52 41 11 

  

Skarn Cu-(Fe)  Xinqiao, China Zhang et al. 2017 33 25 8 

203 
Skarn Cu-(Fe) Fenghuangshan, China Xie et al. 2020 118 94 24 
Skarn Cu-(Fe) Xinqiao, Tongling region, China Wang et al. 2022 25 21 4 
Skarn Cu-(Fe) Baoshantao, Tongling region, China Wang et al. 2022 27 22 5 

  

Porphyry Cu-Mo Koloula, Solomon Island Keith et al. 2022 264 212 52 

419 
Porphyry Cu-Mo Verkhneuralskoe, Urals Chugaev et al. 2022 85 68 17 
Porphyry Cu-Mo Talitsa, Urals Chugaev et al. 2022 21 16 5 
Porphyry Cu-Mo Resolution, Arizona Cooke et al. 2020 49 39 10 

  

Orogenic Au Bangbu, Tibet, China Zhao et al. 2020 6 5 1 

386 

Orogenic Au Fofina, Africa Augustin and Gaboury 2019 39 31 8 
Orogenic Au Nyafé, Africa Augustin and Gaboury 2019 18 15 3 
Orogenic Au Siou, Africa Augustin and Gaboury 2019 28 22 6 
Orogenic Au Wona-Kona, Africa Augustin and Gaboury 2019 85 68 17 
Orogenic Au Yaho, Africa Augustin and Gaboury 2019 14 11 3 
Orogenic Au Yilgarn, Australia Belousov et al. 2016 36 29 7 
Orogenic Au Shanggong, China Meng et al. 2022 51 40 11 
Orogenic Au Xiaojiashan, China Tan et al. 2022 89 72 17 
Orogenic Au Dayingezhuang, China Wei et al. 2022 20 16 4 

  



VMS Bukit Botol Basori et al. 2018 30 23 7 

353 
VMS Mala, Cyprus Martin et al. 2022 123 99 24 
VMS Yilgarn, Australia Belousov et al. 2016 8 6 2 
VMS Bathurst mining camp, Canada Soltani et al. 2015 30 24 6 
VMS Bracemac-McLeod，Canada Genna et al. 2015 162 131 31 

  

Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 
Sedimentary pyrite 

Canning Basin, Australia 
Hamersly Basin, Australia 
Kalgoolie, Australia 
Pibara, Australia 
Perth Basin, Australia 
Arthur River, Australia 
Simithton, Australia 
Amadeus Basin, Australia 
Yeneena Basin, Australia 
Yukon, Canada 
McArthur Basin, Australia 
Gummon, Australia 
Tanami, Australia 

Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 
Gregory et al. 2015 

134 
165 
38 
30 
47 
29 
52 
37 
15 

187 
30 
38 
26 

107 
130 
30 
24 
37 
23 
41 
30 
12 

152 
24 
31 
21 

27 
35 
8 
6 
10 
6 
11 
7 
3 
35 
6 
7 
5 

828 

  

SEDEX Howard'S Pass, Yukon Gadd et al. 2016 474 379 95 
693 

SEDEX Barney Creek, Australia Mukherjee and Large 2017 219 173 46 
 



Table 2 Summary of trace element data for pyrite from different ore deposit types. SD = standard deviation. 
Deposit Statistic Co Ni Cu Zn As Se Ag Sb Te Au Pb Bi 

IOA 

n 126 126 126 126 126 126 126 126 126 126 126 126 

Min 90 20 0.11 100 1.1 3 0.1 0.04 0.04 0.04 100 0.1 

25%ile 622.5 160 20 100 60 54.1 1.85 5.52 3.105 0.08 200 9.46 

Average 3201.8 1407.4 788.0 2557.3 381.6 143.4 19.3 26.3 284.0 44.6 449.7 17.2 

Median 905 335 200 1370 129.5 110 4.45 18.67 240 0.14 514 18.58 

75%ile 1527.5 1300 532.5 4290 220 210 7.9 35.5 420 0.19 637 23.83 

Max 20000 9700 9700 9620 6430 770 200 100 1050 1200 757 38.77 

SD 5653.8 2407.6 1632.8 2749.3 1134.3 116.4 51.1 26.3 278.5 164.7 228.0 9.6 
     

IOCG 

n 279 279 279 279 279 279 279 279 279 279 279 279 

Min 1.29 1.80 0.10 0.25 0.17 5.00 0.01 0.01 0.07 0.01 0.01 0.01 

25%ile 957 61.38 4.04 1.9 69.79 25.77 0.028 0.032 0.137 0.08 0.11 0.051 

Average 6085.5 1189.7 277.6 11.8 917.3 55.0 4.0 3.8 0.9 61.2 42.8 5.1 

Median 3300 499.3 10.48 3.81 140.6 50.33 0.15 0.12 0.24 1.86 1.8 0.72 

75%ile 9223 1613 46.58 6.96 545.8 77.65 1.54 0.93 0.41 12 16.19 4.98 

Max 19910 8910 7933 604.1 9223.4 181.6 232.5 87.7 7.8 3237 1940 91.1 

SD 5991.9 1714.2 874.6 48.7 1857.0 35.1 16.7 11.6 1.8 285.6 176.9 11.4 
     

Skarn Cu-(Fe) 

n 203 203 203 203 203 203 203 203 203 203 203 203 

Min 0.05 0.097 0.03 0.144 0.168 0.014 0.009 0.006 0.03 0.005 0.005 0.007 

25%ile 1.31 0.74 0.42 0.46 7.10 0.14 0.16 0.07 0.11 0.029 0.72 0.22 

Average 168.34 58.69 164.65 7.57 954.15 4.74 6.30 46.54 7.43 0.33 235.32 33.18 

Median 11.03 3.17 1.614 0.76 51.71 1.14 0.57 0.43 0.58 0.05 3.742 1.015 

75%ile 43.08 37.06 29.3 1.98 793.02 3.92 6.23 6.66 3.96 0.29 69.5 7.94 

Max 9237 1135 8872.7 171.26 9223.4 86.1 68.5 2556.5 126.9 4.5 5685.3 1018 



SD 703.9 145.7 690.0 24.7 1824.8 11.7 13.9 226.5 19.0 0.7 688.7 108.9 
     

Porphyry Cu-

Mo 

n 419 419 419 419 419 419 419 419 419 419 419 419 

Min 0.015 0.09 0.12 0.21 0.192 0.38 0.01 0.01 0.055 0.005 0.01 0.005 

25%ile 3.37 1.33 1.9 2.15 1.9 6.98 0.13 0.03 0.5 0.04 0.41 0.01 

Average 163.35 60.83 249.01 5.42 33.68 48.05 3.82 0.11 6.79 0.07 17.66 2.58 

Median 18.4 6.1 9.5 3.96 6.8 19.09 1.9 0.044 0.88 0.065 1.27 0.14 

75%ile 104.69 31.99 21.9 5.8 9.5 50 5.82 0.08 3.8 0.1 4.31 1.21 

Max 5094.9 1113.2 7990.2 128.0 2603.5 618.0 31.1 4.0 282.0 0.6 980.0 376.5 

SD 458.9 169.1 1141.7 9.8 202.3 89.8 5.3 0.3 21.8 0.1 72.7 19.0 
     

Orogenic Au 

n 386 386 386 386 386 386 386 386 386 386 386 386 

Min 0.1 0.102 0.044 0.059 0.115 0.553 0.010 0.013 0.142 0.008 0.033 0.006 

25%ile 27.17 41.28 7.69 2.20 495.26 7.95 0.20 1.13 1.62 0.20 4.59 0.30 

Average 213.66 368.89 196.14 105.03 3104.64 29.27 5.55 32.65 21.57 11.29 161.96 9.36 

Median 124.58 172.50 23.67 5.42 1728.61 16.70 0.68 7.15 3.80 0.75 24.91 1.40 

75%ile 260.25 379.30 134 27.7 3283.33 35.12 3.33 42.52 9.75 2.74 180.08 8.11 

Max 2581.5 5706.8 7000.0 7642.1 9223.4 674.2 263.0 1449.3 1320.0 1433.0 8694.1 202.7 

SD 310.8 623.9 570.5 522.9 4056.1 45.5 22.7 86.6 83.2 103.4 508.8 21.2 
     

VMS 

n 353 353 353 353 353 353 353 353 353 353 353 353 

Min 0.460 0.007 0.005 0.446 0.901 1.770 0.032 0.009 0.076 0.005 0.100 0.026 

25%ile 67.93 90.65 19.76 13.14 37.49 52.91 1.21 0.43 1.99 0.06 11.11 1.76 

Average 875.74 310.83 847.30 858.13 1003.22 171.65 75.29 35.67 54.05 0.76 505.25 89.06 

Median 243.2 193.5 222.2 105.4 424 106 6.4 1.2 6.7 0.14 51.28 10.79 

75%ile 650.1 362.15 1005.56 767.75 1320 209.34 24.85 11.79 39.73 0.46 325.7 56.07 

Max 9223.4 5890.0 8082.0 9223.4 9223.4 1898.5 1841.9 1744.0 2925.0 36.0 9223.4 2077.0 



SD 2174.2 525.2 1457.1 1692.5 1628.5 232.1 240.3 148.4 184.4 2.9 1322.9 247.2 
     

SEDEX 

n 693 693 693 693 693 693 693 693  693 693 

Min 0.28 13.89 7.42 0.02 3.94 0.36 0.1 0.88  2.86 0.02 

25%ile 25.15 245.02 166.33 26.67 244.06 6.76 3.22 22.37  321.28 0.60 

Average 226.16 1274.21 1300.37 290.60 891.77 56.27 26.97 131.49  1463.93 8.02 

Median 81.39 708.52 655.82 62.85 529.5 18.02 10.74 63.89  748.11 2.52 

75%ile 189.54 1710.88 1500.25 142.44 979.69 66.36 34.89 168.13  2014.61 7.25 

Max 4589.4 9039.3 9776.7 7905.6 16358.3 436.5 418.6 884.9  9223.4 170.9 

SD 473.4 1539.8 1794.3 762.3 1284.6 87.0 42.8 166.8  1752.4 18.7 
     

Sedimentary 

pyrite 

n 828 828 828 828 828 828 828 828 828 828 828 828 

Min 0.01 0.7 0.04 0.03 0.3 0.5 0.01 0.04 0.03 0.01 0.03 0.01 

25%ile 10.04 112.62 45.48 4.7 84.25 4.23 0.42 5.15 0.18 0.01 34.15 0.08 

Average 154.32 616.68 262.32 216.10 853.70 117.35 9.17 67.28 1.19 0.05 273.27 6.12 

Median 56.39 258.85 124.06 21.14 279.7 29.7 1.4 18.68 0.43 0.02 133.64 0.56 

75%ile 205.17 613.47 323.81 136.09 679.43 108.43 4.73 47.19 1.20 0.04 305.39 2.19 

Max 2859 8577 3237 8772 17850 4948 423 2878 29 1 5042 245 

SD 249.9 1018.3 376.7 753.5 1948.5 361.3 34.6 205.3 2.4 0.1 429.8 23.5 

 



Table 3 Searching Spaces of Hyperparameters 

 Hyperparameters Type Range 
RF 𝑛𝑡𝑟𝑒𝑒 Integer ሾ100, 1000ሿ 𝑚𝑡𝑟𝑦 Integer ሾ6, 12ሿ 

SVM 𝐶 Constant ሾ1,1000ሿ 𝜎 Constant ሾ0.01, 2ሿ 
MLP 𝑛𝑢𝑚𝐻 Integer ሾ1,24ሿ 𝑛𝑢𝑚𝐿 Integer ሾ1,3ሿ 

 

 



Table 4 Bayesian Optimization Results of Hyperparameters 

 

 Category A Category B Min Objective 
(Mean overall 

error) 
RF 𝑛𝑡𝑟𝑒𝑒 = 714𝑚𝑡𝑟𝑦 = 7 

𝑛𝑡𝑟𝑒𝑒 = 101𝑚𝑡𝑟𝑦 = 6 
𝑒𝑟𝑟𝐴 = 2.54% 𝑒𝑟𝑟𝐵 = 3.85% 

SVM 𝐶 = 978.54 𝜎 = 0.55468 
𝐶 = 284.42𝜎 = 0.33861 

𝑒𝑟𝑟𝐴 = 10.97% 𝑒𝑟𝑟𝐵 = 14.76% 
MLP 𝑛𝑢𝑚𝐿 = 3 𝑛𝑢𝑚𝐻 = {24, 24, 23} 

𝑛𝑢𝑚𝐿 = 3𝑛𝑢𝑚𝐻 = {23, 24, 20} 
𝑒𝑟𝑟𝐴 = 7.88% 𝑒𝑟𝑟𝐵 = 18.51% 

 



Table 5 Optimized Misclassification Matrix for Category A 

 IOA IOCG Skarn Cu-(Fe) Porphyry Cu-Mo 
IOA 0 0.54 0.77 0.59 
IOCG 0.46 0 0.68 0.50 
Skarn Cu-(Fe) 0.23 0.32 0 0.23 
Porphyry Cu-Mo 0.41 0.50 0.77 0 
 

 



Table 6 Optimized Misclassification Matrix for Category B 

 SEDEX Barren sedimentary 
pyrite 

Orogenic Au VMS 

SEDEX 0 0.50 0.27 0.42 
Barren sedimentary 
pyrite 

0.50 0 0.46 0.24 

Orogenic Au 0.73 0.53 0 0.58 
VMS 0.58 0.76 0.42 0 
 

 



Table 7. Summary of Model Performances 
Category A IOA IOCG Skarn Cu-(Fe) Porphyry Cu-Mo Overall Accuracy 
RF 1 0.964 0.964 0.951 0.966 
SVM 1 0.964 0.976 1 0.981 
MLP 0.962 0.982 0.976 0.976 0.976 
Category B SEDEX Barren sedimentary 

rocks 
Orogenic Au VMS Overall Accuracy 

RF 1 0.982 0.962 0.873 0.967 
SVM 0.986 0.994 0.962 0.916 0.974 
MLP 0.978 0.994 0.923 0.916 0.965 
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