Experimental constraints on miscibility gap between apatite 1 and britholite and REE partitioning in an alkaline melt 2 **Revision 2** 3 4 Aleksandr S. Stepanov^{1*}, Irina A. Zhukova¹, Shao-Yong 5 Jiang¹ 6 ¹State Key Laboratory of Geological Processes and Mineral Resources, Collaborative 7 8 Innovation Center for Exploration of Strategic Mineral Resources, Faculty of Earth 9 Resources, China University of Geosciences, Wuhan 430074, China, 10 Abstract 11 Apatite containing 14 wt.% TREO (total rare earth oxide) and coexisting with 12 calciobritholite with 37.2 wt.% TREO have been synthesized at 800 °C and 10 kbar 13 from a felsic melt with the addition of NaCl. The analysis of the experimental 14 products with regression analysis of time resolved (RATR) Laser ablation inductively 15 coupled plasma mass spectrometry (LA-ICP-MS) data allowed to estimate the 16 composition of the coexisting phases. The results suggest that equilibrium has been 17 established during the run and both apatite and calciobritholite contained REE in $[Si^{4+}REE^{3+}]$ to $[Ca^{2+}P^{5+}]$ solid solution, whereas the coupled substitution $[Na^{1+}REE^{3+}]$ 18 to $[2Ca^{2+}]$ was insignificant despite crystallization from an alkaline, Na-rich melt. The 19 20 coexistence of the apatite and calciobritholite and available experimental data allowed 21 the miscibility gap to be constrained between apatite and calciobritholite, and suggest 22 complete miscibility between apatite and britholite above 950 °C. The melt that 23 produced coexisting apatite and calciobritholite was characterized by a significant Cl

24	content of (0.51 wt.%) and elevated REE (526 \pm 19 ppm Ce) and low P content (112
25	\pm 49 ppm). The change of the accessory mineral association from monazite to apatite
26	and calciobritholite with the addition of NaCl illustrates the importance of halogens
27	for mineral associations. The partition coefficients of britholite are similar to apatite
28	and distinguished mainly by a higher preference for REE and Th. Henry's law was
29	not acting for the total REE content in the melt because of the buffered system,
30	however the partition coefficients could still be used for the prediction of the relative
31	REE patterns for melts that generated high-REE apatite and/or calciobritholite. These
32	results have implications for the interpretation of the phosphate associations in
33	alkaline volcanic and plutonic rocks.
34	
35	Keywords: apatite, britholite, calciobritholite, REE, alkaline magma,
36	experimental petrology, LA-ICP-MS
37	

38 Introduction

39	Britholite is a mineral with an apatite structure and a general formula (Na, Ca,
40	REE) ₁₀ (Si, P) ₆ O ₂₄ (OH, F, Cl) ₂ defined by the prevalence of REE over Ca. An
41	intermediate species, calciobritholite, distinguished from apatite by Si>P also has
42	been proposed (Pekov et al. 2007). Britholite and calciobritholite are quite common
43	minerals in alkaline rocks and some REE deposits (Pekov et al. 2007; Lorenz et al.
44	2019). Symplectites composed of apatite matrix and inclusions of REE-rich minerals
45	including britholite, monazite, and other REE minerals have been observed in a series
46	of localities such as the Misery syenitic intrusion, Canada (Petrella et al. 2014), Rodeo
47	de los Molles deposit, Argentina (Lorenz et al. 2019), Nolans Bore, Australia
48	(Anenburg et al. 2018), and the Mushgai-Khudag Complex, Mongolia (Nikolenko et

49	al. 2018). These symplectites have been interpreted as products of the decomposition
50	of a high-temperature solid solution between apatite and britholite (Anenburg et al.
51	2018; Lorenz et al. 2019). Synthetic britholite is important for material science as it
52	has been proposed as an actinide host for nuclear waste disposal and is a typical phase
53	in slags after industrial REE extraction (Lan et al. 2021).
54	Apatite is one of the most common accessory minerals and the REE patterns
55	of apatite is an essential petrologic indicator (Belousova et al. 2002; Zirner et al.
56	2015; Chakhmouradian et al. 2017; O'Sullivan et al. 2020; Yudovich et al. 2022).
57	Substitution mechanisms involving Na and Si have been identified for REE in apatite
58	(Pan and Fleet 2002). The substitution mechanism for REE likely has a significant
59	effect on the REE thermodynamic properties in apatite, which are critical for the
60	modelling of the behavior of REE during magma evolution, metamorphism,
61	subduction zone devolatilization (Li and Hermann 2017), and nuclear waste disposal
62	(Janots 2008).
63	Analysis of the products of experiments with accessory minerals could be a
64	challenging endeavor because of the small grain size and complex composition of the
65	phases (Bussweiler et al. 2020; Stepanov et al. 2020). Laser ablation inductively
66	coupled plasma mass spectrometry (LA-ICP-MS) is the method of choice for the
67	analysis of REE in geological samples; however, the fine-grained experimental
68	products are often beyond the technique's spatial resolution. Therefore, a method of
69	regression analysis of time resolved (RATR) LA-ICP-MS data has been developed
70	(Rubatto and Hermann 2007; Stepanov et al. 2012, 2020). Here, we report the results
71	of an experiment conducted with the aim to investigate the effect of NaCl on
72	mineralogy of REE-bearing felsic melt. The RATR of LA-ICP-MS data allowed

73 determining the composition of calciobritholite and apatite. The evaluation of the

results from past experimental studies on high-REE apatite and britholite allowed for
the inference of implications for the interpretation of similar associations in natural
rocks.

78 Methods

79 Starting composition and run conditions

80 The starting material was the same mixture synthesized by a 'sol-gel' method 81 by Stepanov et al. (2012). The nitrate solutions of major and trace elements (Li, Be, 82 Na, K, Ca, Sc, Ti, Mn, Sr, REE, Zr, Nb, Ba, Hf, Ta and Pb) were mixed with 83 tetraethyl orthosilicate $[Si(C_2H_5O)_4]$ and slowly dried to a gel. The starting material 84 was prepared as a mixture of two components (B and Din Table 1 in Stepanov et al. 85 2012) in a proportion that ensured crystallization of a reasonable fraction of accessory minerals. It had the composition of a peraluminous leucogranite with the addition of 86 87 P, LREE, Th, and U in proportions similar to natural monazite. The HREE were 88 added in greater amounts relative to natural abundances to make concentrations in 89 both the melt and minerals more suitable for analysis. After grinding in an agate 90 mortar, the mix was melted to glass in a platinum crucible at 1400 °C. Aluminium 91 oxide was added to the ground glass afterwards. Approximately 20 mg of powdered 92 starting composition plus 2 mg sodium chloride were placed in a 2.3 mm diameter Pt 93 capsule. Distilled water was added to the capsule by a micro-syringe in an amount 94 equivalent to 16 wt.% H₂O in the melt. The capsule was wrapped in the water-soaked 95 paper tissue, to prevent overheating, and then sealed using an argon torch arc welder. 96 The experiment was performed in an end-loaded 200-ton hydraulic piston-97 cylinder apparatus at the Research School of Earth Sciences, Australian National

- 98 University (RSES, ANU). The heating and pressurization sequence was the same as
- 99 described in Stepanov et al. (2012). The experimental charge was held at 10 kbar and
- 100 800 °C and for seven days. The experiment was quenched by switching the power off.

101 Electron microscopy and Raman spectroscopy

102	The experimental capsule was set in epoxy, sectioned, and polished before
103	analyses. Backscattered electron (BSE) images of the sample were collected using a
104	JEOL 6400 scanning electron microscope (SEM) at the ANU Centre for Advanced
105	Microscopy. The content of Ce, La, Nd, and Th in the minerals was estimated by EDS
106	operating at 15 kV and a beam current of 1 nA using a 2 to 3 μ m beam spot. The
107	concentrations have been estimated using pure REE phosphates as standards. The
108	composition of the glass was analyzed via EDS by using beam with same parameters
109	as for analysis of minerals for rectangular scans of grain-free areas larger than 5×5
110	μ m, which limited the loss of Na and K during signal acquisition. The acicular shape
111	of the apatite and the calciobritholite crystals (Fig. 1) resulted in some contribution
112	from the glass to the analyses. This issue was alleviated by the subtraction of the glass
113	component (always $< 20\%$) as estimated from the Al content (Watson and Green
114	1981). After the subtraction of the glass component, the Na_2O content in the apatite
115	and calciobritholite was under 0.1 wt.% (Table 1).
116	Raman spectra were obtained at the Geoscience Australia using a Raman
117	spectrometer Dilor SuperLabram, with a holographic notch filter (600 and 1800 g/mm
118	gratings), liquid nitrogen-cooled 2000 pixel CCD detector, and a 514.5 nm Melles
119	Griot 543 argon ion laser generating 5 mW on the surface of the sample. The slit
120	width of 100 μ m resulted in spectral resolution of 2 cm ⁻¹ . The microscope was
121	equipped with a 50X ULWD Olympus microscope objective, focusing the laser to a
122	spot 2 µm in diameter.

123

124 RATR of LA-ICP-MS data

125	Because of small size of mineral grains (Fig. 1) the direct measurement of
126	composition by LA-ICP-MS was not possible. Therefore, we collected mixed LA-
127	ICP-MS analyses of the melt and the crystals and applied RATR of LA-ICP-MS data
128	for deconvolution of mixed analyses as described by Stepanov et al. (2012, 2020).
129	The difference in this study was that the mixtures of the three components (melt,
130	apatite, and calciobritholite) have been analyzed by RATR of LA-ICP-MS.
131	The LA-ICP-MS analyses were conducted at the Research School of Earth
132	Sciences (ANU) using a pulsed 193 nm ArF Excimer laser coupled to an Agilent 7500
133	quadrupole ICP-MS. Laser sampling was performed in an He-Ar atmosphere at a
134	repetition rate of 5 Hz. Overall, 23 individual spot analyses were collected, including
135	11 spots with a 16 μ m diameter and 12 spots with a 25 μ m diameter. Data acquisition
136	was performed by peak hopping in pulse counting mode, where individual intensity
137	data for each element was acquired during each mass spectrometer sweep. The list of
138	measured elements included Si, Ca, Al, P, Ti, Mn, Zr, Hf, Nb, Ta, Sr, Ba, Pb, REE,
139	Th, and U. For each analysis, data were collected for 60 s, including the gas
140	background of 25 s. The synthetic NIST610 glass standard, was analyzed before and
141	after each batch of analyses with the corresponding spot size, and used as an external
142	standard with values from Jochum et al. (2011). Element concentrations were
143	calculated by an in-house Excel spreadsheet using the SiO_2 content in the glass, as
144	measured by EDS, as the internal standard.
145	Time-resolved ablation patterns were visually inspected, and segments with
146	variable REE counts used for integration. Data collected with the two different spot

147 sizes gave consistent results and were combined into a dataset of 75 sub-analyses,

148	which were treated as individual measurements in subsequent calculations. The data
149	set was investigated for relations between elements and revealed two trends
150	converging to a cluster of analyses with a low trace element content, corresponding to
151	the melt composition (Fig. 2). The trends have been interpreted as melt-
152	calciobritholite and melt-apatite mixtures. The space between the trends indicated an
153	absence of a mixture of both apatite and calciobritholite in the analyzed spots. The
154	data was divided into two sub-datasets, one composed of melt-apatite mixtures
155	comprising 44 analyses and another containing melt-calciobritholite mixtures with 49
156	analyses. Each population then was treated by the regression analysis with Ce as an
157	independent variable (Stepanov et al. 2012, 2020). The composition of the minerals
158	was estimated from the extrapolation of the regressions to Ce content measured by
159	EDS. The calculations by this RATR algorithm allowed the estimation of all REE, Sr,
160	Pb, Ba, Th, and U in the apatite and calciobritholite (Table 1). Other trace elements
161	present in the starting composition, such as Zr, Hf, Nb, and Ta showed poor
162	correlations with Ce because of their low content in the apatite and calciobritholite.
163	Uncertainties have been calculated at the 90% confidence level as described in
164	Stepanov et al. (2012, 2020). The melt composition (Fig. 3) was calculated by
165	averaging 15 analyses with the lowest REE concentrations. For La, Ce, Nd, and Th
166	the results from RATR LA-ICP-MS analysis showed good agreement with the EDS
167	results.

168

169 **Results**

170 Phase relationships and compositions

171	The experimental charge was composed of glass, apatite, REE silico-
172	phosphate and salt crystals in cracks (Fig. 1a). Clots of acicular mineral grains were
173	dispersed throughout the glass. The glass was homogeneous and contained small fluid
174	exsolution bubbles. The melt was significantly more alkaline (Alumina Saturation
175	Index ASI= 0.84 ± 0.02) than the starting composition (ASI=1.15; Stepanov et al.
176	2012) and corresponded to trachyte according to the TAS classification (Le Maitre et
177	al. 2002). The melt contained 0.51 \pm 0.02 wt.% Cl and the total deficit suggest about
178	11.6 wt.% of H_2O in the melt (Table 1).
179	The minerals were identified from major element compositions by EDS and
180	by Raman spectroscopy (Fig. 4). The total REE content was roughly 14 wt.% in the
181	apatite corresponding to about 9% molar Si/(Si + P) and REE/(REE + Ca). For the
182	silico-phosphate, 37.2 wt.% TREO (total rare earth oxide) corresponds to 38% Si/(Si
183	+ P) and 28% REE/(REE + Ca). Considering high content of Th, which should be
184	considered "britholite" rather than "apatite" component, these ratios are within the
185	uncertainty of the classification criteria for the silico-phosphates by Pekov et al.
186	(2007) indicating the mineral to be calciobritholite.
187	The Cl content in the apatite could have been overestimated by EDS analysis
188	because of the diffusion of the halogens under the electron beam (Stormer et al. 1993;
189	Goldoff et al. 2012; Stock et al. 2015). Irrespective of this effect, the measured Cl
190	concentrations of 1.1 wt.% are lower than the theoretical limit of 6.8 wt.% suggesting
191	that OH is present in apatite. Calciobritholite content of 1.1 wt.% Cl is lower than 4.4
192	wt.% possible in the Ce ₃ Ca ₂ Si ₃ Cl endmember, again suggesting the presence OH.
193	Fluorine was not added to the system and its content in minerals was insignificant.

	rom natural	olite	brithe	lcio	l cal	perimental	the	hed	guis	disting	content	Low F	94	19
--	-------------	-------	--------	------	-------	------------	-----	-----	------	---------	---------	-------	----	----

195 compositions, which are often characterized by high F (Pekov et al. 2007).

196	The compositions of minerals and melt were used for the calculation of the
197	partition coefficients as ratios of the element content in mineral divided by the
198	element content in melt (Table 1). The apatite partition coefficient for Th, D_{Th} , is
199	lower than that for U, D_U , and reverse is true for calciobritholite. Both apatite and
200	calciobritholite showed that D_{Th} and D_{U} are lower than that for Sm, D_{Sm} , and for Gd,
201	D_{Gd} . Apatite and calciobritholite have similar REE patterns, which differ only by a
202	higher REE content in the calciobritholite. The partition coefficient $D_{Sr} = 3$ is close to
203	the range of 4 to 12 obtained by Li and Hermann, (2017), which is also in relative
204	agreement with values of 1.1 to 2.4 obtained by Watson and Green (1981). Barium
205	shows a mild incompatibility in apatite with $D_{Ba} = 0.8$, which is consistent with other
206	data on apatite partitioning (Pan and Fleet 2002).

207 Raman spectroscopy

The Raman spectra of apatite and calciobritholite are distinctively different. The calciobritholite spectra is characterized by two major bands at 860 cm⁻¹ assigned to the $v_1 SiO_4^{2-}$ vibrations and 956 cm⁻¹ that assigned to $v_1 PO_4^{3-}$ symmetric stretching vibrations (Fig. 3). The $v_4 PO_4^{3-}$ vibrational bands are present at 580 (with a shoulder appearing at ~ 574 cm⁻¹) and 612 cm⁻¹, whereas the $v_2 PO_4^{3-}$ bands, typically between 430 and 550 cm⁻¹ (Penel et al. 1997), are suppressed here by the broad band at 390 to 510 cm⁻¹ originating from the surrounding glass.

The Raman spectra for apatite show a major band at 957 cm⁻¹ associated with the $v_1 PO_4^{3-}$ symmetric stretching vibrations and additional lines at 1044 and 1086 cm⁻¹ $(v_3 PO_4^{3-})$ (Liu et al. 1998). Also, three $v_4 PO_4^{3-}$ vibrational bands are distinguished at 576, 586, and 607 cm⁻¹. Similar to the calciobritholite spectra, $v_2 PO_4^{3-}$ vibrational

bands between 430 and 550 cm⁻¹ are overlapped by glass-related, high intensity broad bands at 430 to 500 cm⁻¹. Lower intensity $v_1 SiO_4^{2-}$ vibrational bands at 860 cm⁻¹ and wide broad band 390 to 510 cm⁻¹, originating from the surrounding glass, are present in the apatite spectrum.

223

224 **Discussion**

225 Comparison with previous studies on the synthesis of britholite and high-REE

226 apatite

227 The significance of the REE-bearing silico-phosphates for industrial applications and

228 petrology have resulted in numerous studies involving the synthesis of apatite and

229 britholite. Some studies synthesized REE silico-phosphates in relatively simple

230 systems (e. g. Khudolozhkin et al., 1973; Terra et al., 2006). These works

231 demonstrated the existence of these minerals as both endmember compositions as

well as solid solutions (Lan et al. 2021); however, the compositions of these systems

233 differed vastly with respect to natural melts and temperatures were typically higher

than expected in natural magmas. Another set of studies focused on experiments in

complex systems that consisted of mixtures of natural crystals including silicates,

236 phosphates, and REE minerals with H_2O and reactive chemical components such as

acids, alkalis, and salts (e. g. Harlov et al. 2003; Budzyn et al. 2011, 2017; Krenn et

al. 2012; Betkowski et al. 2016). These experiments generated complex replacement

textures that sometimes contained high-REE apatite and britholite. These studies

240 aimed at reproducing natural metasomatic processes and typically the textures

241 recorded incomplete reactions and anomalous compositions (Krenn et al. 2012). It has

242	been suggested that during the experiments, the fluid evolved to progressively to be
243	out of equilibrium with the solid phases (Betkowski et al. 2016).
244	A different experimental approach has been utilized by Anenburg et al.
245	(2020), where complex starting compositions containing carbonatite, phosphate,
246	silicate, and REE components have been melted at 1200 °C and then gradually cooled
247	to 200 °C. This resulted in texturally complex charges that recorded the evolution
248	from magmatic to hydrothermal conditions and produced the mineral associations
249	typical for REE-bearing carbonatites. Addition of silica to the carbonate-phosphate-
250	REE system resulted in britholite overgrowing apatite. Unfortunately, the equilibrium
251	temperature between apatite and britholite is difficult to estimate in these experiments.
252	Molle et al. (2021) investigated the crystallisation of REE-rich carbonate and
253	observed britholite in runs at \geq 700 °C and apatite co-existing with britholite in one of
254	the experiments experiment at 650 °C. Experiments that investigated the
255	crystallization of apatite from REE-bearing melts (Watson and Green 1981; Fleet and
256	Pan 1997; Fleet et al. 2000; Prowatke and Klemme 2006) and those that simulate
257	melting in a subduction zone (Li and Hermann 2017) lacked britholite. Hence, the
258	maximum REE solubility in apatite has remained unconstrained in these studies.
259	Previous studies have mostly achieved synthesis of britholite in simplified
260	systems or in disequilibrium experiments. The apatite and calciobritholite reported in
261	this study crystalized from a melt. The consistent grain size and shape of the crystals
262	(Fig. 1) suggest uniform crystallization conditions during the experiment, implying
263	that equilibrium has been achieved.
264	

265 Substitution mechanisms behind REE incorporation in apatite

266 REE can be incorporated into the apatite structure by several substitution

- 267 mechanisms (Pan and Fleet 2002):
- REE³⁺ + SiO₄⁴⁻ = Ca²⁺ + PO₄³⁻, referred here as the Si-REE substitution

•
$$REE^{3+} + Na^+ = 2Ca^{2+}$$
, referred here as the Na-REE substitution

•
$$2REE^{3+} + vacancy = 3Ca^{2+}$$

271 •
$$REE^{3+} + O^{2-} = Ca^{2+} + F^{-}$$

- The first two mechanisms likely are predominant in natural apatite (Ronsbo 1989; Panand Fleet 2002).
- 274 The data on the substitution mechanism of REE in the natural apatite-
- 275 calciobritholite-britholite series paint a complex picture (Fig. 5). The compilation by

276 Pekov et al. (2007) reported calciobritholite analyses with a low Na content. In

277 granites, apatite typically contains 1 to 0.5 wt.% reaching 3 wt.% TREO (Belousova

et al. 2002). Apatite from mafic I-type granites preferentially contains Si-REE type

279 substitutions, whereas apatite from S-type and felsic I-type granites mostly have a Na-

280 REE substitution (Sha and Chappell 1999). Ronsbo (1989) observed a Si-REE

281 substitution in magmatic apatite from sodalite foyaite and augite syenite and a Na-

282 REE substitution in post-magmatic apatite from peralkaline pegmatite and sodalite

foyaite (Fig. 5). Apatite from the carbonatite hosted Mount Weld REE deposit

284 contains up to 3.5 wt.% TREO and is characterized by the Na-REE substitution

285 mechanism (Zhukova et al. 2021), whereas apatite from Nolans Bore REE deposit is

- characterized by a Si-REE substitution (Anenburg et al. 2018).
- 287 The experiments on the equilibrium crystallisation of REE-bearing apatite

from granitic to basaltic melts by Watson and Green (1981) produced apatite with a

289 Si-REE substitution. Apatite growth from H₂O-bearing phosphate-fluoride melts

290	suggests (Fig. 6) that the Na-REE substitution mechanism is preferred (Fleet and Pan
291	1997). However, both the Na-REE and Si-REE mechanisms occurred in fluorapatite,
292	and the Si-REE substitution dominated in hydroxyapatite (Fleet et al. 2000). Apatite
293	with a Na+Si content significantly higher than REE has been synthesized by Prowatke
294	and Klemme (2006) in basaltic to andesitic compositions at high temperature of 1250
295	°C and it was concluded that Na and Si do not control the uptake of REE. Therefore,
296	Si-REE substitution seems to be most common in the experiments involving
297	crystallization of apatite under equilibrium conditions from silicate melts at P-T
298	conditions relevant for natural magmas.
299	Experiments on the replacement of apatite and monazite by fluid-assisted
300	reactions in many cases have produced high-REE apatite and (calcio)britholite with
301	both Na-REE and Si-REE substitution mechanisms (Figs. 5c, d; Fig. 6b). For
302	example, experiment R3c by Krenn et al. (2012) at 650 °C generated apatite with both
303	Si-REE and Na-REE substitution mechanisms (Fig. 5). Another experiment (R3d) at
304	800 °C produced apatite with an insignificant Si content, and 3.4 wt.% Na ₂ O,
305	implying a Na-REE substitution. The apatite compositions from experiments by
306	Budzyn et al. (2011) form two clusters with TREO < 8 wt.% with TREO > 27 wt.%
307	(Figs. 5 and 6). While the apatite had a higher Na and Si molar content than REE (Fig.
308	5), the britholite showed both Si-REE and Na-REE substitution mechanisms. In the
309	synthetic system, Betkowski et al. (2016) observed britholite with an REE content
310	close to the theoretical limit ($56 - 61$ wt.%TREO) in which REE substituted both via
311	the Na-REE and Si-REE substitutions with compositions close to a line between
312	britholite endmember and vitusite [Na ₃ LREE(PO ₄) ₂] (Fig. 6). The experiments by
313	Budzyn et al. (2017) were performed with a Ca(OH) ₂ -bearing fluid generated apatite
314	with Si-REE substitution, whereas the experiments with $Na_2Si_2O_5$ -bearing fluid

315	produced apatite with both Na-REE and Si-REE substitutions (Fig. 5). Anenburg et al.
316	(2020) reported britholite and apatite with a Si-REE substitution in a Si-present, Na-
317	absent system and apatite with a Na-REE substitution in an Na-present, Si-absent
318	system.
319	The factors controlling the mechanism of REE substitution are not clear. Fleet
320	and Pan (1997) proposed that the halogen content in apatite had a significant effect on
321	REE solubility in apatite by changing the size of cation positions occupied by the
322	REE. On the other hand, Prowatke and Klemme (2006) concluded that F content had
323	limited effect. Different substitution mechanisms in apatite from granite have been
324	explained either by the preference of different substitution mechanisms to
325	LREE/HREE or the effect of Al in peraluminous granites (Sha and Chappell 1999).
326	The fluid composition was proposed to play a major role during the metasomatic
327	reactions (Krenn et al. 2012; Betkowski et al. 2016; Budzyn et al. 2017).
328	In this study, apatite and calciobritholite, crystallized from a high-Na melt, had
329	an insignificant Na content (Table 1). The Raman spectra (Fig. 4) show that the SiO_4^{4-}
330	related vibration bands provide additional evidence for Si-REE substitution in the
331	apatite. Most reported natural britholite compositions have a negligible Na content
332	such that the Si-REE mechanism predominats (Fig. 6), which implies that the Si-REE
333	substitution could be characteristic for magmatic apatite-britholite. It could be further
334	speculated, that the Na-REE substitution is characteristic for post-magmatic, fluid-
335	aided recrystallisation. This is evident from observations of the experimental
336	decomposition of fluorapatite with significant britholite and fluorellestadite
337	components that resulted in the formation of Na-REE substituted apatite (Harlov et al.
338	2003). In agreement with this hypothesis, crystallisation of apatite with the Si-REE
339	substitution has been observed in magmatic apatite from the Ilimaussaq complex,

340 Greenland, while the Na-REE substitution has been observed in metasomatically

- 341 altered apatite (Zirner et al. 2015). Additional studies are needed to clarify the factors
- 342 controlling the substitution mechanism of REE in apatite. In that regard caution is
- 343 needed when the REE substitution type in apatite is used for the genetic
- interpretations as proposed by Ronsbo (1989).

345

346 Miscibility gap between apatite and britholite

- 347 Several studies have proposed that there is complete miscibility between
- 348 apatite and britholite at high temperature, and a miscibility gap at lower temperature
- 349 (Anenburg et al. 2018; Lorenz et al. 2019), although the exact position of the
- 350 miscibility gap is poorly constrained. We have used past experimental data and the
- results from this work to obtain new constraints on the position of the miscibility gap
- 352 (Fig. 7). Complete solid solutions between fluorapatite and britholite have been
- 353 observed between 1200 to 1400 °C (Boyer et al. 1997).
- A study of the phase relations in the system $CaO-SiO_2-CaF_2-P_2O_5-Ce_2O_3$ by
- Lan et al. (2021) demonstrated a complete solid solution between apatite and
- britholite at 1100 °C. The composition ranged from fluorapatite with 8.8 % Si/(Si+P)
- to britholite with 70.1 % Si/(Si+P) and 70.9 wt.% Ce₂O₃. Attempts by Terra et al.
- 358 (2006) to synthesize Th-bearing britholite with formula $Ca_9Nd_{1-x}Th_x(PO_4)_{5-}$
- $_{x}(SiO_{4})_{1+x}F_{2}$ at temperatures below 1000 °C produced apatite co-existing with Nd₂O₃
- and ThO₂, which was explained as being due to a slow reaction rate. Watson and
- 361 Green (1981) synthesized apatite from granitic melts with up to 21.2 wt.% TREO at
- 362 950 °C. Apatite with up to 7.8 wt.% TREO have been observed at 680 °C by Fleet
- and Pan (1997). Chlorapatite with 1 to 2 wt.% TREO coexisting with allanite and melt
- 364 was synthesized at 800 °C in metasediments by Li and Hermann (2017). Data from all

365	of these e	xperiments	on equilibriun	n crystallization	of high-REE a	patite and/or
				2	0	

- 366 britholite show that the range of conditions where the immiscibility could disappear is
- 367 limited and should be about 950 °C (Fig. 7).
- 368 Many compositions from the metasomatism experiments involving fluids plot
- 369 within the miscibility gap estimated from the melt crystallization experiments (Fig.
- 370 7b). The elevated REE contents of the replacement textures observed in the
- 371 metasomatized apatite could be attributed to the development of temporary
- 372 disequilibrium products during the evolution of these textures, i.e. metastability (Borg
- et al. 2014; Altree-Williams et al. 2015). Notably, with a decrease in temperature, the
- 374 gap between apatite and britholite becomes narrower with the narrowest gap
- apparently occurring at 450 °C (Fig. 7b). This is similar to what is seen for metastable
- arsenian pyrite (Stepanov et al. 2021), where a widening in the range of compositions
- 377 at lower temperature could be attributed to a slowdown in the rate diffusion with
- decreasing temperature (Watson 2004).
- 379

380 Effect of NaCl on accessory mineral assemblages and solubility

381 The addition of NaCl to the REE-enriched granitic melt resulted in the 382 crystallization of co-existing calciobritholite and apatite, which is in marked contrast 383 to the crystallisation of monazite for the same system under identical conditions, though without NaCl (Stepanov et al. 2012). The addition of NaCl affected the melt 384 385 composition twofold by adding Cl and increasing the Na content of the melt, which 386 led to an increase in alkalinity (Table 1). Monazite can crystallize in alkaline, 387 halogen-free melts (Fig. 3); hence, the alkalinity of the melt was not a major factor in 388 controlling the accessory mineral assemblage. More likely, it appears that the high Cl

389 content in the melt helped to stabilize apatite and calciobritholite at the expense of

390	monazite.
0,0	

391	The solubility of Cl in melts is a complex function of melt composition
392	(Webster and Vivo 2002) and the immiscible chloride melts that can coexist with
393	felsic melts (Veksler et al. 2012). The 0.51 wt.% Cl measured in the glass is close to
394	the 0.39 wt.% Cl observed in granitic melts coexisting with chloride melts at 800 $^{\circ}$ C
395	in the experiments by Veksler et al. (2012), and is within the range of $0.14-0.9$ wt.%
396	Cl that has been reported in Cl-saturated granitic to alkaline melts (Webster and Vivo
397	2002).
398	The P content of 112 ± 49 ppm in the glass obtained in this study (Table 1) is
399	significantly lower than the 311 \pm 30 ppm P in experiment C4025 from the study of
400	Stepanov et al. (2012), which was performed under identical P-T conditions and
401	contained only abundant monazite and melt. While the crystallization of REE-
402	minerals with the addition of NaCl decreased the P content in the glass, the LREE
403	content increased from 292 ± 15 ppm Ce in the glass from the monazite buffered
404	experiment C4025 (Table 4 at Stepanov et al. (2012)) to 526 ± 19 ppm Ce in the glass
405	from the apatite-calciobritholite buffered melt (Table 1). Crystallisation of apatite and
406	calciobritholite caused an increase of LREE/P in the melt relative to the monazite-
407	saturated experiments. Li and Hermann (2017) observed 718 to 1064 ppm P at 25
408	kbar and 800 °C in apatite buffered metasediment-derived melts. Watson and
409	Capobianco (1981) performed experiments with a variable CaF ₂ component and
410	observed the lowest P concentrations in melts with the highest F content (Fig. 3).
411	These results suggest that a high halogen content in the melt can alter the accessory
412	mineral assemblage and melt trace element composition by stabilizing apatite and
413	calcobritholite. This conclusion could be at odds with Duc-Tin and Keppler (2015)

414 and Van Lichtervelde et al. (2021), who observed crystallization of monazite and

- 415 xenotime from melts with significant amounts of F. However, those experiments were
- 416 performed in Ca-free or low-Ca melts unfavorable to apatite crystallisation. These
- 417 observations suggest that Ca and halogens are important in the modelling and
- 418 interpretation of accessory mineral associations.
- 419

420 **Partitioning of trace elements**

421 Application of partition coefficients in petrology is based on the Henry's law 422 behaviour, namely a change in the trace element content in a melt results in a direct 423 proportional change in the element's content in the mineral (Drake and Holloway 424 1981). Studies have shown that for accessory phases, some factors can affect the 425 applicability of Henry's law (Prowatke and Klemme 2005). For REE in apatite, the 426 validity of Henry's law has been tested by Watson and Green (1981) in a set of 427 experiments with varying REE content of REE in the system from 0.4 to 3.2 wt.% 428 TREO. These experiments demonstrated that REE partition coefficients were 429 independent of concentration. The situation recorded by the experiment in this study 430 is different (Fig. 8). The presence of two REE-bearing phases implies that the melt 431 composition likely was buffered with respect to the REE. Any addition of REE to the 432 system would have resulted in the crystallisation of a surplus amount of 433 calciobritholite and high-REE apatite with little effect on the REE content in the melt. 434 For individual REE, the situation is likely different. The REE partition pattern 435 for apatite and calciobritholite is smooth and similar to other experimental data on 436 apatite-melt partitioning despite non-chondritic ratios of some REE in the starting 437 composition (Fig. 8). The negative Eu anomaly, which results from the relatively 438 reduced conditions, during the piston-cylinder experiment, is the same for both apatite

439	and calciobritholite. Therefore, while Henry's law was unlikely to act on the total
440	REE content, it is still possible to use the composition of calciobritholite and high-
441	REE apatite to predict the distribution pattern of REE patterns for melts coexisting
442	with these minerals.
443	The partitioning of REE between apatite and melt has been explored in several
444	studies (Fleet et al. 2000; Prowatke and Klemme 2006; Li and Hermann 2017). Our
445	data and previous studies consistently show the preference of apatite and
446	calciobritholite for MREE relative to LREE and HREE (Fig. 8). However, the REE
447	partition coefficients could be sensitive to the melt composition (Watson and Green
448	1981; Prowatke and Klemme 2006) and the anionic composition of the apatite (Fleet
449	et al. 2000; Li and Hermann 2017). Watson and Green (1981) observed that REE
450	compatibility in apatite increased with increasing silica activity. This effect can be
451	attributed to the stabilization of the Si-REE substitution mechanism in apatite due to
452	the presence of felsic melts.
453	Li and Hermann (2017) demonstrated that Th and U in apatite were positively
454	correlated with the apatite Cl content. This observation agrees with our results, where
455	the Cl-rich apatite contains as much as 1 wt.% of Th (Table 1). A high D_{Th} for
456	calciobritholite could explain the very high Th content of 13-15 wt.% ThO ₂ observed
457	in some localities (Pekov et al. 2007).
458	

459 Implications: Interpretation of natural (calcio)britholite-bearing associations

460 Intrusive alkaline rocks and associated REE deposits sometimes show

- 461 complex symplectites of apatite, britholite, monazite, and other REE minerals
- 462 (Anenburg et al. 2018; Lorenz et al. 2019). The results from this study have
- 463 implications for the interpretation of these textures.

464	The compositions of apatite-britholite in trachytes from the Phlegrean Fields
465	volcanic system in Italy (Melluso et al. 2012) show a wide range of compositions,
466	including compositions within the miscibility gap proposed in this study (Figs. 5, 7).
467	These variations could be attributed to the different temperatures during the
468	crystallisation of these minerals. Samples with compositions in the proposed
469	miscibility gap likely crystallized above 950 °C. The preservation of high-temperature
470	compositions could be attributed to the rapid cooling of the volcanic rocks.
471	Complex fluorapatite and britholite textures have been observed in the Misery
472	syenitic intrusion, Canada (Petrella et al. 2014). Apatite containing about 10.7 wt.%
473	TREO makes up the cores of the zoned crystals, whereas britholite with 32 to 43 wt.%
474	TREO was observed in the rims. These textures can be explained by crystallisation at
475	temperatures within the miscibility gap.
476	Symplectites of apatite and britholite have been described in the Rodeo de los
477	Molles deposit, Argentina (Lorenz et al. 2019). The symplectites can be divided into
478	two types: fluorapatite-hosted with britholite inclusions and britholite-hosted with
479	fluorapatite inclusions (their Supplemental Figure S1). Tentatively, the fluorapatite
480	with britholite inclusions could be interpreted as a product of
481	decomposition/exsolution of high temperature, high-REE apatite, whereas britholite
482	with apatite inclusions could have originated as a high-temperature britholite-apatite
483	solid solution above the miscibility gap. Therefore, the textures of the Rodeo de los
484	Molles deposit could indicate crystallization at conditions close to the complete solid
485	solution between apatite and britholite, which was then followed by unmixing and
486	recrystallisation at lower temperatures.
487	The potential of REE in apatite as a geothermometer requires some discussion.

488 The application of such a geothermometer would first require characterization of

489 factors controlling substitution mechanisms for the REE in apatite and, ideally,

490 experiments involving apatite coexisting with REE minerals in as simple a system as

491 possible, which was buffered with respect to the elements involved.

492

493 Acknowledgement

494	Centre for adv	anced microscopy	and Frank Brinl	k are thanked for he	lp with
-----	----------------	------------------	-----------------	----------------------	---------

495 SEM and EDS investigation. Terry Mernagh is thanked for help with the collection of

496 Raman spectra. Joerg Hermann and Daniela Rubatto are thanked for providing

497 research facilities. Michael Anenburg and Melanie Lorenz are thanked for

498 constructive reviews and Daniel Harlov for editorial handling. This study was

- 499 supported by the grants No. 40030811, 42073058 and 42073036 of the National
- 500 Natural Science Foundation of China, and 100 Talents of Hubei Province Program.

501

502 Figures and tables

503

504 Figure 1: a) SEM image of the experimental texture showing NaCl crystals formed

so along the cracks in the glass. b) BSE image of the elongated crystals of

506 calciobritholite and apatite in the glass. Small vapor bubbles formed in the glass

507 during quenching.

508

509 Figure 2: Examples of regression of LA-ICP-MS data obtained by the segmentation510 of time resolved spectra.

511

512 Figure 3: Comparison of the REE (a) and P content (b) in the melts from this study 513 with melts saturated in monazite or apatite. 514 515 Figure 4: Raman spectra of the experimental apatite and britholite phases compared 516 with apatite and britholite from the RRUFF database (Lafuente et al. 2015). 517 518 Figure 5: Binary plots of britholite and apatite compositions from natural occurrences 519 (a, b) and experiments (c, d). Compositions are shown in atoms per formula unit 520 normalized to 16 cations. 521 522 Figure 6: Ternary Na-Ca-REE plots showing the different substitution mechanism for 523 REE in apatite and britholite from natural samples (a) and from experimental data (b). 524 525 Figure 7: A summary of experimental data on the effect of temperature on the REE 526 content of apatite and britholite. 527 528 Figure 8: a) Partition coefficients between calciobritholite, apatite, and melt in 529 comparison with the apatite partition data of Li and Hermann (2017). b) Partition 530 patterns of apatite, calciobritholite, and monazite from Stepanov et al. (2012) 531 normalized to unity for D_{Dy} and highlight differences in the fractionation of the 532 lanthanides and actinides. 533 534 535

536 References

537 538 539	Altree-Williams, A., Pring, A., Ngothai, Y., and Brugger, J. (2015) Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials. Earth-Science Reviews, 150, 628–651.
540 541 542 543 544	 Anenburg, M., Burnham, A.D., and Mavrogenes, J.A. (2018) REE Redistribution Textures in Altered Fluorapatite: Symplectites, Veins, and Phosphate-Silicate- Carbonate Assemblages from the Nolans Bore P-REE-Th Deposit, Northern Territory, AustraliaRee in Altered Fluorapatites: Symplectites, Veins, and P- si-c Assemblages. The Canadian Mineralogist, 56, 331–354.
545 546 547	Anenburg, M., Mavrogenes, J.A., Frigo, C., and Wall, F. (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science Advances, 6, eabb6570.
548 549 550 551	Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., and Fisher, N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76, 45–69.
552 553 554	Betkowski, W.B., Harlov, D.E., and Rakovan, J.F. (2016) Hydrothermal mineral replacement reactions for an apatite-monazite assemblage in alkali-rich fluids at 300–600 °C and 100 MPa. American Mineralogist, 101, 2620–2637.
555 556 557	Borg, S., Liu, W., Pearce, M., Cleverley, J., and MacRae, C. (2014) Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces. Geology, 42, 415–418.
558 559	Boyer, L., Carpena, J., and Lacout, J.L. (1997) Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ionics, 95, 121–129.
560 561 562 563	Budzyn, B., Harlov, D.E., Williams, M.L., and Jercinovic, M.J. (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and ree-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96, 1547–1567.
564 565 566 567 568 569	Budzyn, B., Harlov, D.E., Kozub-Budzyń, G.A., and Majka, J. (2017) Experimental constraints on the relative stabilities of the two systems monazite-(Ce) – allanite-(Ce) – fluorapatite and xenotime-(Y) – (Y,HREE)-rich epidote – (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750 °C. Mineralogy and Petrology, 111, 183–217.
570 571 572 573	Bussweiler, Y., Gervasoni, F., Rittner, M., Berndt, J., and Klemme, S. (2020) Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry – Illuminating melt- rock reactions in the lithospheric mantle. Lithos, 352–353, 105282.
574 575	Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický, J., Mumin, A.H., and Yang, P. (2017) Apatite in carbonatitic rocks:

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8535. http://www.minsocam.org/
Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274–275, 188–213.
Drake, M.J., and Holloway, J.R. (1981) Partitioning of Ni between olivine and silicate melt: The 'Henry's Law problem' reexamined. Geochimica et Cosmochimica Acta, 45, 431–437.
Duc-Tin, O., and Keppler, H. (2015) Monazite and xenotime solubility in granitic

- Duc-Tin, Q., and Keppler, H. (2015) Monazite and xenotime solubility in granitic
 melts and the origin of the lanthanide tetrad effect. Contributions to
 Mineralogy and Petrology, 169, 1–26.
- Fleet, M., Liu, X., and Pan, Y. (2000) Rare-earth elements in chlorapatite [Ca10(PO4)(6)Cl-2]: Uptake, site preference, and degradation of monoclinic
 structure. American Mineralogist, 85, 1437–1446.
- 587 Fleet, M.E., and Pan, Y. (1997) Rare earth elements in apatite: Uptake from H2O588 bearing phosphate-fluoride melts and the role of volatile components.
 589 Geochimica et Cosmochimica Acta, 61, 4745–4760.
- Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of fluor chlorapatites by electron probe microanalysis with a focus on time-dependent
 intensity variation of halogens. American Mineralogist, 97, 1103–1115.
- Harlov, D.E., Förster, H.-J., and Schmidt, C. (2003) High P-T experimental
 metasomatism of a fluorapatite with significant britholite and fluorellestadite
 components: implications for LREE mobility during granulite-facies
 metamorphism. Mineralogical Magazine, 67, 61–72.
- Janots, E. (2008) Thermochemical characterization of ca4la6(sio 4)6(oh)2 a synthetic
 la- and oh-analogous of britholite: implication for monazite and lree apatites
 stability. Mineralogia, 39, 41–52.
- Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E.,
 Stracke, A., Birbaum, K., Frick, D.A., and others (2011) Determination of
 Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines.
 Geostandards and Geoanalytical Research, 35, 397–429.
- Khudolozhkin, V., Urusov, V.S., Tobelko, K., and Vernadskiy, V. (1973) Dependence
 of structural ordering of rare earth atoms in the isomorphous series apatitebritholite (abukumalite) on composition and temperature. Geochemistry
 International, 10, 1171–1177.
- Krenn, E., Harlov, D.E., Finger, F., and Wunder, B. (2012) LREE-redistribution
 among fluorapatite, monazite, and allanite at high pressures and temperatures.
 American Mineralogist, 97, 1881–1890.
- 611 Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2015) 1. The power of databases:
 612 The RRUFF project. In 1. The power of databases: The RRUFF project pp. 1–
 613 30. De Gruyter (O).

614	Lan, X., Gao, J., Li, Y., and Guo, Z. (2021) Phase equilibria of CaO–SiO2–CaF2–
615	P2O5–Ce2O3 system and formation mechanism of britholite. Ceramics
616	International, 47, 11966–11972.
617	Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., and Bateman,
618	P., Eds. (2002) Igneous Rocks: A Classification and Glossary of Terms:
619	Recommendations of the International Union of Geological Sciences
620	Subcommission on the Systematics of Igneous Rocks, 2nd ed. Cambridge
621	University Press, Cambridge.
622 623 624	Li, H., and Hermann, J. (2017) The effect of fluorine and chlorine on trace element partitioning between apatite and sediment melt at subduction zone conditions. Chemical Geology, 473, 55–73.
625 626 627	Liu, Y., Comodi, P., and Sassi, P. (1998) Vibrational Spectroscopic Investigation of Phosphate Tetrahedron in Fluor-, Hydroxy-, and Chlorapatites. Neues Jahrbuch für Mineralogie - Abhandlungen, 211–222.
628	Lorenz, M., Altenberger, U., Trumbull, R.B., Lira, R., Luchi, M.L. de, Günter, C., and
629	Eidner, S. (2019) Chemical and textural relations of britholite- and apatite-
630	group minerals from hydrothermal REE mineralization at the Rodeo de los
631	Molles deposit, Central Argentina. American Mineralogist, 104, 1840–1850.
632	Melluso, L., Gennaro, R.D., Fedele, L., Franciosi, L., and Morra, V. (2012) Evidence
633	of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and
634	primitive Mg-rich basalt–trachyphonolite interaction in the lava domes of the
635	Phlegrean Fields (Italy). Geological Magazine, 149, 532–550.
636	Molle, V., Gaillard, F., Nabyl, Z., Tuduri, J., Carlo, I.D., and Erdmann, S. (2021)
637	Crystallisation sequence of a REE-rich carbonate melt: an experimental
638	approach. Comptes Rendus. Géoscience, 353, 217–231.
639	Nikolenko, A.M., Redina, A.A., Doroshkevich, A.G., Prokopyev, I.R., Ragozin, A.L.,
640	and Vladykin, N.V. (2018) The origin of magnetite-apatite rocks of Mushgai-
641	Khudag Complex, South Mongolia: mineral chemistry and studies of melt and
642	fluid inclusions. Lithos, 320–321, 567–582.
643 644 645	O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., and Mulligan, D. (2020) The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 201, 103044.
646	Pan, Y., and Fleet, M.E. (2002) Compositions of the Apatite-Group Minerals:
647	Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and
648	Geochemistry, 48, 13–49.
649	Pekov, I.V., Pasero, M., Yaskovskaya, A.N., Chukanov, N.V., Pushcharovsky, D.Y.
650	u, Merlino, S., Zubkova, N.V., Kononkova, N.N., Men'shikov, Y.P., and
651	Zadov, A.E. (2007) Fluorcalciobritholite, (Ca,REE)5[(Si,P)O4]3F, a new
652	mineral: description and crystal chemistry. European Journal of Mineralogy,
653	95–103.

654	Penel, G., Leroy, G., Rey, C., Sombret, B., Huvenne, J.P., and Bres, E. (1997)
655	Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and
656	hydroxy-apatite powders. Journal of Materials Science: Materials in Medicine,
657	8, 271–276.
658	Petrella, L., Williams-Jones, A.E., Goutier, J., and Walsh, J. (2014) The Nature and
659	Origin of the Rare Earth Element Mineralization in the Misery Syenitic
660	Intrusion, Northern Quebec, Canada. Economic Geology, 109, 1643–1666.
661 662 663	Prowatke, S., and Klemme, S. (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69, 695–709.
664 665	Prowatke, S., and Klemme, S. (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, 70, 4513–4527.
666	Ronsbo, J.G. (1989) Coupled substitutions involving REEs and Na and Si in apatites
667	in alkaline rocks from the Ilimaussaq Intrusion, South Greenland, and the
668	petrological implications. American Mineralogist, 74, 896–901.
669 670 671	Rubatto, D., and Hermann, J. (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38–61.
672	Sha, LK., and Chappell, B.W. (1999) Apatite chemical composition, determined by
673	electron microprobe and laser-ablation inductively coupled plasma mass
674	spectrometry, as a probe into granite petrogenesis. Geochimica et
675	Cosmochimica Acta, 63, 3861–3881.
676	Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P. (2012) Experimental study
677	of monazite/melt partitioning with implications for the REE, Th and U
678	geochemistry of crustal rocks. Chemical Geology, 300–301, 200–220.
679	Stepanov, A.S., Danyushevsky, L.V., Large, R.R., Mukherjee, I., and Zhukova, I.A.
680	(2020) Deconvolution of the composition of fine-grained pyrite in sedimentary
681	matrix by regression of time-resolved LA-ICP-MS data. American
682	Mineralogist, 105, 820–832.
683	Stepanov, A.S., Large, R.R., Kiseeva, E.S., Danyushevsky, L.V., Goemann, K.,
684	Meffre, S., Zhukova, I., and Belousov, I.A. (2021) Phase relations of arsenian
685	pyrite and arsenopyrite. Ore Geology Reviews, 136, 104285.
686	Stock, M.J., Humphreys, M.C.S., Smith, V.C., Johnson, R.D., Pyle, D.M., and EIMF
687	(2015) New constraints on electron-beam induced halogen migration in
688	apatite [†] . American Mineralogist, 100, 281–293.
689 690 691	Stormer, J.C., Pierson, M.L., and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78, 641–648.

692 693 694	Terra, O., Audubert, F., Dacheux, N., Guy, C., and Podor, R. (2006) Synthesis and characterization of thorium-bearing britholites. Journal of Nuclear Materials, 354, 49–65.
695 696 697 698	Van Lichtervelde, M., Goncalves, P., Eglinger, A., Colin, A., Montel, JM., and Dacheux, N. (2021) Solubility of Monazite-Cheralite and Xenotime in Granitic Melts, and Experimental Evidence of Liquid-Liquid Immiscibility in Concentrating REE. Journal of Petrology.
699 700 701 702 703	Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., and Dingwell, D.B. (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta, 79, 20–40.
704 705 706	Watson, E.B. (2004) A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals1. Geochimica et Cosmochimica Acta, 68, 1473–1488.
707 708 709	Watson, E.B., and Capobianco, C.J. (1981) Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45, 2349–2358.
710 711 712	Watson, E.B., and Green, T.H. (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, 56, 405–421.
713 714 715 716	Webster, J.D., and Vivo, B.D. (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American Mineralogist, 87, 1046–1061.
717 718 719	Yudovich, Ya.E., Ketris, M.P., and Rybina, N.V. (2022) The apatite-deceiver as an unique indicator parent rocks and ores, as well as petro-, litho- and ore genesis.
720 721 722 723	Zhukova, I.A., Stepanov, A.S., Jiang, SY., Murphy, D., Mavrogenes, J., Allen, C., Chen, W., and Bottrill, R. (2021) Complex REE systematics of carbonatites and weathering products from uniquely rich Mount Weld REE deposit, Western Australia. Ore Geology Reviews, 139, 104539.
724 725 726	Zirner, A.L.K., Marks, M.A.W., Wenzel, T., Jacob, D.E., and Markl, G. (2015) Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland. Lithos, 228–229, 12–22.
727	
728	
729	

	Melt	sd	Apatite	sd		Calciobritholite	sd	
n	4	sd	4	sd		4	sd	
SiO ₂ , wt%	64.8	0.20	2.9	1.3		10.0	2.0	
Al ₂ O ₃	12.9	0.12	<0.1			<0.1		
CaO	2.0	0.09	46.4	3.0		29.1	6.5	
Na ₂ O	5.2	0.06	<0.1			<0.1		
K ₂ O	2.9	0.04	<0.1			<0.1		
P_2O_5	na		34.3	3.2		19.4	4.7	
La ₂ O ₃	na		2.5	0.7		7.6	1.4	
Ce ₂ O ₃	na		5.0	1.4		15.0	2.6	
Nd ₂ O ₃	na		2.8	0.9		6.6	0.5	
ThO ₂	na		1.0	0.2		4.6	1.3	
CI	0.51	0.02	1.1	0.2		1.2	0.2	
H ₂ O*	11.6							
Total	88.4		98.8			101.6		
					D	•		D
	Melt		Apatite	sd	Ap/melt	Calciobritholite	sd	Cbrt/melt
P, ppm	112	49	138695	416		74471	385	
Sr	23.4	1.2	68	1.9	2.9	88	2.56	3.7
Y	88.9	4.4	9112	27.6	103	17506	50.8	197
Ва	14.0	1.5	11	3.2	0.8	18	3.6	1.3
Zr	198	10.5	42	17.5	0	381	17.3	2
La	336	15.8	19561	26	58	60334	79	180
Ce	526	19.3	43000	11591	82	128000	22273	243
Pr	53	2.3	5480	7	104	16101	20	304
Nd	168	10.1	23037	29	137	63206	84	377
Sm	28	1.6	4485	8	160	11121	24	398
Eu	10	0.8	1109	3	108	2655	6	259
Gd	20	2.1	3711	12	183	8229	21	406
Tb	5.5	0.6	883	2	160	1824	4	331
Dy	20	1.5	2695	8	137	5479	13	279
Но	6.8	0.6	860	2	127	1722	4	254
Er	7.4	0.7	743	2	101	1464	3	199
Tm	8.2	0.7	690	3	85	1254	3	154
Yb	9.1	1.2	550	3	60	1068	4	117
Lu	9.4	0.5	462	2	49	940	3	100
Pb	1.5	0.7	29	1	19	26	2	17
Th	155	8.4	9327	18	60	38216	110	247
U	12	1.0	881	2	74	2088	7	175

Table 1. Compositions of experimental phases and estimated partition coefficients.

 $^{*}H_{2}O$ estimated from the total deficit.

Figure 1

Figure 3

Figure 8