1	Revision 1
2	Word Count: 10649
3	Discrete Late Jurassic Sn Mineralizing Events in the Xianghualing
4	Ore District, South China: Constraints from Cassiterite and Garnet
5	U-Pb Geochronology
6	
7	
8	Kexin Wang ¹ , Degao Zhai ^{1*} , Anthony E. Williams-Jones ² , Dengfeng Li ³ , Jiajun Liu ¹
9	
10	
11	¹ State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth
12	Sciences and Resources, China University of Geosciences, Beijing 100083, China
13	² Department of Earth and Planetary Sciences, McGill University, Quebec, H3A 0E8, Canada
14	³ School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
15	
16	
17	*E-mail: dgzhai@cugb.edu.cn
18	Revised submission to: American Mineralogist
19	With 43 pages, 13 Figures and 2 Tables
20	24-May-2022
21	1

22

ABSTRACT

23 Numerous skarn-type Sn deposits have been identified in the Nanling Range (South 24 China), of which the Shizhuyuan W-Sn-Bi-Mo, Xianghualing Sn, Jinchuantang Sn-25 Bi, and Hehuaping Sn deposits are the largest. The Xianghualing deposit, which is the focus of this study, hosts a resource of 0.17 Mt Sn grading 0.93-1.39 wt% SnO₂. 26 27 Whether the distal skarn-type mineralization and the cassiterite-sulfide vein-type 28 orebody in the Xianghualing district are genetically related to the Laiziling granitic 29 pluton, which produced the proximal skarn-type Sn mineralization, however, is still 30 unknown. The Xianghualing Sn mineralization occurs exclusively as cassiterite and 31 has been subdivided into four ore-types: (1) lenticular proximal skarn ore (Cst I) 32 containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolite-33 wollastonite; (2) layered distal skarn ore (Cst II) containing the mineral assemblage cassiterite-pyrrhotite-chalcopyrite-actinolite; (3) vein cassiterite-sulfide ore (Cst III) 34 35 distal from the skarn and associated granite containing the mineral assemblage 36 cassiterite-arsenopyrite-pyrrhotite-muscovite-fluorite; and (4) veinlet Sn-Pb-Zn ore 37 (Cst IV) distal from the skarn and associated granite containing the mineral 38 assemblage cassiterite-galena-sphalerite-topaz-quartz. Here, we report the results of in 39 situ laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) U-Pb 40 age determinations for garnet from the Xianghualing skarn and the above four types 41 of cassiterite. Our age determinations indicate that there were two independent 42 magmatic-hydrothermal events at ~160 and 156~150 Ma, both of which led to Sn mineralization. The first Sn mineralization event at ~160 Ma (Cst IV U-Pb ages of 43

44	159.6 ± 1.4 to 158.5 ± 0.8 Ma) is interpreted to have been associated with a
45	speculative unexposed granitic pluton, which is coeval with the nearby Jianfengling
46	granite intrusion. The second Sn mineralization event at 156~150 Ma (Cst I to Cst III
47	U-Pb ages of 155.9 \pm 0.7 to 152.3 \pm 1.1 Ma and garnet U-Pb ages of 153.6 \pm 7.6 to
48	151.5 \pm 3.5 Ma) is genetically related to the adjacent Laiziling granitic intrusion
49	(152.8 \pm 1.2 Ma, zircon U-Pb age). This event was responsible for the bulk of the Sn
50	resource (>95%). Our age determinations provide convincing evidence for
51	superimposed Jurassic Sn mineralizing systems at Xianghualing. They also show the
52	value of combining garnet and cassiterite U-Pb age determinations in order to
53	constrain the timing of skarn and Sn mineralization and distinguish discrete Sn
54	mineralizing events in a protracted metallogenic history.

55 Keywords: Cassiterite U-Pb dating; Garnet U-Pb dating; Xianghualing Sn deposit;
56 Late Jurassic; South China

- 57
- 58 INTRODUCTION

Metal zonation at the deposit and ore district scale is a characteristic of skarndominated metallogenic provinces and is the result of processes ranging from those that lead to the development of skarn orebodies proximal to the causative granite to those forming distal skarns and hydrothermal vein-type orebodies (Newberry et al., 1991; Meinert, 2005; Williams-Jones et al., 2010; Mao et al., 2013; Chang et al., 2019). This zonation provides a potentially important tool for use in the exploration for skarn-hosted mineral deposits (Meinert et al., 1997; Wu S et al., 2018). However,

66	because the distal skarn and vein-type orebodies commonly lack an obvious spatial
67	association with granitic plutons and their distribution is controlled mostly by
68	stratigraphy and faults, the genetic relationships between these orebodies and the
69	causative plutons are difficult to determine (Newberry et al., 1991; Baker et al., 2004;
70	Wu S et al., 2018). This difficulty is compounded by the fact that the ages of distal
71	skarns and their associated mineralization are rarely known to the required degree of
72	accuracy (Chiaradia et al., 2009, 2013; Zhai et al., 2014, 2019; Zhao et al., 2021).
73	Skarns are among the most common hosts for economic mineralization in China
74	and contribute ~87% of the Sn resources of the country (~8.9 Mt) (Chang et al.,
75	2019). About 60% of these resources are located in the Nanling Range, South China
76	(Chen et al., 2013). The Shizhuyuan and the Xianghualing are the two largest skarn
77	tin deposits in the Nanling Range, and are considered to be genetically related to
78	proximal Mesozoic granites (Yuan et al., 2007, 2008, 2019; Mao et al., 2011; Wu S et
79	al., 2018; Zhao et al., 2018). Significantly, in the context of the zonation referred to
80	above, recent exploration has identified a series of Sn-Pb-Zn-Ag veins that are distal
81	to these Sn skarns and their associated granitic plutons (Zhong et al., 2014; Wu S et
82	al., 2018; Zhao et al., 2018; Chang et al., 2019). In the case of the Shizhuyuan district,
83	Wu S et al. (2018) and Zhao et al. (2018) used geochronological, fluid inclusion, and
84	stable isotope data to conclude that there is a genetic relationship between the distal
85	Pb-Zn-Ag veins and the skarn W-Sn-Mo-Bi mineralization that is proximal to its
86	genetically-related granitic pluton. The possible relationship between the distal Sn-Pb-
87	Zn veins and the skarn type Sn mineralization in the Xianghualing district, however,

has not been investigated. This can be achieved through a combination of careful field

- 89 investigation and precise radiometric age determinations aimed at determining the
- timing of ore mineral precipitation (Mathur et al., 2005; Chiaradia et al., 2009, 2013;
- 91 Sillitoe, 2010; Zhai et al., 2017; Zhao et al., 2018).
- 92 In situ LA-ICP-MS dating of skarn minerals, such as garnet, can constrain the age 93 of skarn formation directly (Deng et al., 2017; Li D et al., 2018, 2019; Marfin et al., 2020; Hong et al., 2021, 2022). This is because garnet may contain significant 94 95 concentrations of U and has a high closure temperature (> 800°C; Mezger et al., 1989), especially the grossular-andradite series (Ca₃Al₂Si₃O₁₂-Ca₃Fe₂Si₃O₁₂) (DeWolf 96 et al., 1996; Yudintsev et al., 2002). In the case of tin skarns, the mineralization can be 97 98 dated directly because much of the tin occurs as cassiterite, which can incorporate 99 significant U and has a high closure temperature (for a 1 µm diameter crystal this 100 temperature can reach 560°C and for a 1mm diameter crystal it can reach 860°C, Zhang et al., 2011). Consequently, a number of studies have used garnet and 101 102 cassiterite to investigate the geochronology of skarn-related Sn mineralization, including several applied to the deposits of the Nanling Range (Zhang et al., 2015; Li 103 et al., 2019; Xiong et al., 2020). 104

In this contribution, we report the results of a detailed geochronological study using in situ LA-ICP-MS U-Pb radiometric methods applied to cassiterite and garnet in the Xianghualing skarn, cassiterite in Sn-Pb-Zn veinlets distal to the skarn, and zircon in the granite proximal to the skarn. These results show that the Xianghualing Sn mineralization was the product of two temporally separate late Jurassic mineralizing

- 110 events, which has helped us to develop a new genetic model for Sn mineralization in
- 111 the Xianghualing district.
- 112

113 **REGIONAL GEOLOGY SETTING**

114 The Nanling Range (longitude 110°E-116°E, latitude 24°N-27°N) is located in the 115 central part of the South China Block, which is composed of the Yangtze Block and the Cathaysia Block (Fig. 1A; Chen and Jahn, 1998; Li et al., 2002, 2008; Chen et al., 116 117 2013; Wang et al., 2013). The regional stratigraphy comprises a basement of Sinian to 118 Ordovician clastic sedimentary rocks, which were overlain by Devonian to Triassic 119 limestone, marlstone, and clastic sedimentary rocks, and, in turn, by Jurassic to 120 Cretaceous clastic sedimentary rocks, volcanic rocks and red beds (Chen et al., 2013). 121 The tectonic framework for the region is provided by three fault systems, which are 122 mainly NE-, NNE-, and EW-trending. Among them, the dominant system is the NE-123 trending Chaling-Linwu system, which controlled the spatial distribution of granitic intrusions and their associated W-Sn deposits (Zhou and Li, 2000; Zhou et al., 2006; 124 125 Hu and Zhou, 2012; Yuan et al., 2019). Mesozoic granitic intrusions are common in 126 the region, especially Jurassic biotite and two-mica granites (Fig. 1B; Chen et al., 2013; Zhao et al., 2018; Yuan et al., 2019). The Sn-W mineralization is mainly related 127 to the Jurassic granitic plutons, e.g., the Qianlishan, Qitianling, Huangshaping and 128 129 Laiziling plutons, which are highly-evolved, Li- and F-bearing A-type granites (Shu et 130 al., 2011; Sun et al., 2012; Li H et al., 2018; Xiao et al., 2019). Ore deposits in the 131 region include Sn and W-Sn skarns (e.g., Shizhuyuan W-Sn-Mo-Bi, Wu S et al., 2018,

132	Xianghualing Sn-Pb-Zn, Yuan et al., 2008), Sn and W-Sn greisens (e.g., Da'ao Sn-W,
133	Fu et al., 2007; Tiantangshan Sn, Jia et al., 2018), W-Sn quartz veins (e.g., Maoping
134	W-Sn, Chen et al., 2019, Piaotang W-Sn, Zhang et al., 2017b), and porphyry Sn
135	deposits (e.g., Jiepailing Sn-Be-F, Yuan et al., 2015; Yanbei Sn, Li Q et al., 2018). The
136	tin mineralization is restricted to the western part of the region, where it occurs
137	mainly in skarns hosted by carbonate rocks and to a much lesser extent in cassiterite-
138	sulfide veins hosted by siliciclastic rocks (Yuan et al., 2019). Tin and tungsten
139	deposits in the Nanling region vary in age from Silurian to Cretaceous, but most were
140	emplaced in the late Jurassic (i.e., between 160 and 150 Ma; Hua et al., 2005; Mao et
141	al., 2013).

142

143 **GEOLOGY OF THE XIANGHUALING DEPOSIT**

144 The Xianghualing ore district is located on the northern margin of the central part of the Nanling Range (Fig. 1C), which coincides with the intersection of the NE-trending 145 146 Chenzhou-Linwu fault zone and a NS-trending fault zone. A conspicuous feature of the district is a tectono-magmatic dome that is composed mainly of Paleozoic rocks. 147 148 The core of the dome is a Cambrian metamorphic rock series composed of sandstone and slate that were metamorphosed to greenschist facies. The flanks of the dome are 149 150 composed of conglomerate, sandstone, siltstone and shale of the middle Devonian 151 Tiaomajian formation (D_2t) , limestone and dolomitic limestone of the Qiziqiao 152 formation (D₂q), dolomitic limestone and sandstone of the upper Devonian 153 Shetianqiao formation (D₃s), and Carboniferous carbonate rocks, all of which form a

154	sedimentary package that is separated from the underlying basement by an angular
155	unconformity (Figs. 1C and 2). The strata hosting the ores are mainly Devonian
156	limestone and sandstone and Cambrian sandstone (Yuan et al., 2008; Jiang et al.,
157	2018; Xie et al., 2018). The main ore-controlling faults are a group of tensional-shear
158	conjugate normal faults, i.e., the NE-trending Xijianchong fault (F1) and Nanfengjiao
159	fault (F101), the NW-trending Tieshaping fault (F2) and the Zimushan fault (F3) (Fig.
160	1C). The igneous rocks exposed in the general vicinity of the Xianghualing deposit
161	are the Laiziling, Jianfengling, Tongtianmiao and Yaoshanli granites, which are of
162	Jurassic age (Fig. 1C). A number of Sn-Pb-Zn ore deposits occur in or adjacent the
163	Laiziling and Jianfengling granites (Fig. 1C).

164 The Xianghualing tin deposit has a close spatial, temporal and genetic relationship with the Laiziling biotite granite (Fig. 2; Yuan et al., 2007; Wu J et al., 2018). This 165 166 granite is characterized by multiple intrusions and has been subdivided into four 167 vertical zones (from bottom to top), i.e., a biotite granite zone, an albite granite zone, 168 a greisen zone, and a pegmatite zone (Fig. 3A). The alteration and tin mineralization are zonally distributed from the pluton to the surrounding rocks, i.e., the dominant 169 170 alteration assemblages are garnet-diopside-actinolite-vesuvianite, chlorite-carbonate 171 and marble, and the corresponding metal associations are Sn (W), Sn-Pb-Zn, and Pb-172 Zn (Fig. 3B). Two skarn-types are observed in the Xianghualing tin district. The first 173 is a proximal skarn, which occurs as layers, lenses and veins in the contact zone 174 between granite and the Devonian wall rock, i.e., sandstone of the Tiaomajian 175 formation (D_2t) and carbonate of the Qiziqiao formation (D_2q) (Fig. 2, 3B,4A, 5A).

The principal skarn minerals are garnet, diopside, vesuvianite, tremolite, and actinolite (Fig 5B, C). The second type is the distal skarn, which is layer-like and occurs along the unconformity between sandstone of the Cambrian (ε) and sandstone of the Tiaomajian formation (D₂t) (Fig. 4B, 5F); the main skarn mineral is actinolite (Fig. 5F).

181 The Xianghualing tin deposit is composed of three ore blocks that are distributed along and straddle the NE-trending Xijianchong fault (F1) (Fig. 2A), namely, the 182 183 Xinfeng, Taiping and Tangguanpu ore blocks. Based on field observations, crosscutting relations and mineral assemblages, the Xianghualing mineralization has 184 been subdivided into four stages (Fig. 6), namely prograde skarn (I), retrograde skarn 185 186 (II), quartz-cassiterite-sulfide (III) and carbonate (IV) stages. In contrast to many 187 other skarn-type deposits (Mei et al., 2014; Zhai et al., 2014), the oxide stage is poorly 188 developed at Xianghualing, and only a small proportion of magnetite is present. Stage 189 II and Stage III are the main Sn mineralization stages. Four types of Sn mineralization have been recognized: proximal skarns, distal skarns, cassiterite-sulfide veins, and 190 191 distal Sn-Pb-Zn veinlets. Proximal skarn orebodies occur as lenticular structures varying in length from 100 to 3000 m and in thicknesses from 0.9 to 18.9 m (Fig. 3B, 192 4A, 5A, B). Their Sn grades vary between 0.02 and 3.97 wt% (Zhong et al., 2014) and 193 194 the associated mineral assemblage is actinolite-biotite-cassiterite-pyrrhotite-195 chalcopyrite (Fig. 5C). The distal skarn orebodies are layered (Fig. 4B, 5F), vary in 196 length from 1400 to 1700 m and range in thicknesses from 0.35 to 4.08 m. Their Sn 197 grades are between 0.1 and 4.6 wt% (Zhong et al., 2014) and represent a rock

198	containing the mineral assemblage actinolite-tremolite-phlogopite-biotite-quartz-
199	cassiterite-pyrite-pyrrhotite-chalcopyrite (Fig. 5F). The cassiterite-sulfide vein
200	orebodies comprise the minerals cassiterite, arsenopyrite and pyrrhotite and are both
201	parallel to and cross-cut bedding structures, and are controlled by faults, such as F1
202	(Fig. 4A). They vary in length from 1100 to 2100 m and in thicknesses from 0.4 to
203	14.1 m. Their Sn grades vary between 0.12 and 10.29 wt% (Zhong et al., 2014) and,
204	in addition to cassiterite and the sulfides mentioned above, they contain quartz,
205	muscovite and fluorite (Fig. 5G, H). The distal Sn-Pb-Zn veinlet orebodies comprise
206	swarms of quartz veinlets (0.5 to 1.5 cm thick; Fig. 4C, 5I, J) that are located in the
207	hanging wall of the F1 fault in the Tangguanpu ore block, which is hosted by
208	sandstones of the Tiaomajian formation (D_2t) (Fig. 4C, 5I, J). The distal Sn-Pb-Zn
209	veinlets are about 3 km horizontally from the Laiziling pluton (Fig. 2) and 100 m
210	vertically below the surface (Fig 4C), and there is no exposed proximal intrusion. In
211	addition to quartz, they contain cassiterite, topaz, galena, sphalerite and pyrite (Fig.
212	4C, 5I-K) and their integrated Sn grade ranges from 0.50 to 1.54 wt%.

213

214 SAMPLES AND ANALYTICAL METHODS

Samples for detailed geochronological study were collected from drill core and underground workings in the Xianghualing deposit. Garnet and cassiterite-sulfide samples were collected in the Xinfeng ore block and the proximal, distal skarn ores and distal Sn-Pb-Zn veinlet ores were collected in the Tangguanpu ore block.

219

220 Zircon LA-ICP-MS U-Pb dating

Zircon crystals used for LA-ICP-MS U-Pb dating were separated from biotite 221 222 granite in the Laiziling pluton (sample No. 19XHL-12), which was sampled on the 223 580 m level tunnel in the Tangguanpu ore block (Fig. 5A, D, E). The separation was 224 conducted at the Langfang Tuoxuan Rock and Mineral Testing Service Co., Ltd., China. Zircon crystals were separated by standard heavy-liquid and magnetic 225 226 techniques and further purified by handpicking under a binocular microscope. After 227 separation, the zircon crystals were examined in transmitted light and reflected light 228 using an optical microscope to determine the crystal morphology and 229 cathodoluminescence (CL) images were prepared to observe the internal structure of 230 the crystals. The CL images were acquired using a JEOL JXA-8900RL scanning 231 electron microscope (SEM) at the Beijing GeoAnaly Technology Co. Ltd., China.

232 The zircon U-Pb dating was carried out using LA-ICP-MS in the State Key 233 Laboratory of Geological Processes and Mineral Resources at the China University of 234 Geosciences, Beijing (CUGB). The crystals were ablated using an excimer laser 235 ablation system (New-Wave 193ss). An Agilent 7500a four-stage ICP-MS instrument 236 was used for the analyses. A laser spot size of 25 μ m, a laser energy density of 8.5 237 J/cm², and a repetition rate of 10 Hz were employed during the analysis. Helium and 238 argon were used as carrier and makeup gases, respectively, and were mixed via a T-239 connector before entering the ICP. Each analysis involved a 20 s gas blank and 45 s 240 signal acquisition. Uranium, Th, and Pb concentrations were calibrated using ²⁹Si as 241 an internal standard and NIST 610 glass as the reference standard. Zircon 91500 was

242	used as the external standard and was employed to correct for instrumental mass bias
243	and depth-dependent elemental and isotopic fractionation (Wiedenbeck et al., 1995).
244	The zircon standard, Qinghu, was used as a secondary standard to monitor any
245	deviation in the age measurement/calculation. The mean $^{206}\text{Pb}/^{238}\text{U}$ age obtained for
246	Qinghu is 160.8 ± 1.6 Ma (MSWD = 0.25, n = 6), which is consistent with the
247	recommended age (159.5 \pm 0.2 Ma; Li et al., 2013). The raw data reduction was
248	performed off-line using GLITTER 4.4.4 software developed by Macquarie
249	University. Age calculations were conducted and concordia plots prepared using
250	Isoplot 3.0 (Ludwig, 2003). The uncertainty in the age determinations corresponds to
251	the 95 % confidence level and error ellipses represent the 1 sigma deviation.

252

253 Garnet LA-ICP-MS U-Pb dating

Uranium-lead age determinations were conducted on two garnet-bearing samples of prograde skarn collected from the 0 m level tunnel in the Xinfeng ore block (19XHL-18 and 19XHL-45-1). Backscattered electron (BSE) images of the garnet were acquired using a TESCAN MIRA3 electron microprobe at the Guangzhou Tuoyan Testing Technology Co., Ltd., China prior to LA-ICP-MS analysis.

The compositions of the minerals were determined using a JEOL EPMA-1720H Superprobe at the electron microprobe laboratory, Zhejiang University, China. The operating conditions were a 15 kV accelerating voltage, 20 nA beam current, 1-2 μm beam diameter, 10 s counting time and the ZAF correction procedure for data reduction. For further detail on the analytical procedure, readers are referred to Yu et

264 al. (2018).

265	The garnet LA-ICP-MS U-Pb dating was carried out at the Key Laboratory of
266	Marine Resources and Coastal Engineering, Sun Yat-sen University, China. The
267	analyses were performed using a 193 nm ArF excimer laser ablation system
268	(GeoLasPro) coupled with an Agilent 7700x ICP-MS. A spot size of 60 µm was used
269	with an energy density of 5 J/cm^2 and a repetition rate of 5 Hz. Helium and argon
270	were used as carrier and makeup gases, respectively, and were mixed via a T-
271	connector before entering the ICP. Each spot analysis incorporated a background
272	acquisition of approximately 20 s followed by 45 s of sample data acquisition. The
273	glass, NIST SRM 610 (Pearce et al., 1997), was used as the external standard to
274	calibrate the trace element analysis of the garnet, and ²⁹ Si was used as an internal
275	standard. Zircon 91500 (Wiedenbeck et al., 1995) was used as the external standard
276	for the U-Pb dating as the matrix effect has been shown to be minor for garnet U-Pb
277	dating (Deng et al., 2017). Garnet standards WS-20 and GRT-1 were used to monitor
278	the garnet age determinations. They yielded Tera-Wasserburg concordia intercept ages
279	of 1152.2 \pm 5.8 and 137.0 \pm 2.3 Ma, respectively, which are the same as the published
280	ages within the analytical uncertainty (Li et al., 2022; Zhang et al., 2019). The raw
281	data reduction was performed off-line using Iolite 4.0 software (Petrus and Kamber,
282	2012). The analytical results for GRT-1 and WS-20 are presented in Appendix Table
283	3. The program IsoplotR online toolbox (Vermeesch, 2018) was used to calculate the
284	U-Pb ages and draw Tera-Wasserburg concordia diagrams. The errors in the ages
285	represent the 95 % confidence level and the error ellipses represent a 2 sigma

286 deviation.

287

288 Cassiterite LA-ICP-MS U-Pb dating

289 Cassiterite samples for LA-ICP-MS U-Pb dating were collected from the proximal 290 skarn-type orebody (sample 19XHL-10-6 on the 580 m level in the Tangguanpu ore block), the distal skarn-type orebody (sample 19XHL-3 on the 654 m level in the 291 292 Tangguanpu ore block), the cassiterite-sulfide vein-type orebody (sample 19XHL-17-293 1 and 19XHL-24 on the 0 m level in the Xinfeng ore block), and the distal Sn-Pb-Zn 294 veinlet-type orebody (sample ZK7003-11 from drill core ZK7003 in the Tangguanpu 295 ore block). Cathodoluminescence (CL) images were obtained for the cassiterite 296 crystals prior to LA-ICP-MS analysis. The CL images were taken at the Guangzhou 297 Tuoyan Testing Technology Co., Ltd., China using a Zeiss Supra 55 field emission 298 SEM equipped with a MonoCL4 luminoscope.

299 The cassiterite U-Pb ages (samples of 19XHL-10-6, 19XHL-17-1, 19XHL-24 and 300 ZK7003-11) were determined at the Guangzhou Tuoyan Testing Technology Co., 301 Ltd., China, using an iCAP RQ ICP-MA coupled to a 193 nm ArF Excimer laser 302 ablation system (NWR193). A laser spot size of 50 µm, a laser energy density of 5 303 J/cm^2 , and a repetition rate of 8 Hz were employed during the analyses. Helium and 304 argon were used as carrier and makeup gases, respectively, and were mixed via a T-305 connector before entering the ICP. Each spot analysis involved a background 306 acquisition of approximate 20 s followed by 40 s of sample data acquisition. The 307 NIST SRM610 standard and an in-house cassiterite standard, AY-4, were used for

308 external elemental and isotopic calibration, respectively. The AY-4 standard was 309 collected from the Anyuan skarn-type tin deposit of the Furong tin ore field in the 310 middle Nanling Range. This cassiterite sample was analyzed by Yuan et al. (2011) 311 using ID-TIMS and returned an U-Pb age of 158.2 ± 0.4 Ma. Raw data reduction was 312 performed off-line using Isoplot 4.0 software (Petrus and Kamber, 2012). The 313 IsoplotR online toolbox (Vermeesch, 2018) was used to calculate the U-Pb ages and draw Tera-Wasserburg concordia diagrams. The uncertainties in the ages correspond 314 315 to the 95% confidence level and the error ellipses represent 2 sigma deviations. The 316 cassiterite U-Pb age of sample 19XHL-3 was determined at Yanduzhongshi 317 Geological Analysis Laboratories Ltd., China, using an Analytikjena M90 quadrupole 318 ICP-MS equipped with a 193 nm NWR193 ArF excimer laser. A laser spot size of 42 μ m, a laser energy density of 4 J/cm², and a repetition rate of 8 Hz were employed 319 320 during the analysis. Each cassiterite analysis began with a 20 s blank gas 321 measurement followed by 40 s of analysis with the laser switched on. The downhole 322 fractionation, instrument drift and mass bias correction factors for the Pb/U ratios of 323 the cassiterite were calculated from two analyses of the primary AY-4 standard (Yuan 324 et al., 2011), and analyses of secondary standards, i.e., the Cligga Head (Tapster and Bright, 2020) and Emmaville cassiterites (Prichard, 2013). These analyses were 325 326 conducted at the beginning of each session and after 10 analyses of the cassiterite 327 samples. The data reduction was based on the method outlined in Meffre et al. (2008). The uncertainties in the ages represent the 95 % confidence and the error ellipses 328 329 correspond to the 1 sigma deviation.

330

331

RESULTS

332 Zircon LA-ICP-MS U-Pb dating

333 The zircon crystals of the biotite granite in the Laiziling pluton (sample No. 334 19XHL-12), for which U-Pb radiometric ages were determined, are euhedral and prismatic (Fig. 9), with obvious oscillatory zoning and no inherited cores, which is 335 336 consistent with their magmatic origin (Davis et al., 2003; Hoskin and Schaltegger, 337 2003). The crystal length ranges from 60 to 120 µm and the length-to-width ratio varies from 1:1 to 3.5:1. Thorium and U concentrations vary considerably, from 222 338 339 to 3056 ppm (1230 ppm on average) and 422 to 9846 ppm (3652 ppm on average), 340 respectively. The Th/U ratios range from 0.27 to 0.78 and average 0.42 (Table 1), which is typical of magmatic zircon (Belousova et al., 2002). The ²⁰⁶Pb/²³⁸U ages of 341 342 the ten zircon crystals analyzed vary from 149 to 156 Ma and yield a weighted mean 343 206 Pb/ 238 U age of 152.8 ± 1.2 Ma (MSWD = 1.6) (Fig. 9). This age is interpreted to represent the crystallization age of the Laiziling granite. 344

345

346 Garnet petrography, chemical composition and LA-ICP-MS U-Pb ages

Three types of garnet were identified using BSE images and an optical microscope (Fig. 7). Crystals of Type I garnet (Grt-I; e.g., sample 19XHL-45-1) are euhedral, brown to yellow in color, homogeneous and between 0.5 and 1.0 mm in diameter. This garnet type is overgrown by Type II garnet (Grt-II) (Fig. 7A, B), which is lighter than Grt-I (from light brown yellow to grayish white) and also homogeneous, but

352	more abundant (0.5 to 3.0 mm in diameter) (Fig. 7A - E). Type II garnet coexists with
353	diopside, both of which were replaced by fluorite (Fig. 7B). Type III garnet (Grt-III)
354	is grayish white (Fig. 7D), homogeneous and has a prismatic morphology (~2 mm \times
355	300 μ m). It is interspersed with Grt-II (Fig. 7D, E). No cassiterite was found in these
356	samples.

Electron microprobe analyses show that the three types of garnets have similar chemical compositions (Table 2). Their main components are SiO₂ (35.69 wt%), CaO (33.06 wt%), Al₂O₃ (15.86 wt%) and FeO^T (5.93 wt%); the values in parentheses are their average concentrations. The three types of garnet are members of the grossularandradite solid solution series; they are grossular-rich (73.09-76.92 mol%) and contain minor pyralspite (the sum of pyrope, spessartine, almandine and uvarovite; < 8.0 mol%) (Table 2; Fig. 7F).

The results of the LA-ICP-MS U-Pb analyses for the garnet samples are summarized in Appendix Table 1. The Grt-I, Grt-II and Grt-III yielded Tera-Wasserburg concordia intercept ages of 153.6 ± 7.6 Ma (MSWD = 1.3; n = 58; Fig. 10A), 153.0 ± 17 Ma (MSWD = 1.7; n = 85; Fig. 10B) and 151.5 ± 3.5 Ma (MSWD = 1.3; n = 59; Fig. 10C), respectively.

369

370 Cassiterite petrography and LA-ICP-MS U-Pb ages

Four types of cassiterite were distinguished from the different ore types (Fig. 8).

- 372 Type I cassiterite occurs as disseminations in the proximal skarn-type ore (Cst I, e.g.,
- 373 sample 19XHL-10-6). This cassiterite type has been subdivided into early (Cst I-1)

374	and late (Cst I-2) stages. The Cst I-1 crystals are dark brown, anhedral and
375	homogeneous, and occur as irregular aggregates, in which the individual crystals vary
376	from 50 to 600 µm in diameter (Fig. 5C, 8A). The Cst I-1 variety was replaced by Cst
377	I-2, a bright luminescing variety, which fills embayments and fractures in Cst I-1 (Fig
378	8B). Type I cassiterite is accompanied by actinolite, wollastonite, muscovite, quartz
379	and pyrrhotite (Fig. 5C, 8B, C). Type II cassiterite occurs as disseminations in the
380	distal skarn-type ore (Cst II, e.g., sample 19XHL-3). The Cst II variety is light brown,
381	anhedral with a diameter of ~100 um (Fig. 8D). Parts of crystals display zoning
382	patterns in CL images (Fig. 8E). This cassiterite is commonly associated with
383	actinolite, quartz, pyrrhotite, and chalcopyrite (Fig. 8D, F). Type III cassiterite is
384	disseminated in the cassiterite-sulfide vein ore (Cst III, e.g., sample 19XHL-17-1 and
385	19XHL-24). The Cst III variety is light yellow brown and occurs as euhedral crystals
386	with a diameter of 1000-1500 μ m (Fig. 5G, 8G). It displays weak oscillatory zoning
387	in CL images (Fig. 8H) and is commonly associated with arsenopyrite, pyrrhotite,
388	fluorite, muscovite and quartz (Fig. 5H, 8G, H, I). Type IV cassiterite occurs in the
389	distal Sn-Pb-Zn veinlet ore (Cst IV, e.g., sample ZK7003-11). As is the case for Cst I,
390	there were two stages of Cst IV development, Cst IV-1 and Cst IV-2. The Cst IV-1
391	cassiterite is represented by brown, euhedral crystals 500-700 μm in diameter (Fig.
392	8J). It displays color zoning under both plane polarized transmitted light (Fig. 8J) and
393	in CL images (Fig. 8K). The edges of early Cst IV-1 crystals were replaced by Cst IV-
394	2, which also fills cracks in Cst IV-1 (Fig. 8K). The Cst IV variety coexists with
395	pyrite, arsenopyrite, galena, sphalerite, topaz, and quartz (Fig. 4C, 5I, J, K, 8L).

396	The results of LA-ICP-MS U-Pb analyses of the cassiterite samples are
397	summarized in Appendix Table 2. The Cst I-1 sample (34 spots for sample 19XHL-
398	10-6) yielded a Tera-Wasserburg concordia intercept age of 155.4 \pm 0.8 Ma (MSWD
399	= 3.3; Fig. 11D). The Cst II sample (39 spots for sample 19XHL-3) yielded a Tera-
400	Wasserburg concordia intercept age of 155.9 ± 0.7 Ma (MSWD = 1.4; Fig. 11E). Two
401	Cst III samples (26 spots for sample 19XHL-17-1 and 22 spots for sample 19XHL-
402	24) yielded Tera-Wasserburg concordia intercept ages of 154.2 ± 0.9 (MSWD = 2.1;
403	Fig. 11F) and 152.3 \pm 1.1 Ma (MSWD =3.5; Fig. 11G), respectively. Two Cst IV-1
404	crystals from sample ZK7003-11 yielded Tera-Wasserburg concordia intercept ages of
405	159.3 ± 1.5 (MSWD = 0.66; Fig. 11A) and 158.5 ± 0.8 Ma (MSWD = 1.7; Fig. 11B),
406	respectively. Forty-one spots of Cst IV-2 yielded a Tera-Wasserburg concordia
407	intercept age of 159.6 ± 1.4 Ma (MSWD = 2.6; Fig. 11C).

408

409 DISCUSSION

410 Reliability of garnet and cassiterite U-Pb geochronology

Minerals suitable for robust geochronology are commonly absent from skarns (Deng et al., 2017) and consequently, the age data for them are often acquired from minerals not directly related to skarn formation. This makes interpretation of the ages ambiguous (Yuan et al., 2011; Li et al., 2019; Marfin et al., 2020). Mezger et al. (1989) recognized the potential of garnet as a U-Pb geochronometer firstly because of the variable U contents and a high closure temperature of U-Pb isotopes (>800°C). However, garnet from magmatic and hydrothermal conditions usually contains a

418	variety of U-rich mineral inclusions and, thus, may pose problems for U-Pb
419	geochronological analysis (Dewolf et al., 1996; Lima et al., 2012). Such problems can
420	be solved by in situ analytical techniques (Liu et al., 2010). Higher U and lower
421	common Pb concentrations have been shown to be important for obtaining more
422	accurate garnet U-Pb ages (Deng et al., 2017; Gevedon et al., 2018; Li D et al., 2018,
423	2019; Hong et al., 2022). Li et al. (2019) concluded that the U concentration should
424	be >1 ppm and the 204 Pb content should be <10% of the U concentration when using
425	the ICP-MS. Garnet with a variety of U concentrations has been successfully applied
426	to date hydrothermal ore deposits. Examples include the Shuiquangou Au deposit (U
427	= 0.11 to 20.30 ppm, Deng et al., 2017), the Haobugao Zn-Pb-Sn deposit (U = 0.54 to
428	5.32 ppm, Hong et al., 2021), the Big Gossan Cu-Au deposit (U = 0.50 to 199.90
429	ppm, Wafforn et al., 2018), and the Pingbao Pb-Zn district (U = 1.11 to 579.00 ppm,
430	Li et al., 2019). The U concentrations of the Xianghualing garnet vary from 1 to 114
431	ppm (Appendix Table 1), which enables this mineral to produce robust
432	geochronological data.

Cassiterite (SnO₂), the main tin ore mineral, is common in skarn-type, greisen-type
and other type tin deposits (Gulson and Jones, 1992; Yuan et al., 2011). It is
characterized by relatively high U contents, stable chemical properties and a high
closure temperature for U-Pb isotope system (this temperature can reach 560°C for a
1 µm diameter crystal and 860°C for a 1mm diameter crystal; Zhang et al., 2011).
Therefore, cassiterite U-Pb geochronology can constrain the timing of tin
mineralization accurately and directly, making cassiterite the most ideal dating

440	mineral for tin deposits (Gluson and Jones, 1992; Zhang et al., 2015; Neymark et al.,
441	2018, 2021). Isotope dilution-thermal ionization mass spectrometry (ID-TIMS) and
442	laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) cassiterite
443	U-Pb dating techniques have been developed to constrain tin mineralization events
444	(Gluson and Jones, 1991, Yuan et al., 2008, 2011; Neymark et al., 2018), and LA-ICP-
445	MS techniques are now widely applied to obtain reliable ages of tin deposits (Zhang
446	et al., 2015, 2017a, b; Guo et al., 2019, Xiong et al., 2020). Studies have also shown
447	that cassiterite U-Pb geochronology can be used to identify multiple mineralization
448	events (Zhang et al., 2015; Xiong et al., 2020). Therefore, a combination of the two
449	geochronological methods mentioned above could help to identify the timing of both
450	skarn formation and Sn mineralization directly.

451

452 Discrete mineralization events at Xianghualing

The Xianghualing tin deposit consists not only of proximal Sn skarn ores, but also of distal Sn skarn ores and Sn-Pb-Zn veinlets. Whether the distal Sn skarn ores and Sn-Pb-Zn veinlets are genetically related to the proximal skarn mineralization, i.e., whether both were products of the Laiziling magmatic-hydrothermal system, however, has been unclear due to the lack of precise geochronological data for the different Sn ore stages.

The zircon U-Pb age of the Laiziling granite obtained in this study is 152.8 ± 1.2 Ma (Fig. 9B). Based on this and previously determined ages, the Laiziling granite is interpreted to have been intruded between ~156 and 150 Ma (e.g., biotite K-Ar

462	method, Hu et al., 1984; zircon U-Pb method, Liu, 2011; Zhu et al., 2011; Lai, 2014;
463	Li H et al., 2018; Yang et al., 2018; Xiao et al., 2019). Yuan et al. (2008) and Guo et
464	al. (2019) dated cassiterite from a cassiterite-arsenopyrite-pyrrhotite vein in the
465	Xinfeng ore block and the Laiziling granite, respectively, and obtained U-Pb ages for
466	them of 156 \pm 4 and 149.0 \pm 1.8 Ma, respectively. These previous geochronological
467	studies did not consider the skarn-type mineralization, and ignored the temporal
468	relationships between the distal Sn-Pb-Zn veinlets, skarn mineralization, and the
469	intrusion.
470	In this study, we have reported garnet U-Pb ages for the prograde skarn (153.6 \pm
471	7.6 to 151.5 \pm 3.5 Ma, Fig. 10) and U-Pb ages of cassiterite (155.9 \pm 0.7 to 155.4 \pm
472	0.8 Ma, Fig. 11D, E) from proximal and distal retrograde skarn ores. These age data
473	record the timing of skarn formation and skarn-hosted Sn mineralization and show
474	that the events were essentially coeval with the emplacement of the Laiziling pluton.
475	We have also shown from the ages of two cassiterite-arsenopyrite-pyrrhotite veins,
476	which we dated at 154.2 \pm 0.9 and 152.3 \pm 1.1 Ma (Fig. 11F, G), that this
477	mineralization was also coeval with the emplacement of the Laiziling granite and
478	associated skarn mineralization (Fig. 12). As a result, we have been able to establish

the temporal evolution for the Sn mineralizing system produced by the Laiziling

481 skarn alteration (153.6 \pm 7.6 to 151.5 \pm 3.5 Ma), to tin mineralization in retrograde

482 skarn and the cassiterite-sulfide stage (155.9 ± 0.7 to 152.3 ± 1.1 Ma).

480

483 The ages obtained in this study for the distal Sn-Pb-Zn veinlet Sn mineralization

granite, i.e., from the emplacement of Laiziling granite (152.8 \pm 1.2 Ma), prograde

484	$(159.6 \pm 1.4 \text{ to } 158.5 \pm 0.8 \text{ Ma}, \text{Fig. 11A-C})$ show that there was a tin mineralizing
485	event in the Xianghualing ore district that preceded emplacement of the Laiziling
486	pluton (Fig. 12). As there is W-Sn-Pb-Zn mineralization (161.3 \pm 1.1 and 158.7 \pm 1.2
487	Ma, muscovite Ar-Ar, Yuan et al., 2007) around the Jianfengling granitic intrusion,
488	which is located ~4 km laterally from the Laiziling pluton (Fig. 1C) and zircon U-Pb
489	ages of 165.2 \pm 1.4 to 160.7 \pm 2.2 Ma have been reported for the Jianfengling
490	intrusion (Xuan et al., 2014, Yang et al., 2018), we attribute the distal Sn-Pb-Zn
491	veinlets to the Jianfengling intrusion. We therefore conclude that there were two Sn
492	mineralizing events in the Xianghualing ore field, an early event represented by distal
493	Sn-Pb-Zn veinlet mineralization related to the Jianfengling intrusion and a subsequent
494	skarn-type Sn mineralizing event related to the Laiziling intrusion (Fig. 12).
405	

Owing to their similar geochemical characteristics and an age difference of ~ 10 495 496 Ma, less attention has been paid to mineralization between the Laiziling and 497 Jianfengling plutons (Xuan et al., 2014; Yang et al., 2018). Previous studies have 498 shown that the two plutons may have originated from the same magma chamber 499 (Yang et al., 2018). Regional geophysical data suggest that the two plutons are 500 connected at depth (Lai, 2014; Zhong, 2014), raising the possibility of earlier (~165-501 160 Ma) magmatism in the Laiziling pluton. Therefore, we speculate that a hidden 502 granitic intrusion coeval with the Jianfengling granite intrusion was responsible for 503 the early Sn mineralizing event in the Xianghualing deposit (Fig. 13). The results of 504 our study show that there were two episodes of tin mineralization at Xianghualing, 505 i.e., at ~160 Ma (Sn I) and 156-150 Ma (Sn II), and that these episodes were related to

the magmas that formed the Jianfengling granite and Laiziling granite, respectively.

507

508 Significance for regional Sn mineralization

509	In the Xianghualing deposit, the early mineralization event (~160 Ma) only
510	accounts for \leq 5% of the total Sn resource, and the younger main Sn mineralization
511	event (156-150 Ma) contributes ~>95% of the total Sn resource. Previous studies have
512	shown that formation of the Sn deposits in the Nanling Range was relatively
513	continuous from the Silurian to the Cretaceous, and concluded that the period between
514	160 and 150 Ma was a time of major W-Sn mineralization (Chen et al., 2013; Mao et
515	al., 2013; Yuan et al., 2019). We have roughly calculated the total Sn reserve
516	emplaced in the Nanling Range between 160 and 150 Ma to be 2.78 Mt, which
517	accounts for $\sim 80\%$ of the total Sn reserves in this area (3.27 Mt, Cao et al., 2015,
518	Yuan et al., 2019). Among them, the Sn reserves introduced at ~160 Ma are 1.02 Mt
519	(Furong with 0.70 Mt, Hehuaping with 0.2 Mt, and Jinchuantang with 0.12 Mt, Yuan
520	et al., 2019 and references therein), whereas the Sn reserves introduced between 156
521	and 150 Ma amount to 1.56 Mt (Shizhuyuan with 0.80 Mt, Xitian with 0.59 Mt, and
522	Xianghualing with 0.17 Mt, Yuan et al., 2019 and references therein). Therefore, we
523	can infer that ~ 160 Ma and 156-150 Ma were both major periods of Sn mineralization
524	in the Nanling Range.

525 In summary, a new genetic model involving two discrete Sn mineralizing events is 526 proposed to explain the Sn mineralization of Xianghualing district (Fig. 13). This 527 model provides an important new guide for tin ore exploration in the Xianghualing district and the Nanling Range, generally, i.e., the targeting of skarn- and cassiteritesulfide vein-type orebodies related to the emplacement of ~160 Ma intrusions and
superimposed cassiterite mineralization introduced by the 156-150 Ma magmatichydrothermal system.

532

533

IMPLICATIONS

The new cassiterite and garnet LA-ICP-MS U-Pb ages coupled with field 534 535 observations and core-logging lead to the conclusion that there were two tin mineralization events in the Xianghualing ore district, South China. The early event 536 537 occurred between 159.6 \pm 1.4 and 158.5 \pm 0.8 Ma based on cassiterite U-Pb 538 geochronology, and was likely caused by a hidden granitic intrusion coeval with the nearby Jianfengling intrusion. This event only accounts for $\leq 5\%$ of the total tin 539 540 resource. The main Sn mineralization event occurred between 155.9 ± 0.7 and $152.3 \pm$ 541 1.1 Ma based on cassiterite and garnet LA-ICP-MS U-Pb ages, and is genetically 542 related to the Laiziling granitic intrusion (zircon U-Pb age of 152.8 ± 1.2 Ma). This event contributed >95% of the total tin resources. Our new geochronological results 543 provide evidence of a superimposed tin mineralizing system in the Xianghualing ore 544 district, a finding that is of great significance to the regional tin exploration. This 545 546 study demonstrates the reliability of cassiterite and garnet U-Pb geochronology in 547 identifying discrete tin mineralizing events in complex metallogenic systems.

548

549 ACKNOWLEDGMENTS AND FUNDING

25

550	This study was financially supported by the National Natural Science Foundation
551	of China (Grants 42122012 and 92062219), the National Key R&D Program of China
552	(Grant 2018YFC0603901), the Fundamental Research Funds for the Central
553	Universities (Grants QZ05201904, 2652018169), and the 111 Project of the Ministry
554	of Science and Technology (BP0719021). We thank the leaders and employees of the
555	Xianghualing tin Industry Co., Ltd. for their wholehearted support during the field
556	investigation. We appreciate Hongyu Zhang, Yubo Yang, Huan Wang, and Can Rao
557	for their help during the analysis. We thank Donald W. Davis and Ryan Mathur for
558	their insightful reviews, which considerably improved this paper. Associate Editor
559	Daniel Gregory is thanked for his editorial help and useful suggestions.

560

561 **REFERENCES**

Baker, T., Achterberg, E.V., Ryan, C.G., and Lang, J.R. (2004) Composition and
evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32,
117-120.

565 Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., and Fisher, N.I. (2002) Igneous zircon:

Trace element composition as an indicator of source rock type. Contributions toMineralogy and Petrology, 143, 602-622.

568 Cao, H.W. (2015) Research on Mesozoic-Cenozoic magmatic evolution and its

- relation with metallogeny in Tengchong-Lianghe tin ore belt, Westen Yunnan.
- 570 China University of Geosciences (Beijing), 1-349 (in Chinese with English abs.).
- 571 Chang, Z.S., Shu, Q.H., and Meinert, L.D. (2019) Skarn deposits of China. Society of

- 572 Economic Geologists, Special Publication, 22, 189-234.
- 573 Chen, J., Wang, R.C., Zhu, J.C., Lu, J.J., and Ma, D.S. (2013) Multiple-aged
- 574 granitoids and related tungsten-tin mineralization in the Nanling Range, South
- 575 China. Science China: Earth Sciences, 56, 2045-2055.
- 576 Chen, J.F., and Jahn, B. (1998) Crustal evolution of southeastern China: Nd and Sr
- 577 isotopic evidence. Tectonophysics, 284, 101-133.
- 578 Chen, L.L., Ni, P., Dai, B.Z., Li, W.S., Chi, Z., and Pan, J.Y. (2019) The genetic
- association between quartz vein-and greisen-type mineralization at the Maoping
- 580 W–Sn Deposit, Southern Jiangxi, China: Insights from zircon and cassiterite U–
- 581 Pb ages and cassiterite trace element composition. Minerals, 9, 411.
- 582 Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.F., and Ovtcharova, M.
- (2013) How accurately can we date the duration of magmatic-hydrothermal
 events in porphyry systems? —An invited paper. Economic Geology, 108, 565585 584.
- 586 Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J.,
- 587 Richards, J., Villeneuve, M., and Gendall, I. (2009) U-Pb, Re-Os, and ⁴⁰Ar/³⁹Ar
- 588 geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits,
- 589 Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes.
- 590 Mineralium Deposita, 44, 371-387.
- 591 Davis, D.W., Williams, I.S., and Krogh, T.E. (2003) Historical development of zircon
- geochronology. Reviews in Mineralogy and Geochemistry, 53 (1), 145-181.
- 593 Deng, X.D., Li, J.W., Luo, T., and Wang, H.Q. (2017) Dating magmatic and

- 594 hydrothermal processes using andradite-rich garnet U–Pb geochronometry.
- 595 Contributions to Mineralogy and Petrology, 172, 1-11.
- 596 DeWolf, C.P., Zeissler, C.J., Halliday, A.N., Mezger, K., and Essene, E.J. (1996) The
- role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwisedissolution experiments and trace uranium mapping by fission track analysis.
- 599 Geochimica et Cosmochimica Acta, 60, 121-134.
- 600 Fu, J.M., Li, H.Q., Qu, W.J., Yang, X.J., Wei, J.Q., Liu, G.Q., and Ma, L.Y. (2007)
- 601 Re-Os isotope dating of the Da'ao tungsten-tin deposit in the Jiuyi Mountains,
- southern Hunan Province: Geology in China, 34, 651-656 (in Chinese withEnglish abs.).
- 604 Gevedon, M., Seman, S., Barnes, J.D., Lackey, J.S., and Stockli, D.F. (2018)
- 605 Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of
 606 skarn garnet. Earth and Planetary Science Letters, 498, 237-246.
- 607 Gulson, B.L., and Jones, M.T. (1992) Cassiterite: potential for direct dating of
- 608 mineral-deposits and a precise age for the Bushveld complex granites. Geology,609 20, 355-358.
- Guo, B.E., Zhao, K.D., Jiang, S.Y., and Chen, W. (2019) Genetic relationship between
 Laiziling rare metal granite and No. 431 dyke and mechanism of Sn-Nb-Ta
 mineralization, Southern Hunan Province. Abstract of the 9th National
 Symposium on metallogenic Theory and Prospecting Methods, p. 131 (in
 Chinese with English abs.).
- 615 Hong, J.X., Zhang, H.Y., Li, D.F., Ouyang, Y.P., Zhai, D.G., Liu, F., and Liu, J.J.

616	(2022) In situ LA-ICP-MS U-Pb geochronology and geochemical characteristics
617	of garnet from the Zhuxi skarn W-Cu deposit, South China. Ore Geology
618	Reviews, 140, 104577.
619	Hong, J.X., Zhang, H.Y., Zhai, D.G., Li, D.F., Zhang, Y.L., and Liu, J.J. (2021) The
620	geochronology of the Haobugao skarn Zn-Pb deposit (NE China) using garnet
621	LA-ICP-MS U-Pb dating. Ore Geology Reviews, 139, 104437.
622	Hoskin, P.W.O., and Schaltegger U. (2003) The composition of zircon and igneous
623	and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53,
624	27-62.
625	Hu, Y.J., Huang, R.M., and Gong, M.Y. (1984) Two lead-zinc deposits of endogenetic
626	metal metallogenic series in Southern Hunan Province. Hunan Geology, 3, 1-13
627	(in Chinese with English abs.).
628	Hua, R.M., Chen, P.R., Zhang, W.L., Yao, J.M. (2005) Metallogenesis related to
629	Mesozoic granitoids in the Nanling Range, South China and their geodynamic
630	settings. Acta Geologica Sinica, 79, 810-820.
631	Jia, H.X., Pang, Z.S., Chen, R.Y., Xue, J.L., Chen, H., and Lin, L.J. (2018) Genesis

- and hydrothermal evolution of the Tiantangshan tin-polymetallic deposit, south-eastern Nanling Range, South China. Geological Journal, 1-22.
- 534 Jiang, W.C., Li, H., Eans, N.J., Wu, J.H., and Cao, J.Y. (2018) Metal sources of
- 635 world-class polymetallic W–Sn skarns in the Nanling Range, South China:
- 636 Granites versus sedimentary rocks? Minerals, 8, 265.
- 637 Lai, S.H. (2014) Research on Mineralization of the Xianghualing tin polymetallic

- 638 deposit, Hunan Province, China. China University of Geosciences (Beijing), p.
- 639 1-151 (in Chinese with English abs.).
- 640 Li, D.F., Fu, Y., Hollings, P., Mitchell, R.H., Zurevinski, S., Kamo, S., Zhang, R.Q.,
- Zhang, Y., Liu, Q.F., Liao, J.L., Liang, Y.J., and Sun, X.M. (2022) PL57 garnet as
 a new natural reference material for in situ U-Pb isotope analysis and its
 perspective for geological applications, Contributions to Mineralogy and
- 644 Petrology, 177: 19.
- 645 Li, D.F., Fu, Y., and Sun, X.M. (2018) Onset and duration of Zn-Pb mineralization in
- 646 the Talate Pb-Zn (-Fe) skarn deposit, NW China: Constraints from spessartine U-
- 647 Pb dating. Gondwana Research, 63, 117-128.
- 648 Li, D.F., Tan, C.Y., Miao, F.Y., Liu, Q.F., Zhang, Y., and Sun, X.M. (2019) Initiation
- of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China:
 Constraints from U-Pb dating of grossular-rich garnet. Ore Geology Reviews,
 107, 587-599.
- Li, H., Wu, J.H., Evans, N.J., Jiang, W.C., and Zhou, Z.K. (2018) Zircon
 geochronology and geochemistry of the Xianghualing A-type granitic rocks:
 Insights into multi-stage Sn-polymetallic mineralization in South China. Lithos,
 312-313, 1-20.
- Li, Q., Zhao, K.D., Lai, P.C., Jiang, S.Y., and Chen, W. (2018) Petrogenesis of
 Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South
 China: Implication for multiple magma sources, tin mineralization, and
 geodynamic setting. Lithos, 296-299, 163-180.

660	Li, X.H., Li	, W.X., Li	, Z.X.,	and Liu,	Υ.	(2008)) 850–790	Ma	bimodal	volcanic	and
-----	--------------	------------	---------	----------	----	--------	-----------	----	---------	----------	-----

- 661 intrusive rocks in northern Zhejiang, South China: a major episode of continental
- rift magmatism during the breakup of Rodinia. Lithos, 102, 341-357.
- 663 Li, X.H., Tang, G.Q., Gong, B., Yang, Y.H., Hou, K.J., Hu, Z.C., Li, Q.L., Liu. Y., and
- 664 Li, W.X. (2013) Qinghu zircon: A working reference for microbeam analysis of
- 665 U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58, 1954-1961 (in
- 666 Chinese with English abs.).
- 667 Li, Z.X., Li, X.H., Zhou, H., and Kinny, P.D. (2002) Grenvillian continental collision
- in south China: new SHRIMP U-Pb zircon results and implications for theconfiguration of Rodinia. Geology, 30, 163-166.
- 670 Lima, S.M., Corfu, F., Neiva, M.R., and Ramos, J.M.F. (2012) U-Pb ID-TIMS dating
- applied to U-rich inclusions in garnet. American Mineralogist, 97, 800-806.
- 672 Liu, Y. (2011) Crust-mantle interaction of Yanshanian granitic magma in Qitianling
- and Daoxian area southern Hunan. Chinese Academy of Geological Science, p.
- 674 1-296 (in Chinese with English abs.).
- 675 Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J. and Chen, H.H. (2010)
- Reappraisement and refinement of zircon U-Pb isotope and trace element
 analyses by LA-ICP-MS. Chinese Science Bulletin, 55, 1535-1546.
- 678 Ludwig, K.R. (2003) User's manual for Isoplot 3.0: a geochronological toolkit for
- 679 Microsoft Excel, Special Publication 4. Geochronology Center, Berkeley.
- 680 Mao, J.W., Cheng, Y.B., Chen, M.H., and Pirajno, F. (2013) Major types and time-
- space distribution of Mesozoic ore deposits in South China and their geodynamic

- 682 settings. Mineralium Deposita, 48, 267-294.
- Mao, J.W., Pirajno, F., and Cook, N. (2011) Mesozoic metallogeny in East China and
 corresponding geodynamic settings An introduction to the special issue. Ore
 Geology Reviews, 43, 1-7.
- 686 Marfin, A.E., Ivanov, A.V., Kamenetsky, V.S., Abersteiner, A., Yakich, T.Y., and
- Dudkin, T.V (2020) Contact metamorphic and metasomatic processes at the
 Kharaelakh intrusion, Oktyabrsk deposit, Norilsk-Talnakh ore district:
 Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
 dating of perovskite, apatite, garnet, and titanite. Economic Geology, 115, 12131226.
- 091 1220.
- 692 Mathur, R., Titley, S., Ruiz, J., Gibbins, S., and Friehauf, K. (2005) A Re-Os isotope
- study of sedimentary rocks and copper-gold ores from the Ertsberg District, West
 Papua, Indonesia. Ore Geology Reviews, 26, 207-226.
- 695 Mei, W., Lü, X.B., Cao, X.F., Liu, Z., Zhao, Y., Ai, Z.L., Tang, R.K., and Abfaua,
- 696 M.M. (2014) Ore genesis and hydrothermal evolution of the Huanggang skarn
- 697 iron-tin polymetallic deposit, southern Great Xing'an Range: Evidence from
- fluid inclusions and isotope analyses. Ore Geology Reviews, 64, 239-252.
- Meinert, L.D., Hefton, K.K., Mayes, D., and Tasiran, I. (1997) Application of skarn
 deposit zonation models to mineral exploration. Exploration and Mining
 Geology, 6, 185-208.
- 702 Meinert, L.D., Dipple, G.M., and Nicolescu, S. (2005) World skarn deposits, In:
- 703 Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.),

- Economic Geology 100th Anniversary Volume, 1905–2005, Society of
- Economic Geologists Inc, Littleton, Colorado, p. 299-336.
- 706 Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E.,
- 707 Danyushevsky, L.V., Maslennikov, V., and Hergt, J.M. (2008) Age and pyrite Pb-
- isotope composition of the giant Sukhoi Log sediment-hosted gold deposit,
- Russia: Geochimica et Cosmochimica Acta, 72, 2377-2391.
- 710 Mezger, K., Hanson, G., and Bohlen, S. (1989) U-Pb systematics of garnet: dating the
- 711 growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon
- and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and
- 713 Petrology, 101, 36-148.
- 714 Newberry, R.J., Einaudi, M.T., and Eastman, H.S. (1991) Zoning and genesis of the
- 715 Darwin Pb-Zn-Ag skarn deposit, California: A reinterpretation based on new
 716 data. Economic Geology, 86, 960-982.
- 717 Neymark, L.A., Holm-Denoma, C.S., and Moscati, R.J. (2018) In situ LA-ICPMS U-
- 718 Pb dating of cassiterite without a knownage matrix-matched reference material:
- Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary.
- 720 Chemical Geology, 483, 410-425.
- 721 Neymark, L.A., Holm-Denoma, C.S., Larin, A.M., Moscati, R.J., and Plotkina, Y.V.
- 722 (2021) LA-ICPMS U-Pb dating reveals cassiterite inheritance in the Yazov
- granite, Eastern Siberia: Implications for tin mineralization. MineraliumDeposita, 56, 1177-1194.
- 725 Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R.,

- and Chenery, S.P. (1997) A compilation of new published major and trace
- element data for NIST SRM 610 and NIST SRM 612 glass reference materials.
- Geostandards and Geoanalytical Research, 21, 114-115.
- 729 Petrus, J.A. and Kamber, B.S. (2012) VizualAge: Anovel approach to laser ablation
- 730 ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical
- 731 Research, 36(3): 247-270.
- 732 Prichard, J. (2013) The geochemistry and geochronology of cassiterite from the New
- 733 England Fold Belt: NSW. BSC honours thesis, Australian National University.
- 734 Shu, X.J., Wang X.L., Sun, T., Xu, X.S., and Dai, M.N. (2011) Trace elements, U-Pb
- ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling
- 736 Range, South China: Implications for petrogenesis and W-Sn mineralization.
- 737 Lithos, 127, 468-482.
- 738 Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41.
- 739 Sun, W.D., Yang, X.Y., Fan, W.M., and Wu, F.Y. (2012) Mesozoic large scale
- magmatism and mineralization in South China: Preface. Lithos, 150, 1-5.
- 741 Tapster, S. and Bright, J.W.G. (2020) High-precision ID-TIMS cassiterite U-Pb
- systematics using a low-contamination hydrothermal decomposition:
 implications for LA-ICP-MS and ore deposit geochronology. Geochronology, 2,
- 744 425-441.
- Vermeesch, P. (2018) IsoplotR: A free and open toolbox for geochronology.
 Geoscience Frontiers, 9, 1479-1493.
- 747 Wafforn, S., Seman, S., Kyle, J.R., Stockli, J.R., Leys, C., Sonbait, D., and Cloos, M.

- 748 (2018) Andradite garnet U-Pb geochronology of the Big Gossan skarn, Ertsberg-
- Grasberg mining district, Indonesia. Economic Geology, 113, 769-778.
- 750 Wang, Y.J., Fan, W.M., Zhang, G.W., and Zhang, Y.H. (2013) Phanerozoic tectonics
- of the South China Block: Key observations and controversies. GondwanaResearch, 23, 1273-1350.
- 753 Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.
- Von, Roddick, J.C., and Spiegel, W. (1995) Three natural zircon standards for U-
- 755 Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1-
- 756 23.
- 757 Williams-Jones, A.E., Samson, I.M., Ault, K.M., Gagnon, J.E., and Fryer, B.J. (2010)
- The genesis of distal zinc skarns: evidence from the Mochito deposit, Honduras.Economic Geology, 105, 1411-1440.
- 760 Wu, J.H., Li, H., Algeo, T.J., Jiang, W.C., and Zhou, Z.K. (2018) Genesis of the
- Xianghualing Sn–Pb–Zn deposit, South China: A multimethod zircon study. Ore
 Geology Reviews, 102, 220-239.
- 763 Wu, S.H., Mao, J.W., Yuan, S.D., Dai, P., and Wang, X.D. (2018) Mineralogy, fluid
- inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the
 Shizhuyuan deposit, Hunan Province, southeastern China. Mineralium Deposita,
 53, 89-103.
- 767 Xiao, C.H., Shen, Y.K., and Wei, C.S. (2019) Petrogenesis of low Sr and high Yb A-
- 768 type granitoids in the Xianghualing Sn polymetallic deposit, South China:
- Constrains from geochronology and Sr–Nd–Pb–Hf isotopes. Minerals, 9, 182.

770	Xie, L.,	Wang, Z.J.,	Wang, R.C.	, Zhu, J.C.,	Che, X.D.,	Gao, J.F.,	, and Zhao, X	K. (2018)
-----	----------	-------------	------------	--------------	------------	------------	---------------	-----------

- Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the
 Laiziling granite (Xianghualing district, south China). Ore Geology Reviews, 95,
 695-712.
- Xiong, X.L., Rao, B., Chen, F.R., Zhu, J.C., and Zhao, Z.H. (2002) Crystallization
- and melting experiments of a fluorine-rich leucogranite from the Xianghualing
 pluton, South China, at 150 MPa and H₂O-saturated conditions. Journal of Asian
 Earth Sciences, 21, 175-188.
- Xiong, Y.Q., Shao, Y.J., Cheng, Y.B., and Jiang, S.Y. (2020) Discrete Jurassic and
 Cretaceous mineralization events at the Xiangdong W(-Sn) deposit, Nanling
 Range, South China. Economic Geology, 115, 385-413.
- Xuan, Y.S., Yuan, S.D., Yuan, Y.B., and Mi, J.R. (2014) Zircon U-Pb age,
 geochemistry and petrogenesis of Jianfengling pluton in southern Hunan
 Province. Mineral Deposits, 33, 1379-1390 (in Chinese with English abs.).
- 784 Yang, L.Z., Wu, X.B., Cao, J.Y., Hu, B., Zhang, X.W., Gong, Y.S., and Liu, W.D.
- (2018) Geochronology, petrology, and genesis of two granitic plutons of the
 Xianghualing ore field in South Hunan Province: Constraints from zircon U–Pb
- dating, geochemistry, and Lu–Hf isotopic compositions. Minerals, 8, 213.
- 788 Yu, X.G., Rao, C., Wang, W.M.Y., Lin, X.Q., and Tan, L.Q. (2018) Mineralogical
- 789 behavior and metallogenic process of Sn in the Xianghualing skarn, Hunan
- 790 Province: Geological Journal of China Universities, 24, 645-657 (in Chinese
- 791 with English abs.).

792	Yuan, S.D, Williams-Jones, A.E., Romer, R.L., Zhao, P.L., and Mao, J.W. (2019)
793	Protolith-related thermal controls on the decoupling of Sn and W in Sn-W
794	metallogenic provinces: Insights from the Nanling Region, China. Economic
795	Geology, 114, 1005-1012.
796	Yuan, S.D., Mao, J.W., Cook, N.J., Wang, X.D., Liu, X.F., and Yuan, Y.B. (2015) A
797	Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province:
798	Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit,
799	Hunan, China. Ore Geology Reviews, 65, 283-293.
800	Yuan, S.D., Peng, J. T., Shen, N. P., Hu, R. Z., and Dai, T.M. (2007) ⁴⁰ Ar- ³⁹ Ar isotopic
801	dating of the Xianghualing Sn-polymetallic orefield in southern Hunan, China
802	and its geological implications. Acta Geologica Sinica, 81, 278-286.
803	Yuan, S.D., Peng, J.T, Hu, R.Z., Li, H.M., Shen, N.P., and Zhang, D.L. (2008) A
804	precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit
805	(Hunan, South China). Mineralium Deposita, 43, 375-382.
806	Yuan, S.D., Peng, J.T., Hao, S., Li, H.M., Geng, J.Z., and Zhang, D.L. (2011) In situ
807	LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant
808	Furong tin deposit, Hunan Province, south China: New constraints on the timing
809	of tin-polymetallic mineralization. Ore Geology Reviews, 43, 235-242.
810	Yudintsev, S.V., Lapina, M.I., Ptashkin, A.G., Ioudintseva, T.S., Utsunomiya, S.,
811	Wang, L.M., and Ewing, R.C. (2002) Accommodation of Uranium into the
812	Garnet structure. Materials Research Society, 713, JJ11.28.

813 Zhai, D.G., Liu, J.J., Zhang, A.L., Sun, Y.Q. (2017) U-Pb, Re-Os, and ⁴⁰Ar-³⁹Ar

814	geochronology of porphyry Sn \pm Cu \pm Mo and polymetallic (Ag-Pb-Zn-Cu)
815	vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China:
816	Implications for discrete mineralization events. Economic Geology, 112, 2041-
817	2059.
818	Zhai, D.G., Liu, J.J., Zhang, H.Y., Yao, M.J., Wang, J.P., and Yang, Y.Q. (2014) S-Pb
819	isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang
820	Fe-Sn deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59, 109-122.
821	Zhai, D.G., Williams-Jones, A.E., Liu, J.J., David, S., Li, C., Huang, X.W., Qi, L., and
822	Guo, D.H. (2019) Evaluating the use of the molybdenite Re-Os chronometer in
823	dating gold mineralization: Evidence from the Haigou deposit, NE China.
824	Economic Geology, 114(5), 897-915.
825	Zhang, D.L., Peng, J.T., Hu, R.Z., Yuan, S.D., and Zheng, D.S., 2011, The closure of
826	U-Pb isotope system in cassiterite and its reliability for dating: Geological
827	Review, 57, 549-554 (in Chinese with English abs.).

- 828 Zhang, R.Q., Lehmann, B., Seltmann, R., Sun, W.D., and Li, C. (2017a) Cassiterite U-
- Pb geochronology constrains magmatic-hydrothermal evolution in complex
 evolved granite systems: The classic Erzgebirge tin province (Saxony and
 Bohemia). Geology, 45, 1095-1098.
- 832 Zhang, R.Q, Lu, J.J., Wang, R.C., Yang, P., Zhu, J.C., Yao, Y., Gao, J.F., Li, C., Lei,
- 833 Z.H., Zhang, W.L., and Guo, W.M. (2015) Constraints of in situ zircon and
- 834 cassiterite U–Pb, molybdenite Re–Os and muscovite ${}^{40}Ar {}^{39}Ar$ ages on multiple
- 835 generations of granitic magmatism and related W-Sn mineralization in the

- Wangxianling area, Nanling Range, South China. Ore Geology Reviews, 65,
 1021-1042.
- 838 Zhang, R.Q., Lu, J.J., Lehmann, B., Li, C.Y., Li, G.L., Zhang, L.P., Guo, J., and Sun,
- W.D. (2017b) Combined zircon and cassiterite U-Pb dating of the Piaotang
 granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China.
 Ore Geology Reviews, 82, 268-284.
- 842 Zhang, S.T., Chen, H.Y., Shu, Q.H., Zhang, Y., Chu, G.B., Cheng, J.M., and Tian, J.
- 843 (2019) Unveiling growth histories of multi-generational garnet in a single skarn
- 844 deposit via newly-developed LA-ICP-MS U-Pb dating of grandite. Gondwana845 Research, 73, 65-76.
- 846 Zhao, P.L., Yuan, S.D., Mao, J.W., Yuan, Y.B., Zhao, H.J., Zhang, D.L., and Shuang,
- Y. (2018) Constraints on the timing and genetic link of the large-scale
 accumulation of proximal W–Sn–Mo–Bi and distal Pb–Zn–Ag mineralization of
 the world-class Dongpo orefield, Nanling Range, South China. Ore Geology
 Reviews, 95, 1140-1160.
- 851 Zhao, Q.Q., Zhai, D.G., Mathur, R., Liu, J.J., Selby, D., and Williams-Jones, A.E.
- 852 (2021) The giant Chalukou porphyry Mo deposit, NE China: The product of a
 853 short-lived, high flux mineralizing event. Economic Geology, 116 (5), 1209-
- 854 1225.
- Zhong, J.L. (2014) Major types and prospecting direction of nonferrous and rare
 polymetallic ore deposit in Xianghualing area, South China. Geology and
 Mineral Resources of South China, 30, 99-108 (in Chinese with English abs.).

858	Zhou,	Х.М.,	and	Li,	W.X	(2000)	Origin	of	Late	Mesozoic	igneous	rocks	in
-----	-------	-------	-----	-----	-----	--------	--------	----	------	----------	---------	-------	----

- Southeastern China: implications for lithosphere subduction and underplating of 859
- 860 mafic magmas. Tectonophysics, 326, 269-287.
- 861 Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., and Niu, Y.L. (2006) Petrogenesis of
- 862 Mesozoic granitoids and volcanic rocks in South China: A response to tectonic 863 evolution. Episodes, 29, 26-33.
- Zhu, J.C., Wang, R.C., Lu, J.J., Zhang, H., Zhang, W.L., Xie, L., and Zhang, R.Q. 864
- 865 (2011) Fractionation, evolution, petrogenesis and mineralization of Laiziling 866 granite pluton, Southern Hunan Province. Geological Journal of China Universities, 17, 381-392 (in Chinese with English abs.). 867
- 868
- **FIGURE CAPTIONS** 869

- 870 FIGURE 1. (A) A tectonic map of China (Xiong et al., 2020); (B) The distribution of granite and
- 871 associated tungsten-tin deposits in the Nanling Range (modified after Chen et al., 2013 and Yuan
- 872 et al., 2019); (C) A regional geological map of the Xianghualing ore field (modified after Yuan et
- 873 al., 2007 and Wu J et al., 2018).
- 874

875 FIGURE 2. A geological map of the Xianghualing Sn deposit (modified after Wu J et al., 2018).

- 876
- 877 FIGURE 3. The vertical zonation of rock types in the Laiziling pluton (A) (Xiong et al., 2002)
- 878 and metal zoning of the Xianghualing tin deposit (B) (Lai, 2014).
- 879

FIGURE 4. Geological cross sections of No. 49 exploration line in the Xinfeng ore block (A)
(Wu J et al., 2018), No. 88 exploration line in the Tangguanpu ore block (B) (Lai, 2014) and (C)
the distribution of Sn-Pb-Zn mineralization in drill hole of ZK7003 in the Tangguanpu ore block.
FIGURE 5. Photographs showing different ore types for the Xianghuaing Sn deposit. (A) The

885	contact between biotite granite and marble in the 580 m level tunnel of the Tangguanpu ore block;
886	(B) Massive skarn-type ore; (C) Actinolite associated with biotite and cassiterite in proximal skarn
887	ore (plane polarized light); (D) Biotite granite; (E) Granular quartz and sericitized K-feldspar in
888	biotite granite (crossed polarized light); (F) Distal skarn ore at the contact zone between Devonian
889	sandstone and Cambrian sandstone; (G) Disseminated arsenopyrite and cassiterite in a cassiterite-
890	sulfide vein; (H) The assemblage cassiterite-arsenopyrite-pyrrhotite-chalcopyrite-fluorite
891	(reflected light); (I) Sn-Pb-Zn veinlets in the drill core of ZK6601 in the Tangguanpu ore block;
892	(J) Sn-Pb-Zn veinlets in the drill core of ZK7003 in the Tangguanpu ore block, containing
893	coexisting pyrite and galena (reflected light); (K) The coexistence of cassiterite, arsenopyrite, and
894	topaz in Sn-Pb-Zn veinlets (plane polarized light). Abbreviations: Act = actinolite, Apy =
895	arsenopyrite, Bi = biotite, Ccp = chalcopyrite, Cst = cassiterite, Di = diopside, Fl = fluorite, Gn =
896	galena, Grt = garnet, Kfs = K-feldspar, Pl = plagioclase, Po = pyrrhotite, Qtz = quartz, Sp =
897	sphalerite, Tpz = topaz.
898	

899 FIGURE 6. The paragenetic sequence of minerals in the Xianghualing tin deposit.

900

901 FIGURE 7. Photomicrographs and backscattered electron (BSE) images for garnet from the

41

902	Xianghualing tin deposit. (A) Stage I garnet hosted in Stage II garnet (plane polarized light); (B)
903	Stage I garnet replaced by Stage II garnet, both of which were replaced by fluorite (BSE); (C)
904	Stage II garnet intergrown with diopside (BSE); (D) Granular Stage II garnet replaced by tabular
905	Stage III garnet (plane polarized light); (E) Granular Stage II garnet replaced by tabular Stage III
906	garnet (BSE); (F) A ternary diagram illustrating the composition of the Xianghualing garnet.
907	Abbreviations: Alm = almandine, And = andradite, Ep = epidote, Gro = grossular, Pyr = pyrope,
908	Spe = spessartine and Uva = uvarovite (modified after Meinert et al., 2005).

909

910	FIGURE 8. Photomicrographs and cathodoluminescence (CL) images for cassiterite from the
911	Xianghualing tin deposit. (A) Cassiterite (Cst I) in close association with actinolite in proximal
912	skarn ore (plane polarized light); (B) Relatively dark cassiterite (Cst I-1) in proximal skarn ore
913	replaced by late light colored cassiterite (Cst I-2) (CL); (C) Cassiterite (Cst I) intergrown with
914	actinolite and pyrrhotite in proximal skarn ore (reflected light); (D) Cassiterite (Cst II) coexisting
915	with actinolite and quartz in distal skarn ore (plane polarized light); (E) Cassiterite (Cst II) grains
916	in distal skarn ore (CL); (F) Cassiterite (Cst II) intergrown with pyrrhotite and chalcopyrite in
917	distal skarn ore (reflect light); (G) Cassiterite (Cst III) in cassiterite-sulfide ore with growth zones
918	replaced by muscovite (plane polarized light); (H) Cassiterite in cassiterite-sulfide ore (Cst III)
919	showing growth zones (CL); (I) Cassiterite (Cst III) in contact with pyrrhotite and arsenopyrite in
920	cassiterite-sulfide ore (reflected light); (J) Cassiterite (Cst IV) displaying growth zones surrounded
921	by topaz in a Sn-Pb-Zn veinlet (plane polarized light); (K) Dark cassiterite (Cst IV-1) in a Sn-Pb-
922	Zn veinlet showing growth zones and filled and later cassiterite (Cst IV-2) along cracks (CL); (L)
923	Cassiterite (Cst IV) intergrown with arsenopyrite, pyrite, galena, and topaz (reflected light).

- 924 Abbreviations: Act = actinolite, Apy = arsenopyrite, Cst = cassiterite, Fl = fluorite, Gn = galena,
- 925 Ms = muscovite, Po = pyrrhotite, Qtz = quartz, Tpz = topaz.
- 926
- 927 FIGURE 9. (A) Cathodoluminescence (CL) images of representative zircon crystals separated
- 928 from the Laiziling granite showing the locations of the analyses (circles) and corresponding U-Pb
- 929 ages; (B) A concordia diagram and weighted mean age of zircon crytals from sample 19XHL-12
- 930 of the Laiziling granitic pluton.
- 931
- 932 FIGURE 10. Tera-Wasserburg U-Pb intercept ages for garnet in the Xianghualing Sn deposit. (A)

933 Euhedral garnet (Grt-I); (B) Granular garnet (Grt-II); (C) Tabular garnet (Grt-III).

- 934
- 935 FIGURE 11. Tera-Wasserburg U-Pb intercept ages for cassiterite in the Xianghualing Sn deposit.
- 936 (A) The U-Pb age for dark cassiterite (Cst IV-1) in a Sn-Pb-Zn veinlet ore from sample ZK7003-
- 937 11; (B) The U-Pb age for a second cassiterite crystal (Cst IV-1) from sample ZK7003-11; (C)The
- 938 U-Pb age of the the late light colored cassiterite (Cst IV-2) from sample ZK7003-11; (D) The U-
- 939 Pb age for dark cassiterite (Cst I) in proximal skarn ore from sample 19XHL-10-6; (E) The U-Pb
- 940 age for cassiterite (Cst II) in distal skarn ore from sample 19XHL-3; (F) The U-Pb age for
- 941 cassiterite (Cst III) in cassiterite-sulfide ore from sample 19XHL-17-1; (G) The U-Pb age for
- 942 cassiterite (Cst III) in cassiterite-sulfide ore from sample 19XHL-24.
- 943

944 FIGURE 12. A diagram illustrating the distribution of age determinations for the Jianfengling and

945 Laiziling granites and the early and late Sn mineralizing events in the Xianghualing ore field. The

946	zircon U-Pb ages are from Liu, 2011; Shu et al., 2011; Zhu et al., 2011; Lai, 2014; Xuan et al.,
947	2014; Li H et al., 2018; Yang et al., 2018; Xiao et al., 2019; the muscovite Ar-Ar ages are from Hu
948	et al., 1984; Yuan et al., 2007; and the cassiterite U-Pb ages are from Yuan et al., 2008a; Guo et al.,
949	2019 and this study.
950	
951	FIGURE 13. A proposed genetic model for Sn mineralization in the Xianghualing ore district.
952	
953	TABLES
954	TABLE 1. LA-ICP-MS U-Pb data for zircon in the Laiziling granitic pluton
955	
956	TABLE 2. A summary of the major element compositions of the Xianghualing garnet (wt%)
957	
958	APPENDIX TABLES
959	APPENDIX TABLE 1. LA-ICP-MS U-Pb isotope data for garnet from the Xianghualing Sn
960	deposit
961	
962	APPENDIX TABLE 2. LA-ICP-MS U-Pb isotope data for cassiterite from the Xianghualing Sn
963	deposit
964	
965	APPENDIX TABLE 3. LA-ICP-MS U-Pb isotope data for garnet standards GRT-1 and WS-20

44

	C	antanta (mu					Isotopi	c ratios					Ages (N	Ma)		
Sample	C	ontents (pp))))	Th/U	²⁰⁷ Pb	^{/206} Pb	²⁰⁷ Pb	V^{235} U	²⁰⁶ Pb	V^{238} U	²⁰⁷ Pb/ ²	^{.06} Pb	²⁰⁷ Pb/ ²	³⁵ U	206 Pb/ 23	³⁸ U
	Pb	Th	U		Ratio	1σ	Ratio	1σ	Ratio	1σ	Ratio	1σ	Ratio	1σ	Ratio	1σ
XHL12-01	11.85	222.20	421.81	0.53	0.04929	0.00205	0.16602	0.00680	0.02442	0.00030	162	73	156	6	156	2
XHL12-04	29.23	768.02	986.27	0.78	0.04921	0.00151	0.16423	0.00492	0.02420	0.00028	158	48	154	4	154	2
XHL12-09	17.62	277.16	655.97	0.42	0.04917	0.00172	0.16309	0.00559	0.02405	0.00029	156	58	153	5	153	2
XHL12-22	37.68	529.21	1379.38	0.38	0.05620	0.00177	0.18830	0.00582	0.02430	0.00029	460	47	175	5	155	2
XHL12-34	70.96	803.52	2769.62	0.29	0.05902	0.00198	0.19540	0.00641	0.02401	0.00030	568	50	181	5	153	2
XHL12-36	253.36	1958.49	7211.36	0.27	0.05612	0.00567	0.18112	0.01815	0.02341	0.00032	457	231	169	16	149	2
XHL12-46	270.14	3055.95	9845.57	0.31	0.05420	0.00299	0.17634	0.00946	0.02360	0.00031	379	128	165	8	150	2
XHL12-48	174.69	2393.32	6016.88	0.40	0.04773	0.00285	0.15665	0.00912	0.02380	0.00031	86	133	148	8	152	2
XHL12-50	25.36	510.24	895.70	0.57	0.05091	0.00344	0.16795	0.01109	0.02393	0.00034	237	155	158	10	152	2
XHL12-52	163.32	1785.43	6333.59	0.28	0.05138	0.00184	0.17075	0.00601	0.02410	0.00032	258	56	160	5	154	2

Table 1. LA-ICP-MS U-Pb data for zircons in the Laiziling granitic pluton

Table 2. A summary of the major element compositions of the Xianghualing garnets (wt%)

	19XHL-4	19XHL-4	19XHL-4	19XHL-4	19XHL-4	19XHL-18-	19XHL-1	19XHL-4	19XHL-18-	19XHL-18-	19XHL-18-
Sample	5	5	5	5	5	1	8-	5	1	1	1
	GrtI-1	GrtI-2	Grt II-1	Grt II-2	Grt II-3	Grt II-4	Grt II-5	Grt III-1	Grt III-2	Grt III-3	Grt III-4
SiO ₂	35.94	35.59	37.63	38.31	38.03	34.37	34.37	33.51	35.07	35.96	33.81
TiO_2	1.04	0.83	0.68	0.78	1.88	1.17	0.70	2.62	1.23	1.17	1.30
Al_2O_3	15.38	15.73	17.76	18.07	16.81	15.21	14.30	14.68	15.04	15.83	15.70
Cr_2O_3	0.02	0.00	0.00	0.01	0.00	0.03	0.00	0.00	0.03	0.03	0.00
Fe_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	6.09	5.51	7.04	6.98	7.23	4.98	5.24	5.30	5.96	5.06	5.88
MnO	0.25	0.25	1.63	1.56	1.58	0.27	0.26	0.30	0.27	0.24	0.19

MgO	1.77	1.76	0.16	0.18	0.07	1.52	1.68	1.19	1.71	1.69	1.39
CaO	34.20	34.33	32.69	33.16	33.21	31.66	31.01	31.69	33.97	34.32	33.40
Total	94.68	94.00	97.59	99.05	98.81	89.20	87.56	89.29	93.27	94.32	91.66
Si	2.92	2.91	2.96	2.97	2.96	2.94	3.00	2.88	2.90	2.92	2.84
Ti	0.06	0.05	0.04	0.05	0.11	0.08	0.05	0.17	0.08	0.07	0.08
Al	1.47	1.52	1.65	1.65	1.54	1.54	1.47	1.49	1.46	1.52	1.56
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ³⁺	0.41	0.38	0.35	0.34	0.41	0.36	0.38	0.38	0.41	0.34	0.41
Fe ²⁺	0.00	0.00	0.11	0.11	0.06	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.02	0.02	0.11	0.10	0.10	0.02	0.02	0.02	0.02	0.02	0.01
Mg	0.21	0.21	0.02	0.02	0.01	0.19	0.22	0.15	0.21	0.21	0.17
Ca	2.98	3.01	2.76	2.75	2.77	2.91	2.90	2.92	3.01	2.99	3.01
And	19.33	17.44	17.56	17.10	21.22	17.15	18.27	18.48	19.09	16.08	19.40
Gro	73.40	75.39	74.44	75.02	73.09	75.88	74.16	75.87	73.73	76.92	74.72
Pyr+Spe+Alm+U va	7.27	7.17	8.00	7.87	5.69	6.98	7.57	5.65	7.17	7.01	5.88

Note: Total Fe are measured and represented as FeO. All the calculations were based on 12 oxygens. Abbreviation: Alm = almandine; And = andradite; Gro = grossular; Pyr = pyrope; Spe = spessartine; and Uva = uvarovite.

Fig. 1

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 6

Stages Minerals	Prograde skarn	Retrograde skarn	Quartz-cassiterite -sulfide	Carbonate
Garnet	***			
Diopside	U-Pb dating	1		
Wollastonite		C		
Vesuvianite		1		
Actinolite				
Tremolite				
Muscovite			-	
Phlogopite				
Chlorite		· · · · · · · · · · · · · · · · · · ·		
Magnetite		11. Ph	datina	
Cassiterite		**		
Quartz		1		
Fluorite				
Topaz			1	
Calcite				_
Pyrite				
Chalcopyrite				
Arsenopyrite				
Pyrrhotite				
Sphalerite				
Galena				

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 8

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

 $^{238}U/^{206}Pb$ Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

