Revision 1

Structure and titanium distribution of feiite characterized using synchrotron single-crystal X-ray diffraction techniques

Claire Zurkowski,^a Barbara Lavina,^{b, c} Kelsey Prissel,^a+ Stella Chariton,^b Vitali B. Prakapenka^b and Yingwei Fei^a

^aEarth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad, Branch Road, NW, Washington, DC 20015, USA, ^bCenter for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Building 434A, Argonne, IL 60439, USA, ^cX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
 ⁺Now at: Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA

Correspondence e-mail: czurkowski@carnegiescience.edu

4

2

3

5 Keywords

6 Feiite, crystal structure, iron oxides, Shergotty, mixed valence, titanium oxide

7 8 Abstract

A solid solution of the mineral feiite (Fe₃TiO₅) was recently discovered in a shock-9 induced melt pocket of the Shergotty Martian shergottite. It is particularly interesting for its 10 potential as an indicator of pressure-temperature (P-T) and oxygen fugacity in Martian crustal 11 and mantle material. To date, complete crystallographic analysis of feiite has not been 12 13 conducted, as the mineral was previously analyzed by electron back-scatter diffraction on micron-size grains (Ma et al. 2021). Here we report a convergent crystal-structure model for 14 feiite based on synchrotron single-crystal X-ray diffraction data collected on three grains of feiite 15 synthesized at 12 GPa and 1200 ° C. Feiite adopts the CaFe₃O₅ structure type (*Cmcm*, Z=4) 16 which is composed of two octahedral M1 and M2 sites and one trigonal prismatic M3 site (M-17 =metal) in a ratio of 1:2:1. The three feiite grains with composition $Ti_{0.46-0.60}Fe_{3.54-3.40}O_5$ were 18 best modeled by substituting Ti^{4+} into only the octahedral M2 site, accounting for 30% of this 19 site. Comparisons of the measured average bond lengths in the coordination polyhedra with the 20 optimized Ti^{4+} O, Fe^{2+} O, and Fe^{3+} O bond lengths suggests that ferrous iron occupies the 21

Revision 1

trigonal *M*3 site, while iron is mixed valence in the octahedral *M1* and *M*2 sites. The Ti⁴⁺ and Fe³⁺ content constrained by our crystal-chemical analyses suggest that at least ~30% of the available iron must be ferric (i.e., Fe³⁺/Fe_{total} = 0.3) for the sample synthesized at 12 GPa and 1200° C and higher *P-T* conditions may be needed to form the endmember feiite (Fe²⁺₃TiO₅).

27 Introduction

The compositions of coexisting iron-titanium-oxides found in terrestrial and 28 extraterrestrial rocks have been established as important indicators of oxygen fugacity in 29 30 processes including melt crystallization and high *P*-*T* impact (e.g., Buddington and Lindsley, 31 1964; Troplis and Carol 1995; Herd et al. 2001). Previous studies have predominantly explored the geochemical and thermodynamic properties of the hematite-ilmenite and magnetite-32 33 ulvöspinel (Fe2TiO4) series (e.g., Buddington and Lindsley 1964; Ghiorso and Sack 1991; Brown 34 et al. 1993; Ghiorso and Evans 2008; Pearce et al. 2010; Lilova et al. 2012); however, a new 35 (Fe,Ti)-oxide solid solution between feite (Fe₃TiO₅) and Fe₄O₅ was recently discovered in a 36 shock-induced melt pocket of the Shergotty Martian Shergottite coexisting with FeTiO₃ (Ma et 37 al. 2021), adding new complexities to these geochemical tracers in relation to shocked processes. 38 Experimentally, feiite solid solutions with compositions Fe_{3.5}Ti_{0.5}O₅ have been synthesized between 7 and 12 GPa at 1200° C (Prissel et al. 2022), supporting that feiite is a high pressure-39 temperature (P-T) product of Martian impact processes. Examination of the structural and 40 41 electronic properties of feiite, including the Ti site occupancy, range of Ti solubility, and valence of iron in the structure with pressure and temperature is needed for future application of feiite 42 mineralogy as a *P*-*T*-*f*O₂ tracer of impact processes on Mars. 43

Revision 1

44	In the Fe-Ti-oxides such as ilmenite and ulvöspinel, Ti^{4+} and Fe^{2+} substitute for 2 Fe^{3+}
45	such that these endmember phases consist of only ferrous iron. Titanium occupies 6-fold
46	coordination with oxygen in these phases. Ilmenite, FeTiO ₃ , consists of alternating layers of
47	FeO ₆ and TiO ₆ octahedra and ulvöspinel, Fe ₂ TiO ₄ , consists of FeO ₄ tetrahedra and (Fe, Ti)O ₆
48	octahedra. Endmember feiite, (Fe ²⁺) ₃ TiO ₅ , based on electron back-scatter diffraction analyses of
49	natural feiite grains from Shergotty (Ma et al. 2021), is assumed to adopt the CaFe ₃ O ₅ structure
50	(space group-type Cmcm) (Evrard 1980; Ma et al. 2018; 2021), isostructural with Fe ₄ O ₅ (Lavina
51	et al. 2011). This structure consists of only 6-fold coordinated sites with a 3:1 ratio of octahedral
52	to trigonal prismatic polyhedra (Evrard, 1980). The CaFe ₃ O ₅ structure has been found to
53	accommodate other 2+ cations including Mg, Co, Cr, Ni, Fe, and Mn in a variety of cation
54	distributions (Trots et al. 2012; Woodland et al. 2013; Guignard and Crichton, 2014; Boffa
55	Ballaran et al. 2015; Ovsyannikov et al. 2016; Hong et al. 2018a, b, c; Uenver et al. 2018; Hong
56	et al. 2022). In general, the largest 2+ cation occupies the trigonal site and the octahedral sites
57	host mixed-valence 2+ and 3+ cations; however, Ti presents a different case as it is a 4+ cation
58	that is significantly smaller than Fe ²⁺ in 6-fold coordination (Shannon 1976; O'Niell and
59	Navrotsky 1983; Lavina et al. 2002).

It remains unknown how titanium is distributed into this structure and the degree of ordering among Fe and Ti coordination polyhedra. Additionally, recent attempts to synthesize feiite have only been successful in forming a TiFe₃O₅-Fe₄O₅ solid solution, and the natural grains of feiite found in Shergotty also contain significant amounts of ferric iron (Ma et al. 2021; Prissel et al. 2022). This suggests that the Fe³⁺ content in feiite may link to the formation conditions. Here we report convergent crystal-structure models for three grains of feiite recovered from 12 GPa and 1200° C synthesis conditions based on diffraction data collected using single-crystal

Revision 1

67	synchrotron X-ray diffraction techniques. The distribution of Ti, ⁴⁺ Fe, ²⁺ and Fe ³⁺ are proposed
68	based on the refined site occupancies and average interatomic distances in the refined
69	coordination polyhedra. Limitations on the solubility of Ti^{4+} and the necessity for ferric iron in
70	this structure at relevant P - T synthesis conditions are identified and discussed. Results from this
71	work present novel crystallographic insight on Ti substitution into Fe_4O_5 and provide important
72	clues for the formation environments of feiite as an oxythermobarometric marker and
73	geochemical tracer at high pressure-temperature conditions.

74

75 **2. Methods**

76 *2.1 Feiite synthesis*

77 The feiite crystals examined in this study were synthesized using the multi-anvil press at Carnegie Institution for Science, Earth and Planets Laboratory. Further details of the multi-anvil 78 79 synthesis are discussed in depth in the related publications by Prissel et al. (2022a, b). The 80 starting material was mixed from FeO (Alfa Aesar 99.5%), Fe₂O₃ (Alfa Aesar 99.9%), and TiO₂ 81 (Alfa Aesar 99.99%) with a target composition of 60% Fe₃TiO₅ and 40% Fe₄O₅. This sample 82 was compressed in a 14/8 multi-anvil assembly to 12 GPa. Pressure was calibrated based on the garnet-to-perovskite transition in CaGeO₃ at 6 GPa and the coesite-to-stishovite transition in 83 SiO₂ at 9 GPa (Bertka & Fei 1997). At the target pressure, the sample was resistively heated to 84 85 1200° C and held at high P-T for 12.7 hours. Temperature was measured using a Type C 86 thermocouple. . Upon temperature quenching and decompression, the recovered capsules were 87 polished to expose the feiite sample. Electron microprobe chemical analysis for Fe, Ti, Mg and O in backscatter mode was collected on the polished capsules using the JEOL JXA-8530F 88 89 electron microprobe at Carnegie Earth and Planets Laboratory. Results from these analyses

Revision 1

- 90 indicate a Fe_{3.49(2)}Ti_{0.51(1)}O₅ composition, and further details can be found in the related
 91 manuscript (Prissel et al. 2022a, b).
- 92 2.2 Collection and processing of synchrotron single-crystal data

93	Synchrotron X-ray diffraction measurements of the feiite grains were collected at Sector
94	13 BM-D GeoSoilEnviroCARS of the Advanced Photon Source, Argonne National Laboratory.
95	A 42 keV X-ray beam with a spot size of 5 μm x 8 μm full width half maximum was used, and
96	diffracted X-rays were collected with a CdTe 1M Pilatus detector. Diffraction from a LaB ₆ NIST
97	standard was used to calibrate the sample-detector geometry, and a single crystal of an
98	orthoenstatite (<i>Pbca</i>) with composition and parameters: $(Mg_{1.93}Fe_{0.06})(Si_{1.93}Al_{0.06})O_{6,,,} a =$
99	18.2391(3), b = $8.8117(2)$, and c = $5.18320(10)$ Å), was used to calibrate the instrument model in
100	the CrysAlisPro single-crystal software. The feiite samples were rotated $\pm -50^{\circ}$ in the path of the
101	X-ray beam in 0.5° steps with 4s exposure times per step. Using CrysAlis Pro (Rigaku OD),
102	three grains of feiite were indexed and isolated in the reciprocal space and the reflection
103	intensities for each grain were integrated and reduced. The cell parameters and reduced structure
104	factors for the target grains were then input into the ShelxT direct methods structure solution
105	algorithm (Sheldrick, 2015a) to determine a starting structure model.

106

107 2.3 Structural refinement of feiite

108 The structure models were then refined by parameterizing the atomic coordinates,

displacement parameters, and metal site occupancies using ShelXl2014/7 (Sheldrick, 2014;

- 110 2015b). As the site occupancies of Ti in the structure were not known initially, refinement of the
- atomic coordinates and isotropic displacement parameters was first conducted assuming a Fe₄O₅

Revision 1

112	composition. Then, structure models were refined for various Ti configurations: Ti in only one of
113	the metal sites, Ti in only the octahedral sites, and finally, Ti in all the sites. The metal sites were
114	refined anisotropically while maintaining a suitable ratio of observed reflections to refined
115	parameters (Hamilton, 1965). Few outlying reflections exhibiting anomalous calculated-versus-
116	observed intensities, likely due to grain overlap or parasitic scattering, were omitted. Results
117	from the refined structure models for the three grains in each of the (Fe, Ti)-site configurations
118	were then compared (Table S1). The final feiite structure model that was chosen exhibited
119	consistent stoichiometries across the three grains and compatible compositions with the electron
120	microprobe measurements of the synthesized feiite (Prissel et al. 2022a, b). The structure model
121	visualizations presented here were made using Vesta (Momma and Izumi, 2011).
122	3. Results
123	The lattices of three grains of feiite were identified in the reciprocal space and indexed to
124	C-centered orthorhombic cells (Figure 1). Unit-cell parameters measured on Crystal 1, for
125	example, equal: $a = 2.9268(7)$ Å, $b = 9.8181(15)$ Å, and $c = 12.592(9)$ Å, with $V = 361.8(3)$ Å ³
126	and similar values were measured on Crystal 2 and Crystal 3 (Table S1). Assessment of the
127	systematic absences constrains a Cmcm space group (Figure 1).
128	Structural solutions output a starting Fe ₄ O ₅ structure model in agreement with Lavina et
129	al. (2011). Refinement of this structure model was carried out against 203-259 merged
130	reflections for each grain (Table S1). Five Ti distribution models were tested on the data (Table
131	S2), and resolute refinements showing consistency in composition for the three feiite crystals
132	compared to the microprobe analyses of the synthetic sample (Prissel et al., 20022a, b) were
133	obtained with Fe fully occupying the M1 and M3 sites and both Fe and Ti occupying the

134 octahedral M2 site (Figure 2). Iron contents in the octahedral M2 site range from 0.70(2) -

135	0.77(2) (Figures 2 and 3), and the stoichiometries determined from the refined structure models
136	are generally described by $Ti_{0.46-0.60}Fe_{3.54-3.40}O_5$ (Table S1). This is in good agreement with the
137	composition of the sample: $Ti_{0.51(1)}Fe_{3.49(2)}O_5$, determined from electron microprobe analyses
138	(Prissel et al. 2022a, b). The statistics of the structure refinements of the three grains using this
139	model are shown in Table 1 with final $R_1 = 4.0$ - 6.6%, metal U_{equiv} values ranging from
140	0.0129(7) Å ² – 0.018(1) Å ² , and oxygen U_{iso} values range from 0.012(1) Å ² – 0.019(2) Å ² .
141	Reasonable refinements were also obtained by allowing Ti to dissolve into both
142	octahedral sites (Table S2), but the resultant compositions of the three grains diverged from each
143	other and diverged from the chemical compositions measured on the sample (Prissel et al.,
144	2022). Furthermore, Ti shows a preference to occupy the $M2$ site, as it will not occupy the $M1$
145	site alone, and the refinement statistics did not significantly improve when applying this
146	configuration to the dataset (Table S2). Therefore, while some Ti may disorder into both
147	octahedral sites, predominant occupancy of Ti in the $M2$ site best describes the data, and the
148	details of this structure model will be discussed herein.
149	The <i>M</i> –O interatomic distances measured across the three feiite grains are provided in
150	Table 2 and Figure 3 and show compatible values across three grains. The $M1$ site is coordinated
151	laterally by 4 O4 sites and axially by 2 O5 sites with distances ranging from 2.017(7) Å –
152	2.106(3) Å. The M2 site (Fe _{0.70-0.77} Ti _{0.30-0.23} O ₆) is more distorted and coordinated laterally to 2
153	O4 sites and 2 O5 and axially by one O4 and one O6 site with bond lengths ranging from
154	1.938(5) Å – 2.255(10) Å. The M3 trigonal prismatic site is symmetrically capped by 2 O5 at
155	2.234(5) Å and 1 O6 at 2.109(4) Å forming isosceles triangular faces (Figure 2, 3).
156	The grains of feiite used in this study have compositions with approximately 50% Fe ₄ O ₅
157	component (Prissel et al. 2022b), equating to $\sim 25\%$ Fe ³⁺ in the structure. In agreement with these

Revision 1

158	chemical analyses, the crystal structure refinements presented indicate 40-54% Fe ₄ O ₅ solid
159	solution. The average interatomic distances in the $M1$, $M2$, and $M3$ sites for the three feiite grains
160	(Table 1) were then used to estimate the occupancies of Fe^{2+} , Fe^{3+} , and Ti^{4+} by determining the
161	linear combination of the cationic species in each site that best matches the average site bond
162	distance (e.g., O'Niell and Navrotsky 1983; Lavina et al., 2002). Cation-oxygen bond lengths for
163	Fe^{2+} , Fe^{3+} , and Ti^{4+} optimized for spinels were used, wherein 6-fold coordination with oxygen,
164	average high-spin (<i>hs</i>) Fe^{2+} – O, <i>hs</i> - Fe^{3+} – O, and Ti^{4+} – O interatomic distances equal 2.150(2) Å,
165	2.025(1) Å, and 1.962(1) Å, respectively (Lavina et al., 2002).
166	Table 2 shows the estimations of cation distribution for the three grains examined. Taking
167	Crystal 1 as an example, the Ti content was refined in the structure model to 0.46 atoms per
168	formula unit (apfu). This equates to a 54% Fe ₄ O ₅ solid solution and fixes the Fe^{2+} and Fe^{3+}
169	abundances to 2.46 and 1.08 apfu, respectively. The M3 trigonal site contains the longest average
170	M–O distance of 2.192(5) Å suggesting that this site is comprised of ferrous iron (Table 1). The
171	M2 octahedral site has a fixed 23% Ti component, a multiplicity of 2, and an average M –O
172	distance of 2.077(4) Å. A contribution of 52% Fe^{2+} and 24% Fe^{3+} in this site best matches the
173	average bond length. The remaining ferric and ferrous iron is distributed into the $M1$ octahedral
174	site with the resulting proportions of 40% Fe^{2+} and 60% Fe^{3+} matching an average bond length of
175	2.076(4) Å. Applying this to the other two crystals examined, the approximated feiite cation
176	distributions are in the range: ${}^{M3}(Fe^{2+}){}^{M2}(Ti^{4+}_{0.23-0.30}Fe^{3+}_{0.10-0.24}Fe^{2+}_{0.53-0.60}){}_{2}{}^{M1}(Fe^{3+}_{0.60}Fe^{2+}_{0.40})$
177	O ₅ , showing excellent compatibility among the three grains examined and the chemical analyses
178	from Prissel et al. (2022b) (Table 3).

179

180 4. Discussion

181	In the grains examined in this study, Ti^{4+} has a site preference for the M2 octahedral site
182	with maximum occupancy of 0.60 afpu, such that the solubility of Fe_3TiO_5 into Fe_4O_5 is limited
183	to 60 % and 20-30% of the available iron must be ferric to stabilize feiite at 12 GPa and 1200 $^{\circ}$ C.
184	Natural feiite grains found in Shergotty also contain significant amounts of ferric iron
185	corresponding to an approximate 20% Fe ₄ O ₅ component (Ma et al. 2021). Recent experimental
186	exploration confirms that formation of the feiite structure between $7 - 12$ GPa and to 1200 °C
187	requires a minimum of ~25 % Fe^{3+} (Prissel et al., 2022a, b). Forming endmember $Fe_3TiO_{5,}$
188	composed of solely ferrous iron, may therefore require higher <i>P</i> - <i>T</i> synthesis conditions.
189	Other (Fe, Ti)-oxides systems, such as the $Fe_2O_3 - FeTiO_3$ and $Fe_3O_4 - Fe_2TiO_4$ systems
190	exhibit complete solid solutions at high $P-T$, and Ti dissolves into the octahedral sites in the
191	$Fe_4O_5 - Fe_3TiO5$, $Fe_2O_3 - FeTiO_3$, and $Fe_3O_4 - Fe_2TiO_4$ solutions (e.g., Brown et al. 1993;
192	Harrison and Redfern 2001; Bosi et al. 2009; Pearce et al. 2010; Lilova et al. 2012; Yamanaka et
193	al. 2013). The behavior of Ti^{4+} in Fe ₂ O ₃ and Fe ₃ O ₄ may therefore provide insight on the role of
194	<i>P-T</i> in forming endmember feiite. In the Fe_2O_3 and Fe_3O_4 systems, complete solution of Ti to
195	form $FeTiO_3$ and Fe_2TiO_3 occurs at high temperatures, but the distribution of Ti^{4+} between the
196	octahedral sites differs. For the Fe ₃ O ₄ - Fe ₂ TiO ₄ system, Ti dissolves into both octahedral sites
197	continuously with temperature (Lilova et al. 2012). In the Fe_2O_3 - $FeTiO_3$ system, Ti^{4+} orders
198	into one of the octahedral layers irrespective of temperature for high Ti contents (Brown et al.
199	1993). For lower Ti contents, Ti remains ordered into one of the layers at low temperatures, and
200	disorders among the two layers at high temperatures (Brown et al. 1993). In the grains analyzed
201	in this study, Ti prefers to occupy one of the octahedral sites ($M2$ site) in the Fe ₄ O ₅ structure, but
202	the Ti occupancy in this site is limited. The behavior of both the magnetite-ulvöspinel and
203	ilmenite-hematite solutions supports that temperature is likely a viable mechanism to increase Ti

Revision 1

204	occupancy in the octahedral sites either by expanding the Ti occupancy in the $M2$ site or by
205	incorporating Ti into the $M1$ and $M2$ sites. Considering the behavior of the hematite – ilmenite
206	system, for limited Ti contents in the structure as is observed in this study, increasing
207	temperature may be particularly important for promoting Ti occupancy in the other octahedral
208	site $(M1)$ to form endmember feijte

Regarding the pressure effects on titanium distribution in the Fe₄O₅ structure, electronic 209 210 spin transitions in iron at higher pressures may facilitate complete solid solution and formation of 211 endmember feiite. Due to the octahedral site multiplicities in the feiite structure, an Fe₃TiO₅ 212 compound can only be achieved with Ti partially occupying the octahedral sites. With this, 213 minimizing the size difference between ferrous iron and titanium may be critical for forming the feiite endmember. At ambient conditions, octahedrally coordinated Ti,⁴⁺ high-spin (*hs*) Fe,²⁺ and 214 low spin (*ls*) Fe^{2+} ionic radii equal 0.605 Å, 0.78 Å, and 0.61 Å, respectively (Shannon, 1976). 215 216 Therefore, the cationic radii of low-spin ferrous iron and titanium are significantly closer in size compared to the *hs* state, and this size difference will continue to diminish with pressure. With 217 increasing pressure, a hs - ls transition in Fe²⁺ has been observed to initiate around 14 GPa in 218 $Fe_{2}TiO_{4}$ and Fe^{2+} is observed to undergo this transition more readily in the octahedral versus 219 220 tetrahedral sites (Yamanaka et al. 2013). Additionally, analogous structural transitions observed in Fe₃O₄ are observed at approximately 10 GPa lower pressures in Fe₂TiO₄ and are facilitated by 221 the hs - ls transition in Fe²⁺ in the octahedral sites (Yamanaka et al. 2013). These results suggest 222 223 that increasing pressure is a viable mechanism for facilitating the shared site occupancy of Ti and $ls \operatorname{Fe}^{2+}$ in the octahedral sites, leading to the formation of endmember feiite. Incorporation of Ti 224 may also provoke phase transitions in Fe₄O₅ at significantly lower pressures and provide another 225 226 important tracer of the *P*-*T* history in the host materials.

Revision 1

227

228

229 5. Implications

230	The current study supports recent reports that feiite will only form from oxidized host
231	materials between 7 – 12 GPa and 1200 $^\circ$ C (Prissel et al. 2022a, b), and specifies that at least ~
232	20-30% of the available iron in the host material must be ferric under the synthesis conditions.
233	However, consideration of the possible pressure and temperature effects on Ti distribution in
234	Fe ₄ O ₅ suggests that increasing pressure and temperature may facilitate the formation of end-
235	member feiite (Fe ₃ TiO ₅) and therefore the formation of the more reduced phase. At more
236	extreme conditions, the stability of feiite may act as a buffer to form reduced phase assemblages.
237	While meteoritic materials such as Shergotty are oxidized with $\sim \Delta IW+2$ and are therefore
238	compatible with the formation of the (Fe, Ti) ₄ O ₅ solid solution described here, shergottites such
239	as QUE 94201 and other meteoritic materials including aubrites, eucrites, and lunar samples are
240	likely too reducing to form the $Fe_{3.5}Ti_{0.5}O_5$ composition at the same shock conditions (e.g., Sato
241	et al. 1973; Wadhwa 2008 and references therein). With more extreme shock conditions, it is
242	possible that increasingly reduced (Fe, Ti) ₄ O ₅ grains may form and the endmember compound
243	may be achieved. This possibility necessitates further experiments exploring the Ti distribution
244	and oxidation of the $Fe_4O_5 - Fe_3TiO_5$ solid solution series as a function of pressure and
245	temperature to establish this system as an oxythermobarmoeter of planetary impact processes.
246	The potential correction between pressure-temperature condition and Ti solubility would also be
247	useful indicator for formation environment of possible terrestrial feiite that may exists in the
248	mantle rocks such as deep diamond inclusions.

249

Revision 1

- 250
- 251

252	Acknowledgements
-----	------------------

- 253 Portions of this work were performed at GeoSoilEnviroCARS (The University of
- 254 Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory.
- 255 GeoSoilEnviroCARS is supported by the National Science Foundation Earth Sciences (EAR -
- 1634415). This research used resources of the Advanced Photon Source, a U.S. Department of
- Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by
- Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The work is supported
- by NASA grant (80NSSC20K0337) to YF and the Carnegie Institution for Science.
- 260
- 261
- 262
- 263

264 **References**

- Baur, W. H., 1974 The geometry of polyhedral distortions. Predictive relationships for the
 phosphate group. Acta Crystallographica Section B: Structural Crystallography and
 Crystal Chemistry, 30, 1195.
- Bertka, C.M., and Fei, Y., 1997. Mineralogy of the Martian interior up to core-mantle boundary
 pressures. Journal of Geophysical Research: Solid Earth, 102, 5251–5264.
- Boffa Ballaran, T., Uenver-Thiele, L., and Woodland, A.B., 2015. Complete substitution of Fe²⁺
 by Mg in Fe₄O₅: The crystal structure of the Mg₂Fe₂O₅ end-member. American
 Mineralogist, 100(2-3), 628-632.
- Buddington, A.F., and Lindsley, D.H. (1964) Iron-titanium oxide minerals and synthetic
 equivalents. Journal of Petrology, 5(2), 310-357.
- Cassidy, S.J., Orlandi, F., Manuel, P. and Clarke, S.J., 2019. Single phase charge ordered
 stoichiometric CaFe₃O₅ with commensurate and incommensurate trimeron ordering.
 Nature communications, 10(1), 1-10.
- Deng, Z., Moynier, F., Villeneuve, J., Jensen, N.K., Liu, D., Cartigny, P., Mikouchi, T., Siebert,
 J., Agranier, A., Chaussidon, M. and Bizzarro, M., 2020. Early oxidation of the Martian
 crust triggered by impacts. Science Advances, 6(44), p.eabc4941.

281	Evrard, O., Malaman, B., Jeannot, F., Courtois, A., Alebouyeh, H. and Gerardin, R., 1980. Mise
282	en évidence de CaFe ₄ O ₆ et détermination des structures cristallines des ferrites de
283	calcium CaFe _{2+ n} O _{4+ n} , (n= 1, 2, 3): nouvel exemple d'intercroissance. Journal of Solid
284	State Chemistry, 35, 112.
285	Farges, F. and Brown Jr, G.E., 1997. Coordination chemistry of titanium (IV) in silicate glasses
286	and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at
287	ambient temperature and pressure. Geochimica et Cosmochimica Acta, 61(9),1863-1870.
288	Fei, Y., Zhang, L., Corgne, A., Watson, H., Ricolleau, A., Meng, Y. and Prakapenka, V., 2007.
289	Spin transition and equations of state of (Mg, Fe) O solid solutions. Geophysical
290	Research Letters, 34(17).
291	Gagné, O.C. and Hawthorne, F.C., 2020. Bond-length distributions for ions bonded to oxygen:
292	results for the transition metals and quantification of the factors underlying bond-length
293	variation in inorganic solids. IUCrJ, 7(4), pp.581-629.
294	Ghiorso, M.S., and Evans, B.W. (2008). Thermodynamics of rhombohedral oxide solid solutions
295	and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American
296	Journal of science, 308(9), 957-1039.
297	Ghiorso, M. S., and Sack, O. (1991). Fe-Ti oxide geothermometry: thermodynamic formulation
298	and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy
299	and Petrology, 108(4), 485-510.
300	Guignard, J., and Crichton, W.A. (2014) Synthesis and recovery of bulk Fe ₄ O ₅ from magnetite,
301	Fe ₃ O ₄ . A member of a self-similar series of structures for the lower mantle and transition
302	zone. Mineralogical Magazine, 78, 361–371.
303	Hamilton, W.C., 1965. Significance tests on the crystallographic R factor. Acta
304	Crystallographica, 18(3), 502-510.
305	Herd, C.D., Papike, J.J. and Brearley, A.J., 2001. Oxygen fugacity of martian basalts from
306	electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American
307	Mineralogist, 86(9), 1015-1024.
308	Hong, K.H., Arevalo-Lopez, A.M., Cumby, J., Ritter, C. and Attfield, J.P., 2018a. Long range
309	electronic phase separation in $CaFe_3O_5$. Nature communications, 9(1), 1-6.
310	Hong, K.H., Arevalo-Lopez, A.M., Coduri, M., McNally, G.M. and Attfield, J.P., 2018b. Cation,
311	magnetic, and charge ordering in MnFe ₃ O ₅ . Journal of Materials Chemistry C, 6(13),
312	3271-3275.
313	Hong, K.H., Solana-Madruga, E., Coduri, M. and Attfield, J.P., 2018c. Complex Cation and Spin
314	Orders in the High-Pressure Ferrite CoFe ₃ O ₅ . Inorganic chemistry, 57(22), 14347-14352.
315	Hong, K., Solana, E., Coduri, M., Ritter, C. and Attfield, P., 2022. Synthesis, Structure and
316	Magnetic Properties of NiFe ₃ O ₅ . ECS Journal of Solid State Science and Technology.
317	Lavina, B., Salviulo, G. and Giusta, A.D., 2002. Cation distribution and structure modelling of
318	spinel solid solutions. Physics and Chemistry of Minerals, 29(1), 10-18.
319	Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S. and Nicol, M., 2009.
320	Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing
321	transition. Geophysical Research Letters, 36(23).
322	Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R., and Zhao, Y.
323	2011. Proceedings of the National Academy of Sciences, 108, 17281–17285.
324	Lin, J.F., Gavriliuk, A.G., Struzhkin, V.V., Jacobsen, S.D., Sturhahn, W., Hu, M.Y., Chow, P.
325	and Yoo, C.S., 2006. Pressure-induced electronic spin transition of iron in
326	magnesiowustite-(Mg, Fe) O. Physical Review B, 73(11), 113107.

327	Ma, C. and Tschauner, O., 2018. Feiite, IMA 2017-041a. CNMNC Newsletter No. 46,
328	December 2018, Mineralogical Magazine, 82, 1369–1379.
329	Ma, C., Tschauner, O., Beckett, J.R. and Prakapenka, V., 2021, March. Discovery of Feiite
330	$(Fe^{2+}_{2}(Fe^{2+}Ti^{4+})O_{5})$ and Liuite (GdFeO ₃ -Type FeTiO ₃), two new shock-induced, high-
331	pressure minerals in the Martian meteorite Shergotty. In Lunar and Planetary Science
332	Conference, No. 2548, 1681.
333	Millet, M.A., Dauphas, N., Greber, N.D., Burton, K.W., Dale, C.W., Debret, B., Macpherson,
334	C.G., Nowell, G.M. and Williams, H.M., 2016. Titanium stable isotope investigation of
335	magmatic processes on the Earth and Moon. Earth and Planetary Science Letters, 449.
336	197-205.
337	Momma, K. and Izumi, F., 2011. VESTA 3 for three-dimensional visualization of crystal.
338	volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276.
339	Ovsvannikov, S.V., Bykov, M., Bykova, E., Kozlenko, D.P., Tsirlin, A.A., Karkin, A.E.,
340	Shchennikov, V.V., Kichanov, S.E., Gou, H., Abakumov, A.M. & Egoavil, R., 2016.
341	Nature Chemistry, 8 , 501–508.
342	Pearce, C.I., Henderson, C.M.B., Telling, N.D., Pattrick, R.A., Charnock, J.M., Coker, V.S.,
343	Arenholz, E., Tuna, F. and van der Laan, G., 2010. Fe site occupancy in magnetite-
344	ulvospinel solid solutions: A new approach using X-ray magnetic circular dichroism.
345	American Mineralogist, $95(4)$, $425 - 439$.
346	Prissel, K.B., Fei, Y. and Strobel, T.A., 2022a. Synthesis and stability of Feiite with implications
347	for its formation conditions in nature. LPI Contributions, 2678, 1164.
348	Prissel, K.B., Fei, Y. and Strobel, T.A., 2022b. Synthesis and stability of Feiite with
349	implications for its formation conditions in nature. American Mineralogist, in press. DOI:
350	10.2138/am-2022-8633.
351	Rigaku Oxford Diffraction, 2021. CrysAlis PRO software system, ver. 1.171.41.115a Rigaku
352	Corporation, Oxford, U.K.
353	Sato, M., Hickling, N.L. and McLane, J.E., 1973. Oxygen fugacity values of Apollo 12, 14, and
354	15 lunar samples and reduced state of lunar magmas. In Lunar and Planetary Science
355	Conference Proceedings, Vol. 4, 1061.
356	Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic
357	distances in halides and chalcogenides. Acta crystallographica section A: crystal physics,
358	diffraction, theoretical and general crystallography, 32(5), 751-767.
359	Sheldrick, G.M., 2014. SHELXL-2014/7: program for the solution of crystal structures.
360	University of Göttingen, Göttingen, Germany.
361	Sheldrick, G.M., 2015a. SHELXT–Integrated space-group and crystal-structure determination.
362	Acta Crystallographica Section A: Foundations and Advances, 71(1), 3-8.
363	Sheldrick, G.M., 2015b. Crystal structure refinement with SHELXL. Acta Crystallographica
364	Section C: Structural Chemistry, 71(1), 3-8.
365	Toplis, M.J. and Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity
366	on Fe-Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic
367	systems. Journal of Petrology, 36(5),1137-1170.
368	Trots, D.M., Kurnosov, A., Woodland, A.B., and Frost, D.J. (2012) The thermal breakdown of
369	Fe_4O_5 at ambient pressure. European Mineralogical Conference, 1, EMC2012-556-1.
370	Uenver-Thiele, L., Woodland, A.B., Miyajima, N., Ballaran, T.B. and Frost, D.J., 2018.
371	Behavior of Fe_4O_5 -Mg ₂ Fe ₂ O ₅ solid solutions and their relation to coexisting Mg-Fe
372	silicates and oxide phases. Contributions to Mineralogy and Petrology, $1/3(3)$, $1-16$.

Revision 1

373	Wadhwa, M., 2008. Redox conditions on small bodies, the Moon and Mars. Reviews in
374	Mineralogy and Geochemistry, 68(1), 493-510.
375	Woodland A.B., Schollenbruch K., Koch M., Boffa Ballaran T., Angel R.J., Frost D.J., 2013.
376	Fe ₄ O ₅ and its solid solutions in several simple systems. Contributions to Mineralogy and
377	Petrology, 166, 1677–1686
378	Yamanaka, T., Kvono, A., Nakamoto, Y., Meng, Y., Kharlamova, S., Struzhkin, V.V. and Mao,
379	H.K., 2013, High-pressure phase transitions of Fe ₃ $_{\rm T}$ Ti _v O ₄ solid solution up to 60 GPa
380	correlated with electronic spin transition. American Mineralogist, 98(4), 736-744.
381	
301	
382	
502	
383	
202	
38/	
304	
205	
202	
200	
500	
207	
507	
200	
388	
200	
389	

390

391	Table 1. Interatomic distances for the octahedral and trigonal prismatic coordination polyhedra
392	measured in the three crystals of feiite.

		Crystal 1			Crystal 2		Crystal 3			
Bond	Distance	Average	Distortion Index	Distance	Average	Distortion Index	Distance	Average	Distortion Index ^a	
	(Å)	(Å)		(Å)	(Å)		(Å)	(Å)		
Fe1–O4 (x 4)	2.106(3	2.076(4)	0.0191(2)	2.101(4)	2.075(6)	0.0165(2)	2.104(4)	2.083(6)	0.0135(2)	
Fe1–O5 (x 2)	2.017(7)			2.024(10)			2.041(10)			
(Fe, Ti)2–O4 (x 2)	2.071(4)	2.077(4)	0.0282(2)	2.086(5)	2.081(6)	0.0275(3)	2.078(5)	2.080(6)	0.0281(3)	
(Fe, Ti)2–O4 (x 1)	2.252(7)			2.244(9)			2.255(10)			
(Fe, Ti)2–O5 (x 2)	2.062(3)			2.067(5)			2.063(4)			
(Fe, Ti)2–O6 (x 1)	1.941(3)			1.938(5)			1.940(5)			
Fe3–O5 (x 4)	2.234(5)	2.192(5)	0.0253(2)	2.230(7)	2.193(7)	0.0223(3)	2.225(7)	2.188(7)	0.023(3)	
Fe3–O6 (x 2)	2.109(4)			2.120(7)			2.114(6)			

^aDistortion indices based on the bond lengths were calculated from Baur (1974).

Revision 1

Table 2. Cation distributions of Fe^{2+} -, Fe^{3+} , Ti^{4+} in the octahedral *M*1 and *M*2 sites tabulated for 394 the three crystals of feite examined in this study. The cation distributions were estimated by calculating a linear combination of Fe^{2+} -, Fe^{3+} -, Ti^{4+} -O bond lengths from Lavina et al. (2002) 395 396 that best matched the measured bond lengths for the octahedral M1 and M2 sites. 397 398

		atomic % in site								Calculated		Measured	
		M1			2M2				M3	M1 bond	M2 bond	M1 bond	M2 bond
_		Fe ²⁺	Fe ³⁺	total	Ti ⁴⁺	Fe ²⁺	Fe ³⁺	total	Fe ²⁺	length (Å)	length (Å)	length (Å)	length (Å)
	Crystal 1	0.4	0.6	1	0.46	1.06	0.48	2	1	2.075	2.077	2.076(4)	2.077(4)
	Crystal 2	0.4	0.6	1	0.6	1.2	0.2	2	1	2.075	2.081	2.075(6)	2.081(6)
	Crystal 3	0.4	0.6	1	0.48	1.08	0.44	2	1	2.075	2.077	2.083(6)	2.080(6)
399													
400													
401													
402													
403													
404													
405													
406													
407	Figure	1.											

Revision 1

408

Figure 1. Diffraction reflections (circled in blue) satisfying the condition: -1 k l for a feiite
crystal. The Debeye rings arise from air scattering on the pinhole and are not related to the
sample. A diffraction image collected at the edge of the sample is provided in Figure S1 to
demonstrate that the Debeye rings do no change in intensity and are not related to the sample.
413
414
415
416
417
418
419

Revision 1

421 Figure 2.

.___

424 $Ti_{0.46}Fe_{3.54}O_5$ (Table S1). The asymmetric unit of metal (Fe, Ti) and oxygen sites are labeled. The

unit cell consists of consisting of the *M*1 and *M*2 octahedral sites and an *M*3 trigonal site in a

426 ratio of 1:2:1 with \sim 25% of the M2 sites occupied by titanium. The views along the b and c axes

427 illustrate the edge and corner sharing of the polyhedra. The structure is arranged into columns of

edge sharing $M1O_6$ octahedra, edge sharing $M2O_6$ octahedra, and face sharing $M3O_6$ bicapped

trigonal prisms extending along the *a* direction. In the *b* and *c* directions, the columns of
octahedra are joined along edges while the columns of trigonal prims are linked to the columns

- 431 of octahedra along corners.
- 432
- 433
- 434 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443

Revision 1

Figure 3. 444

- **Figure 3.** Bond lengths and site occupancy refined for the MO_6 ($M = Fe^{2+}$, Fe^{3+} , Ti) sites in 446
- Crystal 1. The anisotropic displacement of the metal sites is visualized with 50% probability. 447
- 448 449
- 450
- 451
- 452
- 453