1	Revision 1
2	Word Count: 6386
3	Atomistic insight into the ferroelastic post-stishovite transition by high-pressure single-
4	crystal X-ray diffraction refinements
5	YANYAO ZHANG ^{1,*} , STELLA CHARITON ² , JIAMING HE ³ , SUYU FU ^{1,5} , FANG XU ⁴ ,
6	VITALI B. PRAKAPENKA ² , JUNG-FU LIN ^{1,*}
7	¹ Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at
8	Austin, Austin, TX 78712, USA
9	² Center for Advanced Radiation Sources, The University of Chicago, IL 60637, USA
10	³ Materials Science and Engineering Program, Mechanical Engineering, The University of Texas
11	at Austin, Austin, Texas 78712, USA
12	⁴ Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT,
13	UK
14	⁵ Present address: School of Earth and Space Exploration, Arizona State University, Tempe, AZ
15	85287, USA
16	*Corresponding authors: Yanyao Zhang (yanyaozhang@utexas.edu), Jung-Fu Lin
17	(afu@jsg.utexas.edu)
18	
19	Running title: atomistic insight of post-stishovite transition
20	
21	ABSTRACT

The post-stishovite transition is a classic pseudo-proper typed ferroelastic transition with a 22 symmetry-breaking spontaneous strain. This transition has been studied using high-pressure 23 24 spontaneous strains, optic modes, and elastic moduli (C_{ii}) based on the Landau modeling, but its atomistic information and structural distortion remain poorly understood. Here we have 25 conducted synchrotron single-crystal X-ray diffraction measurements on stishovite crystals up to 26 27 75.3 GPa in a diamond-anvil cell. Analysis of data reveals atomic positions, bond lengths, bond angles, and variations of SiO_6 octahedra across the transition at high pressure. Our results show 28 that the oxygen coordinates split at approximately 51.4 GPa where the apical and equatorial Si-O 29 bond lengths cross over, the SiO₆ octahedral distortion vanishes, and the SiO₆ octahedra start to 30 rotate about the *c* axis. Moreover, distortion mode analysis shows that an in-plane stretching 31 distortion $(GM_l^+ \text{ mode})$ occurs in the stishovite structure at high pressure while a rotational 32 distortion (GM_2^+ mode) becomes dominant in the post-stishovite structure. These results are used 33 to correlate with elastic moduli and Landau parameters (symmetry-breaking strain $e_1 - e_2$ and 34 35 order parameter Q) to provide atomistic insight into the ferroelastic transition. When the bond lengths of two Si-O bonds are equal due to the contribution from the GM_1^+ stretching mode, C_{11} 36 converges with C_{12} and the shear wave $V_{S1[110]}$ propagating along $[1\overline{1}0]$ and polarizing along 37 [110] vanishes. Values of $e_1 - e_2$ and Q are proportional to the SiO₆ rotation angle from the 38 occurrence of the GM_l^+ rotational mode in the post-stishovite structure. Our results on the 39 pseudo-proper type transition are also compared with that for the proper-type in albite and 40 improper-type in CaSiO₃ perovskite. The symmetry-breaking strain in all these types of 41 transitions arises as the primary effect from the structural angle (such as SiO₆ rotation or lattice 42 constant angle) and its relevant distortion mode in the low-symmetry ferroelastic phase. 43

44

Keywords: single-crystal X-ray diffraction, stishovite, post-stishovite, ferroelastic transition,
 structural angle, distortion mode, Landau model, spontaneous strain

- 47
- 48

INTRODUCTION

Ferroelastic phase transitions occur in silicate minerals in the Earth's interior because of 49 temperature and pressure perturbations. These transitions in crystals involve a change in point 50 group with a symmetry-breaking strain (Aizu, 1969; Aizu, 1970). According to the Landau 51 theory, there are different types of the ferroelastic transitions, including proper, pseudo-proper, 52 and improper types, which have different transition mechanisms (Carpenter and Salje, 1998; 53 Wadhawan, 1982). The proper-type transition is driven by the symmetry-breaking spontaneous 54 strain, whereas the pseudo-proper- and improper-type transitions are driven by other physical 55 56 properties that are linearly and nonlinearly coupled to the symmetry-breaking strain, respectively (Carpenter et al., 1998; Wadhawan, 1982). These types of the ferroelastic phase transitions are 57 also well known to be associated with elastic and optic mode anomalies including sound wave 58 velocity softening, which could occur in some naturally abundant minerals under high pressure-59 temperature (P-T) conditions in the Earth's crust and mantle (Carpenter, 2006; Salje, 1990; Salje, 60 1992). Knowing their transition mechanisms and elastic properties in relevant P-T conditions can 61 help us understand geophysics and geodynamics of the Earth's interior. For example, the proper-62 type ferroelastic transition in feldspar, comprising of approximately 41 wt% of the continental 63 crust (Rudnick et al., 2003), has been linked to seismic low-velocity anomaly in the crust (Brown 64 et al., 2006; Liu et al., 2018; Waeselmann et al., 2016; Zhang and Klemperer, 2005; Zhao et al., 65 2001). The stishovite and CaSiO₃ perovskite (CaPv) are abundant phases in the subducted mid-66 67 ocean ridge basalt (MORB) in the lower mantle (Ishii et al., 2019). Their transition mechanisms

and elastic anomalies have been used to explain seismic heterogeneities, to infer the presence of 68 the subducting slabs, and to constrain mantle convection at depths (Helffrich, 2006; Kaneshima, 69 70 2016; Niu et al., 2003; Sun et al., 2020; Thomson et al., 2019; Wang et al., 2020). As a prototype of six-fold coordinated silicates, the ferroelastic transition in stishovite is particularly important 71 not only to aid our understanding in physical properties of subducting slabs in the mantle 72 73 (Lakshtanov et al., 2007; Tsuchiya, 2011; Yang and Wu, 2014; Zhang et al., 2021), but also to shed light on similar phase transitions in other rock-forming silicate and oxide minerals at 74 75 depths.

The ferroelastic transition across the stishovite to post-stishovite phases at 50-55 GPa has been 76 relatively well investigated using multiple experimental data sets including optical Raman 77 modes, lattice constants from powder X-ray diffraction, and elastic moduli (C_{ii}) derived from 78 sound velocities (Andrault et al., 2003; Buchen et al., 2018; Kingma et al., 1995; Lakshtanov et 79 al., 2007; Zhang et al., 2021). These data are further complemented by Landau theory modeling 80 81 (Carpenter et al., 2000; Hemley et al., 2000) and ab initio calculations (Karki et al., 1997a; Karki et al., 1997b; Yang and Wu, 2014). Importantly, experimental optic modes and lattice parameters 82 across the transition have been used in the pseudo-proper type Landau modeling to show that the 83 transition is driven by the soft B_{1g} mode and accompanied by a symmetry-breaking spontaneous 84 strain and a significant shear softening (Andrault et al., 2003; Carpenter et al., 2000; Hemley et 85 al., 2000; Kingma et al., 1995). A recent experimental study on C_{ii} of stishovite across the post-86 stishovite transition has further showed that C_{11} converges with C_{12} at the transition pressure, 87 where the shear wave $V_{S1[110]}$ propagating along $[1\overline{1}0]$ and polarizing along [110] vanishes 88 (Zhang et al., 2021). These results reveal macroscopic physical phenomena that need to be 89 integrated with microscopic atomic displacements in order to have a complete understanding of 90

91	the transition and its physical properties. Along this line, crystal structural parameters, such as
92	oxygen positions, bond lengths, and bond angles, are key to microscopically quantifying elastic
93	anomalies and some Landau parameters such as the symmetry-breaking spontaneous strain. A
94	previous powder X-ray diffraction (PXRD) study has refined crystal structures of stishovite and
95	post-stishovite phases at high pressure using the Rietveld structural analysis method (Andrault et
96	al., 1998). However, the refined structural parameters showed considerable scattering at high
97	pressure due to difficulties in solving crystal structures from the powder diffraction data (Harris
98	et al., 2001). On the other hand, high-resolution single-crystal X-ray diffraction (SCXRD)
99	studies on the stishovite are limited to 30 GPa, far below the transition pressure (Hill et al., 1983;
100	Ross et al., 1990; Sinclair and Ringwood, 1978; Sugiyama et al., 1987; Yamanaka et al., 2002).
101	This limitation was mainly due to the technical difficulty in conducting high-resolution SCXRD
102	experiments at high pressure using a laboratory X-ray source. Recent advance in synchrotron X-
103	ray diffraction technique now enables reliable crystal structure refinements to better understand
104	the transition and elastic anomalies from the microscopic atomic perspective (Boffa Ballaran et
105	al., 2013; Chariton et al., 2020; Clegg, 2019; Dera, 2010)
106	In this study, we performed synchrotron SCXRD experiments on stishovite crystals up to 75.3
107	GPa in a diamond anvil cell (DAC) with large X-ray opening equipped with Boehler-Almax
108	anvils and seats. The crystal structure of the stishovite or post-stishovite phase has been solved
109	and refined at each experimental pressure. Refined structural parameters show that the oxygen
110	coordinates split at the transition pressure of \sim 51.4 GPa where the bond lengths of apical and
111	equatorial Si-O bonds are equal. This atomic information is further used to evaluate deformation
112	and rotation of the SiO ₆ octahedron across the transition. Two symmetry modes, GM_1^+ and
113	GM_2^+ , are analyzed to reveal crystal structure distortion at high pressure. Our results show that a

114	rotational mode with GM_2^+ symmetry occurs at the transition pressure where the SiO ₆
115	octahedron starts to rotate about the c axis. Furthermore, we correlate the microscopic bond
116	length difference of two Si-O bonds with the macroscopic elastic properties in the literature, such
117	as C_{11} , C_{12} , and $V_{S1[110]}$ (Zhang et al., 2021). The symmetry-breaking spontaneous strain $e_1 - e_2$
118	and order parameter Q in a pseudo-proper type Landau model are quantified using the SiO ₆
119	rotation angle Φ that comes from the GM_2^+ mode. Together with early studies on other types of
120	the ferroelastic transitions (Kroll et al., 1980; Zhao et al., 1993a; Zhao et al., 1993b), we
121	therefore conclude that the symmetry-breaking strain changes linearly with a given structural
122	angle in all types of ferroelastic transition.
123	
124	EXPERIMENTAL METHODS AND DATA ANALYSIS
127	EXIENTELTEL WETHODS AND DATA ANALISIS
124	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus
125	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus
125 126	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and
125 126 127	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021).
125 126 127 128	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021). Briefly, reagent-grade silicic acid of 99.9% purity (SiO ₂ with 13 wt% H ₂ O) was used as the
125 126 127 128 129	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021). Briefly, reagent-grade silicic acid of 99.9% purity (SiO ₂ with 13 wt% H ₂ O) was used as the starting sample which was loaded into a platinum capsule. The sample assemblage was
 125 126 127 128 129 130 	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021). Briefly, reagent-grade silicic acid of 99.9% purity (SiO ₂ with 13 wt% H ₂ O) was used as the starting sample which was loaded into a platinum capsule. The sample assemblage was compressed to 12 GPa and then heated to 1873 K. The temperature of the assemblage was slowly
 125 126 127 128 129 130 131 	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021). Briefly, reagent-grade silicic acid of 99.9% purity (SiO ₂ with 13 wt% H ₂ O) was used as the starting sample which was loaded into a platinum capsule. The sample assemblage was compressed to 12 GPa and then heated to 1873 K. The temperature of the assemblage was slowly cooled down to 1473 K with a rate of 100 K/hour (4 hours in total) before quenched to ambient
 125 126 127 128 129 130 131 132 	Stishovite single crystals were synthesized using a 1000-ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run# 1K1642). The synthesis and characterization of the crystals has been reported elsewhere (Xu et al., 2017; Zhang et al., 2021). Briefly, reagent-grade silicic acid of 99.9% purity (SiO ₂ with 13 wt% H ₂ O) was used as the starting sample which was loaded into a platinum capsule. The sample assemblage was compressed to 12 GPa and then heated to 1873 K. The temperature of the assemblage was slowly cooled down to 1473 K with a rate of 100 K/hour (4 hours in total) before quenched to ambient temperature and then decompressed to ambient pressure. Stishovite crystals recovered from the

- selected crystals show a chemical formula of SiO_2 without any other detectable elements.
- 136 Analysis of unpolarized Fourier-transform infrared spectroscopic spectra shows ~19 ppm wt.

water content in the selected crystals (Xu et al., 2017; Zhang et al., 2021). The amount of water
in the Al-free stishovite crystals is consistent with previous reports (Litasov et al., 2007; Pawley
et al., 1993).

Three stishovite crystals were loaded into a short-symmetric DAC with a pair of Boehler-140 Almax designed diamond anvils mounted onto WC seats with a large aperture of $\sim 80^{\circ}$ (40). This 141 142 allowed us to obtain reflections at a wide two theta range (2θ , Figure S1). The culet size of the diamond anvils is 200 µm in diameter. A rhenium gasket with an initial thickness of 260 µm was 143 pre-indented to $\sim 24 \,\mu m$ thick and subsequently a hole of 120 μm diameter was drilled in the 144 center of the pre-indented area and used as the sample chamber. To obtain more reflections from 145 stishovite, we selected three stishovite crystals with (2.4, 4.7, 1.7), (-0.8, 0.3, 1.6), and (0.8, 2.2, -1.6). 146 0.9) orientations, respectively, which were determined by SCXRD measurements. The crystals 147 were double-side polished down to approximately 7 μ m thick using 3M diamond films. They 148 were then cut into $\sim 10-20 \,\mu\text{m}$ big platelets before being loaded into the sample chamber (Figure 149 150 1). Au powder (Goodfellow; 99.95% purity) was pressed into 2 μ m thick, cut into ~5 μ m wide disks, and placed close to the center of the sample chamber as the pressure calibrant (Fei et al., 151 2007). The three stishovite platelets were loaded at an equal distance to the Au calibrant to 152 153 minimize possible pressure gradient across the crystals in the chamber (Figure 1c). Neon gas was loaded into the sample chamber as the pressure medium using a gas loading system at the 154 Mineral Physics Laboratory of the University of Texas at Austin. 155 High-pressure SCXRD experiments were conducted up to 75.3 GPa at room temperature at 156 13ID-D beamline of the GSECARS, Advanced Photon Source, Argonne National Laboratory 157 (Figures 1a and 1b). An incident X-ray beam of 0.2952 Å wavelength (42 keV energy) was 158 focused down to a beam size of $\sim 3 \times 3 \ \mu m^2$ at the sample position. Approximately 10% intensity 159

160	of the incident X-ray was used for the measurements to avoid peak saturations. The sample stage
161	was rotated over $\pm 31^{\circ}$ about the vertical axis of the DAC during data collections. The XRD
162	patterns were collected using a CdTe Pilatus 1M detector with 1 or 2 s exposure time at every
163	0.5° step of the rotation. A membrane was used to increase and control pressure in the sample
164	chamber. After each pressure increase, we monitored the pressure of the sample chamber until it
165	was stabilized before SCXRD measurements were conducted. Pressure uncertainties were
166	evaluated from analysis of XRD spectra of Au collected right before and after each set of
167	SCXRD measurements (Fei et al., 2007). Additionally, SCXRD measurements at ambient
168	conditions were conducted in the Department of Chemistry at the University of Texas at Austin.
169	A stishovite crystal with dimensions of approximately $0.94 \times 0.44 \times 0.17$ mm was selected for
170	the experiment. A SuperNova dual source diffractometer equipped with a Mo K α radiation
171	source ($\lambda = 0.71073$ Å) and collimating mirror monochromators was used to collect XRD data.
172	2103 frames of data were collected using Omega scan with a scan range of 1° and a counting
173	time of 1 s per frame.
174	The measured SCXRD data were used to solve the crystal structure and refine the atomic

positions of the stishovite or post-stishovite phase at high pressure following a previous SCXRD 175 processing method (Bykova, 2015). At a given pressure, we initially used CrysAlis^{PRO} software to 176 find unit cell, determine lattice parameters, extract intensity for each hkl reflection, and perform 177 absorption corrections for each crystal (Rigaku, 2015). The reflection datasets from the three 178 stishovite crystals were combined for the further analysis. JANA software was then used to 179 determine the space group, resolve structure using a charge-flipping algorithm, and refine atomic 180 181 coordinates and isotropic/anisotropic displacement parameters of the crystal (Petříček et al., 2014). On the other hand, the stishovite structure at ambient conditions was solved by direct methods and 182

then refined together with anisotropic displacement parameters of Si and O atoms using SHELXL software (Sheldrick, 2015). Structural analysis of the Si and O atomic positions, bond lengths and bond angles was evaluated using the programs PLATON (Spek, 2009) and OLEX2 at ambient conditions (Dolomanov et al., 2009). The quality of the refinements at each pressure were evaluated by residual *R*-factors such as R_{int} and R_1 (Bykova, 2015). The refined parameters of the crystal structure were viewed and graphed using VESTA software (Momma and Izumi, 2011).

The refined structural parameters were further used to perform distortion mode analysis across 189 190 the post-stishovite transition using AMPLIMODES program (Orobengoa et al., 2009). The program is used to evaluate symmetry-adapted structural distortion between high- and low-191 symmetry phases across a displacive phase transition. Our input high-symmetry structural data are 192 193 refined lattice parameters and atomic positions of stishovite at ambient conditions, while input low-symmetry data are those of stishovite and post-stishovite phases at high pressure. The 194 195 AMPLIMODES program is used to calculate the maximum atomic displacement and global 196 structural distortion in the distorted low-symmetry structure relative to the reference highsymmetry structure (Perez-Mato et al., 2010). The program then decomposes the global distortion 197 into different symmetry-adapted distortion modes. Amplitude of the individual mode can reflect 198 199 its contribution to the global structural distortion (Gawryluk et al., 2019).

200

201

RESULTS

202 Crystallographic analysis

Analysis of the collected SCXRD images shows that reflection spots of the three crystals display a round shape with a full-width at half maximum (FWHM) of less than 0.1°. The FWHM is almost invariant up to 75.3 GPa, indicating that the single-crystal quality of stishovite was

206	preserved in compression in neon medium (Yamanaka et al., 2002) (Figures 1c and 1d). We
207	observed 66 to 239 total reflections from the crystals at high pressure (Figures 1a and 1b). These
208	reflections were then grouped into 31 to 55 unique reflections which were used to determine
209	lattice parameters at high pressure (Table 1). Furthermore, 24 to 63 reflections of $I > 3\sigma(I)$,
210	where I is the intensity and σ is the standard deviation, were used to determine the space group
211	and to refine atomic positions of the crystal at high pressure. Our analyses show that the crystal
212	is in the tetragonal stishovite structure with $P4_2/mnm$ (No. 136) space group at pressures up to
213	49.8 GPa (Figures S2 and S3; Tables 1 and S1). From 52.4 GPa to 75.3 GPa, the crystal is stable
214	in an orthorhombic structure with Pnnm (No. 58) space group, called the CaCl ₂ -type post-
215	stishovite phase (Figures S2 and S3; Tables 1 and S1). These results indicate that the post-
216	stishovite phase transition occurs between 49.8 and 52.4 GPa, consistent with previous studies
217	(Andrault et al., 1998; Hemley et al., 2000; Kingma et al., 1995; Zhang et al., 2021). Values of
218	R_{int} and R_1 are 0.6-14.9% and 1.3-9.4%, respectively, indicating the refined crystal structures are
219	of good quality (Table 1).
220	Atomic coordinates, bond lengths, and bond angles can be derived from the refined crystal
221	structures (Figures 2 and 3; Table 2). Using Si atom positions in the stishovite structure as the
222	reference, the x (or y) coordinate of oxygen relative to the Si positions changes slightly from
223	0.306 at ambient conditions to 0.303 at 49.8 GPa (Figures 2a and 3a). Crossing into the post-
224	stishovite phase, the x coordinate of oxygen drastically decreases from 0.303 at 52.4 GPa to
225	0.279 at 75.3 GPa whereas the <i>y</i> coordinate drastically increases from 0.303 to 0.323 (Figure 3a).
226	This splitting of oxygen coordinates corresponds to a splitting of <i>a</i> - and <i>b</i> -axis in the post-
227	stishovite phase (Figure S2a). On the other hand, the Si-O bond lengths decrease continuously
228	with increasing pressure up to 75.3 GPa (Figures 2 and 3b). The apical Si-O3 bond length is

229 initially much longer than the equatorial Si-O1(2) bond length at ambient conditions, but it decreases with increasing pressure much faster than the equatorial Si-O1(2) bond length. This 230 231 anisotropic linear incompressibility behavior leads to an equal bond length of 1,703 Å for the 232 two Si-O bonds at ~51.4 GPa where the post-stishovite transition occurs (Figures 3b). In the post-stishovite structure, the apical Si-O3 bond becomes shorter than the equatorial Si-O1(2) 233 234 bond (Figures 2b and 3b). Additionally, the bond angles between Si and O atoms in the stishovite structure are almost unaffected by increasing pressure up to ~51 GPa: $\angle O1(2)$ -Si-O3 = 90°, 235 $\angle O1$ -Si-O2 = ~81.3°, and $\angle O1(2)$ -Si-O1(2) = ~98.7° (Figure 3c). Crossing into the post-236 stishovite phase, the bond angles are slightly changed: $\angle O1$ -Si-O2 increases by 0.5°, $\angle O1(2)$ -Si-237 O1(2) decreases by 0.5°, and \angle O1-Si-O3 or \angle O2-Si-O3 remains almost unchanged within 238 239 uncertainties ($\sim 0.1^{\circ}$) up to 75.3 GPa. Accordingly, the O1-O2 interatomic distance remains unchanged under compression whereas the O1(2)-O1(2), O1-O3, and O2-O3 distances decrease 240 with increasing pressure and the difference between O1-O3 and O2-O3 distance is negligible 241 242 (Figure S4).

The aforementioned structural parameters are used to further analyze the volume, deformation, 243 and rotation of the SiO_6 octahedron across the post-stishovite transition (Figures 2 and 4; Table 244 245 3). These analyses show that the SiO_6 volume decreases continuously with increasing pressure up to 75.3 GPa, resulting in a continuous decrease of the unit-cell volume (Figures S2b and S5). 246 247 The deformation of SiO₆ octahedron can be quantitatively determined by the distortion index and the bond angle variance based on the refined bond lengths and bond angles, respectively. The 248 distortion index is defined as $D(\%) = \frac{100}{6} \sum_{n=1}^{6} |l_i - l_{av}| / l_{av}$ where l_i is the Si-O bond length 249 and l_{av} is the average Si-O bond length (Renner and Lehmann, 1986). The bond angle variance 250 is defined as $\sigma^2(\text{deg}^2) = \frac{1}{11} \sum_{i=1}^{12} (\alpha_i - 90^\circ)^2$ where α_i is the O-Si-O bond angle (Robinson et 251

al., 1971). In the stishovite phase, the distortion index decreases from 1.3% at ambient pressure 252 to zero at ~51.4 GPa whereas the bond angle variance remains invariant at approximately 27 253 deg² with increasing pressure up to ~51.4 GPa (Figures 4a and 4b). Crossing into the post-254 255 stishovite phase, the distortion index increases to approximately 0.3% whereas the bond angle variance decreases to approximately 24 deg² at \sim 75 GPa (Figures 4a and 4b). On the other hand, 256 257 the rotation of the SiO₆ octahedron about the c axis can be evaluated with respect to the stishovite structure using a formula, $\Phi(^{\circ}) = 45^{\circ} - \arctan(ax_0/by_0)$, where y_0 and x_0 are the 258 *v*- and *x*-coordinate of oxygen atoms, respectively (Bärnighausen et al., 1984; Range et al., 1987) 259 (Figure 4c). These analyses show that the SiO_6 octahedron does not rotate in the stishovite phase 260 261 but starts to rotate about the c axis crossing into the post-stishovite phase. At 75.3 GPa, the SiO₆ octahedral rotation is about 5.4°. 262 Our structural refinement results for stishovite are, for the first order, consistent with previous 263 SCXRD studies up to 30 GPa (Hill et al., 1983; Ross et al., 1990; Sinclair and Ringwood, 1978; 264 Sugiyama et al., 1987; Yamanaka et al., 2002) (Figures 3 and 4). Additionally, our results across 265 the post-stishovite transition are generally consistent with a PXRD study using the Rietveld 266 267 structural analysis (Andrault et al., 1998), except for the octahedral volume (Figure S5). We note that our SCXRD data have much higher resolutions and are denser in the vicinity of the 268 269 transition pressure such that detailed structural evolutions are clearly revealed across the post-270 stishovite transition. On the other hand, comparisons between ab initio calculations and experimental results show very large discrepancies in the structural parameters especially for the 271 post-stishovite phase (Figures 3 and 4). For example, theoretical calculations show equal 272 equatorial and apical Si-O bond lengths in the post-stishovite structure at high pressure (Karki et 273 274 al., 1997b), which is contrary to our results. This could be due to difficulties in properly

275	optimizing spontaneous strains in the post-stishovite phase to account for exchange-correlation
276	interactions in the local-density approximation (LDA). This in turn can affect accuracy in
277	theoretically-predicted elastic moduli across the ferroelastic post-stishovite transition which are
278	quite different from experimentally-derived elastic moduli (Karki et al., 1997a; Yang and Wu,
279	2014; Zhang et al., 2021). Our study here not only provides reliable structural models of the
280	stishovite and post-stishovite phases, but also serves as benchmarks for future ab initio
281	calculations.

282

283 **Distortion mode analysis**

As shown in the previous section, the stishovite phase has the space group of $P4_2/mnm$ while 284 285 the post-stishovite phase has the space group of *Pnnm*, revealing a group-subgroup relationship between these two space groups across the transition. In other words, the low-symmetry post-286 stishovite structure can be considered as the high-symmetry stishovite structure undergoing a 287 288 symmetry-adapted lattice distortion. Therefore, analysis of the symmetry mode is another useful way to describe crystal structures in terms of the displacement of a set of atoms that are related 289 by a given symmetry, as compared to standard crystallographic descriptions in terms of 290 individual bond length and bond angle. Particularly, amplitude of symmetry modes represents 291 magnitude of lattice distortions with different symmetry representations. This information can 292 thus help better understand symmetry-adapted structure distortions across the ferroelastic post-293 stishovite transition. 294

Using the refined structural data from our study, we have calculated maximum atomic displacements and distortion mode amplitudes in a distorted crystal structure at a given pressure with respect to the reference structure at ambient conditions (Figure 5 and Table 4). The

298	displacement of Si atoms remains zero at high pressure because they remain stationary at (0, 0,
299	0) coordinate in the lattice. The displacement of oxygen atoms increases linearly from zero at
300	ambient conditions to 0.022 Å at \sim 51.4 GPa. The oxygen atoms then start to move significantly
301	upon further compression with the maximum atomic displacement of 0.1343 Å at 75.3 GPa
302	(Figure 5a). This atomic displacement results in an occurrence of two symmetry-related
303	distortion modes: GM_1^+ and GM_2^+ (Figure 5b). GM_1^+ is an in-plane stretching mode acting on the
304	oxygen atoms (Figure 5c). Its amplitude increases linearly with pressure across the post-
305	stishovite transition up to 0.0609 Å at 75.3 GPa. The GM_2^+ mode, which is related to oxygen
306	rotations about c axis (Figure 5d), emerges at ~51.4 GPa. Its amplitude increases significantly
307	with pressure and is much larger than that of GM_1^+ (e.g., 0.2616 Å at 75.3 GPa). These results
308	therefore reveal that the stishovite phase undergoes an in-plane stretching distortion at high
309	pressure while a rotational distortion becomes dominant in the post-stishovite structure.
310	
310 311	DISCUSSION
	DISCUSSION Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O
311	
311 312	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O
311312313	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to
311312313314	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to correlate with previous elasticity and Landau modeling studies to shed new light on the pseudo-
 311 312 313 314 315 	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to correlate with previous elasticity and Landau modeling studies to shed new light on the pseudo- proper type ferroelastic transition (Carpenter et al., 2000; Hemley et al., 2000; Zhang et al.,
 311 312 313 314 315 316 	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to correlate with previous elasticity and Landau modeling studies to shed new light on the pseudo- proper type ferroelastic transition (Carpenter et al., 2000; Hemley et al., 2000; Zhang et al., 2021). Firstly, we co-plot Si-O bond length difference and elastic properties at given
 311 312 313 314 315 316 317 	Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to correlate with previous elasticity and Landau modeling studies to shed new light on the pseudo- proper type ferroelastic transition (Carpenter et al., 2000; Hemley et al., 2000; Zhang et al., 2021). Firstly, we co-plot Si-O bond length difference and elastic properties at given experimental pressures (Figure 6). The elastic moduli of stishovite and post-stishovite are taken

flattens when the difference is below 0.01 Å, while C_{12} increases significantly across the 321 transition (Figure 6a). As a result, the elastic modulus $(C_{11} - C_{12})/2$, which reflects the strain 322 323 response to the shear stress along the [110] direction in the stishovite structure (Bell and 324 Rupprecht, 1963), becomes zero when the apical and equatorial Si-O bond lengths become equal 325 due to the stretching displacement of oxygen atoms in the GM_1^+ mode (Figures 5b and 5c). 326 Accordingly, $C_{11} - C_{12}$, one of Born criteria of the tetragonal stishovite phase, becomes zero at the phase transition (Zhang et al., 2021). Crossing into the post-stishovite phase, C_{11} splits into 327 C_{11} and C_{22} as the oxygen coordinates split (Figures 3a and 6a). As the equatorial Si-O1(2) bond 328 length becomes longer than the apical Si-O3 bond length with increasing amplitude of the GM_{l}^{+} 329 stretching mode, the elastic moduli C_{11} , C_{22} , and C_{12} of the post-stishovite phase increase 330 (Figures 5a and 6a). The corresponding Born criterion, $C_{11}C_{22} - C_{12}^2$, becomes positive in the 331 post-stishovite phase, indicating its stability after the crossover of the equatorial and apical Si-O 332 333 bond lengths. The ferroelastic post-stishovite transition is also manifested by vanishing the shear wave 334 $V_{S1[110]}$ (Zhang et al., 2021). $V_{S1[110]}$ decreases from 5.5 km/s to zero as the Si-O bond length 335 difference decreases from 0.05 Å to zero (Figure 6b). We should note that the strong reduction of 336 $V_{S1[110]}$ starts from ~40 GPa where the Si-O bond length difference becomes lower than ~0.01 Å. 337 This non-linear pressure dependence of elasticity is one important consequence of the pseudo-338 339 proper typed ferroelastic transition in stishovite whose transition mechanism is the softening of the B_{1g} mode (Carpenter and Salje, 1998). The Si-O bond lengths represent the bonding strength 340 341 of the lattice that determines the frequency of the optic mode. Previous Raman shift data and a pseudo-proper typed Landau model have shown that squared Raman shift of the B_{1g} mode (ω^2) is 342 proportional to pressure (Carpenter et al., 2000; Hemley et al., 2000; Kingma et al., 1995). That 343

344	is, $\omega^2 \propto P$ or $\omega \propto \sqrt{P}$. This non-linear relation in the Raman shift of the soft B_{1g} mode with
345	respect to pressure can thus lead to the non-linear behavior in the shear velocity reduction close
346	to the post-stishovite transition pressure. Across into the post-stishovite phase, $V_{S1[110]}$ increases
347	as the Si-O bond length difference increases (Figure 6b).
348	We also use the structural parameters to quantify the spontaneous strains (e_1 and e_2) and order
349	parameter Q in a pseudo-proper type Landau model at high pressure (Figure 7). The splitting of
350	oxygen coordinates leads to a symmetry reduction from tetragonal to orthorhombic structure and
351	an occurrence of the GM_2^+ rotational mode. Because $y_0 > x_0$ in the orthorhombic post-
352	stishovite phase (Figure 3a), the a axis becomes shorter whereas the b axis becomes longer with
353	respect to the ideal stishovite structure. All these lead to the occurrence of a negative
354	spontaneous strain e_1 and a positive spontaneous strain e_2 (Figure 7a). Additionally, as the
355	amplitude of GM_2^+ significantly increases (Figure 5a), the SiO ₆ octahedron rotates about the <i>c</i>
356	axis in the post-stishovite structure (Figure 7a). Our results further show that the symmetry-
357	breaking strain $e_1 - e_2$, whose eigenvalue is the aforementioned elastic modulus $C_{11} - C_{12}$, can be
358	quantified by the SiO ₆ rotation angle Φ (Figure 7b). That is, $e_1 - e_2$ is proportional to Φ . Because
359	the order parameter Q is coupled linearly to the strain $e_1 - e_2$ (Carpenter et al., 2000), Q also
360	changes linearly with Φ (Figure 7c). We should note that the value of Q is obtained from a set of
361	Landau parameters that were derived from combined experimental elastic moduli, lattice
362	parameters, and Raman shift data (Zhang et al., 2021).
363	These crystallographic data and symmetry mode results can be correlated with Landau
364	modeling parameters to have a better understanding of the transition. Previous studies have
365	shown that the post-stishovite transition belongs to the pseudo-proper type which is driven by the
366	soft B_{1g} optic mode (Carpenter et al., 2000; Kingma et al., 1995). The Raman active B_{1g} mode

367	represents a rotational vibration of oxygen atoms about the c axis (Hemley et al., 1986; Traylor
368	et al., 1971). As the two Si-O bond lengths cross over each other due to an in-plane stretching of
369	oxygen atoms with GM_1^+ symmetry (Figures 3b, 5b, and 5c), the Raman shifts of the B_{1g} optic
370	mode decrease and would become zero at the critical pressure ($P_C = 110.2$ GPa) (Kingma et al.,
371	1995; Zhang et al., 2021). However, the transition occurs at a much lower pressure of ~51.4 GPa
372	where the two Si-O bond lengths are equal (Figure 3b). The oxygen coordinates split across the
373	transition (Figure 3a), leading to a symmetry breaking from the point group 422 to 222 where
374	one 4-fold axis becomes a 2-fold axis. This symmetry reduction further results in the occurrence
375	of the GM_2^+ rotational mode and the SiO ₆ octahedron rotation about the <i>c</i> axis. As a result,
376	symmetry-breaking spontaneous strains appear. The eigenvalue $C_{11} - C_{12}$ and acoustic velocity
377	$V_{S1[110]}$ accordingly vanish at the transition, leading to significant shear wave velocity softening
378	(Zhang et al., 2021). Therefore, the Si-O bond lengths and SiO ₆ octahedron rotation, together
379	with their relevant GM_1^+ and GM_2^+ distortion modes, play a key role in the ferroelastic transition
380	from the stishovite to the post-stishovite phase.
381	
382	IMPLICATIONS
383	As discussed in the introduction, pseudo-proper, proper, and improper typed ferroelastic
384	transitions can occur in representative naturally occurring silicate minerals in Earth's deep crust
385	and mantle. The ferroelastic transitions are manifested by appearance of the symmetry-breaking
386	spontaneous strain in the low-symmetry ferroelastic phase, although the driving force is different
387	among these ferroelastic transitions (Wadhawan, 1982). Our study on the post-stishovite
388	transition, a typical pseudo-proper typed ferroelastic transition, reveals the relationship between

the macroscopic spontaneous strain and microscopic structural angle. Previous studies on proper

390 and improper typed transitions have also shown a similar relationship. For example, albite 391 (NaAlSi₃O₈ feldspar) undergoes a proper typed ferroelastic transition from monoclinic (space group: C2/m) to triclinic (space group: $C\overline{1}$) structure at approximately 1300 K (Salje, 1985; Salje 392 et al., 1985). The spontaneous strain e_4 varies linearly with $-\cos \alpha$ where α is the lattice constant 393 394 angle (Carpenter et al., 1998; Kroll et al., 1980). Improper typed ferroelastic transition occurs in CaPv from cubic to tetragonal phase at approximately 450 K and 12 GPa with the tetragonal 395 shear strain proportional to the squared rotation angle of the SiO_6 octahedron about the c axis 396 $(\Phi_{Pv})^{2}$ (Kurashina et al., 2004; Sun et al., 2016; Zhao et al., 1993a; Zhao et al., 1993b). These 397 398 results reveal that the symmetry-breaking strain occurs as the primary effect from the structural 399 angle in the low-symmetry ferroelastic phase. Furthermore, the structural angles can be linked to given symmetry-adapted distortion modes based on a group-subgroup relation. For example, 400 considering that CaPv has a parent structure with $Pm\overline{3}m$ space group and a low symmetry phase 401 with the subgroup I4/mcm, the Φ_{Pv} angle can be attributed to a distortion mode with symmetry 402 R_4^+ (Perez-Mato et al., 2010). Therefore, the change of the structural angle with the occurrence 403 404 of symmetry-breaking distortion mode is an important consequence of the ferroelastic transition. 405 Our results here can be combined with sound velocity and elastic moduli studies across the three 406 types of ferroelastic transitions in silicates and oxides at high pressure. This helps shed light on 407 the abnormal seismic properties across the transitions especially in the subducting slabs and deep 408 crustal regions.

409

410

ACKNOWLEDGEMENTS

We thank Vincent Lynch for his assistance on SCXRD measurements at ambient conditions and
data analysis. High-pressure SCXRD experiments were performed at 13ID-D, GSECARS.

4	1	3

413	
414	FUNDING
415	GSECARS was supported by the National Science Foundation (EAR-0622171). This research
416	used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
417	Science User Facility operated for the DOE Office of Science by Argonne National Laboratory
418	under Contract No. DE-AC02-06CH11357. Jung-Fu Lin acknowledges support from Geophysics
419	Program of the U.S. National Science Foundation (EAR-1916941 and EAR-2001381) and the
420	Joint-Use User Program of the Institute for Planetary Materials, Okayama University.
421	
422	REFERENCES CITED
423	Aizu, K. (1969) Possible species of "ferroelastic" crystals and of simultaneously ferroelectric and
424	ferroelastic crystals. Journal of the Physical society of Japan, 27(2), 387-396.
425	(1970) Determination of the state parameters and formulation of spontaneous strain for ferroelastics.
426	Journal of the Physical Society of Japan, 28(3), 706-716.
427	Andrault, D., Angel, R.J., Mosenfelder, J.L., and Bihan, T.L. (2003) Equation of state of stishovite to lower
428	mantle pressures. American Mineralogist, 88(2-3), 301-307.
429 430	Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landau-type transition in stishovite. Science, 282(5389), 720-724.
430	Bärnighausen, H., Bossert, W., and Anselment, B. (1984) A second-order phase transition of calcium
432	bromide and its geometrical interpretation. Acta Crystallographica Section A, 40.
433	Bell, R., and Rupprecht, G. (1963) Elastic constants of strontium titanate. Physical Review, 129(1), 90.
434	Birch, F. (1947) Finite elastic strain of cubic crystals. Physical review, 71(11), 809.
435	Boffa Ballaran, T., Kurnosov, A., and Trots, D. (2013) Single-crystal X-ray diffraction at extreme
436	conditions: a review. High Pressure Research, 33(3), 453-465.
437	Brown, J., Abramson, E., and Angel, R. (2006) Triclinic elastic constants for low albite. Physics and
438	Chemistry of Minerals, 33(4), 256-265.
439	Buchen, J., Marquardt, H., Schulze, K., Speziale, S., Boffa Ballaran, T., Nishiyama, N., and Hanfland, M.
440	(2018) Equation of State of Polycrystalline Stishovite Across the Tetragonal-Orthorhombic Phase
441	Transition. Journal of Geophysical Research: Solid Earth, 123(9), 7347-7360.
442	Bykova, E. (2015) Single-crystal X-ray diffraction at extreme conditions in mineral physics and material
443	sciences.
444 445	Carpenter, M.A. (2006) Elastic properties of minerals and the influence of phase transitions. American mineralogist, 91(2-3), 229-246.

 PA2/mnm= Pnim phase transition. Journal of Geophysical Research: Solid Earth, 105(B5), 10807-10816. Carpenter, M.A., and Salje, E.K. (1998) Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 693-812. Carpenter, M.A., Salje, E.K., and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691. Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2-and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographica Decomplication of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High-pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182-9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary	446	Carpenter, M.A., Hemley, R.J., and Mao, H.k. (2000) High-pressure elasticity of stishovite and the
 10807-10816. Carpenter, M.A., and Salje, E.K. (1998) Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 693-812. Carpenter, M.A., Salje, E.K., and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691. Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography. p. 11-22. Springer. Dolomanov, O. V., Bourhis, L.J., Gildaz, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode annalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use		
 Carpenter, M.A., and Salje, E.K. (1998) Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 693-812. Carpenter, M.A., Salje, E.K., and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691. Charlton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgC03 sp2- and sp3-carbonates at 98 GPa from single-crystal V-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Diaz, M., Rodríguez-Canvajal, J., and Medarde, M. (2019) Distortion mode anamalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kairuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffractio		
 European Journal of Mineralogy, 693-812. Carpenter, M.A., Salje, E.K., and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691. Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 333-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geop		
 thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691. Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High-pressure crystallography, p. 11-22. Springer. Dolomanov, O. V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182-9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Diaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626-1651. Helfrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the fe		
 621-691. Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgC03 sp2- and sp3-carbonates at 98 GPa from single-crystal V-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O. V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Diaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 471 (1, 1.20-1.26. Hemiley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemiley, R., Shu, J., Carpent	451	Carpenter, M.A., Salje, E.K., and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of
 Chariton, S., Bykov, M., Bykova, E., Koemets, E., Fedotenko, T., Winkler, B., Hanfland, M., Prakapenka, V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 CPa from single-crystal structures of Fe-bearing MgCO3 sp2- ind carbonates at 98 CPa from single-crystal structures of Fe-bearing MgCO3 sp2- det chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O. V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Diaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 25137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helfrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1, 20-1.26. Henley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gib	452	thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy,
 V.B., Greenberg, E., and McCammon, C. (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gidea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacore, P., Fernández-Diaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode annalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hil	453	621-691.
 and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Diaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Herlfey, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Muo, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Nau, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dens	454	
 Acta Crystallographica Section E: Crystallographic Communications, 76(5), 715-719. Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Herlley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Mao, HK., and Ghao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyroli by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Sl		
 Clegg, W. (2019) The development and exploitation of synchrotron single-crystal diffraction for chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, I.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodriguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helfrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 477(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry of Minerals, 13(5), 285-290. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MOR		
 chemistry and materials. Philosophical Transactions of the Royal Society A, 377(2147), 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High-pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182-9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodriguez-Carvajal, J., and Medarde, M. (2019) Distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626-1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physica and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527-532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressur		
 20180239. Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dyn		
 Dera, P. (2010) All different flavors of synchrotron single crystal X-ray diffraction experiments. High- pressure crystallography, p. 11-22. Springer. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Mao, HK., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akingi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kareki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs		
 462 pressure crystallography, p. 11-22. Springer. 463 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete 464 structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 465 339-341. 466 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally 467 consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 468 9186. 469 Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., 470 Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: 471 Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase 472 transitions. Physical Review B, 100(20), 205137. 473 Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray 474 diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 475 1651. 476 Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 477 47(1), 1.20-1.26. 478 Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics 479 and chemistry of Minerals, 13(5), 285-290. 478 Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter 481 coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 482 532. 483 Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted S		
 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 477 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kareki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure		
 structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude,		
 339-341. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 471, 1, 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Eart		
 467 consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182- 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode annalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (199		
 9186. Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M., Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3: Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	468	
 471 Illustrating the potential of symmetry-adapted distortion mode analysis for the study of phase 472 transitions. Physical Review B, 100(20), 205137. 473 Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray 474 diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 475 1651. 476 Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 477 47(1), 1.20-1.26. 478 Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics 479 and chemistry of Minerals, 13(5), 285-290. 480 Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter 481 coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. 483 Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	469	Gawryluk, D., Klein, Y., Shang, T., Sheptyakov, D., Keller, L., Casati, N., Lacorre, P., Fernández-Díaz, M.,
 transitions. Physical Review B, 100(20), 205137. Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626-1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527-532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	470	Rodríguez-Carvajal, J., and Medarde, M. (2019) Distortion mode anomalies in bulk PrNiO 3:
 Harris, K.D., Tremayne, M., and Kariuki, B.M. (2001) Contemporary advances in the use of powder X-ray diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 diffraction for structure determination. Angewandte Chemie International Edition, 40(9), 1626- 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 1651. Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 477 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Helffrich, G. (2006) Small-scale seismic heterogeneity and mantle structure. Astronomy & Geophysics, 47(1), 1.20-1.26. Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527-532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		-
 477 47(1), 1.20-1.26. 478 Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics 479 and chemistry of Minerals, 13(5), 285-290. 480 Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter 481 coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 482 532. 483 Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Hemley, R., Mao, HK., and Chao, E. (1986) Raman spectrum of natural and synthetic stishovite. Physics and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 and chemistry of Minerals, 13(5), 285-290. Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Hemley, R., Shu, J., Carpenter, M., Hu, J., Mao, H., and Kingma, K. (2000) Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 532. Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47(2), 185-200. Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 481 coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527- 482 532. 483 Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 482 532. 483 Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 484 Chemistry, 47(2), 185-200. 485 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Ishii, T., Kojitani, H., and Akaogi, M. (2019) Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	483	Hill, R., Newton, M., and Gibbs, G. (1983) A crystal chemical study of stishovite. Journal of Solid State
 486 Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell 487 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of 488 Geophysical Research: Solid Earth. 489 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	484	Chemistry, 47(2), 185-200.
 High-Pressure Experiments With Implication to Dynamics of Subducted Slabs. Journal of Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 	485	
 Geophysical Research: Solid Earth. Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 Kaneshima, S. (2016) Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105-114. Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
 490 Interiors, 257, 105-114. 491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of 		
491 Karki, B.B., Stixrude, L., and Crain, J. (1997a) Ab initio elasticity of three high-pressure polymorphs of		
492 silica. Geophysical Research Letters, 24(24), 3269-3272.		
492 silica. Geophysical Research Letters, 24(24), 3269-3272.	472	Sinca. Ocophysical Nesearch Letters, 24(24), 3207-3272.

493 Karki, B.B., Warren, M., Stixrude, L., Ackland, G., and Crain, J. (1997b) Ab initio studies of high-pressure 494 structural transformations in silica. Physical Review B, 55(6), 3465. 495 Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.-k. (1995) Transformation of stishovite to a denser 496 phase at lower-mantle pressures. Nature, 374(6519), 243. 497 Kroll, H., Bambauer, H.U., and Schirmer, U. (1980) The high albite-monalbite and analbite-monalbite 498 transitions. American Mineralogist, 65(11-12), 1192-1211. 499 Kurashina, T., Hirose, K., Ono, S., Sata, N., and Ohishi, Y. (2004) Phase transition in Al-bearing CaSiO3 500 perovskite: implications for seismic discontinuities in the lower mantle. Physics of the Earth and 501 Planetary Interiors, 145(1-4), 67-74. 502 Lakshtanov, D.L., Sinogeikin, S.V., Litasov, K.D., Prakapenka, V.B., Hellwig, H., Wang, J., Sanches-Valle, C., 503 Perrillat, J.-P., Chen, B., and Somayazulu, M. (2007) The post-stishovite phase transition in 504 hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proceedings of the National Academy of Sciences, 104(34), 13588-13590. 505 506 Litasov, K.D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D.L., Bass, J.D., and Ito, E. (2007) High 507 hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and 508 Planetary Science Letters, 262(3), 620-634. 509 Liu, W., Yang, Y., Xia, Q., Ye, Y., Wang, Z., Zhang, P., and Li, G. (2018) Water decreases displacive phase 510 transition temperature in alkali feldspar. European Journal of Mineralogy, 30(6), 1071-1081. 511 Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and 512 morphology data. Journal of applied crystallography, 44(6), 1272-1276. 513 Niu, F., Kawakatsu, H., and Fukao, Y. (2003) Seismic evidence for a chemical heterogeneity in the 514 midmantle: A strong and slightly dipping seismic reflector beneath the Mariana subduction 515 zone. Journal of Geophysical Research: Solid Earth, 108(B9). 516 Orobengoa, D., Capillas, C., Aroyo, M.I., and Perez-Mato, J.M. (2009) AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. Journal of Applied Crystallography, 42(5), 820-517 518 833. 519 Pawley, A.R., McMillan, P.F., and Holloway, J.R. (1993) Hydrogen in stishovite, with implications for 520 mantle water content. SCIENCE-NEW YORK THEN WASHINGTON-, 261, 1024-1024. 521 Perez-Mato, J., Orobengoa, D., and Aroyo, M. (2010) Mode crystallography of distorted structures. Acta 522 Crystallographica Section A: Foundations of Crystallography, 66(5), 558-590. 523 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie-Crystalline Materials, 229(5), 345-352. 524 525 Range, K.-J., Rau, F., Klement, U., and Heyns, A. (1987) β-PtO2: high pressure synthesis of single crystals 526 and structure refinement. Materials research bulletin, 22(11), 1541-1547. 527 Renner, B., and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Zeitschrift für Kristallographie-Crystalline Materials, 175(1-2), 43-59. 528 529 Rigaku, O. (2015) Crysalis Pro. Rigaku Oxford Diffraction, Yarnton, England. 530 Robinson, K., Gibbs, G., and Ribbe, P. (1971) Quadratic elongation: a quantitative measure of distortion 531 in coordination polyhedra. Science, 172(3983), 567-570. 532 Ross, N.L., Shu, J., and Hazen, R.M. (1990) High-pressure crystal chemistry of stishovite. American 533 Mineralogist, 75(7-8), 739-747. 534 Rudnick, R., Gao, S., Holland, H., and Turekian, K. (2003) Composition of the continental crust. The crust, 535 3, 1-64. 536 Salje, E. (1985) Thermodynamics of sodium feldspar I: order parameter treatment and strain induced 537 coupling effects. Physics and Chemistry of Minerals, 12(2), 93-98. 538 -. (1990) Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics, 104(1), 111-120.

539	Salje, E., Kuscholke, B., Wruck, B., and Kroll, H. (1985) Thermodynamics of sodium feldspar II:
540	experimental results and numerical calculations. Physics and Chemistry of Minerals, 12(2), 99-
541	107.
542	Salje, E.K. (1992) Application of Landau theory for the analysis of phase transitions in minerals. Physics
543	reports, 215(2), 49-99.
544	Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica Section C:
545	Structural Chemistry, 71(1), 3-8.
546	Sinclair, W., and Ringwood, A. (1978) Single crystal analysis of the structure of stishovite. Nature,
547	272(5655), 714.
548	Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica Section D:
549	Biological Crystallography, 65(2), 148-155.
550	Sugiyama, M., Endo, S., and Koto, K. (1987) The crystal structure of stishovite under pressure up to 6
551	GPa. Mineralogical Journal, 13(7), 455-466.
552	Sun, N., Bian, H., Zhang, Y., Lin, JF., Prakapenka, V.B., and Mao, Z. (2020) High-Pressure Experimental
553	Study of Tetragonal CaSiO 3-Pervoskite to 200 GPa. AGU Fall Meeting Abstracts, 2020, p.
554	MR016-0011.
555	Sun, N., Mao, Z., Yan, S., Wu, X., Prakapenka, V.B., and Lin, J.F. (2016) Confirming a pyrolitic lower
556	mantle using self-consistent pressure scales and new constraints on CaSiO3 perovskite. Journal
557	of Geophysical Research: Solid Earth, 121(7), 4876-4894.
558 559	Thomson, A., Crichton, W., Brodholt, J., Wood, I., Siersch, N., Muir, J., Dobson, D., and Hunt, S. (2019)
559 560	Seismic velocities of CaSiO 3 perovskite can explain LLSVPs in Earth's lower mantle. Nature, 572(7771), 643-647.
561	Traylor, J.G., Smith, H., Nicklow, R., and Wilkinson, M. (1971) Lattice dynamics of rutile. Physical Review
562	B, 3(10), 3457.
563	Tsuchiya, T. (2011) Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the
564	nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188(3-4),
565	142-149.
566	Wadhawan, V.K. (1982) Ferroelasticity and related properties of crystals. Phase Transitions: A
567	Multinational Journal, 3(1), 3-103.
568	Waeselmann, N., Brown, J.M., Angel, R.J., Ross, N., Zhao, J., and Kaminsky, W. (2016) The elastic tensor
569	of monoclinic alkali feldspars. American Mineralogist, 101(5), 1228-1231.
570	Wang, W., Xu, Y., Sun, D., Ni, S., Wentzcovitch, R., and Wu, Z. (2020) Velocity and density characteristics
571	of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nature
572	Communications, 11(1), 1-8.
573	Xu, F., Yamazaki, D., Sakamoto, N., Sun, W., Fei, H., and Yurimoto, H. (2017) Silicon and oxygen self-
574	diffusion in stishovite: Implications for stability of SiO2-rich seismic reflectors in the mid-mantle.
575	Earth and Planetary Science Letters, 459, 332-339.
576	Yamanaka, T., Fukuda, T., and Mimaki, J. (2002) Bonding character of SiO 2 stishovite under high
577	pressures up to 30 GPa. Physics and Chemistry of Minerals, 29(9), 633-641.
578	Yang, R., and Wu, Z. (2014) Elastic properties of stishovite and the CaCl 2-type silica at the mantle
579	temperature and pressure: An ab initio investigation. Earth and Planetary Science Letters, 404,
580	14-21.
581	Zhang, Y., Fu, S., Wang, B., and Lin, JF. (2021) Elasticity of a Pseudoproper Ferroelastic Transition from
582	Stishovite to Post-Stishovite at High Pressure. Physical Review Letters, 126(2), 025701.
583	Zhang, Z., and Klemperer, S.L. (2005) West-east variation in crustal thickness in northern Lhasa block,
584	central Tibet, from deep seismic sounding data. Journal of Geophysical Research: Solid Earth,
585	110(B9).

586 587	Zhao, W., Mechie, J., Brown, L., Guo, J., Haines, S., Hearn, T., Klemperer, S., Ma, Y., Meissner, R., and Nelson, K. (2001) Crustal structure of central Tibet as derived from project INDEPTH wide-angle
588	seismic data. Geophysical Journal International, 145(2), 486-498.
589	Zhao, Y., Weidner, D.J., Parise, J.B., and Cox, D.E. (1993a) Critical phenomena and phase transition of
590	perovskite—data for NaMgF3 perovskite. Part II. Physics of the Earth and Planetary Interiors,
591	76(1-2), 17-34.
592	(1993b) Thermal expansion and structural distortion of perovskite—data for NaMgF3 perovskite. Part
593	I. Physics of the Earth and Planetary Interiors, 76(1-2), 1-16.
594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	
605 606	
606 607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622 623	
623 624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	

FIGURE 1. Representative single-crystal X-ray diffraction data of stishovite and post-stishovite 640 at high pressure. (a) and (b) show original diffraction images at 28.5 GPa for stishovite and at 641 642 75.3 GPa for post-stishovite, respectively. Sample reflection spots are marked with red open 643 circles. (c) An optical image of the sample chamber showing three crystals (P1, P2, and P3) and gold pressure calibrant (Au) in neon pressure medium (Ne) at 2.8 GPa. (d) Full-width at half 644 maximum (FWHM) of a selected 101 diffraction peak as a function of pressure. FWHM of the 645 peak (red solid circles) remains almost unchanged during compression. The insert panel shows a 646 647 round 101 reflection spot and its integrated peak with FWHM of 0.07° at 75.3 GPa. These data indicate that the single crystal quality was preserved in compression up to 75.3 GPa. 648 649

650 **FIGURE 2.** Representative refined crystal structures of stishovite and post-stishovite at high

pressure. (a) Stishovite at 49.8 GPa; (b) post-stishovite at 73.8 GPa. Silicon (Si) and oxygen (O1,

O2, and O3) atoms are shown as blue and red balls, respectively. Lattice parameters, Si-O bond

lengths, and O1-Si-O1 bond angles are labelled in the representative structures, and can also be

found in Tables 1 and S1. Black arrows in (b) show Φ rotation angle of 5.1° which is the SiO₆

octahedron rotation about the c axis with respect to the ideal stishovite structure in (a).

656

FIGURE 3. Oxygen coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-657 658 stishovite transition at high pressure. (a) Oxygen coordinates as a function of pressure. The x and 659 y coordinates for oxygen are almost invariant in stishovite; however, x coordinate decreases and *y* coordinate increases with increasing pressure in the post-stishovite phase. (b) Si-O bond 660 lengths as a function of pressure. The bond length in the apical Si-O3 and in the equatorial Si-661 O1(2) becomes equivalent to each other within uncertainties at the post-stishovite transition. (c) 662 O-Si-O bond angles as a function of pressure. The angles remain almost constant in the stishovite 663 phase, while $\angle O1$ -Si-O2 increases and $\angle O1(2)$ -Si-O1(2) decreases with increasing pressure in 664 the post-stishovite phase. Please refer to Figure 2 for the meaning of the oxygen atom 665 numbering. Solid lines in (b) show the best fits using an axial incompressibility equation of state 666 (Birch, 1947), while those in (a) and (c) are the best polynomial fits to guide the eyes. Note that 667 the data and fit for $\angle O1$ -Si-O3 are drawn in green in order to distinguish it from $\angle O2$ -Si-O3. 668 The gray vertical band shows the phase transition region at ~51.4 GPa based on the splitting of 669 the oxygen coordinates. Literature single-crystal and powder XRD and ab initio data are plotted 670

for comparison (Andrault et al., 1998; Hill et al., 1983; Karki et al., 1997b; Ross et al., 1990;

672 Sinclair and Ringwood, 1978; Sugiyama et al., 1987; Yamanaka et al., 2002).

673

674 **FIGURE 4.** Refined SiO₆ octahedron parameters of stishovite and post-stishovite at high pressure. (a) Bond length distortion (D) of the octahedron as a function of pressure. The 675 distortion vanishes at the transition. (b) Angle variance (σ^2) of the octahedron as a function of 676 pressure. It remains constant in stishovite but decreases with increasing pressure in the post-677 678 stishovite phase. (c) The rotation of the SiO₆ octahedron about the c axis (Φ) with pressure only occurs in the post-stishovite phase (also see Figure 2 for the rotation). Lines show the best 679 680 polynomial fits to the data. The gray vertical band represents the transition pressure. Previous studies are also shown for comparison (Andrault et al., 1998; Hill et al., 1983; Karki et al., 681 682 1997b; Ross et al., 1990; Sinclair and Ringwood, 1978; Sugiyama et al., 1987; Yamanaka et al., 683 2002).

684

FIGURE 5. Atomic displacements and distortion mode amplitudes across the post-stishovite transition at high pressure. (a) Maximum displacement of oxygen atoms in the crystal structure; (b) Amplitude of GM_1^+ and GM_2^+ distortion modes. Black lines are best linear or polynomial fits to guide the eyes. Atomic displacements for GM_1^+ and GM_2^+ are schematically drawn in (c) and (d), respectively. In (c) and (d), blue and red spheres represent silicon and oxygen atoms, respectively, shaded area represents a SiO₆ octahedron, and black lines with arrows represent atomic displacements upon compression.

692

FIGURE 6. Elastic moduli and shear wave velocity of stishovite and post-stishovite as a 693 function of the bond length difference between the apical and equatorial Si-O bonds. (a) Selected 694 elastic moduli, C_{11} , C_{12} , and C_{22} ; (b) transverse shear wave $V_{S1[110]}$ polarizing along $[1\overline{1}0]$ and 695 propagating along [110] direction. At a given pressure, elastic moduli and sound velocities are 696 697 taken from Zhang et al. (2021) while bond length data are taken from refined atomic positions in this study and previous reports as shown in the legend (Andrault et al., 1998; Hill et al., 1983; 698 Karki et al., 1997b; Ross et al., 1990; Sinclair and Ringwood, 1978; Sugiyama et al., 1987; 699 Yamanaka et al., 2002). Note that bond length data from this study are shown in solid circles 700 701 with different colors for figure clarity. Black lines show co-plotting of Landau modeling results

702	for the elastic	properties in Zhan	g et al (2021)	and linear incom	pressibility fitting	results for
102	ior the clustre	properties in Zhun	5 °° ui. (2021)	and micul moon	pressionity mem	, 100 uno 101

bond lengths in Figure 3b. When the apical bond length is equal to the equatorial bond length,

704 C_{11} converges with C_{12} in (a) and $V_{S1[110]}$ vanishes in (b). The gray vertical band shows the post-

- stishovite phase transition region. Early studies are also plotted for comparison.
- 706

707	FIGURE 7. Landau parameters as a function of the SiO ₆ rotation angle Φ about the <i>c</i> axis across
708	the post-stishovite transition. (a) Schematics to highlight the rotation of the SiO ₆ octahedron and
709	the occurrence of the spontaneous strains e_1 and e_2 in (b). Blue and red spheres represent Si and
710	O atoms, respectively. The <i>ab</i> plane of the post-stishovite unit cell is schematically drawn in the
711	pink area with dashed lines, whereas the <i>aa</i> plane in the stishovite structure is shown in the blue
712	area with solid lines for comparison for the lattice rotation. (b) Symmetry-breaking spontaneous
713	strain $e_1 - e_2$ and (c) order parameter Q as a function of Φ . Crossing into the post-stishovite
714	phase, $e_1 - e_2$ and Q emerge and increase linearly with Φ in (a) and (b), respectively. The gray
715	vertical band shows the transition pressure. Literature data are plotted for comparison (Andrault
716	et al., 1998; Hill et al., 1983; Ross et al., 1990; Sinclair and Ringwood, 1978; Sugiyama et al.,
717	1987; Yamanaka et al., 2002).
718	
719	
720	
721	
722	
723	
724	
725	
726 727	
728	
729	
730	
731	
732	
733	
734	
735	

					1	e i			
P, GPa	space group	a, Å	<i>b</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	unique refl ¹	$R_{int}, \%$	$R_1, \%$	
0	P4 ₂ /mnm	4.1752(1)		2.6642(1)	46.443(3)	2788	4.63	1.29	
2.8(1)	P4 ₂ /mnm	4.1660(3)		2.6640(3)	46.24(1)	55	0.61	3.48	
7.8(1)	P4 ₂ /mnm	4.1416(5)		2.6564(3)	45.57(1)	48	1.52	5.93	
13.0(2)	P4 ₂ /mnm	4.1200(4)		2.6458(3)	44.91(1)	37	0.78	6.28	
16.0(1)	P4 ₂ /mnm	4.1066(4)		2.6433(4)	44.58(1)	50	5.89	6.14	
16.9(3)	P4 ₂ /mnm	4.1045(4)		2.6393(3)	44.464(8)	48	0.35	6.11	
19.7(1)	P4 ₂ /mnm	4.0891(4)		2.6298(17)	43.97(3)	50	1.65	3.78	
21.4(1)	P4 ₂ /mnm	4.0875(4)		2.6366(3)	44.05(1)	41	12.74	6.00	
26.8(2)	P4 ₂ /mnm	4.0681(5)		2.6259(5)	43.46(1)	43	4.37	7.84	
28.5(2)	P4 ₂ /mnm	4.0520(4)		2.6162(18)	42.95(3)	52	1.70	7.73	
33.8(2)	P4 ₂ /mnm	4.0318(6)		2.6070(8)	42.38(2)	48	5.80	6.17	
40.4(2)	P4 ₂ /mnm	4.0133(7)		2.6000(30)	41.88(5)	34	8.91	5.61	
48.7(2)	P4 ₂ /mnm	3.9875(7)		2.5840(30)	41.09(5)	46	1.06	5.65	
49.8(2)	P4 ₂ /mnm	3.9819(10)		2.5810(60)	40.92(10)	36	1.01	5.35	
52.4(2)	Pnnm	3.9440(30)	4.0150(19)	2.5851(13)	40.93(4)	47	1.25	5.66	
54.2(2)	Pnnm	3.9320(30)	4.0128(18)	2.5817(12)	40.73(4)	56	0.87	5.38	
55.6(2)	Pnnm	3.9300(40)	4.0097(10)	2.5750(5)	40.58(4)	54	4.82	6.22	
58.6(3)	Pnnm	3.9140(50)	4.0118(12)	2.5717(6)	40.38(5)	31	14.89	4.97	
62.0(3)	Pnnm	3.9010(40)	4.0089(12)	2.5656(8)	40.12(4)	41	2.94	6.88	
64.4(3)	Pnnm	3.8880(40)	4.0080(20)	2.5681(14)	40.01(5)	46	4.80	6.66	
65.8(3)	Pnnm	3.8820(40)	4.0070(10)	2.5667(8)	39.93(4)	41	12.90	6.62	
68.0(3)	Pnnm	3.8710(40)	4.0051(10)	2.5616(7)	39.71(4)	41	1.40	6.85	
71.0(3)	Pnnm	3.8580(30)	4.0040(9)	2.5580(7)	39.51(3)	46	1.91	4.57	
73.8(3)	Pnnm	3.8500(30)	4.0016(8)	2.5557(6)	39.37(3)	45	2.60	6.05	
75.3(3)	Pnnm	3.8380(20)	3.9974(7)	2.5498(5)	39.12(2)	46	0.55	4.42	

736	TABLE 1. Structure refinement results for still	ishovite and post-stishovite at high pressure
-----	--	---

¹unique refl: number of unique observed reflections

TABLE 2. Oxygen positions, bond lengths, and bond angles of stishovite and post-stishovite at

746	high pressure.	Please refer to	Fig. 2 for the	ne meaning of the	e atom symbols.
			0	\mathcal{U}	J

D CD	oxygen	position	bond le	ngth, Å		bon	id angle, °	
P,GPa	х	у	Si-O3	Si-O1(2)	∠01-Si-O3	∠02-Si-O3	∠O1(2)-Si-O1(2)	∠01-Si-O2
0	0.3061(1)	0.3061(1)	1.8075(6)	1.7565(4)	90.00(5)	90.00(5)	98.65(5)	81.35(5)
2.8(1)	0.3060(3)	0.3060(3)	1.803(1)	1.755(1)	90.00(7)	90.00(7)	98.74(7)	81.26(7)
7.8(1)	0.3052(5)	0.3052(5)	1.788(3)	1.751(1)	90.00(9)	90.00(9)	98.67(8)	81.33(8)
13.0(2)	0.3046(5)	0.3046(5)	1.775(3)	1.745(1)	90.00(9)	90.00(9)	98.57(8)	81.43(8)
16.0(1)	0.3046(5)	0.3046(5)	1.769(3)	1.742(1)	90.00(9)	90.00(9)	98.70(8)	81.30(8)
16.9(3)	0.3046(3)	0.3046(3)	1.7681(13)	1.7401(9)	90.00(9)	90.00(9)	98.64(8)	81.36(8)
19.7(1)	0.3039(5)	0.3039(5)	1.757(3)	1.736(2)	90.00(9)	90.00(9)	98.45(8)	81.55(8)
21.4(1)	0.3044(6)	0.3044(6)	1.760(3)	1.737(2)	90.00(10)	90.00(10)	98.76(9)	81.24(9)
26.8(2)	0.3048(6)	0.3048(6)	1.754(3)	1.728(2)	90.00(10)	90.00(10)	98.92(9)	81.08(9)
28.5(2)	0.3038(6)	0.3038(6)	1.741(3)	1.725(2)	90.00(10)	90.00(10)	98.64(9)	81.36(9)
33.8(2)	0.3036(4)	0.3036(4)	1.731(2)	1.719(1)	90.00(8)	90.00(8)	98.67(8)	81.33(8)
40.4(2)	0.3036(4)	0.3036(4)	1.7231(17)	1.7125(16)	90.00(10)	90.00(10)	98.78(9)	81.22(9)
48.7(2)	0.3028(5)	0.3028(5)	1.708(3)	1.705(2)	90.00(9)	90.00(9)	98.56(8)	81.44(8)
49.8(2)	0.3023(4)	0.3023(4)	1.702(2)	1.704(3)	90.00(8)	90.00(8)	98.43(8)	81.57(8)
52.4(2)	0.2943(12)	0.3106(5)	1.704(4)	1.705(3)	89.87(15)	90.13(15)	98.59(14)	81.41(14)
54.2(2)	0.2912(12)	0.3121(5)	1.697(4)	1.706(3)	89.92(15)	90.08(15)	98.38(14)	81.62(14)
55.6(2)	0.2927(7)	0.3127(6)	1.702(3)	1.6986(18)	89.91(12)	90.09(12)	98.57(11)	81.43(11)
58.6(3)	0.2877(12)	0.3152(6)	1.693(4)	1.701(3)	89.96(14)	90.04(14)	98.21(13)	81.79(13)
62.0(3)	0.2854(16)	0.3167(8)	1.689(5)	1.699(4)	89.98(16)	90.02(16)	98.06(15)	81.94(15)
64.4(3)	0.2850(14)	0.3175(7)	1.687(5)	1.698(4)	89.91(16)	90.09(16)	98.28(15)	81.72(15)
65.8(3)	0.2841(14)	0.3188(7)	1.688(5)	1.696(3)	89.94(15)	90.06(15)	98.34(15)	81.66(15)
68.0(3)	0.2814(12)	0.3200(6)	1.682(4)	1.696(3)	89.96(14)	90.04(14)	98.09(14)	81.91(14)
71.0(3)	0.2807(9)	0.3211(5)	1.681(3)	1.693(2)	89.90(12)	90.10(12)	98.17(12)	81.83(12)
73.8(3)	0.2794(12)	0.3216(6)	1.677(4)	1.692(3)	89.90(14)	90.10(14)	98.07(14)	81.93(14)
75.3(3)	0.2788(8)	0.3231(4)	1.677(3)	1.687(2)	89.90(11)	90.10(11)	98.17(11)	81.83(11)

- **TABLE 3.** Volume (V_{oct}), bond length distortion (D), angle variance (σ^2), and rotation angle
- about *c* axis (Φ) of the SiO₆ octahedron in the stishovite and post-stishovite phases at high
- 758 pressure

P,GPa	$V_{\rm oct}$, Å ³	D	σ^2 , deg ²	Ф, ^о
0	7.351(2)	0.01278(3)	27.186(7)	0
2.8(1)	7.319(4)	0.01196(7)	27.75(2)	0
7.8(1)	7.224(8)	0.00923(10)	27.35(3)	0
13.0(2)	7.128(8)	0.00745(8)	26.70(3)	0
16.0(1)	7.075(8)	0.00685(8)	27.52(3)	0
16.9(3)	7.057(9)	0.00711(11)	27.16(3)	0
19.7(1)	6.988(8)	0.00537(6)	25.96(3)	0
21.4(1)	6.994(9)	0.00582(7)	27.92(3)	0
26.8(2)	6.895(8)	0.00662(8)	28.91(3)	0
28.5(2)	6.828(9)	0.00412(5)	27.16(3)	0
33.8(2)	6.738(5)	0.00325(3)	27.32(2)	0
40.4(2)	6.659(5)	0.00276(2)	28.01(2)	0
48.7(2)	6.542(8)	0.00075(1)	26.66(3)	0
49.8(2)	6.522(10)	0.00053(1)	25.85(4)	0
52.4(2)	6.530(13)	0.00036(4)	26.85(5)	2.1(2)
54.2(2)	6.511(13)	0.00225(1)	25.52(5)	2.6(2)
55.6(2)	6.473(8)	0.00076(1)	26.71(3)	2.5(1)
58.6(3)	6.466(13)	0.00204(4)	24.52(5)	3.3(2)
62.0(3)	6.435(16)	0.00270(7)	23.63(6)	3.8(2)
64.4(3)	6.418(18)	0.00274(11)	24.92(7)	4.0(2)
65.8(3)	6.405(14)	0.00221(5)	25.31(5)	4.2(2)
68.0(3)	6.386(13)	0.00366(7)	23.79(5)	4.6(2)
71.0(3)	6.356(9)	0.00304(4)	24.26(3)	4.9(1)
73.8(3)	6.341(13)	0.00396(8)	23.68(5)	5.1(2)
75.3(3)	6.300(8)	0.00259(3)	24.29(3)	5.4(1)

759

760

761

762

763

764

765

P,GPa	Δ, Å	$GM_{l}^{+},$ Å	GM_2^+ , Å
0	0.0000	0.0000	-
2.8(1)	0.0006(0)	0.0013(0)	-
7.8(1)	0.0054(1)	0.0107(2)	-
13.0(2)	0.0089(1)	0.0178(3)	-
16.0(1)	0.0089(1)	0.0178(3)	-
16.9(3)	0.0089(1)	0.0178(2)	-
19.7(1)	0.0125(1)	0.0249(2)	-
21.4(1)	0.0101(2)	0.0202(4)	-
26.8(2)	0.0077(2)	0.0155(3)	-
28.5(2)	0.0125(2)	0.0249(4)	-
33.8(2)	0.0148(2)	0.0296(4)	-
40.4(2)	0.0148(2)	0.0296(4)	-
48.7(2)	0.0195(3)	0.0391(6)	-
49.8(2)	0.0225(5)	0.0450(11)	-
52.4(2)	0.0528(18)	0.0432(14)	0.0962(32)
54.2(2)	0.0671(20)	0.0527(16)	0.1234(37)
55.6(2)	0.0624(15)	0.0403(10)	0.1181(28)
58.6(3)	0.0857(36)	0.0550(23)	0.1624(68)
62.0(3)	0.0971(54)	0.0598(34)	0.1848(104)
64.4(3)	0.1001(56)	0.0574(32)	0.1919(108)
65.8(3)	0.1061(52)	0.0550(27)	0.2049(101)
68.0(3)	0.1184(50)	0.0639(27)	0.2279(97)
71.0(3)	0.1232(40)	0.0615(20)	0.2385(76)

TABLE 4. Maximum atomic displacement (Δ) and distortion mode amplitude at high pressure

Note: distortion mode of GM_1^+ occurs in stishovite below ~50 GPa, while both GM_1^+ and GM_2^+ modes are present in post-stishovite above ~52 GPa.

0.0663(28)

0.0609(17)

0.2492(107)

0.2616(75)

0.1289(55)

0.1343(39)

73.8(3)

75.3(3)

768

769

795

015

817

818

819

Fig 6

Fig 7

- - -