1 Revision 1

2 Word Count: 12,227

3	Crystal habit (tracht) of groundmass pyroxene crystals recorded magma ascent paths
4	during the 2011 Shinmoedake eruption
5	Shota H. Okumura ^{1*} , Mayumi Mujin ² , Akira Tsuchiyama ^{3,4,5} , and Akira Miyake ¹
6	Affiliations:
7	¹ Department of Geology and Mineralogy, Graduate School of Science, Kyoto University,
8	Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
9	² Department of Earth Science, Graduate School of Science, Tohoku University, 6-3,
10	Aramaki-Aza-Aoba, Aobaku, Sendai 980-8578, Japan
11	³ Research Organization of Science and Technology, Ritsumeikan University, 1-1-1
12	Nojihigashi, Kusatsu, Shiga 525-8577, Japan
13	⁴ CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key
14	Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry,
15	Chinese Academy of Sciences, 511 Kehua Street, Wushan, Tianhe District, Guangzhou
16	510640, China

1

- ⁵CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- 18 *Corresponding author: S.H. Okumura, okumura@kueps.kyoto-u.ac.jp

19

Abstract

20	The morphologies and size distributions of groundmass crystals record conditions
21	of magma ascent through volcanic conduits. Nevertheless, morphological information (such
22	as crystal shapes) has not been incorporated into crystal size distributions (CSDs). Here, we
23	focused on the crystal habit, especially the shape variation due to the combination of $(hk0)$
24	faces (hereafter "tracht") of pyroxene microlites and nano-crystals, and measured CSDs for
25	each crystal habit (tracht) to more comprehensively characterize the crystallization kinetics.
26	We refer to the CSDs measured for each tracht as "tracht-specific CSDs." Pyroclasts from
27	the 2011 eruption of Shinmoedake (Kirishima volcano group, Japan) were observed by
28	field-emission scanning electron microscopy, electron backscatter diffraction analysis,
29	synchrotron radiation X-ray computed nanotomography, and transmission electron
30	microscopy. The samples contain groundmass pyroxenes of two main trachts: octagonal
31	prisms consisting of $\{100\}$, $\{010\}$, and $\{110\}$ faces and hexagonal prism lacking $\{100\}$
32	faces. The pumice clasts formed by different eruption styles showed different trends of
33	tracht-specific CSDs. Sub-Plinian pumice clasts were characterized by octagonal microlites
34	(1–10 μ m wide) and numerous hexagonal nano-crystals (0.2–2 μ m wide), and a Vulcanian

35	pumice clast with the same glass composition showed the same characteristics. In contrast,
36	Vulcanian pumice clasts with more evolved glass compositions contained mostly octagonal
37	pyroxenes. The tracht-specific CSDs and growth zonations indicate a change from
38	octagon-dominant to hexagon-dominant growth conditions during syneruptive ascent. We
39	infer that the hexagonal tracht resulted from a large degree of effective undercooling due to
40	rapid decompression in the shallow conduit. Moreover, the texture of the less-evolved
41	Vulcanian pumice indicates that a portion of the magma erupted on the Vulcanian eruption
42	followed almost the same ascent paths just prior to the fragmentation as those during the
43	sub-Plinian eruptions, and thus the Vulcanian eruption may have involved the rapid ascent
44	of deeper magma. We propose that tracht analyses of groundmass pyroxenes provide
45	detailed information about time-evolution of magma conditions during syneruptive ascent.
46	Keywords: pyroxene, crystal habit, crystal size distribution, nanolite, magma ascent

4

47

Introduction

48	Degassing mechanisms within volcanic conduits involve interrelated magmatic
49	properties and processes, and affect both the eruptive style and evolution of volcanoes
50	(Cassidy et al. 2018). One of the most important parameters affecting the various magmatic
51	feedbacks is magma ascent rate. The evolution of ascent rate in conduits is related to
52	syneruptive processes such as volatile exsolution, crystallization, and rheological evolution
53	of magmas (e.g., Gonnermann and Manga 2007; Cassidy et al. 2018; La Spina et al. 2016,
54	2021) and thus is important for elucidating the depths where transitions in eruptive style
55	originate and the mechanisms of those transitions. Magma ascent paths are preserved in the
56	properties of groundmass crystals, such as their number densities and morphologies (e.g.,
57	equant, tabular, acicular, euhedral, swallowtail, dendritic).
58	Groundmass crystallization kinetics (i.e., nucleation and growth) have been
59	investigated both experimentally and in natural samples (e.g., Cashman 1992; Hammer and
60	Rutherford 2002; Couch et al. 2003; Brugger and Hammer 2010a). Recent studies have
61	focused on constraining nucleation and growth rates (Shea and Hammer 2013; Arzilli et al.
62	2015, 2016a; Giuliani et al. 2020), nucleation events through time (Arzilli and Carroll

63	2013; Polacci et al. 2018; Le Gall et al. 2021; Arzilli et al. 2022), nucleation delay (Arzilli
64	et al. 2020; First et al. 2020; Rusiecka et al. 2020; Rusiecka and Martel 2022), and crystal
65	growth in real time (Polacci et al. 2018; Arzilli et al. 2019, 2022; Le Gall et al. 2021).
66	These contributions have deepened understanding of the crystallization kinetics under
67	disequilibrium conditions.
68	The kinetics of disequilibrium crystallization results in the various crystal textures.
69	Crystal habits are controlled by the degree of effective undercooling ($\Delta T_{\rm eff}$) imposed from
70	cooling and decompression-induced dehydration, and are thus important clues to
71	investigate magma ascent and/or solidification histories via the extent of $\Delta T_{\rm eff}$ (e.g.,
72	Lofgren 1974, 1980; Donaldson 1976; Hammer and Rutherford 2002; Couch et al. 2003;
73	Castro and Dingwell 2009; Shea and Hammer 2013; Waters et al. 2015; Giuliani et al.
74	2020; Arzilli et al. 2022). Moreover, the crystal habits have a strong influence on magma
75	rheology and dynamics (e.g., Mueller et al. 2010; Mader et al. 2013; Le Gall et al. 2021;
76	Arzilli et al. 2022). On the other hand, crystal number densities are also used to estimate
77	ascent conditions, such as crystal size distributions (CSDs; Marsh 1998) and the water
78	exsolution rate meter (Toramaru et al. 2008). In particular, the slopes of CSDs obtained

79	from pyroclasts reflect temporal changes in the balance between nucleation and growth
80	during magmatic processes (e.g., Cashman and Marsh 1988; Marsh 1998; Armienti 2008;
81	Mujin et al. 2017; Okumura et al. 2022a).
82	In this study, we introduce a concept of "tracht." In contrast to the term "crystal
83	habit," "tracht" is a German term referring to the variation of crystal shapes due to the
84	combination and degree of development of faces (Sunagawa 2005). Although "crystal habit"
85	refers to the shape differences including "tracht," this English term is generally used to
86	specify shapes in a broader sense (cf. Franke 1989; Fig. 2.15a in Schupsky 2020). For
87	instance, a hexagonal prism is distinguished from an octagonal prism under the concept of
88	"tracht," whereas the concept of "crystal habit" generally does not distinguish between
89	these shapes and treats them as a prismatic and/or euhedral shape. Since the former concept
90	(i.e., tracht) is not defined in English (Sunagawa 2005; Schupsky 2020), we hereafter use
91	the term "tracht" in this study.
92	In single-step decompression experiments on hydrous dacite magma, Okumura et

al. (2022b) showed that the tracht of groundmass pyroxenes changes from octagonal to

94 hexagonal as ΔT_{eff} increases. Since these trachts are easily classified under 2D observation,

95	CSDs can be measured for each shape. In this study, we report the CSDs of groundmass
96	pyroxenes measured for each tracht (i.e., octagonal, heptagonal, and hexagonal; hereafter
97	"tracht-specific CSDs"). Although there are many literatures that have focused on crystal
98	shapes, such as crystal habits and interface-controlled versus diffusion-controlled growth
99	textures (e.g., Lofgren 1974; Donaldson 1976; Lofgren 1980; Hammer and Rutherford
100	2002; Shea and Hammer 2013; Giuliani et al. 2020; Arzilli et al. 2022), this study differs
101	from the previous attempts in that it involves plane indices as crystallographic properties.
102	The tracht-specific CSDs will push past the limits of the conventional CSD analyses by
103	relating the growth texture to the temporal evolution of nucleation during syneruptive
104	magma ascent, as described below.
105	The rates of crystal nucleation and growth generally escalate as the extents of
106	decompression and resultant $\Delta T_{\rm eff}$ increase; the former tends to show a greater escalation
107	than the latter (e.g., Hammer and Rutherford 2002; Couch et al. 2003; Brugger and
108	Hammer 2010a; Mollard et al. 2012; Shea and Hammer 2013; Arzilli et al. 2016a; Mollo
109	and Hammer 2017). In a closed magmatic system with variable rates of nucleation and
110	growth, CSD slopes are considered to reflect the significant increase in nucleation rate

111	during magma ascent (Marsh 1998). On the other hand, the large variations in syneruptive
112	crystal growth rates (e.g., Couch et al. 2003; Brugger and Hammer 2010b; Befus and
113	Andrews 2018) also can affect the resultant CSD and render its interpretation difficult. For
114	example, Okumura et al. (2022a) showed that slow crystallization (both nucleation and
115	growth) can result in a CSD slope similar to that of rapid crystallization by using the
116	formulas of Marsh (1998). As a measure against this, a new expression of CSDs proposed
117	by Okumura et al. (2022a) reduces the effects of variable growth rates by adopting 3D
118	short-axis length instead of 3D long-axis length as crystal size. This is because
119	rock-forming minerals tend to elongate with increasing $\Delta T_{\rm eff}$ (e.g., Kouchi et al. 1983;
120	Hammer and Rutherford 2002; Shea and Hammer 2013; Arzilli et al. 2022), and thus the
121	growth rates along the long- and short-axes are probably the most and least susceptible to
122	$\Delta T_{\rm eff}$, respectively. The slopes of the CSDs plotted against 3D short-axis length are
123	controlled more strongly by nucleation rate, enabling us to investigate temporal changes in
124	nucleation rate more reliably (Okumura et al. 2022a).
125	In contrast, it is still difficult to determine changes of growth rate during

126 syneruptive ascent from the CSDs of pyroclasts, because magmas experience a wide range

127	of $\Delta T_{\rm eff}$ and thus the significant changes in nucleation rate during the ascent, as indicated by
128	continuous decompression experiments (e.g., Brugger and Hammer 2010a; Mollard et al.
129	2012; Befus and Andrews 2018). In such a situation, it is not possible to circumvent the
130	overwhelming effect of the variable nucleation rate on the CSD slopes (cf. Marsh 1998),
131	which in turn prevents the extraction of the variation in growth rate from the slopes unless
132	parameterization analyses (Armienti 2008) are performed successfully. Since the crystal
133	textures including CSDs and crystal habits (and probably trachts) are controlled by the
134	interplay between nucleation and growth depending on $\Delta T_{\rm eff}$ (e.g., Hammer and Rutherford
135	2002; Couch et al. 2003; Hammer 2008; Mollard et al. 2012; Shea and Hammer 2013;
136	Mollo and Hammer 2017; Mangler et al. 2022), the temporal change of nucleation should
137	be examined in relation to growth so as to decipher syneruptive crystallization kinetics.
138	Although the conventional CSD analyses are not suitable to investigate the
139	temporal change of nucleation in synchronization with that of growth as mentioned above,
140	this investigation can be possible if growth textures are incorporated into CSDs as the
141	indicator of growth conditions such as growth rate and $\Delta T_{\rm eff}$. In this context, the
142	tracht-specific CSDs are expected to provide a comprehensive view of crystallization

143 kinetics and reveal more details about temporal changes of ΔT_{eff} and magma ascent 144 dynamics.

145	To investigate whether the tracht-specific CSDs record syneruptive magma paths,
146	we analyzed groundmass pyroxene crystals in pyroclasts from the 2011 eruption of
147	Shinmoedake (Kirishima volcano group, Japan). The 2011 eruption of Shinmoedake
148	included sub-Plinian eruptions and subsequent Vulcanian eruptions. The different magma
149	ascent conditions in the shallow conduit during eruptions of these two styles have been
150	investigated using groundmass plagioclase CSDs measured from scanning electron
151	microscope (SEM) images (Mujin and Nakamura 2014; Mujin et al. 2017; Suzuki et al.
152	2018). In addition, Okumura et al. (2022a) directly acquired 3D CSDs of groundmass
153	pyroxenes by X-ray computed tomography and demonstrated that nucleation kinetics of
154	pyroxenes also differed between the two styles. Therefore, the tracht-specific CSDs of
155	groundmass pyroxenes in pumices from sub-Plinian and Vulcanian eruptions of the 2011
156	Shinmoedake eruption should exhibit different trends.
157	In addition to their tracht-specific CSDs, the internal textures of groundmass

158 pyroxene crystals record magmatic conditions as compositional zoning (e.g., Ubide and

159	Kamber 2018; Masotta et al. 2020). Therefore, we observed the textures within individual
160	crystals to corroborate the magma ascent paths inferred from the CSDs. Based on the
161	inferred crystallization kinetics of groundmass pyroxenes, we aim to better understand the
162	conduit processes during the 2011 Shinmoedake eruption.

- 163
- 164

Sample description

165 Shinmoedake is an andesitic volcano in the Kirishima volcano group, southern 166 Kyushu, Japan. The chronology of the 2011 Shinmoedake eruption has been well 167 documented (e.g., Kozono et al. 2013; Nakada et al. 2013; Kato and Yamasato 2013). The 168 main phase of the eruptive activity (26-31 January 2011) was characterized by three 169 sub-Plinian eruptions and the subsequent extrusion of a lava dome within the crater, 170 associated with intermittent Vulcanian eruptions. This activity was followed by repeated 171 Vulcanian eruptions and explosive events from 1 February to 13 March 2011. Here, we 172 examined seven pyroclasts: three gray pumice clasts from the sub-Plinian eruptions and 173 three gray pumice clasts and one dense juvenile fragment from the Vulcanian eruptions. 174 These samples were collected on 24 July 2011 at Takachihogawara, 3 km south of

175	Shinmoedake crater; collection details are reported in Mujin and Nakamura (2014).
176	Although the precise eruptions that produced the Vulcanian samples have not been
177	determined, they most likely occurred on 1 or 11 February or 13 March (Mujin et al. 2017).
178	Nonetheless, we were able to easily distinguish the Vulcanian pumices from the sub-Plinian
179	pumices because the former were larger than the latter.
180	The seven samples are classified into two groups according to the chemical
181	compositions of their groundmass glasses (Mujin and Nakamura 2020): those of the three
182	sub-Plinian pumice clasts (sP_a, sP_b, and sP_c), one Vulcanian pumice clast (V-L), and
183	the dense juvenile fragment (V-L-djf) contained <71 wt% SiO ₂ (low-SiO ₂ samples),
184	whereas those of the other two Vulcanian pumice clasts (V-H_a and V-H_b) contained >71
185	wt% SiO ₂ (high-SiO ₂ samples). Two of the pumice clasts (sP_a and V-H_a) and the dense
186	juvenile fragment (V-L-djf) were previously analyzed by Okumura et al. (2022a) and Mujin
187	et al. (2017), respectively. The dense fragment (V-L-djf) probably originated from the
188	welding of sub-Plinian pumice at the crater, because its glass composition is similar to that
189	of the sub-Plinian pumice (Table 1) and its degassed dense texture with nano-crystals
190	smaller than 30 nm in diameter indicates suppressed crystal growth at high $\Delta T_{\rm eff}$ in the

191 dehydrated melt with low diffusivity (Mujin et al., 2017; Mujin and Nakamura 2020). The

- average compositions of each sample are reported in Table 1.
- 193 The samples contain phenocrysts (>100 μ m) of plagioclase, clinopyroxene (Cpx), 194 orthopyroxene (Opx), olivine, magnetite, and ilmenite, some showing reaction rims due to 195 mixing with a higher temperature magma (Suzuki et al. 2013; Tomiya et al. 2013). Their 196 groundmasses are charged with crystals of plagioclase, pyroxenes, and Fe-Ti oxides (ca. 197 0.1–10 μ m wide); those thinner than 1 μ m are referred to as nanolites, and those larger as 198 microlites. Because most groundmass pyroxene crystals show parallel intergrowths of Opx
- 199 and Cpx (Mujin et al. 2017), we treated them as a single pyroxene phase, except when
- 200 analyzing internal textures.
- 201
- 202

Analytical procedures

The textures of groundmass pyroxenes in the pumices were analyzed with a field-emission SEM (FE-SEM). The chemical compositions of groundmass glasses in all samples were measured with a coupled energy-dispersive X-ray spectrometer (EDS). To obtain 3D aspect ratios (*S:I:L*, where *S*, *I*, and *L* are the short, intermediate, and long axes)

207	of pyroxene crystals, which are necessary to stereologically correct the CSDs, we
208	conducted synchrotron radiation X-ray computed nanotomography (SR-XnCT). The
209	SR-XnCT specimens were prepared with a focused ion beam (FIB) system, and the average
210	3D aspect ratios of groundmass pyroxenes were acquired for each pumice sample. Using
211	these values, we calculated tracht-specific CSDs of groundmass pyroxenes in each sample.
212	We did not calculate the CSD of the dense fragment V-L-djf because we focused on the
213	pumice samples to investigate syneruptive ascent conditions rather than post-eruptive
214	processes.
215	We determined the crystallographic indices of the faces of groundmass pyroxenes
215 216	We determined the crystallographic indices of the faces of groundmass pyroxenes by combining electron backscatter diffraction (EBSD) analysis and SR-XnCT. The EBSD
216	by combining electron backscatter diffraction (EBSD) analysis and SR-XnCT. The EBSD
216 217	by combining electron backscatter diffraction (EBSD) analysis and SR-XnCT. The EBSD analysis was performed on a relatively large pyroxene microlite (\sim 7 µm wide) with a
216217218	by combining electron backscatter diffraction (EBSD) analysis and SR-XnCT. The EBSD analysis was performed on a relatively large pyroxene microlite (\sim 7 µm wide) with a hexagonal cross section in V-L-djf to determine its crystallographic orientation. The crystal
216217218219	by combining electron backscatter diffraction (EBSD) analysis and SR-XnCT. The EBSD analysis was performed on a relatively large pyroxene microlite (\sim 7 µm wide) with a hexagonal cross section in V-L-djf to determine its crystallographic orientation. The crystal was then prepared as a SR-XnCT specimen with the FIB system and observed to obtain its

223	were prepared from the samples using FIB systems. In addition to determination of mineral
224	phases and crystallographic orientations by selected-area electron diffraction (SAED)
225	patterns, we investigated compositional zoning in crystals by EDS analyses in scanning
226	TEM (STEM) mode. An overview of the analytical procedures used is shown in Figure S1
227	in Online Resource 1.
228	
229	FE-SEM-EDS
230	Quantitative compositional analyses of groundmass glasses were performed using
231	a JEOL JSM-7001F FE-SEM coupled with an Oxford Instruments X-Max150 EDS detector
232	and its associated analytical software Aztec at Kyoto University. We analyzed 50 square
233	regions (~1 \times 1 $\mu m)$ in each sample for 40 s each at a working distance of 10 mm, an
234	acceleration voltage of 15 kV, and a beam current of \sim 0.3 nA. We corrected for losses of Na
235	and K during the measurements by calibration against analyses of larger rectangular regions

- 236 (>400 μ m²).
- For textural analyses, backscattered electron (BSE) images of polished sections of the pumice samples were obtained at an acceleration voltage of 15 kV and a working

239	distance of 10 mm using the FE-SEM. Each BSE image was a rectangular area of 127×95
240	μm^2 with an image resolution of ca. 25 nm/pixel. To identify their trachts, magnified
241	images of the pyroxene crystals in the analyzed areas were obtained at an acceleration
242	voltage of 10 kV.
243	
244	EBSD
245	EBSD analysis of the large hexagonal microlite in V-L-djf was performed using a
246	SEM equipped with a tungsten filament (FEI Quanta 200 3DS) and a HKL EBSD system
247	with Channel 5 software (Oxford Instruments) at Kyoto University. Using an acceleration
248	voltage of 15 kV, a working distance of 20 mm, and the lattice parameters of diopside ($a =$
249	9.75 Å, $b = 8.99$ Å, $c = 5.25$ Å, $\beta = 105.6^{\circ}$), the crystallographic orientation of the microlite
250	was determined before SR-XnCT observation.
251	
252	FIB systems
253	For SR-XnCT observations, we extracted one or two equant specimens about 20-

254 25 μm wide from each sample (Table 2) using a FEI Quanta 200 3DS FIB system at Kyoto

255	University. The extracted regions were distinct from the areas of FE-SEM textural analyses.
256	Each specimen was then mounted on a tungsten needle. A Ga^+ ion gun was used at an
257	acceleration voltage of 30 kV and a beam current of 0.030-65 nA. Details of the specimen
258	preparation for SR-XnCT are reported in Miyake et al. (2014).
259	For TEM observation, ultrathin sections about 100 nm thick were prepared using
260	FIB systems (FEI Quanta 200 3DS and FEI Helios NanoLab G3 CX) at Kyoto University.
261	The Ga^+ ion guns were used at 30 kV and 0.083–65 nA for thinning, and at 5 kV and 16 pA
262	for final processing.
263	

```
264 SR-XnCT
```

265	We acquired the 3D shapes of groundmass pyroxene crystals by SR-XnCT at
266	beamline BL47XU of the Spring-8 synchrotron facility in Hyogo, Japan (Uesugi et al.
267	2006; Takeuchi et al. 2009). The SR-XnCT measurements were performed in
268	absorption-contrast mode (e.g., Cloetens et al. 1997; Mancini et al. 1998; Tsuchiyama et al.
269	2013; Arzilli et al. 2016b) using an X-ray imaging system with a Fresnel zone plate at a
270	single X-ray energy of 7.35 keV, providing isotropic voxel (volumetric pixel) sizes of 25-

271	78 nm on a side (Table 2) for an effective specific resolution of ~200 nm. Projection images
272	were acquired every 0.1° during a total sample rotation of 180°, resulting in 1,800
273	projections per specimen. The 3D CT images were reconstructed from the projection
274	images using a convolution back-projection algorithm (Nakano et al. 2000). Details of the
275	CT imaging procedures are reported in Matsumoto et al. (2019).
276	Except for four CT specimens (sP_a-1, sP_a-2, and V-H_a-1 from Okumura et al.
277	2022a, and V-L-djf), the CT images were denoised using iterative nonlocal means (Bruns et
278	al. 2017) before binarization: this process reduced the effort involved in binarization by
279	smoothing the insides of crystals without affecting the quality of the extracted 3D data.
280	Pyroxenes were distinguishable from the other minerals on the basis of pixel values;
281	therefore, we binarized the images with thresholds based on visual inspection, removed
282	blurring of the binary images by erosion and dilation by 1 voxel, and extracted the 3D
283	pyroxene crystal data using the software package Slice (Nakano et al. 2006). We
284	determined the triaxial lengths S, I, and L by ellipsoid fitting in Slice (e.g., Tsuchiyama et al.
285	2011). These measurements were restricted to crystals that were entirely contained within
286	the specimens, larger than 5 voxels wide, and readily separated from other crystals. The

average 3D aspect ratio of groundmass pyroxenes in each pumice sample was calculated to

- obtain the necessary information for determining CSDs from the BSE images (Table 2).
- Although we analyzed six pumice samples to obtain the average 3D aspect ratios in this study, two of the pumice samples (i.e., sP_a and V-H_a) were already observed by
- 291 SR-XnCT by Okumura et al. (2022a) (our CT specimens sP_a-1, sP_a-2, V-H_a-1, and
- 292 V-H_a-2 correspond to their specimens sP_1, sP_2, Vul_1, and Vul_2, respectively). They
- 293 reported 3D CSDs of groundmass pyroxenes for the samples sP_a and V-H_a, whereas we
- did not obtain 3D CSDs from the other samples. Tracht-specific CSDs could not be
- 295 obtained directly from the CT data because the spatial resolution was insufficient to
- 296 recognize nanolite trachts. Thus, tracht-specific CSDs were obtained from the SEM images
- using the 3D aspect ratios (see *Acquisition of tracht-specific CSDs*).

298

300 Ultrathin sections prepared from three pumice samples (sP_a, V-H_a, and V-L) 301 were observed under a JEOL JEM-2100F TEM equipped with a Gatan Orius 200D CCD 302 camera and a JEOL JET-2300T EDS detector at an acceleration voltage of 200 kV. To

²⁹⁹ **TEM**

303	determine mineral phases and crystallographic orientations, SAED patterns were analyzed
304	using DigitalMicrograph (Gatan) and ReciPro (Seto and Ohtsuka 2022) software. For
305	quantitative X-ray analyses by STEM, we used the ζ -factor method (Watanabe and
306	Williams 2006). To achieve the accurate electron beam current measurements required for
307	the ζ -factor method, appropriate calibration was performed with the CCD camera
308	beforehand. Furthermore, we acquired annular dark-field STEM (ADF-STEM) images of
309	pyroxene crystals perpendicular to their c-axes to observe their compositional zoning at
310	higher resolution.

311

312 Acquisition of tracht-specific CSDs

The FE-SEM BSE images of pumice groundmasses were analyzed using *ImageJ* software to measure the examined groundmass area (i.e., groundmass crystals + glass, excluding vesicles) and the widths of the best fit ellipses to the cross sections of pyroxene crystals. The analyzed samples contained groundmass pyroxene crystals with octagonal, heptagonal, and hexagonal trachts (Fig. 1a); therefore, each pyroxene cross section was classified into one of these tracht groups based on BSE images at higher magnification.

319	Crystals were classified based on the number of faces between a pair of parallel faces
320	(Okumura et al. 2022b). For example, the octagonal and hexagonal trachts have three and
321	two faces, respectively, between each pair of parallel faces, whereas the heptagonal tracht
322	has the properties of the octagonal tracht on one side of a pair of parallel faces and those of
323	the hexagonal tracht on the other side (Fig. 1a). Crystals that were difficult to classify as
324	belonging to a particular tracht were classified as "other". If cross sections were incomplete
325	(e.g., those at crystal edges or corners), we classified them based on the remaining faces if a
326	pair of parallel faces was present for reference; otherwise, those showing no pairs of
327	parallel faces in the plane of the BSE image were classified as "other" (Fig. 1b). When
328	multiple crystals were attached to each other, each segment was classified in the same way
329	(Fig. 1c). The analyzed areas and the number of crystals observed in each tracht are shown
330	in Table 3.
331	Then, the datasets of all analyzed crystals and each tracht group were converted to
332	a conventional CSD (i.e., including all crystal trachts) and tracht-specific CSDs,

- 333 respectively, using CSDCorrections ver. 1.6 (Higgins 2000). CSDCorrections converts
- 334 cross-sectional widths into 3D long-axis lengths (L) using the 3D aspect ratio S:I:L. We

335	used the average 3D aspect ratio determined by SR-XnCT for each sample, regardless of
336	tracht. Although CSDCorrections yields 3D CSDs expressed as a function of L , we
337	expressed the CSDs as a function of S with additional corrections, because the latter is
338	relatively insensitive to changes in crystal growth rate and thus more obviously shows
339	changes in nucleation rate during magma ascent (Okumura et al., 2022a). We followed the
340	correction procedure of Okumura et al. (2022a), but reduced the correction for sectioning
341	effects in tracht-specific CSDs (see Online Resource 2), because the nature of the datasets
342	and thus the correction assumption differed from those of Okumura et al. (2022a). The
343	CSDs were plotted on logarithmic size intervals with five intervals per decade larger than
344	100 nm (i.e., each interval is $10^{0.2}$ times as large as the next smaller interval: $10^{2.0}$ – $10^{2.2}$ nm,
345	$10^{2.2}$ -10 ^{2.4} nm, $10^{2.4}$ -10 ^{2.6} nm).
346	
347	Results
348	Tracht-specific CSDs
349	Most of groundmass pyroxenes in the pumice samples were prismatic and those in

350 the sub-Plinian samples tended to be more elongated than those in the Vulcanian samples

351	(Table 2, Figs. S2 and S3 in Online Resource 3). Most pyroxenes exhibited hexagonal or
352	octagonal shapes in the polished sections, and all pumice samples contained these trachts
353	and heptagonal one (Figs. 2 and 3; Table 3). There were no obvious differences in the
354	spatial distributions of the trachts among the samples. Figure 3 shows the groundmass
355	pyroxene CSDs for the six pumice samples. As reported by Mujin et al. (2017), the
356	conventional CSDs (i.e., including all crystal trachts) were concave up in all samples (black
357	lines in Fig. 3). In addition, those of the low-SiO ₂ samples (i.e., sP_a-c and V-L) had
358	steeper slopes in the size range $S < 2 \mu m$ than those of the high-SiO ₂ Vulcanian samples
359	(i.e., V-H_a and V-H_b).

Figure 3 also shows tracht-specific CSDs for octagonal, heptagonal, and hexagonal cross sections. The size distributions of the trachts exhibited distinct trends, and the proportions of trachts within each sample (Table 3) depended on the type of pumice (i.e., low-SiO₂ vs. high-SiO₂). The low-SiO₂ pumice samples (sP_a-c and V-L) were characterized by coexisting hexagonal nanolites and octagonal crystals (Fig. 3a–c, f), whereas the high-SiO₂ pumice samples (V-H_a and V-H_b) contained mostly octagonal crystals with far fewer hexagonal and heptagonal crystals (Fig. 3d, e). In both pumice types,

367	octagonal crystals spanned wide size ranges, and their slopes were relatively gentler and
368	similar to those of the conventional CSDs in the larger size range (S > 2 μ m). More
369	importantly, the size distributions of octagonal microlites were similar in all samples. In
370	contrast, hexagonal crystals spanned narrower size ranges that were largely consistent with
371	those at which the conventional CSDs showed steeper slopes ($S < 2 \mu m$; Fig. 3a–c, f). The
372	slopes of the hexagonal CSDs were steeper than those of the octagonal CSDs and similar to
373	those of the conventional nanolite (S < 1 μ m) CSDs. The size ranges and slopes of
374	heptagonal crystals were intermediate between those of the octagonal and hexagonal trachts,
375	and their population densities were generally lower than those of both the octagonal and
376	hexagonal trachts. Furthermore, the population densities of octagonal nanolites in low-SiO $_2$
377	samples were reduced compared to those in high-SiO2 samples in response to the
378	appearance of hexagonal nanolites.
379	

380 Crystallographic analyses of groundmass pyroxenes

Figure 4 shows the 3D morphology and crystallographic axes of the large
hexagonal pyroxene microlite in the dense fragment (V-L-djf). The hexagonal prism was

383	elongated along its c-axis, consisted of $\{010\}$ and $\{110\}$ prismatic faces, and was truncated
384	by a rough surface lacking any facet or distinct crystallographic index (the other end was
385	polished away). Although the detail of this truncated surface was limited by the effective
386	spatial resolution of the SR-XnCT images (~200 nm), we assume that the growth rate of
387	this rough surface must have been larger than those of the relatively flat $\{010\}$ and $\{110\}$
388	surfaces to produce such an elongated crystal.
389	Figures 5-8 summarize our TEM observations of pyroxene nanolites and
390	microlites in samples sP_a, V-H_a, and V-L. The above combinations of prismatic faces
391	were confirmed in other groundmass pyroxenes by TEM analyses (Figs. 5-7). Octagonal
392	crystals had an additional pair of {100} faces (Figs. 7, 8), and heptagons lacked {100}
393	faces on one side. Cross-sectional shapes similarly corresponded to these combinations of
394	plane indices in all samples observed.
395	Almost all crystals observed by TEM showed epitaxial parallel growth of Opx
396	(<i>Pbca</i>) and Cpx composed of augite (Aug; $C2/c$) and pigeonite (Pgt; $P2_1/c$), as reported by
397	Sharp et al. (1996) and Mujin et al. (2017). Figure 5 shows a typical texture observed in a
398	pyroxene nanolite in sP_a. The SAED patterns (Fig. 5f-h) show that a pair of Cpx domains

399	epitaxially attached to the (100) and ($\overline{1}00$) surfaces of Opx. In some crystals, the two
400	epitaxial Cpx domains were in a twin relationship (Fig. 5f, h). The SAED patterns of Cpx
401	domains sometimes showed weak reflections of $P2_1/c$ in addition to those of $C2/c$ (i.e., the
402	<i>hkl</i> reflections of " $h + k =$ even"; Fig. 5f, h), indicating that Aug and Pgt exist both as fine
403	exsolution lamellae (Fig. 5) and as distinct domains (Fig. 6). Rarely, distinct domains of Pgt
404	and Aug formed parallel growth textures without Opx (Fig. 6).
405	As shown in the ADF-STEM images and compositional maps perpendicular to the
406	c-axis (Figs. 5a-d, 6a-d, 7, and 8a-d), most of the observed groundmass pyroxenes showed
407	compositional growth zoning with low-Mg# (=Mg/(Mg + Fe)) rims. The low-Mg# rims
408	were approximately 10–300 nm wide. In the low-SiO ₂ samples (sP_a and V-L), this zoning
409	was common and was characterized by a distinct boundary between the core and rim.
410	Moreover, this sharp rim tended to be enriched in Al and Ti, especially in low-Ca pyroxene
411	phases (Figs. 5c, 6c, and 7c, g; quantitative data are reported in Online Resource 4). The
412	zoning boundaries showed euhedral shapes. In most crystals, the zoning boundary was the
413	same shape as their external tracht (Figs. 5 and 7); however, a few hexagonal crystals
414	exhibited internal octagonal zoning boundaries (Fig. 6), indicating the extinction of {100}

415	faces during growth. In contrast, pyroxenes in the high-SiO ₂ sample (V-H_a) tended to have
416	more diffuse rims (Fig. 8a-d), and in some crystals, especially nanolites, the low-Mg# rim
417	was not discernible (Fig. 8e-h). Additionally, when low-Mg# rims were present in the
418	high-SiO ₂ sample, no obvious enrichment of Al and Ti was observed, in contrast to those in
419	the low-SiO ₂ samples (Fig. 8c, g).
420	
421	Discussion
422	Interpretation of tracht-specific CSDs
422 423	Interpretation of tracht-specific CSDs $\label{eq:specific-transform}$ The observed groundmass pyroxene textures differ between the low-SiO_2 and
423	The observed groundmass pyroxene textures differ between the low-SiO $_2$ and
423 424	The observed groundmass pyroxene textures differ between the low-SiO ₂ and high-SiO ₂ pumices, as summarized in Figure 9. Before investigating the syneruptive
423 424 425	The observed groundmass pyroxene textures differ between the low-SiO ₂ and high-SiO ₂ pumices, as summarized in Figure 9. Before investigating the syneruptive magma ascent paths, we first derive crystallization histories from the tracht-specific CSDs
423 424 425 426	The observed groundmass pyroxene textures differ between the low-SiO ₂ and high-SiO ₂ pumices, as summarized in Figure 9. Before investigating the syneruptive magma ascent paths, we first derive crystallization histories from the tracht-specific CSDs (Fig. 3).

- 429 the high-SiO₂ samples were characterized by the octagonal tracht (Fig. 3). In contrast, the
- 430 hexagonal tracht dominated nanolites in the low-SiO₂ samples (Fig. 3a-c, f). Moreover, the

431	population densities of the hexagonal nanolites exceeded those of octagonal crystals in the
432	low-SiO ₂ samples, and the CSD slopes of nanolites and hexagonal crystals were steeper
433	than those of microlites and octagonal ones. This means that the production of the
434	hexagonal tracht was accompanied by an accelerated increase in pyroxene nucleation rate,
435	suggesting a high degree of effective undercooling ($\Delta T_{\rm eff}$, i.e., including cooling and the
436	contribution from decompression-induced dehydration; e.g., Armienti et al. 1994; Marsh
437	1998; Okumura et al. 2022a). Indeed, the hexagonal tracht is reproduced at $\Delta T_{\rm eff} > 100$ °C
438	in the decompression experiment of a dacitic magma (Okumura et al. 2022b; discussed in
439	the following subsection).
439 440	the following subsection). It is difficult to exclude the possibility that the hexagonal and octagonal crystals
440	It is difficult to exclude the possibility that the hexagonal and octagonal crystals
440 441	It is difficult to exclude the possibility that the hexagonal and octagonal crystals originated from different magma batches based solely on the tracht-specific CSDs (Fig. 3).
440 441 442	It is difficult to exclude the possibility that the hexagonal and octagonal crystals originated from different magma batches based solely on the tracht-specific CSDs (Fig. 3). However, given the lack of any obvious difference in the spatial distributions of the
440441442443	It is difficult to exclude the possibility that the hexagonal and octagonal crystals originated from different magma batches based solely on the tracht-specific CSDs (Fig. 3). However, given the lack of any obvious difference in the spatial distributions of the different trachts among samples, it is plausible that a single magma batch underwent

447	single magma batch, the tracht-specific CSDs indicate that the octagonal tracht was favored
448	during an early crystallization stage at depth, and that the crystallizing conditions then
449	changed into those favoring the hexagonal tracht as the magma ascended into the shallow
450	conduit (Fig. 3a-c, f). In this case, we assume that the larger microlites retained their
451	octagonal tracht during shallow crystallization because, compared to nanolites, a
452	larger-volume overgrowth is required to change their tracht to hexagonal. In contrast, some
453	hexagonal pyroxenes, especially those 1–2 μ m wide, must have originally been octagonal,
454	as suggested by the distributions of heptagonal crystals (i.e., the transitional tracht between
455	octagonal and hexagonal; Fig. 3) and the presence of hexagonal crystals with internal
456	octagonal growth zoning (Fig. 6). Therefore, we note that the tracht-specific CSDs describe
457	the final texture after quenching and could be strictly different from the nucleation history
458	of each tracht.
459	In contrast to the low-SiO ₂ samples, which are assumed to have experienced
460	increasing ΔT_{eff} , the crystallization kinetics of the high-SiO ₂ samples can be similar to that
461	of single-step decompression/cooling experiments because the magma stagnated in the

462 conduit prior to the Vulcanian eruptions (Suzuki et al. 2018). Arzilli et al. (2022) performed

463	in situ 4D (3D + time) observation of cooling-induced crystallization in a hydrous
464	trachybasaltic magma. After they imposed cooling in a single step, several nucleation
465	events occurred through time; moreover, the time-evolutions of growth rate and the
466	resultant sizes of the crystals were similar regardless of their nucleation timing. Since
467	crystals can reach similar sizes while held at a certain ΔT_{eff} (Arzilli et al. 2022), the peak
468	positions of the CSDs for the high-SiO ₂ samples at slightly larger sizes (Fig. 3d, e;
469	Okumura et al. 2022a) can be attributed to the quasi-single-step decompression path. Given
470	the tracht-specific CSDs (Fig. 3d, e), the magma of the high-SiO ₂ samples was held at the
471	condition favoring the octagonal tracht through the crystallization history.
472	From the above, in the following subsections, we discuss the groundmass
473	crystallization histories in two stages: early and late stages when microlites and nanolites
474	nucleated in the deep and shallow parts of the volcanic conduit, respectively. The early
475	stage for all samples and the late stage for the high-SiO ₂ samples were octagon-dominant,
476	whereas only the late stage for the low-SiO ₂ samples was hexagon-dominant.

477

31

478 Factors controlling the tracht of groundmass pyroxenes

479	The tracht change of groundmass pyroxene crystals in hydrous dacite magma was
480	previously investigated via single-step decompression experiments by Okumura et al.
481	(2022b). Although they did not mention the plane indices of crystals, they found that the
482	dominant groundmass pyroxene tracht changed from octagonal to hexagonal as the final
483	pressure decreased and that pyroxenes in differentiated melts within 10 μ m of plagioclase
484	crystals were more likely to be hexagonal. They suggested that the pyroxene tracht was
485	related to ΔT_{eff} : increasing ΔT_{eff} with decreasing final pressure and melt evolution due to
486	plagioclase crystallization (Mujin et al. 2017) caused the tracht change from octagonal to
487	hexagonal. The value of $\Delta T_{\rm eff}$ for each experiment was estimated from the liquidus
488	determined experimentally by Sekine et al. (1979), and their results showed that the tracht
489	change occurred at $\Delta T_{\text{eff}} = 90-110$ °C. Based on this correlation, the existence of hexagonal
490	nanolites indicates that the late stage of pyroxene crystallization in the low-SiO $_2$ samples
491	proceeded under high $\Delta T_{\rm eff}$, consistent with their high nucleation rates (Fig. 3) and
492	elongated shapes (Table 2). Although the experienced $\Delta T_{\rm eff}$ might be higher than the
493	threshold value determined by the experiments of dacitic magma (Okumura et al.

494	2022b; $\Delta T_{\rm eff} \sim 100$ °C), the threshold $\Delta T_{\rm eff}$ can be different in the andesitic magma of the
495	Shinmoedake volcano because the melt composition and chemical diffusivity probably
496	affect growth mechanisms and resultant crystal textures (e.g., Lofgren 1974; Sunagawa
497	1981; Hammer 2008; Mollo and Hammer 2017). For example, Cpx crystals are governed
498	by interface-controlled growth at $\Delta T_{\rm eff}$ < 112 °C in a hydrous basaltic-andesite magma
499	(Shea and Hammer 2013), whereas they exhibit diffusion-controlled growth texture at $\Delta T_{\rm eff}$
500	\geq 30 °C in hydrous basaltic magmas (Moschini et al. 2021; Arzilli et al. 2022). Given the
501	difference in threshold $\Delta T_{\rm eff}$ for the growth mechanisms, the threshold for the tracht change
502	might similarly depend on melt compositions. Therefore, further experiments using
503	and esitic magma are required to estimate the accurate value of $\Delta T_{\rm eff}$ during the ascent.
504	Moreover, we confirmed that the octagonal tracht comprises $\{100\}$, $\{010\}$, and
505	$\{110\}$ prismatic faces and that the change to the hexagonal one by losing $\{100\}$ faces (Figs.
506	4–8). These results indicate that the relative growth rates of $\{100\}$ faces become faster than
507	those of other prismatic faces under high $\Delta T_{\rm eff}$ until the faces disappear. On the other hand,
508	relationships between the degree of cooling-induced undercooling, ΔT , and relative growth
509	rate for different faces of Cpx were previously investigated by Kouchi et al. (1983). They

510 conducted cooling-induced crystallization experiments in the system CaMgSi₂O₆-511 CaTiAl₂O₆. In the ΔT range where Cpx crystals had smooth surfaces, their results showed 512 that the order of the growth rates of Cpx faces was $(110) < (010) < (100) < (\overline{111})$ and that 513 the differences between the growth rates increased with increasing ΔT . On the other hand, 514 the crystallization kinetics likely differ between their melt of Cpx composition and a 515 multi-component magmatic system in general (Sunagawa 1981, 2005), and the difference 516 should be more significant than that between different magmas mentioned above. 517 Nevertheless, we assume that their results except the quantitative values of ΔT are 518 qualitatively applicable to crystallization during the 2011 Shinmoedake eruption because 519 the growth mechanism, i.e., interface-controlled growth, is essentially the same in both 520 systems, as suggested by the smooth prismatic faces of the pyroxene crystals studied 521 herein. 522 During interface-controlled growth, the key process limiting the growth rate is not 523 mass transfer through the melt towards the crystal surface, but the attachment of growth 524 components on the surface (Hammer 2008). The attachment energy E_{att} strongly affects the 525 relative growth rates of different crystallographic faces and thus the resultant crystal tracht

526	(e.g., Hartman and Perdok 1955a, b; Hartman and Bennema 1980; Duan et al. 2010). E_{att} on
527	faces $\{hkl\}$ is defined as the bond energy released per structural unit when a growth unit
528	(i.e., a layer of crystal on the $\{hkl\}$ face) attaches to the crystal surface. In general,
529	crystallographic faces with higher E_{att} have faster relative growth rates and thus lower
530	morphological importance (e.g., Hartman and Perdok 1955a, b; Hartman and Bennema
531	1980; Liu and Bennema 1996). Van Panhuys-Sigler and Hartman (1981) calculated E_{att} for
532	Cpx crystal faces based on periodic bond chain theory (Hartman and Perdok 1955a) and
533	found that E_{att} for different faces follows the order (110) < (010) < (100) < (111), consistent
534	with the growth rates determined experimentally by Kouchi et al (1983). Their calculations
535	also showed that, assuming that the relative growth rate is proportional to E_{att} , the growth
536	form of augite is the hexagonal tracht with $\{010\}$ and $\{110\}$ prismatic faces.
537	From the above evidence, among the important prismatic faces of Cpx, {100}
538	faces are the most likely to disappear because of the crystallographic structure, and an
539	increase in ΔT_{eff} further promotes their disappearance. Given the order of E_{att} for different
540	faces, an additional increase in $\Delta T_{\rm eff}$ may also make {010} faces disappear, resulting in a
541	parallelogrammatic tracht composed of {110} faces as observed in pumice from the 1914

542 Plinian eruption of the Sakurajima volcano (Okumura et al. 2022b).

- 543 This same mechanism depending on $\Delta T_{\rm eff}$ and the order of $E_{\rm att}$ for different faces 544 can explain why the groundmass pyroxenes in the sub-Plinian samples are more elongated 545 than those in the Vulcanian ones (Table 2). There are two factors that can increase $\Delta T_{\rm eff}$: 546 magma ascent rate and melt evolution by crystallization. It is plausible that the magma 547 ascent rate was faster during the sub-Plinian than the Vulcanian eruptions because textural 548 analyses of pyroclasts and geophysical observations indicate that the magma stagnated in 549 the conduit prior to the Vulcanian eruptions (Suzuki et al. 2018). The rapid ascent during 550 the sub-Plinian eruptions should have involved large $\Delta T_{\rm eff}$ due to decompression-induced dehydration and possibly cooling. Therefore, late crystallization in the low-SiO₂ samples 551 552 (i.e., the sub-Plinian pumices and one Vulcanian pumice) should have occurred under the 553 largest $\Delta T_{\rm eff}$ during the 2011 eruptive activity; hence the occurrence of the hexagonal tracht 554 in those samples (Fig. 3). 555 In contrast, plagioclase crystallization causes melt evolution and may increase the

556

557 2011 Shinmoedake eruption, the whole-rock compositions (SiO₂ = 57.3–58.4 wt%; Suzuki

degree of supersaturation for pyroxene in the melt (Mujin et al. 2017). In the case of the
558	et al. 2013) and the bulk groundmass compositions excluding phenocrysts (SiO ₂ = $62-65$
559	wt%; Mujin and Nakamura 2020) of the brown-gray pumices were similar regardless of the
560	pumice type. Therefore, the difference in glass composition (low-SiO ₂ vs. high-SiO ₂) is due
561	to crystallization differentiation from the initial melt (i.e., the bulk groundmass) during the
562	ascent (Mujin and Nakamura 2020). The degrees of plagioclase crystallization and melt
563	evolution were highest in the late crystallization stage of the high-SiO ₂ samples, followed
564	in order by the late stage of the low-SiO $_2$ samples and the early stages of both samples
565	(Mujin and Nakamura 2014, 2020; Suzuki et al. 2018). Therefore, in terms of melt
566	evolution, nanolites in the high-SiO ₂ samples are the most likely to be hexagonal. However,
567	our results show that only the late crystallization of the low-SiO $_2$ samples was
568	hexagon-dominant (Fig. 3). Accordingly, we conclude that melt evolution is not the main
569	factor that caused the tracht change. Therefore, in the case of the 2011 Shinmoedake
570	eruption, the tracht change resulted from the high $\Delta T_{\rm eff}$ associated with rapid magma ascent
571	through the shallow conduit.

573 Crystallization conditions and the timing of growth zoning

- 574 Growth zoning records the ascent paths of individual crystals after their nucleation. 575 In general, normal Mg# zoning could reflect evolution of the melt, cooling (e.g., Lindsley 576 1983; Lofgren et al. 2006; Putirka 2008), and/or reduced oxygen fugacity (Hammer 2006), 577 which can result from sulfur degassing during decompression (e.g., Burgisser and Scaillet 578 2007; Blundy et al. 2008; Okumura et al. 2021). In addition, the enrichment of pyroxene in 579 Al indicates rapid growth (e.g., Dymek and Gromet 1984; Mollo et al. 2013; Masotta et al. 580 2020). In our low-SiO₂ samples, the groundmass pyroxene crystals had low-Mg# and 581 Al-rich rims with distinct boundaries (Figs. 5–7), indicating their rapid growth after an 582 abrupt change in the surrounding conditions. In other words, their sharp rims formed during 583 rapid ascent through the shallowest and possibly cold part of the conduit, perhaps in a 584 gas-pyroclast flow after magma fragmentation (see the next paragraph, Fig. 10). In contrast, 585 the gradual Mg# zoning without any associated Al enrichment in the high-SiO₂ samples 586 (Fig. 8) indicates slow ascent or stagnation. These inferences are consistent with our above 587 interpretation of the tracht-specific CSDs.
 - 38

The time scale for the formation of the sharply zoned rims in the low-SiO₂ samples

589	can be estimated based on the growth rate of pyroxene. Although data on pyroxene growth
590	rates in dacitic to rhyolitic melts are lacking, pyroxene growth rates on the order of 10^{-7} -
591	10^{-5} mm/s (time averages over the experimental durations) have been reported from several
592	crystallization experiments in andesitic (Shea and Hammer 2013) and trachybasaltic melts
593	(Pontesilli et al. 2019; Masotta et al. 2020). Moreover, in-situ observations of pyroxene
594	crystallization in trachybasalt revealed that the instantaneous growth rate of pyroxene can
595	reach 1 \times 10 ⁻⁴ mm/s (Arzilli et al. 2019, 2022; Le Gall et al. 2021). Assuming that the
596	instantaneous growth rate is slower in andesitic-dacitic melt than in trachybasaltic melt,
597	with a maximum value of 1 \times 10 $^{-5}$ mm/s, a 100 nm thick rim should form in 10 s. For
598	comparison, the duration between magma fragmentation and quenching (or vitrification)
599	can be estimated as follows. Numerical simulations (Suzuki and Koyaguchi 2013, 2015)
600	indicate that high temperatures in the eruption column can be maintained to up to a few
601	kilometers above the fragmentation level, corresponding to flight times of a few tens of
602	seconds at the sound velocity of the gas-pyroclast mixture (e.g., 134 m/s; Suzuki and
603	Koyaguchi 2013). In cold air (0 °C), a spherical pumice clast 1 cm in diameter would
604	quench from an initial temperature of 950 °C (Suzuki et al. 2013; Tomiya et al. 2013) by

605	conductive cooling within 10 s at a thermal diffusivity of 3.2×10^{-7} m ² /s (Bagdassarov and
606	Dingwell 1994). Therefore, it could take several tens of seconds for a pumice clast to
607	quench in an eruption plume, which is comparable to the minimum timescale of the rim
608	formation. Further investigation of pyroxene growth rates in dacitic and rhyolitic melts are
609	required to verify whether the sharply zoned rims observed herein formed after magma
610	fragmentation.
611	Finally, we note that the change from octagon-dominant to hexagon-dominant
612	conditions preceded the formation of the low-Mg# rims (Fig. 10) because most hexagonal
613	crystals had hexagonal zoning boundaries (Fig. 5). Therefore, the tracht change probably
614	resulted from the ascent condition prior to fragmentation (Fig. 10).
615	
616	Implications
617	Based on the pyroxene trachts, we interpret the magma ascent paths during the
618	2011 Shinmoedake eruption (Fig. 10). The tracht and size distributions of the pyroxene
619	microlites (i.e., >1 μ m wide) are almost the same in all samples (Fig. 3), indicating that the
620	ascent conditions deeper in the conduit were identical for both the sub-Plinian and

Vulcanian eruptions. Consistently, the CSDs of plagioclase microlites (Mujin and
Nakamura 2014; Mujin et al. 2017; Suzuki et al. 2018) were almost the same, regardless of
eruptive style.

624 In the shallow conduit, the magma ascent conditions diverged according to 625 eruption style: the tracht-specific CSDs of the low-SiO₂ samples (Fig. 3a-c, f) clearly 626 demonstrate differences in the crystallization kinetics (i.e., nucleation and growth) of 627 nanolites and microlites. The magma accelerated in the shallow conduit during the 628 sub-Plinian eruptions, increasing ΔT_{eff} enough to produce hexagonal nanolites before 629 magma fragmentation. Their sharply zoned low-Mg# rims then formed in the shallowest 630 part of the conduit or during cooling within the plume. In contrast, the magma ascended 631 slowly or stagnated in the shallow conduit prior to Vulcanian eruptions, where the relatively 632 slow growth of pyroxene resulted in gradually zoned rims, when present. This prolonged 633 crystallization period maintained $\Delta T_{\rm eff}$ within octagon-dominant conditions, and the final 634 rapid ascent accompanied by the fragmentation produced a small number of hexagonal 635 nanolites.

636

In addition, the CSDs of the low-SiO₂ Vulcanian pumice (V-L; Fig. 3f) are similar

637	to those of the sub-Plinian pumice (Fig. 3a-c), indicating that a portion of the magma
638	erupted during the Vulcanian eruption followed almost the same ascent paths just prior to
639	the fragmentation as those during the sub-Plinian eruptions (Fig. 10). Similarly, Matsumoto
640	and Geshi (2021) reported the co-existence of vesicular low-SiO ₂ particles and poorly
641	vesiculated high-SiO ₂ particles in ash collected during the 2018 eruption of Shinmoedake,
642	which was accompanied by lava effusion and frequent small explosions. They attributed
643	these different textures to the simultaneous eruption of magmas with different
644	decompression paths: (1) rapid ascent from deeper parts of the conduit and (2) slow ascent
645	or stagnation in the shallow conduit. Therefore, the rapid ascent of deeper magma may not
646	be exclusive to sub-Plinian eruptions at Shinmoedake, but may also be involved in the
647	Vulcanian eruptions.
648	Our observations have demonstrated the applicability of pyroxene tracht analyses
649	to the investigation of magma ascent paths in the conduit. The tracht-specific CSDs

- 650 recorded the acceleration of magma batches in the shallow conduit, and associated growth
- coning recorded the conditions in the surrounding magma. In addition, the tracht analyses
- 652 can be applicable even to glassy pyroclasts with few groundmass crystals resulting from

653	considerably fast ascent. Therefore, pyroxene tracht is expected to be a clue to elucidate
654	magma dynamics in shallow conduits and those on short time scales just prior to eruptions.
655	Experiments reproducing the observed tracht-specific CSDs and growth zonations of
656	groundmass pyroxene crystals will provide information on time-evolution of magma
657	conditions (e.g., temperature, pressure, $\Delta T_{\rm eff}$) during syneruptive ascent. This approach is
658	probably applicable even to glassy pyroclasts produced by explosive eruptions and will
659	elucidate the mechanisms controlling eruptive style during syneruptive ascent in shallow
660	conduits.
661	
661 662	Acknowledgments
	Acknowledgments The authors thank Kentaro Uesugi, Akihisa Takeuchi, Masahiro Yasutake, and
662	
662 663 664	The authors thank Kentaro Uesugi, Akihisa Takeuchi, Masahiro Yasutake, and
662 663 664	The authors thank Kentaro Uesugi, Akihisa Takeuchi, Masahiro Yasutake, and Tsukasa Nakano for help with the SR-XnCT experiments, and Junya Matsuno for help with
662 663 664 665	The authors thank Kentaro Uesugi, Akihisa Takeuchi, Masahiro Yasutake, and Tsukasa Nakano for help with the SR-XnCT experiments, and Junya Matsuno for help with image processing. We thank Fabio Arzilli, Francisco Cáceres, and Maurizio Petrelli for

669	SPRING, Grant Number JPMJSP2110 to SO and JSPS KAKENHI Grant Number
670	JP16H06348 and JP20H00198 to AM, JP15H05695 to AT and JP20H00205 to AT and AM.
671	
672	References
673	Armienti, P. (2008) Decryption of Igneous Rock Textures: Crystal Size Distribution Tools.
674	Reviews in Mineralogy and Geochemistry, 69, 623–649.
675	https://doi.org/10.2138/rmg.2008.69.16
676	Armienti, P., Pareschi, M.T., Innocenti, F., and Pompilio, M. (1994) Effects of magma
677	storage and ascent on the kinetics of crystal growth. Contributions to Mineralogy
678	and Petrology, 115, 402-414. https://doi.org/10.1007/BF00320974
679	Arzilli, F., and Carroll, M.R. (2013) Crystallization kinetics of alkali feldspars in cooling
680	and decompression-induced crystallization experiments in trachytic melt.
681	Contributions to Mineralogy and Petrology, 166, 1011–1027.
682	https://doi.org/10.1007/s00410-013-0906-1
683	Arzilli, F., Agostini, C., Landi, P., Fortunati, A., Mancini, L., and Carroll, M.R. (2015)
684	Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by

685	decompression experiments. Contributions to Mineralogy and Petrology, 170, 55.
686	https://doi.org/10.1007/s00410-015-1205-9
687	Arzilli, F., Piochi, M., Mormone, A., Agostini, C., and Carroll, M.R. (2016a) Constraining
688	pre-eruptive magma conditions and unrest timescales during the Monte Nuovo
689	eruption (1538 AD; Campi Flegrei, Southern Italy): integrating textural and CSD
690	results from experimental and natural trachy-phonolites. Bulletin of Volcanology,
691	78, 72. https://doi.org/10.1007/s00445-016-1062-z
692	Arzilli, F., Polacci, M., Landi, P., Giordano, D., Baker, D.R., and Mancini, L. (2016b) A
693	novel protocol for resolving feldspar crystals in synchrotron X-ray
694	microtomographic images of crystallized natural magmas and synthetic analogs.
695	American Mineralogist, 101, 2301–2311. https://doi.org/10.2138/am-2016-5788
696	Arzilli, F., La Spina, G., Burton, M.R., Polacci, M., Le Gall, N., Hartley, M.E., Di Genova,
697	D., Cai, B., Vo, N.T., Bamber, E.C., and others. (2019) Magma fragmentation in
698	highly explosive basaltic eruptions induced by rapid crystallization. Nature
699	Geoscience, 12, 1023–1028. https://doi.org/10.1038/s41561-019-0468-6
700	Arzilli, F., Stabile, P., Fabbrizio, A., Landi, P., Scaillet, B., Paris, E., and Carroll, M.R.

701	(2020) Crystallization kinetics of alkali feldspar in peralkaline rhyolitic melts:
702	implications for Pantelleria volcano. Frontiers in Earth Science, 8, 177.
703	https://doi.org/10.3389/feart.2020.00177
704	Arzilli, F., Polacci, M., La Spina, G., Le Gall, N., Llewellin, E.W., Brooker, R.A.,
705	Torres-Orozco, R., Di Genova, D., Neave, D.A., Hartley, M.E., and others. (2022)
706	Dendritic crystallization in hydrous basaltic magmas controls magma mobility
707	within the Earth's crust. Nature Communications, 13, 3354.
708	https://doi.org/10.1038/s41467-022-30890-8
709	Bagdassarov, N., and Dingwell, D. (1994) Thermal properties of vesicular rhyolite. Journal
710	of Volcanology and Geothermal Research, 60, 179–191.
711	https://doi.org/10.1016/0377-0273(94)90067-1
712	Befus, K.S., and Andrews, B.J. (2018) Crystal nucleation and growth produced by
713	continuous decompression of Pinatubo magma. Contributions to Mineralogy and
714	Petrology, 173, 92. https://doi.org/10.1007/s00410-018-1519-5
715	Blundy, J., Cashman, K.V., and Berlo, K. (2008) Evolving magma storage conditions
716	beneath Mount St. Helens inferred from chemical variations in melt inclusions

717	from the 1980–1986 and current (2004–2006) eruptions. In D.R. Sherrod, W.E.
718	Scott, and P.H. Stauffer, Ed., A Volcano Rekindled: The Renewed Eruption of
719	Mount St. Helens, 2004-2006, p. 755–790. U.S. Geological Survey, Washington.
720	https://doi.org/10.3133/pp175033
721	Brugger, C.R., and Hammer, J.E. (2010a) Crystallization kinetics in continuous
722	decompression experiments: implications for interpreting natural magma ascent
723	processes. Journal of Petrology, 51, 1941–1965.
724	https://doi.org/10.1093/petrology/egq044
725	Brugger, C.R., and Hammer, J.E. (2010b) Crystal size distribution analysis of plagioclase in
726	experimentally decompressed hydrous rhyodacite magma. Earth and Planetary
727	Science Letters, 300, 246–254. https://doi.org/10.1016/j.epsl.2010.09.046
728	Bruns, S., Stipp, S.L.S., and Sørensen, H.O. (2017) Looking for the signal: A guide to
729	iterative noise and artefact removal in X-ray tomographic reconstructions of
730	porous geomaterials. Advances in water resources, 105, 96–107.
731	https://doi.org/10.1016/j.advwatres.2017.04.020
732	Burgisser, A., and Scaillet, B. (2007) Redox evolution of a degassing magma rising to the

733	surface. Nature, 445, 194–197. https://doi.org/10.1038/nature05509
734	Cashman, K.V. (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986:
735	a tool for interpreting shallow magmatic processes. Contributions to Mineralogy
736	and Petrology, 109, 431-449. https://doi.org/10.1007/BF00306547
737	Cashman, K.V., and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the
738	kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contributions to
739	Mineralogy and Petrology, 99, 292–305. https://doi.org/10.1007/BF00375363
740	Cassidy, M., Manga, M., Cashman, K., and Bachmann, O. (2018) Controls on
741	explosive-effusive volcanic eruption styles. Nature communications, 9, 2839.
742	https://doi.org/10.1038/s41467-018-05293-3
743	Castro, J.M., and Dingwell, D.B. (2009) Rapid ascent of rhyolitic magma at Chaitén
744	volcano, Chile. Nature, 461, 780-783. https://doi.org/10.1038/nature08458
745	Cloetens, P., Pateyron-Salomé, M., Buffiere, J.Y., Peix, G., Baruchel, J., Peyrin, F., and
746	Schlenker, M. (1997). Observation of microstructure and damage in materials by
747	phase sensitive radiography and tomography. Journal of Applied Physics, 81,
748	5878-5886. https://doi.org/10.1063/1.364374

749	Couch, S	5., S	parks.	R.S.J.	and	Carroll.	M.R.	(2003)) The	kinetics	of d	egassin	g-ind	luced

- 750 crystallization at Soufriere Hills Volcano, Montserrat. Journal of Petrology, 44,
- 751 1477–1502. <u>https://doi.org/10.1093/petrology/44.8.1477</u>
- 752 Donaldson, C.H. (1976) An experimental investigation of olivine morphology.
- 753 Contributions to Mineralogy and Petrology, 57, 187–213.
- 754 https://doi.org/10.1007/BF00405225
- 755 Duan, X., Wei, C., Liu, Y., and Pei, C. (2010) A molecular dynamics simulation of solvent
- effects on the crystal morphology of HMX. Journal of Hazardous Materials, 174,
- 757 175–180. https://doi.org/10.1016/j.jhazmat.2009.09.033
- 758 Dymek, R.F., and Gromet, L.P. (1984) Nature and origin of orthopyroxene megacrysts from
- the St-Urbain anorthosite massif, Quebec. The Canadian Mineralogist, 22, 297–
- 760 326.
- First, E.C., Leonhardi, T.C., and Hammer, J.E. (2020) Effects of superheating magnitude on
- 762 olivine growth. Contributions to Mineralogy and Petrology, 175, 13.
- 763 https://doi.org/10.1007/s00410-019-1638-7
- Franke, W.A. (1989) Tracht and habit of synthetic minerals grown under hydrothermal

765	conditions. European Journal of Mineralogy, 1, 557–566.
766	Giuliani, L., Iezzi, G., Vetere, F., Behrens, H., Mollo, S., Cauti, F., Ventura, G., and Scarlato,
767	P. (2020) Evolution of textures, crystal size distributions and growth rates of
768	plagioclase, clinopyroxene and spinel crystallized at variable cooling rates from a
769	mid-ocean ridge basaltic melt. Earth-Science Reviews, 204, 103165.
770	https://doi.org/10.1016/j.earscirev.2020.103165
771	Gonnermann, H.M., and Manga, M. (2007) The fluid mechanics inside a volcano. Annual
772	Review of Fluid Mechanics, 39, 321–356.
773	https://doi.org/10.1146/annurev.fluid.39.050905.110207
774	Hammer, J.E. (2006) Influence of fO_2 and cooling rate on the kinetics and energetics of
775	Fe-rich basalt crystallization. Earth and Planetary Science Letters, 248, 618–637.
776	https://doi.org/10.1016/j.epsl.2006.04.022
777	Hammer, J.E. (2008) Experimental studies of the kinetics and energetics of magma
778	crystallization. In K.D. Putirka and F.J. Tepley III, Eds., Minerals, Inclusions and
779	Volcanic Processes, 69, p. 9-60. Reviews in Mineralogy and Geochemistry,
780	Mineralogical Society of America, Chantilly, Virginia.

781	https://doi.org/10.2138/rmg.2008.69.2
782	Hammer, J.E., and Rutherford, M.J. (2002) An experimental study of the kinetics of
783	decompression-induced crystallization in silicic melt. Journal of Geophysical
784	Research, 107, 1–23. https://doi.org/10.1029/2001JB000281
785	Hartman, P., and Bennema, P. (1980) The attachment energy as a habit controlling factor: I.
786	Theoretical considerations. Journal of Crystal Growth, 49, 145–156.
787	https://doi.org/10.1016/0022-0248(80)90075-5
788	Hartman, P., and Perdok, W.G. (1955a) On the relations between structure and morphology
789	of crystals. I. Acta Crystallographica, 8, 49–52.
790	https://doi.org/10.1107/S0365110X55000121
791	Hartman, P., and Perdok, W.G. (1955b) On the relations between structure and morphology
792	of crystals. II. Acta Crystallographica, 8, 521–524.
793	https://doi.org/10.1107/S0365110X55001679
794	Higgins, M.D. (2000) Measurement of crystal size distributions. American Mineralogist, 85,
795	1105–1116. https://doi.org/10.2138/am-2000-8-901
796	Kato, K., and Yamasato, H. (2013) The 2011 eruptive activity of Shinmoedake volcano,

797	Kirishimayama, Kyushu, Japan—overview of activity and volcanic alert level of
798	the Japan meteorological agency—. Earth, Planets and Space, 65, 489–504.
799	https://doi.org/10.5047/eps.2013.05.009
800	Kouchi, A., Sugawara, Y., Kashima, K., and Sunagawa, I. (1983) Laboratory growth of
801	sector zoned clinopyroxenes in the system CaMgSi ₂ O ₆ -CaTiAl ₂ O ₆ . Contributions
802	to Mineralogy and Petrology, 83, 177-184. https://doi.org/10.1007/BF00373091
803	Kozono, T., Ueda, H., Ozawa, T., Koyaguchi, T., Fujita, E., Tomiya, A., and Suzuki, Y.J.
804	(2013) Magma discharge variations during the 2011 eruptions of Shinmoe-dake
805	volcano, Japan, revealed by geodetic and satellite observations. Bulletin of
806	volcanology, 75, 695. https://doi.org/10.1007/s00445-013-0695-4
807	La Spina, G., Burton, M., and Arzilli, F. (2016) Role of syn-eruptive plagioclase
808	disequilibrium crystallization in basaltic magma ascent dynamics. Nature
809	communications, 7, 13402. https://doi.org/10.1038/ncomms13402
810	La Spina, G., Arzilli, F., Llewellin, E.W., Burton, M.R., Clarke, A.B., Vitturi, M.D.M.,
811	Polacci, M., Hartley, M.E., Di Genova, D., and Mader, H.M. (2021) Explosivity of
812	basaltic lava fountains is controlled by magma rheology, ascent rate and

813	outgassing. Earth and Planetary Science Letters, 553, 116658.
814	https://doi.org/10.1016/j.epsl.2020.116658
815	Le Gall, N., Arzilli, F., La Spina, G., Polacci, M., Cai, B., Hartley, M.E., Vo, N.T., Atwood,
816	R.C., Di Genova, D., Nonni, S., and others. (2021) In situ quantification of
817	crystallisation kinetics of plagioclase and clinopyroxene in basaltic magma:
818	Implications for lava flow. Earth and Planetary Science Letters, 568, 117016.
819	https://doi.org/10.1016/j.epsl.2021.117016
820	Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477–493.
821	Liu, X.Y., and Bennema, P. (1996) Theoretical consideration of the growth morphology of
822	crystals. Physical Review B, 53, 2314–2325.
823	https://doi.org/10.1103/PhysRevB.53.2314
824	Lofgren, G. (1974) An experimental study of plagioclase crystal morphology; isothermal
825	crystallization. American Journal of Science, 274, 243-273.
826	Lofgren, G (1980) Experimental studies on the dynamic crystallization of silicate melts. In
827	R.B. Hargraves, Ed., Physics of magmatic processes, p. 487–551. Princeton
828	University Press, Princeton.

829	Lofgren,	G.E., Hu	iss, G.R., ai	nd Wasserburg,	G.J.	(2006)	An experimenta	l study of
-----	----------	----------	---------------	----------------	------	--------	----------------	------------

- 830 trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and
- kinetic effects including sector zoning. American Mineralogist, 91, 1596–1606.
- 832 https://doi.org/10.2138/am.2006.2108
- 833 Mader, H.M., Llewellin, E.W., and Mueller, S.P. (2013) The rheology of two-phase
- 834 magmas: A review and analysis. Journal of Volcanology and geothermal Research,

835 257, 135–158. https://doi.org/10.1016/j.jvolgeores.2013.02.014

- 836 Mancini, L., Reinier, E., Cloetens, P., Gastaldi, J., Härtwig, J., Schlenker, M., and Baruchel,
- J. (1998) Investigation of structural defects and inhomogeneities in Al-Pd-Mn
- 838 icosahedral quasicrystals by combined synchrotron X-ray topography and phase
- radiography. Philosophical Magazine A, 78, 1175–1194.
- 840 https://doi.org/10.1080/01418619808239982
- 841 Mangler, M.F., Humphreys, M., Wadsworth, F.B., Iveson, A.A., and Higgins, M.D. (2022)
- 842 Variation of plagioclase shape with size in intermediate magmas: a window into
- 843 incipient plagioclase crystallisation. Contributions to Mineralogy and Petrology,
- 844 177, 64. https://doi.org/10.1007/s00410-022-01922-9

- 845 Marsh, B.D. (1998) On the interpretation of crystal size distributions in magmatic
- systems. Journal of Petrology, 39, 553–599.
- 847 https://doi.org/10.1093/petroj/39.4.553
- 848 Masotta, M., Pontesilli, A., Mollo, S., Armienti, P., Ubide, T., Nazzari, M., and Scarlato, P.
- 849 (2020) The role of undercooling during clinopyroxene growth in trachybasaltic
- 850 magmas: Insights on magma decompression and cooling at Mt. Etna volcano.
- 851 Geochimica et Cosmochimica Acta, 268, 258–276.
- 852 https://doi.org/10.1016/j.gca.2019.10.009
- 853 Matsumoto, K., and Geshi, N. (2021) Shallow crystallization of eruptive magma inferred
- from volcanic ash microtextures: a case study of the 2018 eruption of
- Shinmoedake volcano, Japan. Bulletin of Volcanology, 83, 31.
- 856 https://doi.org/10.1007/s00445-021-01451-6
- 857 Matsumoto, M., Tsuchiyama, A., Nakato, A., Matsuno, J., Miyake, A., Kataoka, A., Ito, M.,
- Tomioka, N., Kodama, Y., Uesugi, K., Takeuchi, A., Nakano, T., and Vaccaro, E.
- 859 (2019) Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Science
- 860 Advances, 5, eaax5078. https://doi.org/10.1126/sciadv.aax5078

861	Miyake, A., Matsuno, J., and Toh, S. (2014) Sample preparation toward seamless 3D
862	imaging technique from micrometer to nanometer scale. Microscopy, 63, i24-i25.
863	https://doi.org/10.1093/jmicro/dfu055
864	Mollard, E., Martel, C., and Bourdier, J.L. (2012) Decompression-induced crystallization in
865	hydrated silica-rich melts: empirical models of experimental plagioclase
866	nucleation and growth kinetics. Journal of Petrology, 53, 1743–1766.
867	Mollo, S., and Hammer, J.E. (2017) Dynamic crystallization in magmas. In W. Heinrich
868	and R. Abart, Eds., Mineral reaction kinetics: Microstructures, textures, chemical
869	and isotopic signatures, 16, p. 373–418. European Mineralogical Union Notes in
870	Mineralogy, European Mineralogical Union and Mineralogical Society of Great
871	Britain and Ireland. https://doi.org/10.1180/EMU-notes.16.12
872	Mollo, S., Blundy, J.D., Iezzi, G., Scarlato, P., and Langone, A. (2013) The partitioning of
873	trace elements between clinopyroxene and trachybasaltic melt during rapid cooling
874	and crystal growth. Contributions to Mineralogy and Petrology, 166, 1633–1654.
875	https://doi.org/10.1007/s00410-013-0946-6
876	Moschini, P., Mollo, S., Gaeta, M., Fanara, S., Nazzari, M., Petrone, C.M., and Scarlato, P.

- 877 (2021) Parameterization of clinopyroxene growth kinetics via crystal size
- 878 distribution (CSD) analysis: Insights into the temporal scales of magma dynamics
- at Mt. Etna volcano. Lithos, 396–397, 106225.
- 880 https://doi.org/10.1016/j.lithos.2021.106225
- 881 Mueller, S., Llewellin, E.W., and Mader, H.M. (2010) The rheology of suspensions of solid
- 882 particles. Proceedings of the Royal Society A: Mathematical, Physical and
- 883 Engineering Sciences, 466, 1201–1228. https://doi.org/10.1098/rspa.2009.0445
- 884 Mujin, M., and Nakamura, M. (2014) A nanolite record of eruption style transition.
- 885 Geology, 42, 661–614. https://doi.org/10.1130/G35553.1
- 886 Mujin, M., and Nakamura, M. (2020) Late-stage groundmass differentiation as a record of
- magma stagnation, fragmentation, and rewelding. Bulletin of Volcanology, 82, 48.
- 888 https://doi.org/10.1007/s00445-020-01389-1
- 889 Mujin, M., Nakamura, M., and Miyake, A. (2017) Eruption style and crystal size
- 890 distributions: Crystallization of groundmass nanolites in the 2011 Shinmoedake
- eruption. American Mineralogist, 102, 2367–2380.
- 892 https://doi.org/10.2138/am-2017-6052CCBYNCND

893	Nakada, S., Nagai, M., Kaneko, T., Suzuki, Y., and Maeno, F. (2013) The outline of the
894	2011 eruption at Shinmoe-dake (Kirishima), Japan. Earth, planets and space, 65,
895	475-488. https://doi.org/10.5047/eps.2013.03.016
896	Nakano, T., Nakashima, Y., Nakamura, K., and Ikeda, S. (2000) Observation and analysis
897	of internal structure of rock using X-ray CT. Journal of Geological Society of
898	Japan, 106, 363–378 (in Japanese). https://doi.org/10.5575/geosoc.106.363
899	Nakano, T., Tsuchiyama, A., Uesugi, K., Uesugi, M., and Shinohara, K. (2006) "Slice"
900	-Softwares for basic 3-D analysis Available: http://www-bl20.spring8.or.jp/slice/.
901	Japan Synchrotron Radiation Research Institute (JASRI), Hyogo.
902	Okumura, S., Ishibashi, H., Itoh, S., Suzumura, A., Furukawa, Y., Miwa, T., and Kagi, H.
903	(2021) Decompression experiments for sulfur-bearing hydrous rhyolite magma:
904	Redox evolution during magma decompression. American Mineralogist, 106, 216-
905	225. https://doi.org/10.2138/am-2020-7535
906	Okumura, S.H., Mujin, M., Tsuchiyama, A., and Miyake, A. (2022a) 3D crystal size
907	distributions of pyroxene nanolites from nano X-ray computed tomography:
908	Improved correction of crystal size distributions from CSDCorrections for magma

909	ascent dynamics in conduits. American Mineralogist, 107, 1766–1778.
910	https://doi.org/10.2138/am-2022-8039
911	Okumura, S.H., Okumura, S., and Miyake, A. (2022b) Tracht change of groundmass
912	pyroxene crystals in decompression experiments. Journal of Mineralogical and
913	Petrological Sciences, 117, 211219. https://doi.org/10.2465/jmps.211219
914	Polacci, M., Arzilli, F., La Spina, G., Le Gall, N., Cai, B., Hartley, M.E., Di Genova, D., Vo,
915	N.T., Nonni, S., Atwood, R.C. and others. (2018) Crystallisation in basaltic
916	magmas revealed via in situ 4D synchrotron X-ray microtomography. Scientific
917	Reports, 8, 8377. https://doi.org/10.1038/s41598-018-26644-6
918	Pontesilli, A., Masotta, M., Nazzari, M., Mollo, S., Armienti, P., Scarlato, P., and Brenna, M.
919	(2019) Crystallization kinetics of clinopyroxene and titanomagnetite growing from
920	a trachybasaltic melt: New insights from isothermal time-series
921	experiments. Chemical Geology, 510, 113–129.
922	https://doi.org/10.1016/j.chemgeo.2019.02.015
923	Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. Reviews in
924	Mineralogy and Geochemistry, 69, 61–120. https://doi.org/10.2138/rmg.2008.69.3

925	Rusiecka, M.K., and Martel, C. (2022) Nucleation delay in water-saturated rhyolite during
926	decompression in shallow volcanic systems and its implications for ascent
927	dynamics. Bulletin of Volcanology, 84, 61.
928	https://doi.org/10.1007/s00445-022-01569-1
929	Rusiecka, M.K., Bilodeau, M., and Baker, D.R. (2020) Quantification of nucleation delay
930	in magmatic systems: experimental and theoretical approach. Contributions to
931	Mineralogy and Petrology, 175, 47. https://doi.org/10.1007/s00410-020-01682-4
932	Schupsky, J.P. (2020) Crystallisation of oxidic gasifier slags. Doctoral dissertation, Fakultät
933	für Maschinenwesen, Rheinisch-Westfälische Technische Hochschule Aachen,
934	Aachen. DOI:10.18154/RWTH-2020-10033
935	Sekine, T., Katsura, T., and Aramaki, S. (1979) Water saturated phase relations of some
936	andesites with application to the estimation of the initial temperature and water
937	pressure at the time of eruption. Geochimica et Cosmochimica Acta, 43, 1367-
938	1376.
939	Seto, Y., and Ohtsuka, M. (2022) ReciPro: free and open-source multipurpose
940	crystallographic software integrating a crystal model database and viewer,

- 941 diffraction and microscopy simulators, and diffraction data analysis tools. Journal
- of Applied Crystallography, 55, 397–410.
- 943 https://doi.org/10.1107/S1600576722000139
- Shea, T., and Hammer, J.E. (2013) Kinetics of cooling- and decompression-induced
- 945 crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and
- 946 Geothermal research, 260, 127–145.
- 947 https://doi.org/10.1016/j.jvolgeores.2013.04.018
- 948 Sunagawa, I. (1981) Characteristics of crystal growth in nature as seen from the
- 949 morphology of mineral crystals. Bulletin de Minéralogie, 104, 81–87.
- 950 https://doi.org/10.3406/bulmi.1981.7438
- 951 Sunagawa, I. (2005) Crystals: Growth, Morphology, and Perfection, 295 p. Cambridge
- 952 University Press, New York.
- 953 Suzuki, Y., Yasuda, A., Hokanishi, N., Kaneko, T., Nakada, S., and Fujii, T. (2013)
- 954 Syneruptive deep magma transfer and shallow magma remobilization during the
- 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and
- 956 phase equilibria experiments. Journal of Volcanology and Geothermal Research,

957	257, 184–204. https://doi.org/10.1016/j.jvolgeores.2013.03.017
958	Suzuki, Y., Maeno, F., Nagai, M., Shibutani, H., Shimizu, S., and Nakada, S. (2018)
959	Conduit processes during the climactic phase of the Shinmoe-dake 2011 eruption
960	(Japan): Insights into intermittent explosive activity and transition in eruption style
961	of andesitic magma. Journal of Volcanology and Geothermal Research, 358, 87-
962	104. https://doi.org/10.1016/j.jvolgeores.2018.02.008
963	Suzuki, Y.J., and Koyaguchi, T. (2013) 3D numerical simulation of volcanic eruption
964	clouds during the 2011 Shinmoe-dake eruptions. Earth, Planets and Space, 65,
965	581-589. https://doi.org/10.5047/eps.2013.03.009
966	Suzuki, Y.J., and Koyaguchi, T. (2015) Effects of wind on entrainment efficiency in
967	volcanic plumes. Journal of Geophysical Research: Solid Earth, 120, 6122-6140.
968	https://doi.org/10.1002/2015JB012208
969	Takeuchi, A., Uesugi, K., and Suzuki, Y. (2009) Zernike phase-contrast x-ray microscope
970	with pseudo-Kohler illumination generated by sectored (polygon) condenser plate.
971	Journal of Physics: Conference Series, 186, 012020.
972	https://doi.org/10.1088/1742-6596/186/1/012020

973	Tomiya, A., Miyagi, I., Saito, G., and Geshi, N. (2013) Short time scales of magma-mixing
974	processes prior to the 2011 eruption of Shinmoedake volcano, Kirishima volcanic
975	group, Japan. Bulletin of Volcanology, 75, 750.
976	https://doi.org/10.1007/s00445-013-0750-1
977	Toramaru, A., Noguchi, S., Oyoshihara, S., and Tsune, A. (2008) MND(microlite number
978	density) water exsolution rate meter. Journal of Volcanology and Geothermal
979	Research, 175, 156–167. https://doi.org/10.1016/j.jvolgeores.2008.03.035
980	Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T.,
981	Uesugi, K., Nakano, T., Sandford, S.A., Noguchi, R., and others. (2011)
982	Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa
983	regolith. Science, 333, 1125-1128. https://doi.org/10.1126/science.1207807
984	Tsuchiyama, A., Nakano, T., Uesugi, K., Uesugi, M., Takeuchi, A., Suzuki, Y., Noguchi, R.,
985	Matsumoto, T., Matsuno, J., Nagano, T., and others. (2013) Analytical dual-energy
986	microtomography: A new method for obtaining three-dimensional phase images
987	and its application to Hayabusa samples. Geochimica et Cosmochimica Acta, 116,
988	5-16. https://doi.org/10.1016/j.gca.2012.11.036

989 Ubide, T., and Kamber, B.S. (2018) Volcanic crystals as time capsules of eruption

990 history. Nature Communications, 9, 326. 991 https://doi.org/10.1038/s41467-017-02274-w 992 Uesugi, K., Takeuchi, A., and Suzuki, Y. (2006) Development of micro-tomography system 993 with Fresnel zone plate optics at SPring-8. In U. Bonse, Ed., Proceedings of SPIE 994 OPTICS + PHOTONICS, 6318, 63181F. International Society for Optics and 995 Photonics, Bellingham, Washington. https://doi.org/10.1117/12.679822 996 Van Panhuys-Sigler, M., and Hartman, P. (1981) Morphologie théorique de certains 997 pyroxenes déduite de la structure cristalline. Bulletin de Minéralogie, 104, 95–106 998 (in French). https://doi.org/10.3406/bulmi.1981.7441 999 Watanabe, M., and Williams, D.B. (2006) The quantitative analysis of thin specimens: a 1000 review of progress from the Cliff-Lorimer to the new ζ -factor methods. Journal of 1001 microscopy, 221, 89–109. https://doi.org/10.1111/j.1365-2818.2006.01549.x 1002 Waters, L.E., Andrews, B.J., and Lange, R.A. (2015) Rapid crystallization of plagioclase 1003 phenocrysts in silicic melts during fluid-saturated ascent: phase equilibrium and 1004 decompression experiments. Journal of Petrology, 56, 981–1006.

1005 https://doi.org/10.1093/petrology/egv025

1007	Figure captions
1008	Figure 1. Classification of crystal trachts. (a) Cross sections of groundmass pyroxene
1009	crystals were classified based on the number of faces between a given pair of parallel faces
1010	(indicated by yellow circles). (b) Incomplete shapes were classified similarly if a pair of
1011	parallel faces was present. (c) Individual segments of attached crystals were classified in a
1012	similar manner.
1013	
1014	Figure 2. Backscattered electron (BSE) images of groundmass pyroxenes in (a) sub-Plinian
1015	pumice sP_a and (b) high-SiO ₂ Vulcanian pumice V-H_a from the 2011 Shinmoedake
1016	eruption. These images were obtained by FE-SEM at an acceleration voltage of 10 kV. The
1017	tracht of each pyroxene crystal (i.e., octagonal, heptagonal, or hexagonal) is indicated by
1018	colored symbols (blue square, red diamond, and yellow triangle, respectively).
1019	Abbreviations: Pl, plagioclase; Px, pyroxene.
1020	
1021	Figure 3. Tracht-specific CSDs of groundmass pyroxenes in the pumice samples. The

1022 conventional CSDs (i.e., including all trachts) are plotted in black for comparison. The size

1023	range shown is from 0.10 to 6.31 μ m in width (short-axis length). Open symbols with
1024	dashed lines represent data in size intervals where fewer than three crystals could be
1025	counted. (a-c) Sub-Plinian pumices; (d, e) high-SiO ₂ Vulcanian pumices; (f) low-SiO ₂
1026	Vulcanian pumice.
1027	
1000	

- 1028 Figure 4. 3D shape and plane indices of a relatively large hexagonal pyroxene microlite
- 1029 from the dense juvenile fragment V-L-djf. (a) The CT image and (b) 3D reconstruction

1030 acquired by SR-XnCT are shown with the crystallographic orientation as determined by

1031 EBSD analysis. The crystallographic indices of the prismatic faces are also noted in (b).

1032 The lower end of the crystal corresponds to the polished sample surface.

1033

1034 Figure 5. Representative internal texture of groundmass pyroxenes in the sub-Plinian

1035 pumice sP a. The results of TEM analyses for a hexagonal nanolite in the sub-Plinian

- 1036 pumice sP a are shown. (a) An ADF-STEM image and (b-d) Ca, Al, and Mg# (=Mg/(Mg
- 1037 + Fe) in mol) compositional maps, respectively, were obtained along the [001] zone axis.
- 1038 (e) A bright-field (BF) TEM image and (f-h) the SAED patterns of each domain were

1039 obtained at another orientation. The medium gray shape around the pyroxene in (e) is the 1040 bright-field background, not an overgrowth. The two Cpx domains (f, h) have a twin 1041 relationship. Quantitative compositional data are reported in Supplementary Table S1. 1042 Abbreviations: Opx, orthopyroxene; Cpx, clinopyroxene. 1043 1044 Figure 6. Internal texture of a hexagonal pyroxene microlite in the sub-Plinian pumice sP a. 1045 (a) An ADF-STEM image and (b-d) Ca, Al, and Mg# compositional maps, respectively, 1046 were obtained along the [001] zone axis, indicating the extinction of {100} faces during 1047 growth. (e) A schematic view of the zoning boundaries. The dashed lines represent the 1048 phase boundaries. (f) The SAED pattern of the Pgt domain at the center was obtained along 1049 the $[0\bar{1}2]$ zone axis. This crystallographic orientation is common in the crystal.

1051

1050

1052 Figure 7. Internal texture of (a-d) a microlite and (e-h) a nanolite in the low-SiO₂

Abbreviations: Pgt, pigeonite; Aug, augite.

- 1053 Vulcanian pumice V-L. (a, e) The ADF-STEM images and (b-d, f-h) Ca, Al, and Mg#
- 1054 compositional maps, respectively, were obtained along the [001] zone axes. As shown in (a,

1055	e), the two crystals have growth zonations of the same tracht as their external forms. The
1056	Cpx domains have a twin relationship in the microlite whereas those in the nanolite have
1057	the same crystallographic orientation. Abbreviations: Pgt, pigeonite; Opx, orthopyroxene;
1058	Cpx, clinopyroxene.
1059	
1060	Figure 8. Internal texture of $(a-d)$ a microlite and $(e-h)$ a nanolite in the high-SiO ₂
1061	Vulcanian pumice V-H_a. (a, e) The ADF-STEM images and (b-d, f-h) Ca, Al, and Mg#
1062	compositional maps, respectively, were obtained along the [001] zone axes. Cpx domains in
1063	both crystals show twin relationships. Abbreviations: Pgt, pigeonite; Opx, orthopyroxene;
1064	Cpx, clinopyroxene.

Figure 9. Schematic illustration of the observed textures of groundmass pyroxenes. The typical textures of groundmass pyroxenes in (a) the low-SiO₂ and (b) the high-SiO₂ pumices are shown with their tracht-specific CSDs and internal textures. The tracht-specific CSDs of samples (a) sP_a and (b) V-H_a are provided as representative of each type of pumice. The inserted illustrations of pyroxene crystals show typical zoning patterns (blue:

1071 low-Mg# rim) at the parts of the CSDs indicated by the arrows.

1072

1073	Figure 10. Schematic illustration of pyroxene crystallization kinetics and magma ascent
1074	paths during the 2011 Shinmoedake eruption. (a) Pressure-time paths and (b) ΔT_{eff} -time
1075	paths of the magmas that formed the low-SiO ₂ and high-SiO ₂ pumices are shown in orange
1076	and blue, respectively. The time evolution of the pyroxene texture is also shown in (a) . The
1077	low-Mg# rims formed in the shallowest part of the conduit (blue shaded area in (a)). The
1078	vertical dashed line indicates the time when $\Delta T_{\rm eff}$ exceeded the threshold between
1079	octagon-dominant and hexagon-dominant conditions (gray horizontal line in (b)) preceding
1080	the formation of the low-Mg# rims. The possible timings of magma fragmentation events
1081	are indicated by stars.

		Sub-Plinian		Vulcanian						
	sP_a ^a	sP_b	sP_c	V-H_a ^a	V-H_b	V-L	V-L-djf			
SiO ₂	67.33 (41)	66.64 (27)	67.80 (35)	71.69 (21)	72.35 (29)	66.83 (45)	67.52 (61)			
TiO ₂	0.88 (5)	1.00 (4)	0.90 (5)	0.73 (4)	0.70 (4)	0.94 (6)	0.84 (8)			
Al_2O_3	14.15 (26)	14.06 (21)	14.06 (16)	12.66 (9)	12.52 (18)	14.09 (23)	14.36 (20)			
FeO	5.75 (25)	6.41 (16)	5.63 (19)	4.24 (13)	3.95 (13)	6.23 (30)	5.43 (45)			
MnO	0.11 (5)	0.11 (5)	0.11 (4)	0.10 (4)	0.03 (5)	0.12 (5)	0.11 (4)			
MgO	1.13 (8)	1.15 (9)	0.98 (5)	0.64 (3)	0.58 (6)	1.14 (11)	1.06 (10)			
CaO	3.92 (19)	4.08 (10)	3.67 (13)	2.56 (9)	2.35 (11)	3.99 (15)	3.92 (19)			
Na ₂ O	3.38 (10)	3.30 (10)	3.35 (8)	3.28 (12)	3.42 (9)	3.33 (9)	3.35 (8)			
K ₂ O	3.24 (8)	3.12 (6)	3.37 (6)	3.93 (4)	3.98 (7)	3.22 (8)	3.29 (11)			
P_2O_5	0.11 (5)	0.13 (5)	0.13 (4)	0.16 (4)	0.11 (8)	0.12 (4)	0.12 (4)			
Total	100	100	100	100	100	100	100			

Table 1. Average chemical compositions of groundmass glasses (wt%).

NOTES: Each sample was analyzed in 50 distinct regions.

Values in parentheses are standard deviations.

Oxide concentrations were recalculated to total 100% by cation balance.

^a Data from Okumura et al. (2022a) are corrected for losses of Na and K during the measurements.

1084	
------	--

Table 2. Conditions and results of SR-XnCT analyses.

Eruptive style	CT specimen	Voxel size (nm)	Number of crystals analyzed ^a		Average 3D aspect	ratio
				S	I ^b	L ^b
sub-Plinian	sP_a-1	40.00	74	1.0	1.4 ° (6)	9.4 ° (56)
	sP_a-2	24.70	103			
	sP_b	77.80	123	1.0	1.4 (3)	8.7 (46)
	sP_c	77.80	151	1.0	1.3 (2)	8.4 (44)
Vulcanian	V-H_a-1	33.86	47	1.0	1.3 ° (4)	5.1 ° (39)
	V-H_a-2	34.70	86			
	V-H_b	77.80	95	1.0	1.3 (4)	5.6 (40)
	V-L	77.80	163	1.0	1.4 (3)	6.5 (42)
	V-L-djf	34.70	1			

^a Crystals smaller than 5 pixels in the shortest dimension *S* were excluded.

^b Values in parentheses are standard deviations.

^c Values averaged from two CT specimens; data from Okumura et al. (2022a).

Eruptive style	Sample	Number of regions		yzed area ing vesicles)	Number of crystal cross sections				3D aspect ratio	Roun- dness	Size scale length
			(µm ²)	(vesicle%) ^b	All	Octagon	Heptagon	Hexagon	S:I:L		(Bins per decade °)
sub-Plinia	sP_a	1 ^a	20,077	57.3	793	83	34	385	1:1.4:9.4	0.8	5
n	sP_b	2	15,291	37.2	1,037	167	59	399	1:1.4:8.7		
	sP_c	2	15,566	35.9	728	43	27	305	1:1.3:8.4		
Vulcanian	V-H_a	1 ^a	19,791	54.5	381	171	9	10	1:1.3:5.1		
	V-H_b	3	14,268	60.9	319	142	8	5	1:1.3:5.6		
	V-L	2	12,533	48.5	645	115	36	242	1:1.4:6.5		

Table 3. Parameters used in CSDCorrections.

^a A single larger region comprising multiple BSE images (Okumura et al. 2022a).

^b The percentage of vesicles in the analyzed rectangle area.

^c Logarithmic base-10 size scale.

ΡI

Glass

Figure 5

Figure 7

Figure 8

