1	Word count: 12113
2	REVISION 2
3	
4	Hydrologic regulation of clay-mineral transformations in a
5	redoximorphic soil of subtropical monsoonal China
6	
7 8	Lulu Zhao ^a , Hanlie Hong ^{a,*} , Qian Fang ^{a,*} , Hetang Hei ^b , Thomas J. Algeo ^{a, c, d}
9	^a State Key Laboratory of Biogeology and Environmental Geology, Hubei Key
10	Laboratory of Critical Zone Evolution, School of Earth Sciences, China University
11	of Geosciences, Wuhan 430074, China
12	^b Yunnan Earthquake Agency, Kunming 650224, China
13	^c Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
14	^d State Key Laboratory of Geological Processes and Mineral Resources, China
15	University of Geosciences, Wuhan 430074, China
16	Corresponding authors: H. Hong (<u>honghl8311@aliyun.com</u>);
17	Q. Fang (<u>qian.fang@cug.edu.cn</u>)
18	
19	ABSTRACT
20	Clay-mineral evolution in supergene environments is commonly a complex
21	process subject to hydrologic influences on clay-mineral transformations, yet these

22	influences remain insufficiently investigated to date. A Quaternary red soil profile
23	with evident redoximorphic features in subtropical monsoonal China was investigated
24	with a focus on processes of secondary clay-mineral transformation. Evidence
25	provided by soil physical and chemical descriptions, clay-mineral analysis,
26	spectroscopic characterization, extractions of pedogenic Al and Fe species, and
27	geochemical compositions reveals a complex relationship of clay minerals and iron
28	phases to pedogenic weathering conditions as a function of depth in the study soil
29	profile. The studied profile can be divided into a homogenous horizon (HH; 0-2.0 m),
30	a redoximorphic horizon (RH; 2.0-6.0 m), and a basal layer (BL; 6.0-7.2 m), and these
31	three horizons are dominated by various intermediate clay phases. The HH is
32	characterized by moderately acidic conditions (mean $pH = 5.2$) and low total organic
33	content (TOC; TOC \leq 2.1 g kg ⁻¹). More importantly, compared with the lower horizons,
34	the HH contains significantly more active acid-forming cations, as reflected by a
35	greater abundance of Al phases and higher aluminum saturation levels. We infer that
36	the occurrence of hydroxy-interlayered vermiculite (HIV) in the HH is tightly coupled
37	with the nature of the soil acidic pools, which include both H^+ ions (i.e., pH) and active
38	acid-forming cations (e.g., Al^{3+} and Fe^{3+}). The reaction pathway from primary
39	minerals to final weathering products appears to be highly sensitive to dynamic
40	hydrological processes. HIV is favored in generally oxic, well-drained soil systems
41	with adequate acidic cations to maintain acidic weathering. When soils are more
42	waterlogged and the aqueous solution is dominated by base cations, primary minerals

43	tend to transform to smectite group minerals. Therefore, discrete smectite,
44	interstratified illite-smectite (I-S), and interstratified kaolinite-smectite (K-S) were
45	observed only in the RH and BL. We present a novel framework that links
46	clay-mineral transformation pathways to soil hydrological disturbances, providing new
47	insights into understanding the kinetics of water-mineral interactions in natural soil
48	systems.
49	
50	Keywords: Pedogenesis; chemical weathering; vermiculite; iron oxides; redox
51	reactions; water-rock interaction
52	
53	INTRODUCTION
54	Chemical weathering is one of the key factors that convert bedrock into soils,
54 55	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating
54 55 56	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011;
54 55 56 57	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in
54 55 56 57 58	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in soils, playing critical roles in many geologic and environmental processes, such as
54 55 56 57 58 59	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in soils, playing critical roles in many geologic and environmental processes, such as control of the fate of pollutants, uptake and release of bioessential nutrients, and
 54 55 56 57 58 59 60 	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in soils, playing critical roles in many geologic and environmental processes, such as control of the fate of pollutants, uptake and release of bioessential nutrients, and stabilization of soil organic matter (Dong 2012; Andrade et al. 2018; Churchman
 54 55 56 57 58 59 60 61 	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in soils, playing critical roles in many geologic and environmental processes, such as control of the fate of pollutants, uptake and release of bioessential nutrients, and stabilization of soil organic matter (Dong 2012; Andrade et al. 2018; Churchman 2018). In supergene weathering zones, primary minerals may transform into other clay
 54 55 56 57 58 59 60 61 62 	Chemical weathering is one of the key factors that convert bedrock into soils, modifying surficial landforms, regulating the long-term carbon cycle, and modulating the Earth's climate (Kump et al. 2000; Chorover et al. 2007; Jin et al. 2011; Goodfellow et al. 2016). Clay minerals are the most reactive inorganic materials in soils, playing critical roles in many geologic and environmental processes, such as control of the fate of pollutants, uptake and release of bioessential nutrients, and stabilization of soil organic matter (Dong 2012; Andrade et al. 2018; Churchman 2018). In supergene weathering zones, primary minerals may transform into other clay

64 pathways prior to the formation of endmember products (Hong et al. 2015; He et al.

65 2017). Understanding the transformation processes and mechanisms involved is of 66 great importance to unraveling the evolution of pedogenic systems in which such

67 alteration occurs (Cuadros et al. 2018; Li et al. 2020).

68 The main pathways of clay-mineral transformation are mediated by the ambient 69 weathering conditions in the soil environment. A single assemblage of primary 70 minerals give rise to different intermediate minerals owing to variation in the 71 conditions of weathering. Weathering generally occurs in water or aqueous solution 72 (Churchman and Lowe 2012; Fang et al. 2019), facilitating chemical reactions such as 73 hydration-hydrolysis, adsorption-desorption, and oxidation-reduction (Essington 74 2015). The hydrologic conditions (including solution pH and chemistry, redox 75 conditions, and water flux) thus play a decisive role in the kinetics, processes, and 76 ultimate products of mineral alteration (Churchman and Lowe 2012). Despite the 77 considerable body of literature on the formation and alteration of clay minerals (e.g., 78 Wilson 2004; Andrade et al. 2018; Mavris et al. 2018), there is still debate regarding 79 how hydrologic factors control and affect pathways of clay-mineral transformation 80 (Fang et al. 2019; Georgiadis et al. 2020).

Quaternary red soils (QRSs) have covered tropical/subtropical areas of southern China (~23 % of China's land surface) since the mid-Pleistocene (He et al. 1983; Hu et al. 2010; Hong et al. 2015). The QRSs are products of syndepositional pedogenesis under a warm and humid climate, widely distributed on river terraces, hills, and alluvial

85	fans (Wilson et al. 2004; Hong et al. 2016; Zhao et al. 2017). The seasonal advance and
86	retreat of the summer monsoon in East Asia produces a distinct alternation of wet and
87	dry seasons, which leads to dynamic hydrologic conditions within the region of QRS
88	formation (Ding and Chan 2005; Kundzewicz et al. 2020). Clay-mineral
89	transformations of the QRSs record environmental changes in southern China during
90	the Quaternary, allowing them to serve as important paleoclimatic archives (Hong et al.
91	2012; Zhao et al. 2017). Previous studies have suggested that typical QRS profiles
92	consist of a single depositional-pedogenetic cycle, corresponding to an upper Xiashu
93	loess horizon (i.e., loess formed since the late Pleistocene on the middle to lower
94	reaches of the Yangtze River, which is often viewed as an extension of the loess of
95	northern China) and an underlying reticulate soil horizon (Hu et al. 2010, 2015; Han et
96	al. 2019). Overall, the Xiashu loess horizon is relatively homogeneous with a yellow to
97	yellow-brown appearance. The reticulate soil horizon contains plinthite, which is
98	defined as a humus-poor, Fe-rich mixture of clay minerals with other minerals,
99	occurring as brown-red redoximorphic masses showing various veining patterns
100	(Bockheim 2014; Hu et al. 2015).

101 Clay mineral assemblages in the QRSs are complex and characterized by various 102 interstratified clay minerals including interstratified kaolinite-smectite (K-S; Hong et al. 103 2012), interstratified illite-vermiculite (I-V; Hong et al. 2014), interstratified 104 illite-smectite-kaolinite (I-S-K; Hong et al. 2015), and interstratified illite-smectite (I-S; 105 Hong et al. 2016). I-V and K-S are commonly present in the middle and lower parts of 106 the QRS profiles (Hong et al. 2012, 2014). Thus, QRSs can serve as a valuable archive 107 of information regarding how soil aqueous conditions modulate the pathways of 108 clay-mineral alteration (Hong et al. 2016). 109 This study characterized the evolution of secondary clay-mineral assemblages in a 110 typical QRS profile in South China. An integrated mineralogical, physico-chemical, 111 spectroscopic, and geochemical dataset was used to diagnose in detail the clay-mineral 112 reactions producing these assemblages, and the environmental conditions promoting 113 their formation. This investigation builds on results from previous QRS studies that 114 showed: 1) clay-mineral composition is complex within QRS profiles; and 2) 115 hydroxy-interlayered vermiculite (HIV) and interstratified clay minerals commonly 116 occur in QRS profiles (e.g., Hong et al. 2012, 2015; Zhao et al. 2017). In the present 117 investigation, we attempt to 1) identify coupling between soil redoximorphic features 118 and clay-mineral assemblages; and 2) advance our understanding of how soil 119 hydrologic conditions regulate the formation and transformation of secondary clay 120 minerals.

121

122 MATERIALS AND METHODS

123 Site descriptions and field sampling

124 The study area is located inside the Jianghan Plain of Hubei Province, central 125 China (Fig. 1). The Jianghan Plain is an alluvial plain situated no more than 35 m above 126 sea level (m.a.s.l.). It is flat and crisscrossed by numerous rivers (e.g., the Yangtze

127	River and its largest tributary, the Han River) and lakes (Zhou et al. 2013; Gan et al.
128	2014). The Jianghan Plain is surrounded by the Dabie Mountains (500–800 m.a.s.l.) to
129	the northeast, the Daba Mountains (1600–3000 m.a.s.l.) and Wushan (2400 m.a.s.l.) to
130	the west, and the Wuling Mountains (~1000–2500 m.a.s.l.) to the southwest (Fig. 1c).
131	The Jianghan Plain is located in a subtropical monsoonal climate zone that is directly
132	influenced by the East Asian and Indian monsoon systems (Fig. 1a-b). The study area is
133	characterized by highly seasonal variations in temperature, precipitation, and wind
134	direction. The mean annual temperature is 17.5 °C (5.0 °C in winter and 28.8 °C in
135	summer), and the total annual precipitation is about 1450 mm with ~ 60 % of the rainfall
136	occurring during the period from May to September (Hersbach et al. 2019). The climate
137	is classified as Cfa according to the Köppen-Geiger climate classification (Kottek et al.
138	2006). During the summer, the East Asian Summer Monsoon (EASM) and Indian
139	Summer Monsoon (ISM) dominate the climate of the Jianghan Plain, causing advection
140	of warm and humid airmasses from the ocean, contributing to its high agricultural
141	productivity (Deng et al. 2014).

In this study, soil samples were collected from the Songzi section in the southwestern region of the Jianghan Plain (Fig. 1c). This section represents a typical QRS that consists of an upper Xiashu loess horizon and the underlying reticulate red soil horizon (Hong et al. 2012, 2014). This section is 7.2 m thick and can be divided into upper (0-2.0 m), middle (2.0-6.0 m), and lower (6.0-7.2 m) intervals based on contrasting texture, mineralogy, structure, and redoximorphic features within these horizons (Fig. 2a; Table 1). The upper and middle intervals of the Songzi section match
the upper Xiashu loess and the underlying reticulate horizon of QRSs, respectively. The
lower interval of the Songzi section corresponds to the basal layer of QRSs but with a
coarser particle size. A detailed description of the study section is given in the *Results*section.

153 A total of 72 soil samples was collected at 10-cm intervals continuously from the 154 base to the top of the study section. Prior to geochemical and spectroscopic analyses, 155 several preparatory treatments were performed to generate sample aliquots with 156 different particle sizes, including the bulk soil (i.e., fresh soil samples dried at 45 °C for 157 48 h), a <2-mm fraction (i.e., a fine-earth fraction consisting of ground bulk soil that 158 passes through a 2-mm sieve), a <74-µm fraction (i.e., a fraction consisting of ground 159 <2-mm fraction that passes through a 74-µm (200-mesh) sieve), and a <2-µm fraction 160 (i.e., a clay fraction that was isolated by repeated suspension of an aliquot of the 161 <74-µm fraction with sodium hexametaphosphate and centrifugation). Prior to 162 processing of the clay fraction, carbonates were removed by addition of 0.05-M acetic 163 acid for ~ 24 h).

164

165 X-ray diffraction (XRD)

166 Clay-mineral species were identified based on XRD analysis of the clay-fraction 167 samples (i.e., oriented specimens on glass slides). Four different treatments were 168 applied to the air-dried (AD) XRD mounts, i.e., ethylene glycol solvation (EG),

169	K-saturation at room temperature (K25), and K-saturation with heating to 350 $^{\circ}\mathrm{C}$
170	(K350) and 550 $^{\circ}\mathrm{C}$ (K550) for 2h. The K saturation was performed on powders
171	recycled /scraped off from the AD mounts. The K saturation was performed twice on
172	each sample using 0.5-M KCl at room temperature, with each saturation interval lasting
173	\sim 12 h; after the saturation step, excess salt was removed using distilled water to which
174	two drops of 0.5-M KCl were added. The XRD spectra of the K-saturated samples (at
175	room temperature and after heat treatments) were obtained for the same aliquots as used
176	in the AD and EG treatments. For clay-fraction samples of the HH, two additional
177	heating treatments were performed on the K-saturated mounts: K-saturation with
178	heating to 100 °C (K100) and K-saturation with heating to 200 °C (K200), both for 2h,
179	to better test for the presence of HIV. In addition, bulk-sample XRD analysis was
180	performed on the $<74-\mu m$ fraction using a side-loading method. All XRD
181	measurements were performed using a PANalytical X'pert PRODY2198
182	diffractometer (Netherlands) with Cu-K α radiation (40 kV, 40 mA). The XRD spectra
183	were recorded from 3 to $65^{\circ} 2\theta$ at a rate of $4^{\circ} 2\theta$ /min and a resolution of $0.02^{\circ} 2\theta$.
184	The PANalytical HighScore software was used to fit experimental XRD profiles
185	of 001 reflections over the 3.5-15° 2 θ range. The Voigt function was applied to fit the
186	peaks of the EG spectra. Prior to peak fitting, the background of each XRD spectrum
187	was subtracted using a cubic spline method with an automated threshold of 5 sigma
188	using the Jade software. Various combinations of peaks were tested to find the one
189	yielding the minimum residual signal. A series of parameters, including the position of

190	the 001 peak, intensity (i.e., peak height), and half-height width, were used in the
191	calculation. These peak parameters were refined by the least-squares method until they
192	optimally matched the XRD signal. The peak areas were then used as an
193	approximation of the relative abundances of the various clay-mineral phases in the
194	sample. Finally, the amount of each phase was determined by normalizing the sum of
195	the relative abundances to 100%. Because clay minerals are highly complex and have
196	a series of interstratified phases, the results of such curve-fitting techniques are only
197	semiquantitative and used to support or complement other data.

198

199 Selective extraction

200 Selective extraction techniques were applied to the <74-µm fraction using sodium 201 pyrophosphate (PP), acid ammonium oxalate (AO), and citrate-dithionite (DC) (Parfitt 202 and Childs 1988). About 0.1 g of powder for each analyzed sample was mixed with 0.1 203 M pyrophosphate (pH = 10) and agitated to extract Al- and Fe-oxyhydroxides bound in 204 organo-metal complexes (i.e., Al_p and Fe_p). The contents of total free Fe and Al (i.e., 205 Fed and Ald), including all crystalline and amorphous forms in the sample, were 206 determined by extraction with 0.1 M Na-dithionite + 0.3 M Na-citrate (DC extraction; 207 Parfitt and Childs 1988; Rasmussen et al. 2010). The AO method (using 0.1 M 208 ammonium oxalate as an extractant) permitted extraction of poorly crystalline and 209 amorphous Al- and Fe-oxyhydroxides or of so-called short-range-ordered (SRO) iron 210 and aluminum phases (i.e., Al_o and Fe_o) (Shang and Zelazny 2008). The extracted

211	solution was filtered using a 0.2 -µm cellulose acetate filter, and concentrations were
212	measured with an Agilent 7500a inductively coupled plasma-mass spectrometer
213	(ICP-MS). The measured concentration data were then used to calculate the contents of
214	different forms of Fe and Al solids. The SRO fractions of Fe- and Al-bearing minerals
215	were assessed using Fe _o /Fe _d and Al _o /Al _d ratios, respectively (Blume and Schwertmann
216	1969; Hall et al. 2018). The contents of secondary crystalline Fe and Al compounds
217	were estimated as $Fe_d - Fe_o$ and $Al_d - Al_o$, respectively (Blume and Schwertmann 1969;
218	Hall et al. 2018).

219

220 Soil physico-chemical characterization

221 The fine-earth fraction samples were used for soil physico-chemical 222 measurements. Soil acidity (pH) and redox potential (Eh) were measured in distilled 223 water using a pH/Eh electrode (ORP-501, INESA, China) immersed in a 1:2.5 soil: 224 water suspension after 1 h of stirring with a glass rod. Total organic carbon (TOC) and 225 total nitrogen (TN) contents were analyzed using an Elementar Vario Macro Cube C/N 226 analyzer (Germany). Prior to TOC and TN analyses, each sample was decarbonated 227 using 0.05 mol L^{-1} HCl and washed with distilled water to remove residual acid. 228 The particle-size analysis was conducted using an American Microtrac S3500 229 laser particle sizer with a diameter range of $0.02-2000 \ \mu m$. The resulting diffraction 230 spectra were transformed to grain-size data using Mie theory (Konert and

231 Vandenberghe 1997). The data were finally output as clay fraction (<2 μm), silt fraction

232 (2-50 μ m), and sand fraction (50-2000 μ m) in volumetric form with a precision of 233 ± 1 %.

Exchangeable cations were extracted by 1 mol L^{-1} ammonium acetate (NH₄OAc) 234 at pH 7 for Ca^{2+} , Mg^{2+} , K^+ , Na^+ and by 1 mol L^{-1} KCl for Al^{3+} (Madeira et al. 2003; 235 236 Pincus et al. 2017). The solution was sonicated in order to disaggregate the clay and 237 then let stand for 16 h. The sample was centrifuged until all clay was separated from the 238 supernatant, which was collected for inductively coupled plasma optical emission 239 spectrometry (ICP-OES) analysis using an ICPE-9000 instrument (Shimadzu). The 240 results allowed calculation of the cation exchange capacity (CEC), which was 241 determined as $Ca^{2+} + Mg^{2+} + K^{+} + Na^{+} + Al^{3+}$.

242

243 Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy

244 DRIFT spectroscopy was used to improve the assessment of the evolution of 245 depth-dependent solid phases and mineral crystallinity (Nguyen et al. 1991; Yuan et 246 al., 2004). The DRIFT method is sensitive to poorly crystalline minerals and their 247 complexation with organic matter (Chorover et al. 2004). DRIFT spectra were recorded from 4000 to 400 cm⁻¹ using a Nicolet 560 Magna IR spectrometer at 4 cm⁻¹ 248 249 resolution. DRIFT analysis was performed on four sample aliquots: the untreated 250 <74-µm fraction, the <74-µm fraction after AO extraction, the <74-µm fraction after 251 DC extraction, and the clay fraction. Through comparison of differences in DRIFT 252 spectra between the AO-extracted and untreated samples, we evaluated the influence

253	of the AO extraction on soil composition. Through comparison of differences in
254	DRIFT spectra between the DC-extracted and untreated samples, we evaluated the
255	influence of the DC extraction on soil composition. Organic matter was not removed
256	from these samples as it may be closely associated with soil metal(oxy)hydroxides.
257	Each sample was mixed with KBr (1 % by mass) prior to the DRIFT measurement.
258	

259 Elemental geochemistry analyses and weathering proxies

260 Major-element concentrations were determined by X-ray fluorescence (XRF) 261 spectrometry with a Shimadzu XRF-1800 sequential spectrometer (Japan). Analytical 262 precision was better than 1 %, and the detection limit was ~0.01 wt%. Trace elements 263 and rare earth elements (REEs) were measured by Agilent 7500a ICP-MS with an 264 analytical precision of < 4 % for REEs and 4-10 % for other trace elements. The 265 <74-µm fraction samples were used for the XRF and ICP-MS measurements. The 266 detailed sample digesting procedure for ICP-MS analyses was as follows: (1) 50 mg 267 sample powder was accurately weighed and placed in a Teflon bomb; (2) 1ml HNO₃ 268 and 1ml HF were slowly added into the Teflon bomb; (3) Teflon bomb was put in a 269 stainless steel pressure jacket and heated to 190° C in an oven for >24 hours; (4) After 270 cooling, the Teflon bomb was evaporated to incipient dryness and then 1ml HNO₃ was 271 added and evaporated to dryness again; (5) 1ml HNO₃, 1ml MQ water, and 1 ml 272 internal standard solution of 1 ppm In were added, and the Teflon bomb was resealed 273 and placed in the oven at 190° C for >12 hours; (6) The final solution was transferred to a polyethylene bottle and diluted to 100 g by the addition of 2 % HNO₃.

275	The most commonly used weathering proxy, chemical index of alteration (CIA),
276	was calculated using the measured elemental data. CIA was calculated as
277	$[Al_2O_3/(CaO^* + Na_2O + K_2O + Al_2O_3)] \times 100$ (molar ratio), where CaO* represents the
278	amount of CaO in the silicate fraction of the sample (Nesbitt and Young 1982). The
279	degree of chemical weathering was also evaluated using the M^+ -4Si- R^{2+} system (i.e.,
280	weathering alteration scale-WIS), which was proposed by Meunier et al. (2013). The
281	M^+ , 4Si, and R^{2+} parameters are the recalculated values of atomic proportions, where
282	$M^{\scriptscriptstyle +}$ corresponds to $Na^{\scriptscriptstyle +}$ + $K^{\scriptscriptstyle +}$ + $2Ca^{2+}\!\!,~R^{2+}$ denotes Mg^{2+} + $Fe^{2+}\!\!+~Mn^{2+}\!\!,$ and 4Si
283	represents number of Si^{4+} cations divided by 4. The parameter $\Delta 4Si$ is calculated as
284	[(4Si _{soil} –4Si _{UCC}) × 100]/(100 – 4Si _{UCC}) × 100, where the subscripts "soil" and "UCC"
285	represent the Si concentrations in the bulk soil sample and upper continental crust
286	(UCC), respectively (McLennan 2001). Higher $\Delta 4Si$ denotes a higher intensity of
287	chemical weathering, and the maximum weathering intensity of weathering is reached
288	when the parent rock is completely weathered to kaolinite (i.e., $\Delta 4Si = 100$) (see
289	Meunier et al. 2013, for details).
290	REE concentrations were normalized to upper continental crust (UCC)

290 REE concentrations were normalized to upper continental crust (UCC) 291 (McLennan 2001) prior to further calculations. The Ce anomaly (Ce/Ce*), which can 292 track soil-redox status (Laveuf and Cornu 2009), was calculated as (Compton et al. 293 2003):

294
$$\frac{Ce}{Ce*} = \frac{(Ce_{soil}/Ce_{UCC})}{[(La_{soil}/La_{UCC})^{0.5}(Pr_{soil}/Pr_{UCC})^{0.5}]}$$
(1)

where the subscripts "soil" and "UCC" represent the REE concentrations in the bulk
soil sample and UCC, respectively. Values < 1 and > 1 represent "negative" and
"positive" Ce anomalies, respectively.

298

299 Thermogravimetric (TG) analysis

TG analysis was performed on a Netzsch STA409PC thermal instrument. The measurement was carried out by heating the sample from 30 to 1000 °C in steps of 10 °C min^{-1} under a nitrogen flow of 60 mL/min. About 10 mg of each clay fraction sample were heated in a corundum crucible. The derivative thermal gravimetric (DTG) curve was derived from the TG curve.

305

306 Statistical analyses

307 To determine whether differences in extraction Al/Fe and soil iron mineralogy 308 between various soil horizons are significant, we performed one-way analysis of 309 variance (ANOVA). Differences were considered significant at a 99% (3σ) confidence 310 level.

311

312 **RESULTS**

313 Morphological description and physicochemical compositions

The Songzi soil is classified as a Plinthaquult (Ultisol) according to the US Soil

315 Taxonomy (Soil Survey Staff 2010), with a loam to silty clay texture (Table 1). The

316	study section has a diagnostic argillic subsurface horizon with typical redoximorphic
317	features in its lower part (Fig. 2). The middle interval (2.0-6.0 m) displays prominent
318	redoximorphic features (Fig. 2b). The Songzi section can be divided into a surface
319	homogeneous horizon (HH; 0-2.0 m), a middle redoximorphic horizon (RH; 2.0-6.0 m),
320	and a basal layer (BL; 6.0-7.2 m). Several sub-horizons can be identified within each
321	horizon (Table 1). The redoximorphic features in the RH consist mainly of
322	yellow-reddish matrix accompanied by black Mn-enriched concentrations (i.e.,
323	coatings; Soil Survey Staff 2010), red Fe-enriched earthy materials (i.e., plinthites;
324	Weil and Brady 2017), and white veins/mottles (Fig. 2b). The coatings are generally
325	distributed along microfissures or fill micropores, with diameters less than a centimeter
326	(Fig. 2b). The plinthites have a redder Munsell hue (2.5YR 4/8) than the surrounding
327	soil matrix (5YR 8/6), range in size from 2 to 5 cm, and are commonly surrounded by
328	veins. The veins are generally less than 10 cm long and randomly oriented.
329	The soil solution in the entire study section varies from acidic (in the HH) to
330	circumneutral (in the BL), with pH values ranging from 4.8 to 6.5 (Table 2). The redox
331	potential of the Songzi section decreases with depth, from >400 mV in the HH to <300
332	mV in the BL. The soil has low contents of TOC (0.7–2.1 g $kg^{-1})$ and TN (0.3–0.7 g
333	kg^{-1}), with the highest values occurring near the top of the section. Most soil samples
334	have high silt content (56.5-72.9 %; mean 63.3 %), intermediate clay content
335	(23.5-41.2 %; mean 33.7 %), and low sand content (0.3-5.2 %; mean 2.7 %). The
336	highest clay contents are found in the upper part of the RH (2.4-4.5 m).

337	CEC ranges from 24.4 to 39.8 mmol kg ⁻¹ with exchangeable sites dominantly
338	occupied by Ca and Mg. CEC is positively correlated with total clay content ($r = +0.75$,
339	p < 0.001, $n = 17$) and reaches a maximum value in the upper part of the RH. The
340	relative proportion of Al in the exchangeable sites (i.e., Al_{ex}/CEC), which is closely
341	related to the presence of Al polymers in the interlayers of expandable clay minerals
342	(Jin et al. 2010; Graham et al. 1989), is low compared with Ca, Na, Mg, and K. The
343	highest contribution of Al to total CEC occurs in the upper HH (Al _{ex} /CEC = 7.63 % at
344	0.3 m), while its contribution is negligible in the RH and BL.
345	

346 XRD analysis

The clay fractions of the HH, RH, and BL (using various treatments) exhibit similar XRD characteristics throughout the Songzi section (Figs. 3 and S1). The main non-clay phases are quartz (~4.3 and 3.3 Å), feldspar (two weak peaks around 3.2 Å), and small amounts of goethite (~4.2 Å), hematite (~2.7 Å), and gibbsite (~4.4 and 4.8 Å) (Figs. 3 and S2). The diffraction peaks for Fe/Al-(oxy)hydroxides are somewhat more evident in the RH and BL.

Illite and kaolinite are the dominant phases in the clay fraction (Figs. 3 and S1). The main differences in soil clay mineralogy between soil horizons are associated with 2:1 clay minerals yielding reflections at ~14 Å (Figs. 3 and S1). The intensity and position of the ~14-Å peak changed after the EG treatment and heat treatment of the K-saturated mounts at various temperatures, which offer a basis for identification of the

358	2:1 clay minerals. The XRD spectra of slowly heated, K-saturated mounts are deemed
359	the most useful in recognizing the presence of HIV (Barnhisel and Bertsch 1989). In
360	samples from the HH, the ~14-Å peak gradually shifted to ~12-12.6 Å in the K100 and
361	K200 spectra and then disappeared at higher temperatures (Fig. 3a-d). Peak residues at
362	10.2-11.5 Å after K550 treatment are found in the HH samples, although these peaks
363	are weak in some samples (Fig. 3a-d). The prominent peak at ~ 10 Å after K550
364	treatment is primarily from illite, with only a minor contribution from collapse of the
365	~14-Å peak. According to Meunier (2007), hydroxy-interlayered smectite (HIS) does
366	not expand fully after EG treatment but only to ~15 Å and then collapses to ~12 Å after
367	K saturation. Thus, the occurrence of HIS in the Songzi samples can be discounted.
368	These considerations provide solid evidence for the presence of a hydroxy-interlayered
369	form of vermiculite with a relatively low degree of Al-polymerization in the HH
370	(Barnhisel and Bertsch 1989; Moore and Reynolds 1997; Korchagin et al. 2019). The
371	presence of HIV is also supported by DRIFT and exchangeable Al data (see the sections
372	DRIFT analysis and Crystalline forms of Fe and Al). HIV was not observed in samples
373	from the RH and BL (Fig. 3e, f). The K550 spectrum indicates that all samples contain
374	kaolinite, since the 7.1-Å peak is no longer present (Fig. 3).
375	The \sim 14-Å peak in the HH samples show scarcely any expandable character after
376	the EG treatment, suggesting the absence of swelling clay minerals (i.e., smectite or
377	vermiculite) in the HH (Figs. 3 and S1). Considering the results above, the \sim 14-Å peak

378 in the HH samples is primarily attributable to HIV. In a few samples from the lower HH

379	(e.g., sample at 1.2 m), the \sim 14-Å peak partially collapsed to \sim 10 Å after the K25
380	treatment (Fig. 3c), possibly indicating the presence of high-charge interlayers in HIV
381	(Barnhisel and Bertsch 1989; Meunier 2007). The peak at ~14 Å is particularly weak in
382	the RH, indicating a very minor occurrence of HIV, smectite, or vermiculite. The \sim 14-Å
383	peak in the BL samples expanded to ~17.5 Å after the EG treatment (Figs. 3d and S1),
384	suggesting the presence of smectite in the BL. We are not able to exclude the presence
385	of low-charge vermiculite in the BL as the potential expanded vermiculite peak at ~ 16
386	Å is weak and may overlap with that of expanded interstratified illite-smectite (I-S)
387	(Figs. 3 and S1).

388 Consistent with the general distribution of smectite, interstratified I-S and 389 kaolinite-smectite (K-S) are present mainly in the BL. There is a notable "platform" 390 between ~ 10.6 Å and ~ 12 Å in the BL samples, which splits into two peaks after EG 391 treatment, a rightward peak at ~9.1-9.6 Å and a leftward peak at ~11.5-13.6 Å. This observation provides solid evidence for the presence of I-S in the BL. For samples 392 393 containing I-S with a relatively high proportion of smectite layers, the leftward peak 394 may even shift to >15 Å (Cuadros and Altaner 1998). As noted above, it is difficult to 395 discriminate this potential peak from the peak of EG-expanded smectite. However, this 396 discrimination is unnecessary for the focus of the present study. K-S can be more readily identified: there is a broad and asymmetrical peak at ~7.1-7.9 Å with a 397 398 pronounced tail in the low-angle region in most AD mounts from the lower RH and BL, 399 which often shows expandable character in the corresponding EG mounts, i.e., the peak

400	shape is marked by a leftward shift or becomes slightly expanded (Figs. 3 and S1). We
401	cannot exclude the presence of halloysite in these samples, although that mineral does
402	not respond to EG treatment, making K-S a more likely contributor to the tail in the
403	low-angle region (Figs. 3 and S1; Righi et al. 1999; Dudek et al. 2007). However, the
404	difference in the \sim 7.1-7.9 Å region between the AD and EG treatments is not obvious in
405	some samples from the lower RH and BL, suggesting the absence of K-S.
406	Peak decomposition and fitting of XRD spectra were performed on the basis of
407	the aforementioned clay-mineral identifications (Fig. 4), and the fitted curves are
408	generally consistent with experimental XRD spectra. The peak decomposition and
409	fitting procedure yields semiquantitative mineral compositions, which clearly reveal
410	differences in clay-mineral assemblages over a range of soil depths (Fig. 4). For
411	example, our results show that HIV is preferentially enriched in the upper HH, and
412	that smectite is preferentially enriched in the lower BL (Fig. 4). These results are
413	consistent with clay-mineral identifications based on saturation and heating
414	experiments (Moore and Reynolds 1997).

415

416 **DRIFT analysis**

The DRIFT spectra of the untreated <74-µm fractions, the <74-µm fractions after
AO extraction and DC extraction, and the clay fractions in the HH (0.3 m) and RH
(5.1 m) are shown in Figure 5a. The assignments of inorganic bands are listed in Table
The <74-µm fractions have strong absorption bands for quartz and clay minerals,

421	consistent with the result from bulk-sample XRD analysis (Fig. S2). The persistence
422	of clay minerals after the AO extraction attests to the slower kinetics of dissolution of
423	these clay phases relative to the amorphous phases (Chorover et al. 2004). The broad
424	intense band in the 3500–3000 cm^{-1} range represents the stretching vibrations of
425	H-bonded hydroxyl (O-H) groups of alcohols, phenols, and water molecules
426	(Ellerbrock et al. 1999), and this band decreases after the AO extraction and collapses
427	after the DC extraction. Three prominent bands in the region of 2000-1700 cm^{-1} are
428	caused by weak overtones/combination bands of quartz (Nguyen et al. 1991). The
429	doublet at 800 cm^{-1} and 780 cm^{-1} and the sharp band at 697 cm^{-1} also correspond to
430	quartz. These bands were absent in the clay-fraction samples, and the remaining bands
431	at 754 cm^{-1} and 697 cm^{-1} are indicative of kaolinite and illite, respectively. It is
432	worthy to note that the bands for mineral features may be overlapped with organic
433	substances. For example, OH stretching region may be influenced by hydroxyls groups
434	found in the organic matter. The aromatic C=C stretching and HOH deformation band
435	of adsorbed water at 1640 cm^{-1} and aliphatic C–H bending band at 1405 cm^{-1} are
436	evident in the clay-fraction samples (Baes and Bloom 1989). Organic bands below
437	1200 cm^{-1} (i.e., angular deformations of aromatic compounds at ~430, 470, 540, 697,
438	and 915 cm ⁻¹ , and C-O stretching of hydrophilic compounds at ~1025 and 1100 cm ⁻¹ ;
439	Aguiar et al. 2013; Nuzzo et al. 2020) are generally masked by intense quartz and
440	phyllosilicate bands.

441 Variations in clay-mineral assemblages are strongly reflected in the O-H

442	stretching region (3900–2900 cm ^{-1} ; Fig. 5b). The bands at 3699 cm ^{-1} and 3650 cm ^{-1}
443	are characteristic of the Al-OH vibration in the octahedral sheet of kaolinite
444	(Madejová 2003; Mavris et al. 2018). These two bands become sharper and more
445	pronounced at greater depths within the study section, indicating more kaolinite in the
446	RH and BL relative to the HH. The band at 3625 cm^{-1} represents inner hydroxyl
447	groups between the tetrahedral and octahedral sheets of kaolinite and 2:1 dioctahedral
448	phases (Zhang et al. 2016). In the BL, the greater intensity of the band at 3699 cm^{-1}
449	relative to that at 3625 cm^{-1} may be correlated with enhanced kaolinization of
450	interstratified K-S (Cuadros and Dedek 2006). The apparent band at 3650 cm ⁻¹ may
451	represent improved crystallinity of the kaolinite structure (Fig. 5b; Cuadros and
452	Dudek 2006). The band at ~3699 cm^{-1} may also be related to occurrence of an
453	Al-hydroxy interlayer in 2:1 clay minerals (i.e., HIV), although it overlaps with the
454	kaolinite band (Barnhisel and Bertsch 1989; Szymański et al. 2014).

455 Comparison between DRIFT spectra of the <74-µm fraction and DC-treated <74-µm fraction can also provide evidence for the presence of HIV in the HH (Fig. 456 5a). The band at 540 cm⁻¹ is commonly attributed to Al-OH in the interlayer 457 458 hydroxide sheet (Barnhisel and Bertsch 1989), which became notably weaker (compared to the nearby band at 470 cm⁻¹) after the DC extraction for the HH samples. 459 However, the reduction in intensity of the 540-cm⁻¹ band is not observed for samples 460 461 from other horizons. Considering that the DC extraction can dissolve Al-OH in the 462 interlayer hydroxide sheet of HIV (Barnhisel and Bertsch 1989), we suggest that the

- 463 comparison of the DRIFT spectra confirms the presence of HIV in the HH samples,
- 464 consistent with the XRD analysis.
- 465

466 Crystalline forms of Fe and Al

467 Differences in Fe and Al dissolution by the three primary extraction methods (PP, 468 AO, and DC) reflect variable proportions of the crystalline forms of Fe and Al 469 throughout the section (Fig. 6; Table S1). The contents of these Fe and Al phases generally follow the orders $Fe_d > Fe_p > Fe_p$ and $Al_d > Al_p > Al_p$, respectively. There is no 470 471 significant difference in concentrations of Fe_p and Al_p between the HH and RH-BL (p =472 0.21 and 2.97 for Fe_p and Al_p, respectively; Fig. 6a). Contents of amorphous or 473 short-range-order (SRO) minerals plus organically bounded Fe and Al phases are low throughout the Songzi section: Fe_0 and Al_0 range from 1.01 to 2.82 g kg⁻¹ and 0.48 to 474 475 1.03 g kg⁻¹, respectively. The HH contains significantly more Fe₀ and Al₀ (mean = 2.58) and 0.95 g kg⁻¹, respectively) than the RH and BL (means = 1.78 and 0.75 g kg⁻¹, 476 477 respectively) (F > 7, p < 0.01; Table S1). The contents of total extractable Fe and Al are notably different in the various horizons (F = 12.64 and 7.22 for Fe_d and Al_d, 478 479 respectively; p < 0.01), with significantly higher contents of extractable Fe and Al in the RH-BL (mean $Fe_d = 14.51 \text{ g kg}^{-1}$; mean $Al_d = 1.59 \text{ g kg}^{-1}$) compared to the HH 480 (mean $Fe_d = 12.22 \text{ g kg}^{-1}$; $Al_d = 1.46 \text{ g kg}^{-1}$) (Fig. 6c; Table S1). Total Fe and A1 481 482 concentrations do not show significant differences between the HH and RH-BL (p =483 0.28 and 1.54 for Fe_t and Al_t, respectively; Fig. 6d).

484	Fe_o/Fe_d represents the SRO fraction of Fe-bearing minerals in soils, and $Fe_d\!-\!Fe_o$
485	represents the crystalline pedogenic Fe pool (Blume and Schwertmann 1969; Coward
486	et al. 2017; Hall et al. 2018). Similarly, Al_o/Al_d and Al_d-Al_o represent the SRO fraction
487	of Al-bearing minerals and the crystalline pedogenic Al pool, respectively (Araki and
488	Kyuma 1986; Rennert 2019). Fe _o accounts for only a small fraction of the total Fe pool,
489	as indicated by low Fe_0/Fe_d ratios, which range from 0.07 to 0.26 (Fig. 6e). Amorphous
490	Al phases plus organically bound Al (Al $_{o}$), on the other hand, are major components of
491	the total Al pool in the HH, as indicated by high Al_o/Al_d ratios with a mean of 0.66. The
492	SRO fraction of Al-bearing minerals is significantly lower in the RH-BL (F = 9.6, $p <$
493	0.01; Fig. 6e), with a mean Al_o/Al_d ratio of 0.47. The RH and BL contain significant
494	amounts of Fe and Al trapped in crystalline phases, as reflected in elevated Fe_d -Fe _o and
495	Al _d -Al _o values (F > 9, $p < 0.01$; Fig. 6f).

496

497 Chemical weathering intensity

The geochemical compositions of the bulk soils in the HH, RH, and BL are given in Table 4. The bulk soils generally have a similar, Si-rich chemical composition (SiO₂ > 67 %). There are, however, some minor differences in chemical composition between soil horizons, especially with regard to the contents of MgO (lower in the BL), CaO (slightly higher in the RH and BL), and alkali metals (lower Na₂O and K₂O in the BL). CIA ranges from 81 to 85, with a mean of 83.5, suggesting an intense weathering condition. The study samples plot close to the 4Si endmember in an M⁺-4Si-R²⁺ ternary

- 505 diagram (Fig. 7), implying major losses of alkaline and alkaline-earth cations (e.g., Na⁺, 506 K^+ , Ca²⁺, and Mg²⁺) and intense chemical weathering (Meunier et al. 2013). The BL 507 samples plot closer to the 4Si endmember than the HH-RH samples, reflecting greater 508 kaolin and Al/Fe-(hydr)oxide content and more intense chemical weathering (Meunier 509 et al. 2013).
- 510

511 Trace element and rare earth element geochemistry

512 Similar to the major element data, trace element concentrations also vary within 513 relatively narrow ranges (Table S2). The distribution patterns of the trace elements are 514 similar for all samples: the Sc, V, Zn, Ga, and Rb contents are close to UCC; Y, Zr, Nb, 515 Cs, Hf, Ta, Th, and U are enriched; and Sr, Sn and Ba are depleted relative to UCC 516 (Fig. S3a). The chondrite-normalized REE patterns of the Songzi samples are 517 presented in Fig. S3b. REE distributions show highly similar features, including 518 enrichment of light-REEs, negative Eu anomalies, and relatively flat heavy-REE 519 distributions. Similar REE distributions have also been reported from the loess 520 profiles in northern and central China (Gallet et al. 1996; Fang et al. 2017). The Songzi 521 samples show positive Ce anomalies in the HH (mean $Ce/Ce^* = 1.18$) and slightly 522 negative Ce anomalies in the BL (mean Ce/Ce* = 0.91) (Fig. 8).

523

524 Thermogravimetric analysis

525 Representative TG/DTG curves are shown in Figure S4. The mass loss at ~100 °C

526	corresponds to loss of moisture and evaporation of absorbed water from the interlayers
527	of 2:1 clay minerals (Ma et al. 2015). Mass loss in the 150-200 °C range is generally
528	caused by dehydration of water molecules that are strongly bounded in hydration shells
529	of cations with high hydration enthalpy (e.g., Ca^{2+} and Mg^{2+}). The small peak at
530	${\sim}270$ °C in both the HH and RH samples is attributed to dehydration of goethite
531	(Ndzana et al. 2018), which is consistent with XRD results showing a small amount of
532	goethite throughout the Songzi section. A minor mass loss at \sim 370 °C in the DTG
533	curve can be observed only in the HH samples (Fig. S4a). Mass losses in the range of
534	350-800 °C generally represent dehydroxylation (i.e., release of structural OH groups)
535	of the layer structure in clay minerals.

536

537 DISCUSSION

538 Coupling between soil acidity pools and HIV formation

539 HIV is found in the upper part of the Songzi section (especially the upper HH) 540 with diminishing content with depth, and this phase completely disappears in the 541 RH-BL (Fig. 8). The presence of HIV in the HH samples has been confirmed by XRD 542 and DRIFT analyses (Figs. 3 and 5). Notably higher exchangeable Al:CEC ratios (i.e., 543 Al_{ex} /CEC) may also suggest the polymerization of Al in interlayers of vermiculite in 544 the HH (Barnhisel and Bertsch 1989; Jin et al. 2010). Thermal analysis has been used 545 to confirm the presence of hydroxy-interlayered minerals when they are the dominant 546 phases in the soil (Barnhisel and Rich 1963; Barnhisel and Bertsch 1989). Mass loss

547	at 370 °C in the DTG curve, which has been attributed to hydroxy interlayers
548	(Barnhisel and Bertsch 1989), can be observed only in the HH samples (Fig. S4). As
549	such, thermal analysis provides additional evidence for the occurrence of
550	hydroxy-interlayered minerals (HIMs) in the HH. HIMs have also been found to be
551	preferentially enriched in the surface horizons of sediment-derived soils from
552	subtropical Brazil (Andrade et al. 2019). Relative to the Songzi soil, the Brazilian
553	soils developed in a similar climatic background and have similar organic contents but
554	lower pH. Andrade et al. (2019) ascribed the formation of HIMs to high rates of Al
555	release during pedogenic weathering under acidic soil conditions, which influenced
556	the interlayering of Al-polymers in the clay minerals. Interlayering is a common
557	phenomenon in pedogenic 2:1 clay minerals, in which the interlayer materials include
558	cations, hydrated cations, organic molecules, and hydroxide groups or sheets
559	(Meunier 2007; Dietel et al. 2019a, 2019b; Georgiadis et al. 2020). According to Rich
560	(1968) and Meunier (2007), HIV is a fast-forming and unstable phase representing a
561	moderately acidic and oxidizing condition that is often linked to frequent wet-dry
562	cycles. The decisive factor that induces HIV formation in the soil environment,
563	however, remains controversial.
564	Soil acidity pools, which include not only $\boldsymbol{H}^{\!\!+}$ ions (i.e., pH) but also active

acid-forming cations such as aluminum and iron, play an important role in soil chemistry (Weil and Brady 2017). We hypothesize that soil acidity pools controlled formation of HIV in the study profile. Under acidic conditions, H⁺ attacks the

568	structure of silicate minerals and promotes the release of Al^{3+} (Sposito 2008). Free
569	$\mathrm{Al}^{3^{+}}$ has a strong tendency to hydrolyze, splitting water molecules into $\mathrm{H}^{^{+}}$ and $\mathrm{OH}^{^{-}}$
570	ions (Fig. 9b; Weil and Brady 2017), and Al ³⁺ combines with OH ⁻ to form
571	hydroxy-aluminum ions $[Al(OH)_x^{y^+}]$ (i.e., $AlOH^{2+}$ and $Al(OH)_2^+$), from which large
572	Al polymers in the interlayer of 2:1 clay minerals are generated (Meunier 2007; Weil
573	and Brady 2017). During the hydrolysis process, the formation of hydroxy-aluminum
574	ions $[Al(OH)_x^{y^+}]$ leaves H^+ in the soil solution, yielding lower pH. Each Al^{3+} ion
575	releases three H^+ ions, making it a strong acid-forming cation (or 'acid cation'). Fe ³⁺
576	has similar properties to Al^{3+} in that it can release H^+ ions during the hydrolysis
577	process. Nevertheless, Fe^{3+} hydrolyzes at extremely low pH conditions (pH < 3),
578	which are not common in natural soils (Weil and Brady 2017; Ying et al. 2020). In
579	soils pH > 3, free Fe^{3+} ions tend to quickly precipitate as iron hydroxides or
580	oxyhydroxides. The hydroxy-iron ions (i.e., $FeOH^{2+}$ and $Fe(OH)_2^+$)) tend not to
581	survive long in natural soil systems, which may account for the observation that
582	hydroxy-Fe interlayers are much less common in clay minerals than hydroxy-Al
583	interlayers. The pH of the Songzi soils ranges from 4.8 to 6.5 (Table 2), so we confine
584	our discussion to Al^{3+} (Fig. 9).
585	In the study section, the HH provided an optimal environment for formation of

30 %; Fig. 4; Table S3), low organic matter content (TOC $\leq 2.1 \text{ g kg}^{-1}$), moderately

HIV, key features of which included abundant pre-existing 2:1 clay minerals (illite >

586

587

588 acidic conditions (mean pH = 5.2; Table 2), and a monsoonal climate with oscillating

589	wet and dry cycles. These features are generally consistent with the optimal
590	conditions (e.g., pH ranging from 4.6 to 5.8, low organic matter content, and frequent
591	wet-dry cycles) for formation of HIV proposed by Rich (1968). More importantly, the
592	HH contains a greater quantity of active acid-forming cations than the RH and BL, as
593	reflected in significantly greater amounts of SRO Al- and Fe-oxy(hydr)oxides (mean
594	Al_o and $Fe_o = 2.58$ and 0.95 g kg ⁻¹ , respectively) and a higher aluminum saturation
595	percentage (mean Al _{ex} /CEC = 2.9 %) (Fig. 6; Table 2). In the HH, the relatively high
596	concentration of Al_{ex} to CEC reflects the inferred hydrolysis and polymerization of Al
597	in the interlayers of vermiculite in acidic soils (Jin et al., 2010), which is consistent with
598	our XRD and DRIFT results. Compared to the underlying horizons, the HH contains
599	significantly larger amounts of active Al phases, as indicated by its $\mathrm{Al}_{o}/\mathrm{Al}_{d}$
600	distribution (Figs. 6e and 8g). Al-(hydr)oxides with larger SRO Al fractions (poorer
601	crystallinity) are more readily mobilized than more crystalline phases, leading to
602	greater quantities of free Al ³⁺ ions in soil water (Rennert 2019). The HH experienced
603	intense hydrolysis during the deposition-pedogenesis process, and the detrital clay
604	minerals transformed to thermodynamically more stable clay species through
605	chemical weathering (Singer 1980; Huang et al. 2018). The acid ions (especially H^+
606	and Al^{3+}), along with other cations (i.e., Ca^{2+} and Mg^{2+}), accumulated in the HH
607	during the strong hydrolysis process. The adsorption strength of common cations on
608	most clays and humus decreases in the order: $Al^{3^+} > Ca^{2^+} > Mg^{2^+} > K^+ > Na^+$
609	(Evangelou and Phillips 2005). Weathering of illite leads to opening of its interlayers

610	and leaching of K, which can then be substituted by other cations, potentially
611	transforming illite to vermiculite. With adequate acid-cation supply, aluminum ions
612	occupy an increasing proportion of the remaining exchange sites, forming Al-polymer
613	islands in the interlayers of vermiculite/HIV. We infer that the presence of sufficient
614	aluminum ions in soil solution may be a key factor in HIV formation (Fig. 9b).
615	Formation of HIV was not favored in the lower part of the Songzi section (i.e.,
616	RH-BL) (Figs. 3 and 8). In those horizons, pH was higher (mean 6.1), resulting in
617	greater precipitation of Al-OH as hydroxide $[Al(OH)_3^0]$ rather than being accumulated
618	in the interlayer of clay minerals (Fig. 9c; Carstea et al. 1970; Hsu 1989).
619	Concentrations of exchangeable aluminum are negligible, and effective CEC is
620	mostly saturated with respect to exchangeable non-acid cations (Ca^{2+} , Mg^{2+} , K^+ , and
621	Na ⁺ , i.e., the base cations; Table 2). Moreover, the crystallinity of Fe/Al-(hydr)oxides
622	is statistically greater in the RH-BL than in the HH (Fig. 6), which is evidence of a
623	rapid down section decrease in active Al^{3+} and Fe^{3+} ions. More well-crystalline Fe and
624	Al-(hydr)oxides are present in the RH-BL, as indicated by the wet-chemical
625	extraction results (Fig. 6). The RH exhibits evident redoximorphic characteristics (Fig.
626	2b), which formed in an intermittently water-saturated environment with seasonal
627	redox fluctuations. Redox oscillations promote the direct conversion of SRO materials
628	into more crystalline forms (Thompson et al. 2006), leading to rapid precipitation of
629	active Al^{3+} and Fe^{3+} ions as sesquioxides. The intermittently waterlogged conditions
630	and frequent redox cycles of the study soil led to insufficient acidic cations in the soil

631 acidity pool (especially Al^{3+} and Fe^{3+} ions), breaking the transformation pathway from 632 pre-existing 2:1 clay minerals to HIV. Therefore, the intermediate clay phases in the 633 RH-BL are dominated by the smectite group and its associated interstratified minerals 634 (Fig. 8).

635 HIMs are commonly found in seasonally waterlogged paddy soils (Brinkman 636 1970; Mitsuchi 1974; Wakatsuki 1984; Georgiadis et al. 2020), even though the 637 conditions in these soils are not 'optimal' for formation of HIMs (Rich 1968). Paddy 638 soils are periodically flooded soils characterized by alternately reducing and oxidizing 639 conditions, usually in response to agronomic activity (Weil and Brady 2017). These 640 conditions can induce the decomposition of clay-mineral structures and formation of HIMs (Kyuma 1978; Georgiadis et al. 2020). For example, Fe³⁺ can be reduced to 641 mobile Fe^{2+} during periods of flooding, leading to replacement of exchangeable cations 642 643 in the interlayers of clay minerals, and H^+ can be produced by re-oxidation of Fe^{2+} , 644 involved in the formation of HIMs (Brinkman 1970). Another similarity is that paddy 645 soils also possess an A horizon like the HH in the QRS profiles. Compared to 646 underlying horizons, the A horizon is more sensitive to variations in local hydrology, 647 responding to seasonal wet-dry cycles that promote development of 648 hydroxy-intercalated interlayers (Rich 1968). In contrast, the HH in the QRS profiles 649 may have formed in a more oxic environment than the A horizon of paddy soils due to 650 better-drained soil conditions with a greater abundance of acidic cations to maintain 651 acidic weathering, favoring formation of HIMs (Rich 1968; Georgiadis et al. 2020). As

652	discussed above, the RH also formed in a seasonal wet-dry environment, yet HIMs
653	have not been found in the RH due to insufficient acidic cations as well as more
654	frequent redox oscillations of iron (i.e., strong ferrolysis) in macrosites (Fig. 2b).

655

656 Redox and weathering intensity through the Songzi soil profile

The HH, RH, and BL at Songzi are characterized by different weathering degrees, redox conditions, soil acidities, and CECs, reflecting variation in the hydrologic conditions in which mineral dissolution, transformation, and neogenesis took place. The availability of chemical agents (i.e., oxygen, cations, and biota) and the pH and redox potential of the aqueous solution are generally key factors influencing the soil

hydrologic regime (Kump et al. 2000; Chadwick and Chorover 2001).

663 Variations in the Ce anomaly can track soil-redox status (Laveuf and Cornu 2009; 664 Vázquez-Ortega et al. 2016; Chen et al. 2019). In the HH, consistently positive Ce 665 anomalies point to generally oxic conditions, whereas the BL exhibits slightly 666 negative Ce anomalies, denoting more anoxic conditions (Fig. 8i). The inferred 667 soil-redox conditions are consistent with the measured soil-redox potentials (Fig. 8d). 668 The RH is a highly redox-dynamic horizon with diagnostic redoximorphic features 669 (Fig. 2b). Fluctuating redox conditions can be achieved through hydrological 670 perturbations in aquatic environments (Peiffer et al. 2021). Plinthites and white veins 671 are regarded as Fe-enriched and Fe-depleted microsites produced through local redox 672 cycling (Coward et al. 2018; Chen et al. 2019). The occurrence of widespread

Fe-depleted veins in the RH suggests a more waterlogged condition than in the HH,an inference supported by the minor negative Ce anomalies within this horizon (Fig.

675 <mark>8</mark>i).

676 Despite a certain degree of dynamic hydrologic evolution, the whole Songzi 677 profile experienced a continuous history of deposition and pedogenesis under 678 relatively uniform environmental conditions (Fig. S5), which is typical of QRS profiles. These conditions included generally intense chemical weathering (CIA > 679 80 %), low organic accumulation (TOC < 2.5 g kg⁻¹), and a monsoonal climate 680 681 dominated by the East Asian monsoon system (Tables 2 and 4). The soil samples from the Songzi and Xuancheng (XC) profiles exhibit similar compositions in a M⁺-4Si-R²⁺ 682 683 ternary diagram, indicating similar weathering conditions (Fig. 7). Kaolinite and 684 Fe/Al-(hydr)oxides are found throughout the Songzi section, corresponding to 685 sustained, high-intensity post-depositional pedogenic processes. Compared with the 686 HH, the deeper RH-BL layers experienced more intense weathering, as denoted by 687 generally higher $\Delta 4$ Si and CIA values (Fig. 8; Table 4).

688

689 Secondary clay-mineral evolution coupled with soil hydrologic variation

The composition of the clay-mineral assemblage at Songzi shows notable variation along a depth profile (Fig. 8). Apart from clay-sized illite that can be considered a detrital mineral of eolian origin (cf. Churchman and Lowe 2012), multiple secondary clay minerals are present, including HIV, I-S, K-S, smectite, and

694	kaolinite (Figs. 3 and 8). In Figure 8a, we illustrate possible transformation pathways
695	of clay minerals in horizons characterized by a range of hydroclimatic conditions. The
696	presence of interstratified clays indicates the progressive transformation from one
697	compositional endmember to the other. For example, the presence of I-S (or I-V) in
698	the Songzi samples is indicative of transformation of illite to smectite (or vermiculite),
699	as commonly reported in soil environments (Hong et al. 2014; Andrade et al. 2019).
700	These interstratified clay minerals can be further transformed to pure smectite or
701	vermiculite through continued weathering. Andrade et al. (2019) suggested that the
702	transformation to smectite or vermiculite are dependent on the relative contents of Mg
703	and Al in the parent rocks.
704	In the HH, primary minerals were transformed to kaolinite with vermiculite
705	group minerals (i.e., HIV) as intermediate products, whereas in the RH-BL, primary
706	minerals tended to be transformed into smectite group minerals. The XRD spectra of
707	the RH samples show no peaks at \sim 14 Å, indicating an absence of discrete expandable
708	2:1 clay minerals (i.e., smectite or vermiculite), although a certain amount of K-S is
709	present (Figs. 3 and S1). K-S is commonly viewed as an intermediate product of
710	progressive kaolinization of smectite, and the transformation of smectite to kaolinite
711	is indicative of increasing soil maturity (Churchman et al. 1994; Vingiani et al. 2004;
712	Fang et al. 2019). Discrete smectite minerals were detected only in the BL, i.e., the

713 most intensely weathered part of the Songzi profile (Figs. 3 and 8).

714 All Songzi soil samples exhibit similar REE distributions and nearly constant

715	La-Th concentrations (La/Th ranges from 2.10 to 2.53), suggesting a relatively
716	uniform primary composition for the entire section (Figs. S3 and S5). Thus, the
717	diversity of clay types present in this soil profile can be ascribed to the dynamic
718	nature of the local hydroclimate. The HH is characterized by oxic conditions and
719	abundant active acid cations, favoring formation of vermiculite group minerals,
720	especially HIV (see preceding section for details). K-S preferentially occurs in
721	horizons that are slightly anoxic and poorly drained. In well-drained soils subject to
722	intense chemical weathering, smectite is completely transformed to kaolinite, so the
723	former mineral is rarely found in moist tropical soils except for those subject to
724	seasonal wet-dry climate cycles (Fisher and Ryan 2006; Ryan and Huertas 2009;
725	Hong et al. 2012; Fang et al. 2019). The RH experienced annual redox oscillations
726	linked to wet-dry cycles, i.e., conditions that were favorable for K-S preservation. The
727	BL contains a higher proportion of SiO_2 and lower proportions of alkali and
728	alkaline-earth metals compared to the HH and RH, reflecting intense hydrolysis. In
729	extreme weathering environments, kaolinite and K-S are the most stable phyllosilicate
730	species, and they are the dominant secondary clay phases in the BL (kaolinite + K-S \geq
731	62 %; Table S3). The BL has relatively high pH (\geq 6.3) and an effective CEC of 100 %
732	saturation with base cations, favoring the formation of smectite group minerals (Fig.
733	9c; Table 2). We infer that an aquic moisture regime and near-neutral soil pH played
734	key roles in smectite formation in the study section.

735

IMPLICATIONS 736 737 A red soil profile with evident redoximorphic features was investigated with a 738 clay-mineral transformations using integrated physico-chemical, focus on 739 mineralogical, geochemical, and spectral analyses. Our investigation shows a 740 coupling between clay-mineral evolution and soil redoximorphic changes within a red 741 soil section. Our investigation also shows that, from the primary minerals to the final 742 weathering products, the transformation pathway is mainly mediated by key hydrologic 743 factors such as the acidic cation concentration in soil solutions, waterlogging, and 744 redox oscillations. We suggest that soil hydrologic conditions are tightly coupled with 745 the decomposition and recombination of secondary minerals, especially HIV, smectite 746 and interstratified smectitic clay minerals. HIV is favored in oxic, well-drained soil 747 systems, in which the aqueous solution has adequate acidic cations to promote chemical 748 weathering. When soils are more waterlogged and the aqueous solution is dominated by 749 base cations, detrital minerals tend to transform to smectite group minerals. Particular 750 emphasis is given to the important role of the soil acidic pool (including both H^{+} ions 751 and other acidic cations) in inducing transformations to hydroxy-interlayered clay 752 minerals. This study advances our understanding on the transformation processes 753 between different clay minerals and their environmental controls in natural soil 754 systems. The close relationship between hydrologic conditions and secondary clay 755 alteration confirmed in this study provides new insights into the kinetics of 756 water-mineral interactions that are central to all geological processes.

757

758	ACKNOWLEDGMENTS
759	We thank Yao Liu, Jiangjun Chen, Li Chen, and Chen Liu for field and
760	laboratory assistance. Part of this research was carried out at the Chorover
761	Environmental Biogeochemistry Group in the University of Arizona, and we are truly
762	grateful for the kind support provided by Dr. Jon Chorover and his lab members. We
763	also thank the editors Dr. Hongwu Xu and Dr. Lindsay J McHenry for their efficient
764	handling of the manuscript, and five anonymous reviewers for their suggestions and
765	constructive comments that substantially improved the manuscript.
766	
767	FUNDING
768	This work was supported by National Natural Science Foundation of China
769	(42002042, 41972040, 42172045, and 42102031), China Postdoctoral Science
770	Foundation (2020M672440), and Fundamental Research Funds for the Central
771	Universities, China University of Geosciences (Wuhan) (No. CUG170106).
772	
773	REFERENCES CITED
774	Aguiar, N. O., Novotny, E. H., Oliveira, A. L., Rumjanek, V. M., Olivares, F. L., and
775	Canellas, L. P. (2013) Prediction of humic acids bioactivity using spectroscopy
776	and multivariate analysis. Journal of Geochemical Exploration, 129, 95-102.
777	Andrade, G.R.P., Cuadros, J., Partiti, C.S.M., Cohen, R., and Vidal-Torrado, P. (2018)

778	Sequential	mineral	transformation	from	kaolinite	to	Fe-illite	in	two	Brazilian
779	mangrove s	oils. Geo	oderma, 309, 84	-99.						

- 780 Andrade, G.R.P., Azevedo, A.C.D., Lepchak, J.K., and Assis, T.C. (2019) Weathering
- 781 of Permian sedimentary rocks and soil clay minerals transformations under
- subtropical climate, southern Brazil (Paraná State). Geoderma, 336, 31-48.
- 783 Araki, S., and Kyuma, K. (1986) Chemical and clay mineralogical characteristics of red
- and/or yellow colored soil materials in relation to lithology and weathering indices.
- 785 Soil Science and Plant Nutrition, 32, 265-271.
- 786 Baes, A.U., and Bloom, P.R. (1989) Diffuse reflectance and transmission Fourier
- 787 transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Science
- 788 Society of America Journal, 53, 695-700.
- 789 Barnhisel, R.I., and Bertsch, P.M. (1989) Chlorites and Hydroxy-Inter layered
- vermiculite and smectite. In Dixon, J. B., Weed, S. B. (eds.): Minerals in Soil

791 Environments. SSSA, Madison, WI, USA, pp. 729–788.

- 792 Barnhisel, R.I., and Rich, C.I. (1963) Gibbsite formation from aluminum-interlayers in
- montmorillonite. Soil Science Society of America Proceedings, 27, 632-635.
- 794 Blume, H. P., and Schwertmann, U. (1969) Genetic evaluation of profile distribution of
- aluminum, iron, and manganese oxides. Soil Science Society of America Journal,
- 796 33, 438-444.
- 797 Bockheim, J.G. (2014) Soil Geography of the USA: A Diagnostic-Horizon Approach.
- 798 Springer International Publishing, Switzerland.

- Brinkman, R., 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma, 3,199-206.
- 801 Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., and Paul, E. (2013) Diffuse
- 802 reflectance Fourier Transform mid-infrared spectroscopy as a method of
- 803 characterizing changes in soil organic matter. Soil Science Society of America
- 804 Journal, 77, 1591-1600.
- 805 Carstea, D.D., Harward, M.E., and Knox, E.G. (1970) Comparison of iron and
- aluminum hydroxy interlayers in montmorillonite and vermiculite: I. Formation.
- 807 Soil Science Society of America Journal, 34, 517-521.
- 808 Chadwick, O.A., and Chorover, J. (2001) The chemistry of pedogenic thresholds.
- 809 Geoderma, 100, 321-353.
- 810 Chen, C., Barcellos, D., Richter, D.D., Schroeder, P.A., and Thompson, A. (2019)
- 811 Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent
- 812 iron-oxide crystallinity. Journal of Soils and Sediments, 19, 785-797.
- 813 Chen, J., An, Z.S., Liu, L.W., Ji, J.F., Yang, J.D., and Chen, Y. (2001) Variations in
- 814 chemical compositions of the eolian dust in Chinese Loess Plateau over the past
- 815 2.5 Ma and chemical weathering in the Asian inland. Science in China D—Earth
 816 Sciences, 44, 403-413.
- 817 Chorover, J., Amistadi, M.K., and Chadwick, O.A. (2004) Surface charge evolution of
- 818 mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochimica et
- 819 Cosmochimica Acta, 68, 4859-4876.

820	Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D.L. (2007) Soil
821	biogeochemical processes within the Critical Zone. Elements, 3, 321-326.
822	Churchman, G.J. (2018) Game Changer in Soil Science. Functional role of clay
823	minerals in soil. Journal of Plant Nutrition and Soil Science, 181, 99-103.
824	Churchman, G.J., and Lowe, D.J. (2012) Alteration, formation, and occurrence of
825	minerals in soils. In: Huang, P.M., Li, Y., and Summer, M.E. (eds.) Handbook of
826	Soil Sciences, 2 nd ed., Vol. 1: Properties and Processes. CRC Press, Boca Raton,
827	Florida, pp. 20.1-20.72.
828	Churchman, G.J., Slade, P.G., Self, P.G., and Janik, L.J. (1994) Nature of interstratified
829	kaolin-smectites in some Australian soils. Australian Journal of Soil Research, 32,
830	805-822.
831	Compton, J.S., White, R.A., and Smith, M. (2003) Rare earth element behavior in soils
832	and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South
833	Africa. Chemical Geology, 201, 239-255.
834	Coward, E.K., Thompson, A.T., and Plante, A.F. (2017) Iron-mediated mineralogical
835	control of organic matter accumulation in tropical soils. Geoderma, 306, 206-216.
836	Coward, E.K., Thompson, A., and Plante, A.F. (2018) Contrasting Fe speciation in two
837	humid forest soils: Insight into organomineral associations in redox-active
838	environments. Geochimica et Cosmochimica Acta, 238, 68-84.
839	Cuadros, J. and Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite
840	from bentonites using microscopic, chemical, and X-ray methods; constraints on

- the smectite-to-illite transformation mechanism. The American mineralogist, 83,
- 842 762-774.
- 843 Cuadros, J. and Dudek, T. (2006) FTIR investigation of the evolution of the octahedral
- sheet of kaolinite-smectite with progressive kaolinization. Clays and clay minerals,
- 845 54, 1-11.
- 846 Cuadros, J., Cesarano, M., Dubbin, W., Smith, S.W., Davey, A., Spiro, B., Burton,
- 847 R.G.O., and Jungblut, A.D. (2018) Slow weathering of a sandstone-derived
- 848 Podzol (Falkland Islands) resulting in high content of a non-crystalline silicate.
- American Mineralogist, 103, 109-124.
- 850 Deng, Y., Li, H., Wang, Y., Duan, Y., and Gan, Y. (2014) Temporal variability of
- 851 groundwater chemistry and relationship with water-table fluctuation in the
- Jianghan Plain, central China. Procedia Earth and Planetary Science, 10, 100-103.
- 853 Dietel, J., Gröger-Trampe, J., Bertmer, M., Kaufhold, S., Ufer, K., and Dohrmann, R.
- 854 (2019a) Crystal structure model development for soil clay minerals-I.
 855 Hydroxy-interlayered smectite (HIS) synthesized from bentonite. A
- multi-analytical study. Geoderma, 347, 135-149.
- Dietel, J., Ufer, K., Kaufhold, S., and Dohrmann, R. (2019b) Crystal structure model
 development for soil clay minerals-II. Quantification and characterization of
 hydroxy-interlayered smectite (HIS) using the Rietveld refinement technique.
- 860 Geoderma, 347, 1-12.
- 861 Ding, Y.H., and Chan, J. (2005) The East Asian summer monsoon: an overview.

862	Meteorology	and Atmospheric	Physics.	89.	117-142.
••=				~ ~ ,	

- 863 Dong, H. (2012) Clay-microbe interactions and implications for environmental
- 864 mitigation. Elements, 8, 113-118.
- 865 Dudek, T., Cuadros, J., and Huertas, J. (2007) Structure of mixed-layer
- 866 kaolinite-smectite and smectite-to-kaolinite transformation mechanism from
- synthesis experiments. American Mineralogist, 92, 179-192.
- 868 Ellerbrock, R.H., Höhn, A., and Gerke, H.H. (1999) Characterization of soil organic
- 869 matter from a sandy soil in relation to management practice using FT-IR
 870 spectroscopy. Plant and Soil, 213, 55-61.
- 871 Essington, M.E. (2015) Soil and Water Chemistry: An Integrative Approach, 2nd ed.
- 872 CRC Press, Boca Raton, Florida, 539 pp.
- 873 Evangelou, V.P., and Phillips, R.E. (2005) Cation exchange in soils. In: M.A. Tabatabai,

and D.L. Sparks (eds.), Chemical Processes in Soils, 8, 343-410.

- 875 Fang, Q., Hong, H., Zhao, L., Furnes, H., Lu, H., Han, W., Liu, Y., Jia, Z., Wang, C.,
- 876 Yin, K., and Algeo, T.J. (2017) Tectonic uplift-influenced monsoonal changes
- 877 promoted hominin occupation of the Luonan Basin: Insights from a loess-paleosol
- 878 sequence, eastern Qinling Mountains, central China. Quaternary Science Reviews,
 879 169, 312-329.
- 880 Fang, Q., Hong, H., Algeo, T.J., Huang, X., Sun, A., Churchman, G.J., Chorover, J.,
- 881 Chen, S., and Liu, Y. (2019) Microtopography-mediated hydrologic environment
- 882 controls elemental migration and mineral weathering in subalpine surface soils of

- subtropical monsoonal China. Geoderma, 344, 82-98.
- 884 Fisher, G.B., and Ryan, P.C. (2006) The smectite to disordered kaolinite transition in a
- tropical soil chronosequence, Pacific Coast, Costa Rica. Clays and Clay Minerals,
- 886 54, 571-586.
- 887 Gallet, S., Jahn, B., and Torii, M. (1996) Geochemical characterization of the Luochuan
- loess-paleosol sequence, China, and paleoclimatic implications. ChemicalGeology, 133, 67-88.
- 890 Gan, Y., Wang, Y., Duan, Y., Deng, Y., Guo, X., and Ding, X. (2014)
- Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan
 Plain, central China. Journal of Geochemical Exploration, 138, 81-93.
- 893 Georgiadis, A., Dietel, J., Dohrmann, R., and Rennert, T. (2020) What are the nature
- and formation conditions of hydroxy-interlayered minerals (HIMs) in soil?

895Journal of Plant Nutrition and Soil Science, 183, 12-26.

- 896 Goodfellow, B.W., Hilley, G.E., Webb, S.M., Sklar, L.S., Moon, S., and Olson, C.A.
- 897 (2016) The chemical, mechanical, and hydrological evolution of weathering
 898 granitoid. Journal of Geophysical Research: Earth Surface, 121, 1410-1435.
- Graham, R.C., Weed, S.B., Bowen, L.H., and Buol, S.W. (1989) Weathering of
- 900 iron-bearing minerals in soils and saprolite on the North Carolina Blue Ridge
- 901 Front: I. Sand-size primary minerals. Clays and clay minerals, 37, 19-28. Hall, S.J.,
- 902 Berhe, A.A., and Thompson, A. (2018) Order from disorder: do soil organic
- 903 matter composition and turnover co-vary with iron phase crystallinity?

Biogeochemistry, 140, 93	3-110.
--------------------------	--------

- 905 Han, L., Hao, Q., Qiao, Y., Wang, L., Peng, S., Li, N., Gao, X., Fu, Y., Xu, B., and Gu, Z.
- 906 (2019) Geochemical evidence for provenance diversity of loess in southern China
- 907 and its implications for glacial aridification of the northern subtropical region.
- 908 Quaternary Science Reviews, 212, 149-163.
- 909 Harsh, J., Chorover, J., and Nizeyimana, E. (2002) Allophane and imogolite. J.B. Dixon,
- 910 and D.G. Schulze (eds.), Soil Mineralogy with Environmental Applications, 7, pp.
- 911 291-322.
- 912 He, H., Ji, S., Tao, Q., Zhu, J., Chen, T., Liang, X., Li, Z., and Dong, H. (2017)
- 913 Transformation of halloysite and kaolinite into beidellite under hydrothermal
 914 condition. American Mineralogist, 102, 997-1005.
- 915 He, X., Xie, W., Deng, S., and Lu, S. (1983) The problems and achievements about
- 916 improving use red-yellow soil in China. Journal of Soil Science, 2, 1-4 (Chinese917 context with English abstract).
- 918 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
- 919 Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C.,
- 920 Dee, D., and Thépaut, J-N. (2019) ERA5 monthly averaged data on single levels
- 921 from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data
- 922 Store (CDS), DOI: 10.24381/cds.f17050d7.
- 923 Hong, H., Churchman, G.J., Gu, Y., Yin, K., and Wang, C. (2012) Kaolinite-smectite
- 924 mixed-layer clays in the Jiujiang red soils and their climate significance.

- 925 Geoderma, 173, 75-83.
- 926 Hong, H., Churchman, G.J., Yin, K., Li, R., and Li, Z. (2014) Randomly interstratified
- 927 illite-vermiculite from weathering of illite in red earth sediments in Xuancheng,
- 928 southeastern China. Geoderma, 214-215, 42-49.
- 929 Hong, H., Cheng, F., Yin, K., Churchman, G.J., and Wang, C. (2015) Three-component
- 930 mixed-layer illite/smectite/kaolinite (I/S/K) minerals in hydromorphic soils, south
- 931 China. American Mineralogist, 100, 1883-1891.
- 932 Hong, H., Fang, Q., Cheng, L., Wang, C., and Churchman, G.J. (2016)
- 933 Microorganism-induced weathering of clay minerals in a hydromorphic soil.
 934 Geochimica et Cosmochimica Acta, 184, 272-288.
- Hsu, P.H. (1989) Aluminum hydroxides and oxyhydroxides. In: J.B. Dixon, and S.B.
- Weed (eds.), Minerals in Soil Environments, vol. 1, 2nd ed., pp. 331-378.
- 937 Hu, X., Wei, J., Du, Y., Xu, L., Wang, H., Zhang, G., Ye, W., and Zhu, L. (2010)
- 938 Regional distribution of the Quaternary Red Clay with aeolian dust characteristics
- in subtropical China and its paleoclimatic implications. Geoderma, 159, 317-334.
- 940 Hu, X., Du, Y., Liu, X., Zhang, G., Jiang, Y., and Xue, Y. (2015) Polypedogenic case of
- 941 loess overlying red clay as a response to the Last Glacial–Interglacial cycle in
 942 mid-subtropical Southeast China. Aeolian Research, 16, 125-142.
- 943 Huang, C., Wang, M., Tan, W., Wang, M., and Koopal, L.K. (2018)
- 944 Hydroxy-interlayered minerals in the Holocene paleosol on the southernmost
- 945 Loess Plateau, China. Applied Clay Science, 153, 70-77.

- 946 Jin, L., Ravella, R., Ketchum, B., Bierman, P.R., Heaney, P., White, T., and Brantley,
- 947 S.L. (2010) Mineral weathering and elemental transport during hillslope evolution
- 948 at the Susquehanna/Shale Hills Critical Zone Observatory. Geochimica et
- 949 Cosmochimica Acta, 74, 3669-3691.
- 950 Jin, L., Andrews, D.M., Holmes, G.H., Lin, H., and Brantley, S.L. (2011) Opening the
- 951 "black box": water chemistry reveals hydrological controls on weathering in the
- 952 Susquehanna Shale Hills Critical Zone Observatory. Vadose Zone Journal, 10,
- 953 928-942.

962

- 954 Konert, M., and Vandenberghe, J. (1997) Comparison of laser grain size analysis with
- 955 pipette and sieve analysis: a solution for the underestimation of the clay fraction. 956 Sedimentology, 44, 523-535.
- 957 Korchagin, J., Bortoluzzi, E.C., Moterle, D.F., Petry, C., and Caner, L. (2019)
- 958 Evidences of soil geochemistry and mineralogy changes caused by eucalyptus 959 rhizosphere. Catena, 175, 132-143.
- 960 Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006) World Map of the
- 961 Köppen-Geiger climate classification updated. Meteorol. Z., 15, 259-263.
- Kump, L.R., Brantley, S.L., and Arthur, M.A. (2000) Chemical weathering, 963 atmospheric CO₂, and climate. Annual Review of Earth and Planetary Sciences, 964 28, 611-667.
- 965 Kundzewicz, Z.W., Huang, J., Pinskwar, I., Su, B., Szwed, M., and Jiang, T. (2020)
- 966 Climate variability and floods in China—A review. Earth-Science Reviews, 211,

967 103434.

- 968 Kyuma, K. (1978) Mineral Composition of Rice Soils, in IRRI (ed.): Soil and Rice.
- 969 International Rice Research Institute, Los Banos, Philippines, pp. 219–235.
- 970 Laveuf, C., and Cornu, S. (2009) A review on the potentiality of Rare Earth Elements to
- 971 trace pedogenetic processes. Geoderma, 154, 1-12.
- 972 Li, S., He, H., Tao, Q., Zhu, J., Tan, W., Ji, S., Yang, Y. and Zhang, C. (2020)
- 973 Kaolinization of 2:1 type clay minerals with different swelling properties.
- 974 American Mineralogist, 105, 687-696.
- 975 Ma, L., Zhu, J., He, H., Xi, Y., Zhu, R., Tao, Q., and Liu, D. (2015) Thermal analysis
- evidence for the location of zwitterionic surfactant on clay minerals. Applied ClayScience, 112-113, 62-67.
- 978 Madeira, M., Auxtero, E., and Sousa, E. (2003) Volcanic soils: properties and processes
- 979 as a function of soil genesis and land use. Cation and anion exchange properties of
- 980 Andisols from the Azores, Portugal, as determined by the compulsive exchange
- and the ammonium acetate methods. Geoderma, 117, 225-241.
- 982 Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy,
- 983 31, 1-10.
- 984 Mavris, C., Cuadros, J., Nieto, J.M., Bishop, J.L., and Michalski, J.R. (2018) Diverse
- 985 mineral assemblages of acidic alteration in the Rio Tinto area (southwest Spain):
- 986 Implications for Mars. American Mineralogist, 103, 1877-1890.
- 987 McLennan, S.M. (2001) Relationships between the trace element composition of

- 988 sedimentary rocks and upper continental crust. Geochemistry, Geophysics,
 989 Geosystems, 2, 2000GC000109.
- 990 Meunier, A. (2007) Soil hydroxy-interlayered minerals: a re-interpretation of their

991 crystallochemical properties. Clays and Clay Minerals, 55, 380-388.

- 992 Meunier, A., Caner, L., Hubert, F., El Albani, A., and Pret, D. (2013) The weathering
- 993 intensity scale (WIS): An alternative approach of the Chemical Index of Alteration
- 994 (CIA). American Journal of Science, 313, 113-143.
- 995 Mitsuchi, M., 1974. Chloritization in lowland paddy soils. Soil science and plant
- 996 nutrition (Tokyo), 20, 107-116.
- 997 Moore, D.M., and Reynolds, R.C. (1997) X-ray Diffraction and the Identification and
- 998 Analysis of Clay Minerals. Oxford University Press Inc., USA, pp. 100-200.
- 999 Ndzana, G.M., Huang, L., Wang, J.B., and Zhang, Z.Y. (2018) Characteristics of clay
- 1000 minerals in soil particles from an argillic horizon of Alfisol in central China.
- 1001 Applied Clay Science, 151, 148-156.
- 1002 Nesbitt, H.W., and Young, G.M. (1982) Early Proterozoic climates and plate motions

1003 inferred from major element chemistry of lutites. Nature, 299, 715-717.

- 1004 Nguyen, T.T., Janik, L.J., and Raupach, M. (1991) Diffuse reflectance infrared Fourier
- 1005 transform (DRIFT) spectroscopy in soil studies. Soil Research, 29, 49-67.
- 1006 Nuzzo, A., Buurman, P., Cozzolino, V., Spaccini, R., and Piccolo, A. (2020) Infrared
- 1007 spectra of soil organic matter under a primary vegetation sequence. Chemical and
- 1008 Biological Technologies in Agriculture, 7, 1-12.

1009	Parfitt, R.L., and Childs, C.W. (1988) Estimation of forms of Fe and Al: A review, and
1010	analysis of contrasting soils by dissolution and Mossbauer methods. Soil Research,
1011	26, 121-144.

- 1012 Peiffer, S., Kappler, A., Haderlein, S.B., Schmidt, C., Byrne, J.M., Kleindienst, S., Vogt,
- 1013 C., Richnow, H.H., Obst, M., Angenent, L.T., Bryce, C., McCammon, C., and
- 1014 Planer-Friedrich, B. (2021) A biogeochemical-hydrological framework for the
- 1015 role of redox-active compounds in aquatic systems. Nature Geoscience, 14,
- 1016 264-272.
- 1017 Pincus, L.N., Ryan, P.C., Huertas, F.J., and Alvarado, G.E. (2017) The influence of soil
- 1018 age and regional climate on clay mineralogy and cation exchange capacity of
- 1019 moist tropical soils: A case study from Late Quaternary chronosequences in Costa
- 1020 Rica. Geoderma, 308, 130-148.
- 1021 Rasmussen, C., Dahlgren, R.A., and Southard, R.J. (2010) Basalt weathering and
- 1022 pedogenesis across an environmental gradient in the southern Cascade Range,
- 1023 California, USA. Geoderma, 154, 473-485.
- 1024 Rennert, T. (2019) Wet-chemical extractions to characterise pedogenic Al and Fe
- 1025 species—A critical review. Soil Research, 57, 1-12.
- 1026 Rich, C.I. (1968) Hydroxy-interlayers in expansible layer silicates. Clays and Clay
- 1027 Minerals, 16, 15-30.
- 1028 Righi, D., Terribile, F., and Petit, S. (1999) Pedogenic formation of kaolinite-smectite
- 1029 mixed layers in a soil toposequence developed from basaltic parent material in

1030 Sardinia (Italy). Clays and clay minerals, 47, 505-514.

- 1031 Ryan, P.C., and Huertas, F.J. (2009) The temporal evolution of pedogenic Fe-smectite
- 1032 to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil
- 1033 chronosequence. Geoderma, 151, 1-15.
- 1034 Shang, C., and Zelazny, L.W. (2008) Selective dissolution techniques for mineral
- analysis of soil and sediments. In: Ulery, A.L. and Drees, L.R. (eds.) Methods of
- 1036 Soil Analysis, Part 5. Soil Science Society of America, Madison, Wisconsin, pp.
- 1037 33-80.
- Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and
 weathering profiles. Earth-Science Reviews, 15, 303-326.
- 1040 Soil Survey Staff (2010) Keys to Soil Taxonomy, 11th Ed. USDA. National Resources
- 1041 Conservation Service, National Soil Survey Center, Lincoln, Nebraska, 338 pp.
- 1042 Sposito, G. (2008) The Chemistry of Soils, 2nd Ed. Oxford University Press,
- 1043 NewYork/UK, 329 pp.
- 1044 Szymański, W., Skiba, M., Nikorych, V.A., and Kuligiewicz, A. (2014) Nature and
- 1045 formation of interlayer fillings in clay minerals in Albeluvisols from the 1046 Carpathian Foothills, Poland. Geoderma, 235-236, 396-409.
- 1047 Thompson, A., Chadwick, O.A., Rancourt, D.G., and Chorover, J. (2006) Iron-oxide
- 1048 crystallinity increases during soil redox oscillations. Geochimica et
 1049 Cosmochimica Acta, 70, 1710-1727.
- 1050 Vázquez-Ortega, A., Huckle, D., Perdrial, J., Amistadi, M.K., Durcik, M., Rasmussen,

1051	C., McIntosh, J., and Chorover, J. (2016) Solid-phase redistribution of rare earth
1052	elements in hillslope pedons subjected to different hydrologic fluxes. Chemical
1053	Geology, 426, 1-18.
1054	Vingiani, S., Righi, D., Petit, S., and Terribile, F. (2004) Mixed-layer kaolinite-smectite
1055	minerals in a red-black soil sequence from basalt in Sardinia, (Italy). Clays and
1056	Clay Minerals, 52, 473-483.
1057	Wakatsuki, T., Ishikawa, I., Araki, S., Kyuma, K. (1984) Changes in clay mineralogy in
1058	a chronosequence of polder paddy soils from Kojima Basin, Japan. Soil science
1059	and plant nutrition, 30, 25-38.
1060	Weil, R.R., and Brady, N.C. (2017) The Nature and Properties of Soils, 15th Ed.,
1061	Prentice-Hall Press, New York.
1062	Wilson, M.J., He, Z.L., and Yang, X.O. (2004) The Red Soils of China: Their nature,
1063	management and utilization. Springer Science Business Media, New York.
1064	Wu, L.M., Tong, D.S., Zhao, L.Z., Yu, W.H., Zhou, C.H., and Wang, H. (2014) Fourier
1065	transform infrared spectroscopy analysis for hydrothermal transformation of
1066	microcrystalline cellulose on montmorillonite. Applied Clay Science, 95, 74-82.
1067	Ying, H., Feng, X., Zhu, M., Lanson, B., Liu, F., and Wang, X. (2020) Formation and
1068	transformation of schwertmannite through direct Fe ³⁺ hydrolysis under various
1069	geochemical conditions. Environmental Science: Nano, 7, 2385-2398.
1070	Yuan, P., Wu, D. Q., He, H. P., and Lin, Z.Y. (2004) The hydroxyl species and acid sites
1071	on diatomite surface: a combined IR and Raman study. Applied Surface Science,

1072 227(1-4), 30-39.

- 1073 Zhang, Z.Y., Huang, L., Liu, F., Wang, M.K., Fu, Q.L., and Zhu, J. (2016)
- 1074 Characteristics of clay minerals in soil particles of two Alfisols in China. Applied
- 1075 Clay Science, 120, 51-60.
- 1076 Zhao, L., Hong, H., Fang, Q., Yin, K., Wang, C., Li, Z., Torrent, J., Cheng, F., and
- 1077 Algeo, T.J. (2017) Monsoonal climate evolution in southern China since 1.2 Ma:
- 1078 New constraints from Fe-oxide records in red earth sediments from the Shengli
- 1079 section, Chengdu Basin. Palaeogeography, Palaeoclimatology, Palaeoecology,
- 1080 473, 1-15.
- 1081 Zhou, Y., Wang, Y., Li, Y., Zwahlen, F., and Boillat, J. (2013) Hydrogeochemical
- 1082 characteristics of central Jianghan plain, China. Environmental Earth Sciences, 68,
- 1083 765-778.
- 1084

Depth (m)	Horizon	Munsell color	Structure	Texture
0-0.3	Ap (HH)	Dark brown (7.5YR 3/4)	Fine granular	Silty loam
0.3-0.7	D (IIII)	$\mathbf{D}_{\mathbf{r}}$, $\mathbf{h}_{\mathbf{r}}$	Granular	Silty loam
0.7-1.0	BW (HH)	Dark yellowish brown (104 K 2/4)	Granular	Silty loam
1.0-1.2			Very fine Blocky	Silty clay loam
1.3-1.5	D+1 (UU)	Vallowich brown (10VD 5/6)	Very fine Blocky	Silty clay loam
1.6-1.8	ыі (пп)	renowish brown (101K 5/6)	Fine Blocky	Silty clay loam
1.9-2.1			Fine Blocky	Silty clay loam
2.2-2.4	-		Blocky	Silty clay
2.6-2.8			Blocky	Silty clay
2.9-3.1			Blocky	Silty clay
3.2-3.4			Blocky	Silty clay
3.5-3.7		Yellowish yellow (5YR 8/6) matrix	Blocky	Silty clay
3.8-4.0	Bt2 (RH)	accompanied with black (7.5YR 2/0)	Blocky	Silty clay
4.1-4.3		linings, red (2.5YR 4/8) plinthites, and	Blocky	Silty clay
4.4-4.6		white (2.5Y 8/2) veins.	Blocky	Silty clay
4.7-4.9			Blocky	Silty clay loam
5.0-5.2			Blocky	Silty clay loam
5.3-5.5			Blocky	Silty clay loam
5.6-5.8	_		Blocky	Silty clay loam
5.9-6.1			Blocky	Silty clay loam
6.2-6.4	$\mathbf{PC}(\mathbf{DI})$	Vallowich brown (10VD 5/6)	Blocky	Silty clay loam
6.5-6.7	DC (DL)		Blocky	Silty clay loam
6.8-7.2			Blocky	Silty loam

Table 1. Morphological description of the Songzi profile

Table 2. Ma	jor ph	vsico-c	hemical	attributes	of the	Songzi	soils
	J I	2				0	

Soil fractions					Exchangeable cations										
Horizon	Depth	Clay	Silt	Sand	TOC	TN	pН	Eh	Al	Ca	Na	Mg	Κ	CEC	Al _{ex} /CEC
	m		volume %	<u> </u>	g k	g ⁻¹		mV			mme	ol kg ⁻¹			%
	0.30	24.5	72.6	2.9	2.1	0.7	4.8	403	1.95	8.73	2.07	9.97	2.87	25.60	7.63
	0.90	26.3	71.3	2.3	1.4	0.4	4.9	367	0.77	9.88	3.40	11.25	4.48	29.79	2.59
HH	1.20	35.5	61.3	3.1	1.2	0.5	5.3	347	0.40	11.53	2.84	11.93	3.90	30.61	1.32
	1.50	34.6	63.3	2.2	1.3	0.5	5.8	336	0.85	15.57	2.97	15.46	3.71	38.56	2.20
	1.80	28.0	68.3	3.3	1.3	0.5	5.3	309	0.20	14.78	2.58	14.64	3.74	35.93	0.56
	2.10	34.9	64.8	0.3	1.6	0.4	5.6	341	0.15	16.34	2.54	14.96	3.79	37.79	0.40
	2.40	38.6	58.4	2.3	1.0	0.4	5.7	322	0.15	17.35	2.40	14.26	4.45	38.61	0.38
	3.00	39.7	58.6	1.6	1.0	0.5	5.6	297	0.03	19.62	2.36	12.89	4.87	39.78	0.09
	3.30	41.2	56.9	1.9	1.1	0.5	6.4	319	0.31	18.88	2.70	11.24	4.86	37.99	0.81
DU	3.60	38.3	59.7	2.0	0.9	0.4	5.8	307	0.20	19.34	2.98	10.73	4.61	37.86	0.54
KH	3.90	38.8	59.5	1.7	1.3	0.5	6.0	295	0.12	12.78	3.42	9.48	6.47	32.28	0.38
	4.20	38.9	57.1	3.8	1.0	0.5	6.2	281	0.05	18.60	1.87	9.22	3.61	33.36	0.15
	4.50	36.9	56.5	5.2	1.1	0.5	6.1	294	0.04	18.37	2.08	8.72	3.97	33.18	0.13
	5.10	30.3	64.4	4.4	1.0	0.4	6.2	281	0.03	15.16	2.21	7.27	3.23	27.90	0.12
	5.40	35.1	61.0	3.6	1.1	0.3	6.1	307	0.01	19.42	3.71	8.08	8.23	39.45	0.03
	6.00	27.8	69.7	2.6	1.0	0.4	6.3	228	0.00	15.97	1.22	6.09	1.92	25.21	0.01
BL	6.90	23.5	72.9	2.9	0.7	0.3	6.5	274	0.03	15.30	1.06	5.36	2.68	24.44	0.14

Table 3. Major IR absorption bands and functional groups assignments for inorganic components

Band regions (cm ⁻¹)	Assignments	Reference							
3699	OH stretching of phyllosilicates (i.e., Kaolinite)								
3650	OH stretching of phyllosilicates (i.e., Kaolinite)	Nguyen et al., 1991; Mavris et al., 2018							
3625	OH stretching of phyllosilicates (i.e., Kaolinite and dioctahedral 2:1 minerals)								
Broad 3400	OH stretching of water molecules	Baes and Bloom, 1989; Chorover et al., 2004							
Triplet in 2000-1700	Combination bands of quartz	Nguyen et al., 1991							
1640	HOH deformation of adsorbed water	Calderón et al., 2013							
Broad 1100-850	Si(Al)-O-Si(Al) stretching of phyllosilicates and hydrous oxides of Al and Fe	Harsh et al., 2002; Chorover et al., 2004							
915	Al-O-H bending of phyllosilicates								
Doublet at 800 and 780	Si-O stretching of quartz	M 1 . (2002 W / 1 2014							
754	Si-O perpendicular of phyllosilicates	Madejova, 2005; wu et al., 2014							
697	Si-O perpendicular of phyllosilicates and quartz								
540	Al-OH in the interlayer hydroxide sheet	Barnhisel and Bertsch, 1989							

Horizon	Depth	SiO_2	TiO_2	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI	CIA	4Si	M^+	R^{2+}	115:
HOHZOH	m		wt %										CIA	mmol			Δ451
НН	0.3	70.09	0.98	14.11	5.51	0.05	1.07	0.19	0.39	2.11	0.06	5.14	81.15	291.63	64.21	27.08	76.16
	0.9	70.46	1.03	14.24	5.67	0.11	0.93	0.16	0.32	2.21	0.06	4.81	81.65	293.20	62.66	24.45	77.09
	1.2	70.12	1.02	14.32	5.93	0.12	0.84	0.15	0.23	2.13	0.06	4.86	82.83	291.78	58.12	22.24	78.41
	1.5	67.10	0.99	15.96	6.68	0.12	0.98	0.18	0.22	2.44	0.07	5.36	82.67	279.21	65.53	25.66	75.38
	1.8	67.35	0.98	15.52	6.47	0.10	0.96	0.19	0.25	2.40	0.07	5.20	82.25	280.23	65.57	24.94	75.59
RH	2.1	67.48	1.01	15.80	6.51	0.11	1.00	0.21	0.20	2.41	0.08	5.42	82.57	280.78	65.30	26.07	75.45
	2.4	68.66	1.01	14.86	6.46	0.08	0.91	0.2	0.21	2.29	0.09	5.10	82.33	285.71	62.42	23.46	76.89
	3.0	68.83	1.02	15.10	6.47	0.08	0.80	0.22	0.14	2.11	0.09	5.13	83.80	286.39	57.14	20.75	78.62
	3.3	68.29	1.03	15.23	6.38	0.09	0.75	0.22	0.14	2.11	0.08	5.19	83.96	284.16	56.94	19.72	78.75
	3.6	69.36	1.03	14.60	6.07	0.11	0.74	0.22	0.13	2.06	0.08	4.93	83.73	288.60	55.52	19.58	79.35
	3.9	71.08	1.05	13.98	5.80	0.12	0.68	0.21	0.12	1.94	0.07	4.83	83.94	295.77	52.36	18.27	80.72
	4.2	69.83	1.05	14.66	5.98	0.07	0.67	0.22	0.10	1.93	0.07	5.05	84.64	290.56	52.09	17.50	80.68
	4.5	70.95	1.06	14.10	5.66	0.09	0.64	0.21	0.09	1.88	0.06	4.77	84.58	295.25	50.31	17.01	81.43
	5.1	72.17	1.04	13.40	5.58	0.09	0.63	0.22	0.10	1.85	0.06	4.53	83.96	300.30	50.10	16.74	81.79
	5.4	72.51	1.09	13.18	5.50	0.10	0.61	0.22	0.09	1.84	0.06	4.49	83.83	301.73	49.76	16.43	82.01
BL	6.0	74.22	1.08	12.46	5.13	0.06	0.55	0.21	0.09	1.67	0.05	4.32	84.30	308.83	45.44	14.33	83.79
	6.6	75.55	1.10	11.65	5.12	0.11	0.53	0.20	0.08	1.51	0.06	4.06	84.55	314.38	41.67	14.33	84.88
	6.9	75.03	1.09	11.80	5.45	0.05	0.52	0.21	0.08	1.49	0.06	4.19	84.79	312.21	41.45	13.67	85.00
	7.2	76.36	1.10	11.23	4.55	0.03	0.47	0.20	0.07	1.32	0.05	3.99	85.46	317.73	37.40	11.91	86.57

Table 4. Major elements, CIA, and calculation of the parameters in the WIS system

Figure 1. The major monsoon systems, precipitation (mm, shading) and 850-hPa winds (m s⁻¹, vectors) (data from European Center for Medium Weather Forecasting, the fifth generation ECMWF atmospheric reanalysis of the global climate; Hersbach et al., 2019) in the study area in a) June to July and b) January to February. c) Regional map showing the location and geologic setting of the Songzi section. ISM—Indian summer monsoon, EASM—East Asian summer monsoon, EAWM—East Asian winter monsoon, WJ—Westerly jet.

Figure 2. Field photos of the Songzi section. a) The Songzi section has depth-dependent horizons that contrast in texture, mineralogy, structure, and redoximorphic features. It can be divided into the upper homogeneous horizon (HH; 0-2 m), middle redoximorphic horizon (RH; 2.0-6.0 m), and the basal layer (BL; 6.0-7.2 m). b) Close-up of the redoximorphic features in the RH. The redoximorphic features include vivid red plinthite, white veins/mottles, and black coatings.

Figure 3. XRD patterns of representative soil samples from upper HH (a-b), lower HH (c-d), RH (e), and BL (f) of the Songzi section. AD = Air dried treatment; EG = ethylene glycol solvation; K25, K100, K200, K350, K550 = K-saturation at room temperature and heat treatment at 100, 200, 350, and 550 °C. Clay-mineral assemblages are shown above the XRD patterns, denoting the dominant clay minerals occurring in the corresponding soil horizon.

Figure 4. Results of XRD profile fitting for representative soil samples in HH, RH, and BL.

Figure 5. DRIFT spectra of representative samples in HH, RH, and BL. a) DRIFT spectra of HH soils and RH soils with various preparation techniques. DC: soil sample extracted in citrate-dithionite solution for 4 h; AO: soil sample extracted in acid ammonium oxalate solution for 4 h. b) DRIFT spectra of the clay fraction samples in the OH-stretching region. The most prominent features are those of kaolinite, 2:1 clay minerals, and quartz. For full assignment of the bands, see Table 3. Note that the bands may have been affected by some organic compounds.

Figure 6. Extractable iron and aluminum in HH and RH-BL: a) Na-pyrophosphate extractable Fe (Fe_p) and Al (Al_p); b) ammonium-oxalate extractable Fe (Fe_o) and Al (Al_o); c) citrate-ascorbate extractable Fe (Fe_d) and Al (Al_d); d) total concentrations of Fe (Fe_t) and Al (Al_t); e) active ratio of Fe (Fe_o/Fe_d) and Al (Al_o/Al_d); and f) crystallinity of Fe (Fe_o-Fe_o) and Al (Al_d-Al_o).

Figure 7. Chemical compositions of the Songzi and other soil sections in the diagram of the M^+ -4Si- R^{2+} system. The panel shows that chemical weathering intensities generally increase in the following sequence: LC (Luochuan loess-paleosols from Chinese Loess Plateau, northern China; Chen et al., 2001) < SBC (Shangbaichuan loess-paleosols from eastern Qinling Mountains, central China; Fang et al., 2017) < Songzi = XC (Xuancheng red soil from Yangtze valley, southern China; Zhao et al., 2021).

Figure 8. Variations in geochemical and physicochemical components in the Songzi section and clay-mineral alteration in different soil horizons. a) Possible clay evolution pathways at HH, RH, and BL. Depth profiles of b) weathering degree (Δ 4Si), c) pH, d) Eh, e) TOC, f) Al_{ex}/CEC ratio, g) Al activity (Al_o/Al_d), h) Fe activity (Fe_o/Fe_d), and i) Ce anomaly (Ce/Ce*) showing temporal hydroclimatic evolution at Songzi.

Figure 9. Schematic drawing illustrating the controls of soil acidic cation variations on clay-mineral transformation. a) General relationships between soil pH and the prevalence of various exchangeable and tightly bound cations in a mineral soil. At pH values above 5.5, the concentrations of exchangeable Al^{3+} and H^+ ions are negligible, and the effective CEC is completely saturated with exchangeable non-acid cations (Ca²⁺, Mg²⁺, Na⁺, and K⁺, the so-called 'base cations'). As pH decreases from 5.5 to 4.0, acid cations occupy an increasing portion of the remaining exchange sites. Exchangeable H^+ ions occupy a major portion of the exchange complex only at pH levels below 4.0 (modified from Weil and Brady, 2017). Optimal soil acidic pool conditions for occurrence of b) vermiculite group minerals, c) smectite group minerals, and d) kaolinite and illite.