Revision #1
Word Count: 5799
The first occurrence of the carbide anion, C ^{4–} , in an oxide mineral: Mikecoxite, ideally
(CHg ₄)OCl ₂ , from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A.
MARK A. COOPER ¹ , GAIL DUNNING ² , FRANK C. HAWTHORNE ^{1,*} , CHI MA ³ , ANTHONY R. KAMPF ⁴ ,
JOHN SPRATT ⁵ , CHRISTOPHER J. STANLEY ⁵ , AND ANDREW G. CHRISTY ⁶
¹ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
² Deceased
³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena,
California 91125, USA
⁴ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition
Boulevard, Los Angeles, CA 90007, USA
⁵ Department of Earth Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
⁶ Geosciences, Queensland Museum, 122 Gerler Road, Hendra, Qld 4011, and Christy
Mineralogical Consulting, P.O. Box 517, Hamilton, Qld 4007, Australia.
* Corresponding author email: frank.hawthorne@umanitoba.ca

25

ABSTRACT

26	Mikecoxite, ideally (CHg ₄)OCl ₂ , is the first mercury-oxide-chloride-carbide containing a
27	C ⁴⁻ anion coordinated by four Hg atoms (a permercurated methane derivative) to be described as
28	a mineral species. It was found at the McDermitt open-pit mine on the eastern margin of the
29	McDermitt Caldera, Humboldt County, Nevada, USA. It is monoclinic, space group $P2_1/n$, Z =
30	4; <i>a</i> 10.164(5), <i>b</i> 10.490(4), <i>c</i> 6.547(3) Å, <i>V</i> 698.0(5) Å ³ . Chemical analysis by electron
31	microprobe gave Hg 86.38, Cl 11.58, Br 0.46, C 1.81, sum = 100.23 wt%, and O was detected
32	but the signal was too weak for quantitative chemical analysis. The empirical formula, calculated
33	on the basis of Hg + Cl + Br = 6 apfu, is $(C_{1.19}Hg_{3.39})(Cl_{2.57}Br_{0.05})_{\Sigma 2.62}$, and the ideal formula
34	based on the chemical analysis and the crystal structure is (CHg ₄)OCl ₂ . The seven strongest lines
35	in the X-ray powder diffraction pattern are [d (Å)(I)(hkl)]: 2.884, 100, (230); 2.989, 81, (-301,
36	301, -112, 112, -131, 131); 2.673, 79, (-122, 122, -212, 212); 1.7443, 40, (060, -432, 432);
37	5.49, 34, (-101, 101); 4.65, 32, (120); 2.300, 30, (-312, 312). The Raman spectrum shows three
38	bands at 638, 675 and 704 cm^{-1} , well above the range characteristic of NHg ₄ stretching
39	vibrations that occur between 540 and 580 cm ⁻¹ , that are assigned to CHg ₄ stretching vibrations.
40	Mikecoxite forms intergrowths of bladed crystals up to $100 \ \mu m$ long that occur on granular
41	quartz or in vugs associated with kleinite. It is black with a submetallic to metallic luster and
42	strong specular reflections, and does not fluoresce under short- or long-wave ultraviolet light.
43	Neither cleavage nor parting were observed, and the calculated density is 8.58 g/cm ³ . In the
44	crystal structure of mikecoxite, $(C^{4-}Hg^{2+}_{4})$ groups link through O^{2-} ions to form three-membered
45	rings that polymerize into corrugated [CHg ₄ OCl] ⁺ layers with near-linear C ^{4–} –Hg ²⁺ –O and C ^{4–} –
46	Hg^{2+} -Cl linkages. The layers link in the third direction directly via weak Hg^{2+} - O^{2-} and Hg^{2+} - Cl^{-}
47	bonds to adjacent layers and also indirectly via interlayer Cl ⁻ . A bond-valence parameter has

48	been derived for (Hg ²⁺ –C ⁴⁻) bonds: $R_0 = 2.073$ Å, $b = 0.37$, and this gives bond-valence sums at
49	the C ⁴⁻ ions in accord with the valence-sum rule. The source of carbon for mikecoxite in the
50	volcanic high-desert environment of the type locality seems to be methane, with the reaction
51	catalyzed by microbiota through full mercuration of carbon atoms, beyond the first stage that
52	produces the volatile and highly mobile methylmercury, $[CH_3Hg]^+$, a potent neurotoxin that
53	accumulates in marine food chains.
54	Both the mineral and the mineral name have been approved by the Commission on New
55	Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA
56	2021–060). The mineral is named after Michael F. Cox (b. 1958), a founding member of the
57	New Almaden Quicksilver County Park Association (NAQCPA) who was responsible for
58	characterizing and remediating environmental mercury on site, and who recovered the rock
59	containing the new mineral.
60	
61	Keywords: Mikecoxite, new mineral, mercury-oxide-chloride-carbide, crystal-structure
62	refinement, Raman spectrum, electron-microprobe analysis, McDermitt open-pit mine,
63	Humboldt County, Nevada, USA.

65

INTRODUCTION

66	As part of our continuing interest in Hg-bearing minerals (Hawthorne et al. 1994; Cooper
67	and Hawthorne 2003, 2009; Cooper et al. 2013, 2016, 2019; Roberts et al. 2001, 2002, 2003a,b,
68	2004, 2005), here we report on a new mercury-oxide-chloride-carbide mineral from the
69	McDermitt mine. The new mineral is named after Mr. Michael F. Cox (born 1958) of Soquel,
70	California, who recovered the rock containing the new mineral. Michael Cox has had a life-long
71	interest in Hg minerals. Most notably, he was a founding member of the New Almaden
72	Quicksilver County Park Association (NAQCPA), was responsible for characterizing and
73	remediating environmental mercury on site, and contributed substantially to the creation of a
74	world-class mercury-mining interpretive center in New Almaden, California. He also contributed
75	substantially to the late Gail Dunning's search for interesting new mercury minerals (Dunning et
76	al. 2019).
77	One holotype specimen (rock piece, single-crystal mount, polished mount used for C
78	analysis) and one cotype specimen (used for the Raman and PXRD studies) are deposited in the
78 79	analysis) and one cotype specimen (used for the Raman and PXRD studies) are deposited in the collections of the Natural History Museum of Los Angeles County, Los Angeles, California,
79	collections of the Natural History Museum of Los Angeles County, Los Angeles, California,
79 80	collections of the Natural History Museum of Los Angeles County, Los Angeles, California,
79 80 81	collections of the Natural History Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 76196 and 76197, respectively.
79 80 81 82	collections of the Natural History Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 76196 and 76197, respectively.
 79 80 81 82 83 	collections of the Natural History Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 76196 and 76197, respectively. OCCURRENCE Mikecoxite was found in a single rock sample from the central floor region of the
 79 80 81 82 83 84 	collections of the Natural History Museum of Los Angeles County, Los Angeles, California, USA, catalogue numbers 76196 and 76197, respectively. OCCURRENCE Mikecoxite was found in a single rock sample from the central floor region of the McDermitt open-pit mine, situated along the eastern margin of the McDermitt Caldera,

88	Yellowstone hot spot. Further details of the geologic setting and of the McDermitt mine history
89	are given in Dunning et al. (2019) and references therein. The McDermitt mine was the single
90	largest North American mercury producer in the 1980s, extracting mercury ore from a ~ 670 x
91	760 m open pit. The primary mercury minerals are cinnabar and corderoite in argillized Miocene
92	tuffaceous lacustrine sediments overlying a paleo lake bed of silicified volcaniclastic breccia.
93	The identification of the new mercury-sulfide-chloride mineral corderoite as a supplementary ore
94	mineral was noted by Foord et al. (1974). Mining ceased in 1990 at the McDermitt mine.
95	Mikecoxite was discovered in a loose cobble from a central location of the pit floor (Area 2;
96	Dunning et al. 2019), recovered during a mineral-collecting trip in 2015. Area 2 consists of
97	exposed silicified and brecciated volcanic tuffs, with remnants of a capping fluvial tuffaceous
98	horizon that is also silicified. The mikecoxite-bearing cobble seems consistent with it originating
99	from the latter horizon. The overlying lacustrine sediments have been removed. Abundant
100	kleinite and terlinguacreekite occur with lesser calomel and eglestonite, coating fractures and in
101	quartz-lined cavities within these silicified units in Area 2. Mikecoxite was discovered in a single
102	vug together with terlinguacreekite and kleinite, all crystallized on a quartz lining. A localized
103	monoclinal structure is proposed for Area 2 with the lower silicified tuff (containing the kleinite-
104	terlinguacreekite-mikecoxite assemblage) overlain by a bleached crumbly clay-rich tuff. Graded
105	iron-stained horizons are also evident in Area 2. This distinction between an upper altered clay-
106	rich horizon and lower silicified zone signifies an interface between differing fluid environments,
107	with the monoclinal structure likely acting as a local trap.
108	The current-day Yellowstone Caldera is characterized by a more active margin
109	containing a complex gas assemblage that includes H ₂ S, CH ₄ and NH ₃ (Sheppard et al. 1992). A
110	similar mix of volatiles is consistent with the mercury nitride-carbide occurrence at the

111	McDermitt mine, located along the eastern margin of the McDermitt Caldera. Methane and
112	ammonia trapped locally together with mercury and chlorine complexes may have led to
113	formation of the mercury nitrides (kleinite, terlinguacreekite) and mercury-oxide-chloride-
114	carbide (mikecoxite) via progressive substitution of Hg ²⁺ complexes for hydrogen in precursor
115	NH_3 (or NH_4^+) and CH_4 . A microbial presence may have promoted electrophilic attack of the N–
116	H and C–H bonds, such that H was displaced by Hg-anion complexes, leading to $(NHg_4)^{5+}$ and
117	$(CHg_4)^{4+}$ groups in the mercury minerals discovered. The sulfur and halogen content of
118	circulating vapors and fluids is known to affect chemical speciation of Hg ²⁺ , and increased
119	anaerobic microbial activity is thought to enhance methylation of Hg, i.e., conversion of CH ₄ to
120	$(CH_3Hg)^+$; in addition, available Fe ²⁺ may have scavenged S ²⁻ and formed iron sulfides (e.g.,
121	pyrite), allowing higher activity of Hg ²⁺ complexes in solution and increasing bioavailability of
122	Hg ²⁺ for methylation (Bravo and Cosio 2020). The synthetic polymer Hofmann's Base,
123	(CHg ₄)O(H ₂ O)(OH) ₂ , similar to mikecoxite in chemical composition and probably in structure
124	(see below), is formed abiotically by reaction of HgO with ethanol under alkaline conditions.
125	However, as no obvious organic matter that would contain alcohol groups is seen in close
126	association with mikecoxite, CH4 is presumed to be the source of the C. This, or microbial
127	metabolites of it, may have reacted with hydroxyl- and chloro-mercury complexes, in the
128	presence of a microbial catalyst, to form this unusual mineral.
129	
130	PHYSICAL PROPERTIES
131	Black bladed crystals of mikecoxite (Fig. 1a) form concentrations on granular quartz and
132	also occur in vugs associated with pale-orange vitreous kleinite (Fig. 1b) and terlinguacreekite.

133 Individual crystals are up to 0.1 mm long, are opaque and have submetallic to metallic luster and

134 strong specular reflections, and neither cleavage nor parting were observed. Hardness was not 135 determined but the crystals were soft when manipulated with a needle. Mikecoxite does not 136 fluoresce under short- or long-wave ultraviolet light. Crystals are not suitable for reflectance 137 measurements due to strong internal reflections. The calculated density is 8.58 g/cm³ using the 138 ideal chemical formula and the cell dimensions derived from single-crystal X-ray diffraction. 139 The *a*:*b*:c ratio calculated from the single-crystal unit-cell parameters is 0.9689:1:0.6241. 140 141 **RAMAN SPECTROSCOPY** 142 Raman spectroscopy was done on a Horiba XploRA PLUS using a 785 nm diode laser, a 143 200 μ m slit, a 1800 gr/mm diffraction grating and a 100× (0.9 NA) objective. Spectra recorded 144 from crystals in varying orientations show significant variation in band intensities. Figure 2 145 shows two spectra, one recorded with the laser approximately perpendicular to a flat lustrous 146 face, probably (010), and one with the laser approximately perpendicular to an irregular stepped face, probably (100). Only the 800 to 60 cm^{-1} range is shown because the spectra are featureless 147 from 2000 to 800 cm⁻¹. Tentative band assignments based on Mink et al. (1983) and Cooper et 148 al. (2013) are shown. The spectrum shows three bands at 638, 675 and 704 cm^{-1} , well above the 149 range characteristic of NHg₄ stretching vibrations that occur between 540 and 580 cm⁻¹ (Cooper 150 et al. 2013, 2019). As $Hg^{2+}-C^{4-}$ bonds are significantly stronger than $Hg^{2+}-N^{3-}$ bonds (bond 151 152 strengths of 1.00 versus 0.75 v.u.), CHg₄ stretching vibrations should occur at wavenumbers significantly higher than those for NHg₄ groups, supporting the assignment of the bands at 638, 153 675 and 704 cm⁻¹ as CHg₄ stretching vibrations. 154 155

157	CHEMICAL COMPOSITION
158	Electron-microprobe analysis (18 points) was done at the Natural History Museum
159	(London) using a Cameca SX100 electron microprobe in WDS mode for the elements Hg, Cl, Br
160	(F, S and I were below detection). Analytical conditions were 10 kV accelerating voltage, 4 nA
161	beam current and 1 μ m beam diameter. Preliminary WDS scans at Caltech using an LDE2
162	crystal indicated the presence of C and absence of N, and analysis for C (3 points) was done at
163	Caltech on a JEOL 8200 electron microprobe in WDS mode. The presence of O is also indicated
164	by a very weak peak in wavelength scans in the electron microprobe using LDE1 and LDE2
165	crystals (Fig. 3) but the peak intensity is too weak for quantification. Analytical conditions were
166	10 kV accelerating voltage, 10 nA beam current and 5 μ m beam diameter. No suitable mercury-
167	carbide standard was available; chemical grade Hg-acetate was used as it provides a quantitative
168	source of C within a Hg matrix. A 1 nm thick Ir coating was applied to the surface of the sample
169	and Hg-acetate standard prior to analysis for C. Mikecoxite was very sensitive to the electron
170	beam during both sessions, and we attribute the poor quality of the chemical data to a
171	combination of sample / standard instability and general mismatching of sample and standard
172	with respect to the differing bonding environments of C. We regard the experimental
173	compositional data as independently supporting the proposed formula and the chemical formula
174	calculated from the high-quality fully ordered structure-refinement; thus, the simplified formula
175	given here is derived from the structure formula. Analytical data are given in Table 1. The
176	empirical formula calculated on the basis of Hg + Cl + Br = 6 is $(C_{1.19}Hg_{3.39})(Cl_{2.57}Br_{0.05})_{\Sigma 2.62}$.
177	The structure formula based on the crystal-structure refinement is $(CHg_4)O(Cl_{1.958}Br_{0.042})_{\Sigma 2}$. The
178	simplified formula is (CHg ₄)O(Cl,Br) ₂ and the ideal formula is (CHg ₄)OCl ₂ , which requires C
179	1.33, Hg 89.02, O 1.78, Cl 7.87, total 100 wt%.

100	
181	X-RAY POWDER DIFFRACTION
182	Powder X-ray diffraction (PXRD) data were collected using a Rigaku R-Axis Rapid II
183	curved-imaging-plate microdiffractometer with monochromatized $MoK\alpha$ radiation. A Gandolfi-
184	like motion on the φ and ω axes was used to randomize the sample. Observed <i>d</i> values and
185	intensities were derived by profile fitting using JADE Pro software (Materials Data, Inc.). Data
186	are given in Table 2. Note that the relative weakness of the PXRD and the high background did
187	not allow refinement of the cell parameters by whole-pattern fitting; however, whole-pattern
188	fitting using the single-crystal cell provided an almost perfect fit to the observed data.
189	
190	SINGLE-CRYSTAL X-RAY DATA COLLECTION
191	Crystals of mikecoxite occur as interpenetration twins (2-fold rotation about the c -axis).
192	A suspected twin aggregate was trimmed down in size and a small fragment mounted on a
193	MiTeGen polymer tip. The crystal was mounted on a Bruker D8 three-circle diffractometer
194	equipped with a rotating-anode generator (MoKα radiation), multilayer optics and an APEX-II
195	detector. Although the crystal was later discovered during structure refinement to be a near-
196	merohedral twin, its uniform diffraction spots did not exhibit any evidence of the presence of
197	more than one crystal. Using 30 s frames with a 0.3° frame width, a highly redundant data set (>
198	11 x redundancy) was collected with a total of 23,355 integrated reflections. Significant data
199	oversampling allowed robust empirical modelling of X-ray absorption for this extreme absorber
200	$(m\mu = 88.59 \text{ mm}^{-1})$. The unit-cell dimensions were obtained by least-squares refinement of 4073
201	reflections with $I_0 > 10\sigma I$. Empirical absorption corrections (SADABS; Sheldrick 2008) were
202	applied and equivalent reflections were merged. Pertinent details are listed in Table 3.

203

204

CRYSTAL-STRUCTURE SOLUTION AND REFINEMENT

205	Initially, the single-crystal diffraction data seemed to conform with an approximately
206	orthogonal unit-cell with $a = 10.49$, $b = 6.55$, $c = 10.16$ Å, and general extinction conditions
207	indicated space group <i>Pnma</i> . The structure was solved by direct methods in <i>Pnma</i> and refined to
208	an R_1 index of 2.7%. Although the refined structure model seemed quite reasonable, several
209	reflections violated the extinction conditions for space group <i>Pnma</i> : (<i>hk</i> 0) reflections with $h \neq 2n$
210	and $k = 2n$ were observed in the range 10–30 $F_0 > \sigma F$. Additionally, the anisotropic-displacement
211	behavior of the C atom was less than ideal. These observed reflections are inconsistent with the
212	presence of an <i>a</i> -glide plane perpendicular to the c -axis (10.16 Å). To further investigate these
213	violating reflections, simulated precession slices were generated from the raw data frames. The
214	suspect reflections were clearly present on the hk0 slice, and also appeared consistent with mm
215	Laue symmetry within the slice. The conditions for all observed reflections are: (0 <i>kl</i>): $k + l = 2n$;
216	(<i>h</i> 00): $h = 2n$; (0 <i>k</i> 0): $k = 2n$; (00 <i>l</i>): $l = 2n$, which are collectively inconsistent with all
217	orthorhombic space groups. For the current cell choice, the diffraction symmetry seemed
218	consistent with monoclinic symmetry, a -axis unique, $(P2_1/n11)$. The diffraction data were then
219	carefully inspected for subtle signs of underlying monoclinic symmetry; i.e., possible metric
220	deviation of the refined unit-cell angles from 90°, and possible Laue symmetry lower than mmm.
221	The unconstrained unit-cell parameters refined to $a = 10.490$ (4), $b = 6.547$ (3), $c = 10.164$ (5) Å,
222	$\alpha = 90.037 (10), \beta = 90.000 (18), \gamma = 89.985 (9)^{\circ}$. The α angle shows the largest deviation from
223	90°. The Laue merging (R_{merge}) in 2/m for each unique axis choice is: a (0.9%), b (1.2%), c
224	(1.2%), and for <i>mmm</i> symmetry (1.3%). Although monoclinic character is not overly convincing
225	from these results alone, the metric deviation from orthogonal axes and the Laue merging results

226	collectively support the best choice as monoclinic with a as the unique axis. This selection,
227	combined with the analysis of the simulated precession slices, suggests the space group $P2_1/n$.
228	The cell was re-oriented and the final monoclinic-constrained unit-cell parameters are $a = 10.164$
229	(5), $b = 10.490$ (4), $c = 6.547$ (3) Å, $\beta = 90.037$ (10)°. The crystal structure was refined in $P2_1/n$
230	to an R_1 index of 3.3 %; however, the worst-fit reflections all had $F_0 >> F_c$, characteristic of
231	twinning. A twin instruction (-1 0 0 0 -1 0 0 0 1) consistent with a 2-fold rotation twin-axis
232	along c was inserted into the refinement, and the final model refined to $R_1 = 1.8$ % with a
233	0.474(2) near-merohedral twin-fraction. The lower R_1 value and improved anisotropic-
234	displacement behavior of the C atom in the $P2_1/n$ structure model (which now includes all
235	observed data) establish mikecoxite as monoclinic with space group $P2_1/n$. Four Hg sites refined
236	to full occupancy by Hg. Two Cl sites were refined as Cl; one Cl site showed slight excess
237	scattering and was modelled as Cl + Br with the refined site content of Br close to the Br content
238	measured by EMPA (0.46 wt% Br, Table 1). Two sites were designated as fully occupied by O
239	and C (this assignment is discussed later in more detail). Data collection and refinement details
240	are given in Table 3, atom coordinates and displacement parameters in Table 4 and selected bond
241	distances and angles in Table 5. A table of structure factors and a Crystallographic Information
242	File (CIF) for mikecoxite have been deposited on the MSA website.
0.40	

243

244

THE $(C^{4-}Hg^{2+}_4)^{4+}$ GROUP

The occurrence and characterization of a $(C^{4-}Hg^{2+}_{4})^{4+}$ group warrants detailed discussion as in previously known minerals the C^{4-} anion occurs only in moissanite, SiC, and is rare in synthetic inorganic structures in general. The other carbides known as minerals are metallic phases with substantial metal-metal bonding and interstitial carbon of indeterminate valence

249	state. However, electroneutrality in mikecoxite, $(CHg_4)OCl_2$, requires that the carbon be a C^{4-}
250	anion. The four Hg sites in mikecoxite are fully occupied by Hg ²⁺ ; Hg ¹⁺ invariably occurs as
251	$[Hg^+-Hg^+]$ dimers with Hg–Hg distances of ~ 2.53 Å [e.g., magnolite (Grice 1989), hanawaltite
252	(Grice 1999), vasililyevite (Cooper and Hawthorne 2003), tedhadleyite (Cooper and Hawthorne
253	2009)], and this arrangement was not present in the structure. In crystal structures containing
254	Hg^{2+} , there is an anticipated near-linear [anion- Hg^{2+} -anion] configuration with relatively short
255	strong bonds between Hg^{2+} and the associated anions. In all Hg^{2+} bearing minerals examined
256	thus far, the anions linked to Hg^{2+} are N^{3-} , O^{2-} , S^{2-} , CI^- , Br^- and I^- . In mikecoxite, one anion
257	bonded to each of the four crystallographically distinct Hg^{2+} cations is a C^{4-} anion. Such anion-
258	centered tetrahedra are relatively common in minerals (Krivovichev et al. 2013; Hawthorne
259	2014), particularly (O^2-Cu^{2+4}) , (O^2-Pb^{2+4}) , (O^2-Hg^{2+4}) and (N^3-Hg^{2+4}) . However, the C ⁴⁻ anion
260	had not been found bonded to Hg^{2+} in a mineral prior to the discovery of mikecoxite, and as the
261	latter occurs with kleinite and terlinguacreekite, both containing $(N^{3-}Hg^{2+}_{4})$ groups (Cooper et al.
262	2013), characterization of the C^{4-} anion is of particular importance. The chemical-analytical data
263	for C in mikecoxite was acquired after the final interpretation of the crystal structure. There are
264	four criteria arising from the refinement that are indicative of atom identity: (1) the relative
265	magnitude of the refined site-scattering; (2) the interatomic distances to bonded atoms; (3)
266	coordination number; (4) the requirement for electroneutrality of the structure.

267

268 **Refined C-site scattering**

- As a general rule, structural sites with low-coordination numbers are fully occupied, a
- 270 result of the valence-sum rule (Brown 2016; Hawthorne 2012, 2015). If a tetrahedrally
- 271 coordinated site is fully occupied by a single scattering species, then the correct scattering factor

272	will refine to an occupancy of ~1.0, and any incorrect scattering factor will refine to an
273	occupancy significantly different from 1.0. For mikecoxite, the atoms potentially bonded to Hg^{2+}
274	are the light scatterers O, N and C (with $Z = 8$, 7 and 6, respectively) and the medium-strength
275	scatterers S and Cl ($Z = 16$ and 17, respectively). For the anions coordinating the four Hg sites in
276	mikecoxite, initial anion site-scattering assessment revealed two configurations: (1) X-Hg-X;
277	and (2) X–Hg–Y, where X is a light scatterer ($Z = 8, 7$ and 6) and Y is a medium-strength

278 scatterer (Z = 16 and 17). 279 For mikecoxite specifically, extreme oversampling during data collection for a small 280 crystal resulted in rigorous determination of the empirical absorption correction. The resulting 281 high-quality structure refinement allowed accurate discrimination of such scattering differences 282 because systematic error from absorption effects had been almost completely eliminated. There 283 are two crystallographically distinct light-anion sites (currently labelled L1 and L2). For both 284 sites, the site occupancies were refined independently with each of the scattering factors for C, N 285 and O, and freely refining anisotropic-displacement parameters. The resulting refined occupancies for the two sites are as follows: ${}^{L1}(C_{1,68(3)}, N_{1,32(2)} \text{ and } O_{1,07(2)})$ and ${}^{L2}(C_{1,02(3)}, N_{0,79(2)})$ 286 and $O_{0.63(2)}$). The differing refined site-occupancies are compelling support for L1 = O and L2 = 287 288 C, and the respective anions were so assigned. This test was vital in reliably establishing that the 289 L2 site is occupied by C and not N in mikecoxite, as this anion site is tetrahedrally coordinated by four Hg atoms with bond lengths *and* coordination compatible with either N^{3-} or C^{4-} as the 290 291 anion, leaving the site-scattering difference as the only direct structure-refinement criterion 292 available to make the distinction. The O site is coordinated by three proximal (and two distal) Hg atoms, compatible with O^{2-} ; such a coordination is not expected for either N^{3-} or C^{4-} anions 293 294 based on a survey of other mercury structures.

295

296 Interatomic distances

297 There are four Hg sites in mikecoxite, with strong axial C–Hg–O and C–Hg–Cl bonds, in 298 addition to weaker equatorial bonds to distant O and Cl anions (Fig. 4). For configuration (2): X-299 Hg–Y, the Hg–Y distance of 2.36 Å indicates that Y is Cl (the presence of Cl was later 300 substantiated by chemical analysis). The C^{4-} anion is tetrahedrally coordinated by four Hg^{2+} cations, and the O^{2-} anion by 301 three proximal and two distal Hg^{2+} cations (Table 5, Fig. 5a,b). The refined C–Hg distances of 302 2.054–2.093 Å fall within the range 2.04–2.11 Å observed in synthetic compounds with (CHg₄) 303 groups (Milić et al. 2009). Moreover, the <C–Hg> distance of 2.073 Å in mikecoxite is nearly 304 305 identical to the grand <N-Hg> distance of 2.072 Å for the ten well-refined (NHg₄) groups in 306 gaildunningite (Cooper et al. 2019). As we are not aware of any published bond-valence

307 parameters for the C^{4–}–Hg²⁺ bond, we propose here the values $R_0 = 2.073$, b = 0.37 based on the

308 well-refined C–Hg distances in mikecoxite. This provides a bond-valence sum of 4.00 v.u. for

309 the C atom, and in turn provides a measure of the bond-valence received by the Hg^{2+} cation from

310 the C^{4-} anion (Fig. 5a). The three strong bonds formed between the O^{2-} anion and coordinating

311 Hg²⁺ cations range from 2.080–2.114 Å (Table 5), and are all slightly longer than the <O–Hg>

distance of ~ 2.07Å for O^{2-} coordinated by only three Hg²⁺ cations (Cooper et al. 2013).

313 However, the O^{2-} anion in mikecoxite also receives two additional weaker bonds from more

distant Hg^{2+} cations. The resulting bond-valence sum of 2.02 v.u. for the O²⁻ anion [using Hg^{2+} -

315 O²⁻ bond-valence parameters of Brese and O'Keefe (1991); Cooper et al. (2013)] from all five

bonds to Hg^{2+} supports [5]-coordination of this anion (Fig. 5b). The bond-valence sums for the

four Hg sites range from 1.81 to 1.94 v.u. using the Brese and O'Keefe (1991) parameters for

318	Hg^{2+} - Cl^{-} bonds. The bond-valence sum at the Cl1 anion is 1.01 v.u., and 0.45 v.u. at the Cl2
319	anion that occupies a void and forms eight longer bonds (3.058–3.512 Å) to neighboring Hg^{2+}
320	cations. Some degree of positional disorder is often associated with the more loosely bound
321	halogens in Hg^{2+} structures, and the bond-valence sums for both the Hg^{2+} cations and these
322	halogens are not generally ideal.
323	
324	BOND TOPOLOGY
325	Three (CHg ₄) tetrahedra link via bridging O atoms to form triangular rings that further
326	link to form layers of composition $[CHg_4OCI]^+$ parallel to (010) (Fig. 6a). The fourth vertex of
327	the (CHg ₄) tetrahedron (not involved in layer connectivity) contains a strongly bonded terminal
328	Cl ⁻ anion that alternately projects above and below the layer. This layer carries a 1+ charge, and
329	is distinctly corrugated, with an additional charge-balancing Cl ⁻ between layers (Fig. 6b).
330	Weaker equatorial bonds extend from Hg^{2+} to O^{2-} and Cl^{-} in adjacent layers and to the interlayer
331	Cl ⁻ , linking the layers into a three-dimensional structure.
332	
333	R ELATION TO OTHER STRUCTURES
334	Mikecoxite, a mercury-oxide-chloride-carbide mineral containing a C atom coordinated
335	by four Hg atoms (a permercurated methane derivative), is the first of its kind as a mineral
336	species. This unexpected result is supported by (1) the refined scattering at the C site, (2) the
337	presence of a C peak in the electron microprobe analysis, (3) the lack of an Hg–N peak in the
338	Raman spectrum, (4) the satisfaction of the valence-sum rule at the C site for occupancy by C^{4-} ,
339	and (5) the electroneutrality of the overall structure.
340	There are only a few synthetic structures known that contain a (CHg ₄) group, and only

341	one of these, (CHg ₄)(OH)(H ₂ O) ₂](CF ₃ SO ₃) ₃ (H ₂ O), is polymeric, containing (CHg ₄) groups
342	linked via strong –Hg–OH–Hg– linkages to form chains (Milić et al. 2009). The (CHg ₄) group
343	stereochemically resembles the tetrahedral (NHg ₄) group that has been described in several
344	mercury-halide-nitride minerals (e.g., gaildunningite, comancheite, gianellaite, kleinite,
345	mosesite). Mercury nitrides containing $-N^{3-}-Hg^{2+}-N^{3-}$ bridges tend to freely polymerize,
346	whereas mercury carbides are unlikely to polymerize via $-C^{4-}-Hg^{2+}-C^{4-}$ bridges due to the
347	relative difference in incident bond-valence at Hg^{2+} . The $Hg^{2+}-N^{3-}$ bond has a bond valence of
348	~0.75 v.u., whereas the Hg ²⁺ –C ^{4–} bond has a bond valence of ~1.0 v.u., which results in an
349	incident bond-valence of 1.5 v.u. at Hg^{2+} for a $-N^{3-}-Hg^{2+}-N^{3-}$ bridge, and 2.0 v.u. for a $-C^{4-}-$
350	$Hg^{2+}-C^{4-}$ bridge. The Hg^{2+} coordination commonly includes weak equatorial bonds
351	approximately orthogonal to the near-linear (anion)- Hg^{2+} -(anion) axis. The bond-valence
352	deficiency of 0.5 v.u. at the Hg ²⁺ atom in a $-N^{3-}-Hg^{2+}-N^{3-}$ bridge allows that additional
353	equatorial-anion interaction, whereas the incident bond-valence of 2.0 v.u. at Hg^{2+} in a $-C^{4-}$ -
354	$Hg^{2+}-C^{4-}$ bridge precludes such an interaction. Synthetic Hg-carbides with refined structures
355	are generally monomeric, containing $C(Hg-X)_4$ groups (X = an anion group) with only weak
356	intermolecular bonding. Polymerization of (CHg ₄) groups in mikecoxite occurs via incorporation
357	of bridging O^{2-} anions that reduce the overall bond-valence contributed to the neighboring Hg^{2+}
358	ion and allow additional weak equatorial bonds. The bridging (OH) ⁻ anion in synthetic
359	[CHg ₄ (OH)(H ₂ O) ₂](CF ₃ SO ₃) ₃ (H ₂ O) facilitates simple –Hg–OH–Hg– linkage between two
360	neighboring (CHg ₄) groups, forming linear chains. The only compound thought to contain an O^{2-}
361	anion that bridges three (CHg ₄) groups is Hofmann's Base, (CHg ₄)O(H ₂ O)(OH) ₂ , which is of
362	unknown structure but is thought to contain a tetramercuriomethane-oxide layer (Milić et al.
363	2009) that is topologically similar to that in mikecoxite. Mikecoxite is the first mineral known to

364	contain a (CHg ₄) group, and also the first direct structural evidence supporting the
365	tetramercuriomethane-oxide layer topology of Hofmann's Base.
	tetramereuriomethane-oxide layer topology of monitalin s base.
366	
367	IMPLICATIONS
368	Mikecoxite is the first discovery of dissolved Hg ²⁺ reacting with organic compounds in
369	nature to form an insoluble crystalline solid. The source of carbon for mikecoxite in the volcanic
370	high-desert environment of the type locality appears to be methane, with the reaction catalyzed
371	by microbiota. However, the chemical and likely structural similarity between mikecoxite and
372	Hoffman's Base suggests that the mineral could also form by a mechanism similar to that which
373	produces Hoffman's Base in the laboratory: attack by [HgOH] ⁺ ions on the terminal methyl
374	group of a beta ketone or alcohol under alkaline conditions. Such functional groups in organic
375	humate polymers could produce mikecoxite on reaction of these abundant soil constituents with
376	alkaline saline groundwater containing Hg^{2+} , even in the absence of catalytic microbes. Chlorine
377	in treated water is known to react with humate to produce chloroform by the analogous haloform
378	reaction (Reckhow et al. 1990).
379	The existence of mikecoxite at the type locality shows that appropriate microbes can
380	achieve immobilization of mercury through full mercuration of carbon atoms, beyond the first
381	stage that produces the volatile and highly mobile methylmercury, $[CH_3Hg]^+$, a potent
382	neurotoxin that is known to accumulate in marine food chains (cf. Villar et al. 2020). This
383	possibility suggests a novel way to immobilize mercury for environmental remediation.
384	
385	ACKNOWLEDGEMENTS
386	We thank the reviewers for their comments. Financial support for this work came from

- 387 the Natural Sciences and Engineering Research Council of Canada in the form of a Canada
- 388 Research Chair in Crystallography and Mineralogy, and a Discovery grant to FCH, and by
- 389 Canada Foundation for Innovation grants to FCH.

391	REFERENCES
392	Bravo, A.G., and Cosio, R.L. (2020) Biotic formation of methylmercury: A bio-physico-
393	chemical conundrum. Limnology and Oceanography, 65, 1010–1027.
394	Brese N.E., and O'Keeffe M. (1991) Bond-valence parameters for solids. Acta
395	Crystallographica, B47, 192–197.
396	Brown, I.D. (2016) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. 2 nd
397	Edition. Oxford University Press, U.K.
398	Cooper, M.A., and Hawthorne, F.C. (2003) The crystal structure of vasilyevite,
399	(Hg ₂) ²⁺ 10O ₆ I ₃ (Br,Cl) ₃ (CO ₃). Canadian Mineralogist, 41, 1173–1181.
400	Cooper, M.A., and Hawthorne, F.C. (2009) The crystal structure of tedhadleyite,
401	Hg ²⁺ Hg ¹⁺ ₁₀ O ₄ I ₂ (Cl,Br) ₂ , from the Clear Creek Claim, San Benito County, California.
402	Mineralogical Magazine, 73, 227–234.
403	Cooper, M.A., Abdu, Y.A., Hawthorne, F.C., and Kampf, A.R. (2013) The crystal structure of
404	comancheite, Hg ²⁺ ₅₅ N ³⁻ (OH,NH ₂) ₄ (Cl,Br) ₃₄ , and crystal-chemical and spectroscopic
405	discrimination of N^{3-} and O^{2-} anions in Hg^{2+} compounds. Mineralogical Magazine, 77,
406	3217–3237.
407	Cooper, M.A., Abdu, Y.A., Hawthorne, F.C., and Kampf, A.R. (2016) The crystal structure of
408	gianellaite, $[(NHg_2)_2](SO_4)(H_2O)_x$, a framework of (NHg_4) tetrahedra with ordered (SO_4)
409	groups in the interstices. Mineralogical Magazine, 80, 869-875.
410	Cooper, M.A., Hawthorne, F.C., Roberts, A.C., Stanley, C.J., Spratt, J., and Christy, A.G. (2019)
411	Gaildunningite, ideally Hg ²⁺ ₃ [NHg ²⁺ ₂] ₁₈ (Cl,I) ₂₄ , a new mineral from the Clear Creek
412	Mine, San Benito County, California, USA: Description and crystal structure. Canadian
413	Mineralogist, 57, 295–310.

414	Dunning, G.E., Cox, M.F., Christy, A.G., Hadley, T.A., and Marty, J. (2019) Geology, mining
415	history, mineralogy, and paragenesis of the McDermitt caldera complex, Opalite mining
416	district, Humboldt county, Nevada, and Malheur county, Oregon. Baymin Journal, 20(4),
417	165 pp. www.baymin.org.
418	Foord, E.E., Berendsen, P., and Storey, L.O. (1974) Corderoite, first natural occurrence of α -
419	Hg ₃ S ₂ Cl ₂ , from the Cordero mercury deposit, Humboldt County, Nevada. American
420	Mineralogist, 59, 652–655.
421	Grice, J.D. (1989) The crystal structure of magnolite, Hg ⁺ ₂ Te ⁴⁺ O ₃ . Canadian Mineralogist, 27,
422	133–136.
423	Grice, J.D. (1999) Redetermination of the crystal structure of hanawaltite. Canadian
424	Mineralogist, 37, 775 –778.
425	Hawthorne F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure,
426	chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39,
427	841-874.
428	Hawthorne, F.C. (2014) The Structure Hierarchy Hypothesis. Mineralogical Magazine, 78, 957-
429	1027.
430	Hawthorne F.C. (2015) Toward theoretical mineralogy: a bond-topological approach. American
431	Mineralogist, 100, 696–713.
432	Hawthorne, F.C., Cooper, M., and Sen Gupta, P.K. (1994) The crystal structure of pinchite,
433	Hg ₅ Cl ₂ O ₄ . American Mineralogist, 79, 1199–1203.
434	Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M., and Filatov, S.K. (2013) Anion-
435	centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 6459-6535.
436	Milić, D., Soldin, Ž., Giester, G., Popović, Z., and Matković-Čalogović, D. (2009) Crystal

- 437 structure of the first polymeric tetramercurated methane derivative of Hofmann's Base.
- 438 Croatica Chemica Acta, 82, 337–344.
- Mink, J., Meić, Z., Gál, M., and Korpar-Čolig, B. (1983) Infrared, Raman and force field studies
 of tetrakis (anionomercuri) methanes. Journal of Organometallic Chemistry, 256, 203–
 216.
- 442 Reckhow, D.A., Singer, P.C., and Malcolm, R.L. (1990) Chlorination of humic materials:
- 443 byproduct formation and chemical interpretations. Environmental Science &
 444 Technology, 24, 1655–1664.
- 445 Roberts, A.C., Groat, L.A., Raudsepp, M., Ercit, T.S., Erd, R.C., Moffatt, E.A., and Stirling,
- 446 J.A.R. (2001) Clearcreekite, a new polymorph of $Hg^{1+}(CO_3)(OH) \cdot 2H_2O$, from the Clear
- 447 Creek Claim, San Benito County, California. Canadian Mineralogist, 39, 779–784.
- 448 Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Criddle, A.J., Stirling, J.A.R., and Dunning, G.E.
- 449 (2002) Tedhadleyite, $Hg^{2+}Hg^{1+}_{10}O_4I_2(Cl,Br)_2$, a new mineral species from the Clear
- 450 Creek claim, San Benito County, California. Canadian Mineralogist, 40, 909–914.
- 451 Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Gault, R.A., Grice, J.D., and Nikischer, A.J.
- 452 (2003a) Artsmithite, a new Hg¹⁺–Al phosphate-hydroxide from the Funderburk Prospect,
- 453 Pike County, Arkansas, U.S.A. Canadian Mineralogist, 41, 721–725.
- 454 Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Stirling, J.A.R., Paar, W.H., Stanley, C.J.,
- 455 Dunning, G.E., and Burns, P.C. (2003b) Vasilyevite, $(Hg_2)^{2+}{}_{10}O_6I_3Br_2Cl(CO_3)$, a new
- 456 mineral species from the Clear Creek claim, San Benito County, California. Canadian
 457 Mineralogist, 41, 1167–1172.
- Roberts, A.C., Stirling, J.A.R., Criddle, A.J., Dunning, G.E., and Spratt, J. (2004) Aurivilliusite,
 Hg²⁺Hg¹⁺OI, a new mineral species from the Clear Creek claim, San Benito County,

460	California,	USA. I	Mineralogic	al Magazine	, 68,	241-245.

- 461 Roberts, A.C., Gault, R.A., Paar, W.H., Cooper, M.A., Hawthorne, F.C., Burns, P.C., Cisneros,
- 462 S., and Foord, E.E. (2005) Terlinguacreekite, $Hg^{2+}_{3}O_{2}Cl_{2}$, a new mineral species from the
- 463 Perry pit, Mariposa Mine, Terlingua mining district, Brewster County, Texas, U.S.A.
- 464 Canadian Mineralogist, 43, 1055–1060.
- 465 Sheppard, D.S., Truesdell A.H., and Janik, C.J. (1992) Geothermal gas compositions in
- 466 Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research, 51,
 467 79–93.
- 468 Sheldrick, G.M. (2008) A short history of *SHELX*. Acta Crystallographica, A64, 112–122.
- 469 Villar, E., Cabrol, L., and Heimbürger-Boavida, L.-E. (2020) Widespread microbial mercury
- 470 methylation genes in the global ocean. Environmental Microbiology Reports, 12, 277–
- 471 287.

473	Figure Captions
474	Figure 1. (a) Reflective silvery black interpenetrating mikecoxite laminae on quartz. (b)
475	Dispersed elongated blades of mikecoxite on and in pale-orange kleinite and on quartz. Scale bar
476	= 50 μm. (photo: Michael Cox, Keyence VHX-970, VHZ-100T lens).
477	
478	Figure 2. Raman spectrum of mikecoxite.
479	
480	Figure 3. Electron-microprobe wavelength scans for C and O in mikecoxite using LDE1 and
481	LDE2 crystals.
482	
483	Figure 4. Cation coordination environments for the four Hg sites in the mikecoxite structure. Hg:
484	black, C: gray, O: red, Cl: green circles; strong axial bonds: thick black lines, weak equatorial
485	bonds: thin black lines. Bond lengths in Å.
486	
487	Figure 5. Anion-coordination environments for the (a) C and (b) O sites in the mikecoxite
488	structure. Legend as in Fig. 4. Bond-valence contributions to the central anion are in v.u.
489	
490	Figure 6. The crystal structure of mikecoxite: (a) looking onto the [CHg ₄ OCl] layer, viewed
491	down an axis 10° from [010]; (b) looking along the corrugated [CHg ₄ OCl] layers, stacked along
492	[010] with additional Cl2 atoms residing between layers, viewed down an axis rotated 5° from
493	[001]. Legend as in Fig. 4 with gray-shaded (CHg ₄) anion-centered tetrahedra (central layer has
494	(CHg ₄) tetrahedra shaded yellow to highlight the individual highly corrugated [CHg ₄ OCl]
495	layers).
496	

497

498 **TABLE 1.** Chemical analytical data (wt%) for mikecoxite.

499

	Mean	Min.	Max.	S.D.	Probe Standard	I [SREF]*
Hg	86.38	79.70	91.60	3.58	HgTe	88.84
CI	11.58	9.60	15.20	1.79	NaCl	7.69
Br	0.46	0.23	0.66	0.14	KBr	0.37
O**						1.77
С	1.81	1.58	1.95	0.20	Hg-acetate	1.33
Total	100.23					

500

^{*} values are based on the refined crystal-structure.

502 ** The peak of the OK α line (Fig. 3) is too weak to quantify the amount of O in the EMP analysis.

⁵⁰⁵ *I* > 2.5 are listed.

I _{obs}	d _{obs}	<i>d</i> _{calc}	I _{calc}	hkl	<i>I,</i>	obs	d _{obs}	d _{calc}	I _{calc}	hkl
		5.5056	13	-101				2.1483	3	-322
34	5.49	5.5024	15	101	· 1	0	2.1429	2.1472	4	322
		5.2450	3	020	. 3	30	2.0453	2.0467	17	042
		4.8750	6	-111	. <u> </u>	8	2.0096	2.0066	7	-142
14	4.89	4.8727	5	111	- —			2.0063	6	142
32	4.65	4.6610	25	120	- —			1.9957	3	510
		4.5735	3	210	· _			1.9772	3	-3 4 1
16	4.10	4.0934	7	021	· 1	1	1.9738	1.9768	3	341
		3.7503	7	-2 1 1				1.8954	6	520
22	3.746	3.7483	7	211				1.8352	3	-303
		3.3065	5	130				1.8341	3	303
19	3.226	3.2240	14	310	- 9)	1.8286	1.8216	3	-133
		3.1873	3	221	-			1.8212	3	133
		3.0098	10	-3 0 1				1.7837	4	350
		3.0082	10	301			1.7483	10	060	
~ 1	0.000	2.9874	20	-112	. 4	40	1.7443	1.7412	12	-4 3 2
81	2.989	2.9864	24	112	-			1.7404	10	432
		2.9517	9	-131				1.7402	3	152
		2.9512	9	131				1.6976	5	-531
100	2.884	2.8807	100	230	. 1	0	1.6970	1.6971	5	531
		2.7770	7	022				1.6891	3	061
	2.759	2.7528	9	-202				1.6407	5	-5 2 2
14		2.7512	5	202	2	26	1.6379	1.6399	5	522
		2.6792	24	-1 2 2				1.6368	12	004
70	0.070	2.6785	22	122	. –			1.6066	3	540
79	2.673	2.6626	15	-212	· _	,	1 5075	1.5943	4	-4 4 2
		2.6612	17	212	- 7	,	1.5975	1.5936	5	442
		2.6371	3	-2 3 1	· _	1	1 6657	1.5665	6	-3 5 2
		2.6364	3	231	- 1	1	1.5657	1.5660	6	352
19	2.537	2.5410	21	400				1.5245	3	630
		2.5393	3	140	· _	1	1 5040	1.5049	6	-6 0 2
		2.4696	8	410	· 1	1	1.5049	1.5041	5	602
		2.3674	3	141	1	2	1.4405	1.4403	4	460
		2.3305	5	240	- –			1.4383	3	710
30	0.000	2.2977	15	-312	- –			1.4233	10	-234
	2.300	0.0000	4.4	210	2	27	1 4000	1 4020	5	640
30		2.2963	14	312	2	- /	1.4222	1.4230	5	640

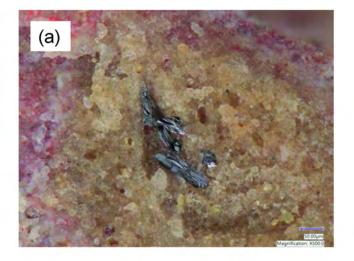
⁵⁰⁴ **TABLE 2.** Powder X-ray diffraction data (*d* in Å) for mikecoxite. Only calculated lines with

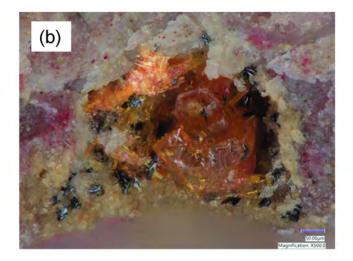
Diffractometer	Bruker D8 three-circle; multilayer optics; APEX
CCD X-ray radiation / source	Mo <i>K</i> α (λ = 0.71073 Å) / rotating anode
Temperature	293(2) K
Refined formula	[CHg ₄]O(Cl _{1.958} OBr _{0.042}) _{Σ2}
Space group	P21/n
Unit cell dimensions	a = 10.164(5) Å
	<i>b</i> = 10.490(4) Å
	c = 6.547(3) Å
	$\beta = 90.037(10)^{\circ}$
V	698.0(5) Å ³
Ζ	4
Density (calculated)	8.594 g·cm ⁻³
Absorption coefficient	88.59 mm ⁻¹
F(000)	1475
Crystal size	10 x 15 x 25 μm
θ range for data collection	2.79 to 30.07°
Index ranges	$-14 \le h \le 14, -14 \le k \le 14, -9 \le l \le 9$
Reflections collected	23355
Ewald reflections	8174
Unique reflections	2055 [<i>R</i> _{merge} = 0.016]
Reflections with $l_0 > 2\sigma l$	1774
Completeness to θ = 30.07°	100 %
Refinement method	Full-matrix least-squares on <i>F</i> ²
Parameters / restraints	75 / 0
Goodness-of-fit on <i>F</i> 2	1.064
Final R indices [$lo > 2\sigma l$]	$R_1 = 0.0180, \ wR_2 = 0.0453$
<i>R</i> indices (all data)	$R_1 = 0.0243, \ wR_2 = 0.0483$
Absolute structure parameter	0.44(8)
Largest diff. peak and hole	1.85 and -1.73 e/A ³

* $R_{int} = \Sigma |F_o^2 - F_o^2(mean)| / \Sigma [F_o^2]; \text{ GoF} = S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)\}^{1/2}; R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{1/2}; w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] \text{ where } a \text{ is } 0.0293, b \text{ is } 0.6145 \text{ and } P \text{ is } [2F_c^2 + Max(F_o^2, 0)]/3.$

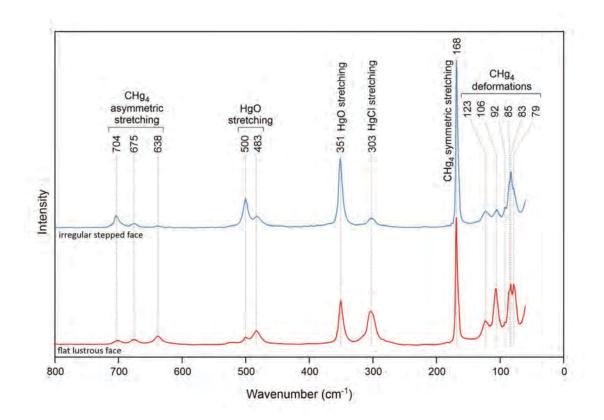
514 515

TABLE 4. Atom positions, occupancy and displacement parameters $(Å)^2$ for mikecoxite.

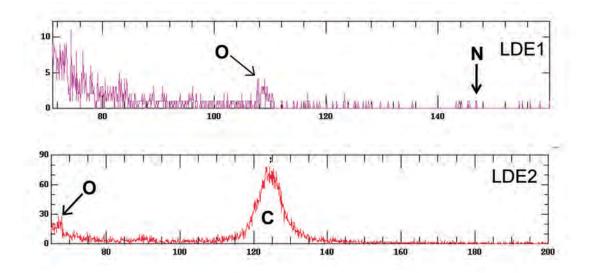

Site	Occupancy	x/a	y/b	z/c	Ueq	
Hg1	Hg	0.40677(2)	0.05330(2)	0.24980(8)	0.02782(7)	
Hg2	Hg	0.10095(2)	0.24087(2)	0.25532(6)	0.02346(6)	
Hg3	Hg	0.84448(6)	0.09441(6)	0.50243(5)	0.02318(17)	
Hg4	Hg	0.84393(6)	0.09377(6)	0.00871(5)	0.02367(17)	
0	0	-0.0248(5)	0.0835(4)	0.2587(15)	0.0218(10)	
С	С	0.7229(6)	0.1017(6)	0.753(2)	0.0242(13)	
CI1	CI	0.55343(16)	0.22760(16)	0.2540(6)	0.0308(3)	
CI2	$CI_{0.958}Br_{0.042(6)}$	0.34116(18)	0.11223(16)	0.7441(8)	0.0418(7)	
	<i>U</i> ¹¹	U ²²	U ³³	U ²³	<i>U</i> ¹³	<i>U</i> ¹²
Hg1	0.02534(12)	0.02904(13)	0.02908(12)	0.0003(3)	-0.0009(4)	-0.00320(9)
Hg2	0.02141(11)	0.02696(11)	0.02203(11)	0.0005(3)	0.0001(3)	-0.00213(9)
Hg3	0.0219(4)	0.0279(4)	0.0198(2)	-0.00027(13)	0.0017(2)	0.0004(2)
Hg4	0.0217(4)	0.0295(4)	0.0197(2)	0.00027(14)	-0.0013(2)	0.0003(2)
0	0.025(2)	0.026(2)	0.014(2)	0.009(4)	0.007(4)	0.0021(17)
С	0.022(3)	0.030(3)	0.021(3)	0.009(5)	-0.004(6)	-0.003(2)
CI1	0.0307(7)	0.0299(7)	0.0318(8)	0.0038(16)	-0.0016(14)	-0.0028(6)
Cl2	0.0309(9)	0.0362(10)	0.0584(14)	0.0034(18)	0.010(2)	-0.0017(7)

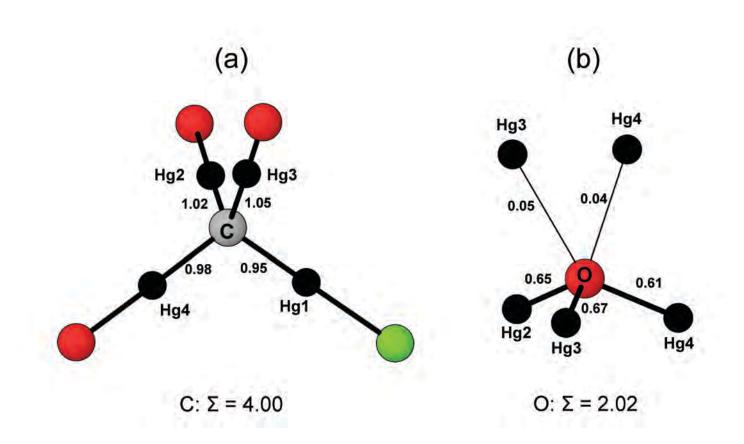

517 **TABLE 5.** Selected interatomic distances (Å) and angles (°) for the [CHg₄OCI] layer in

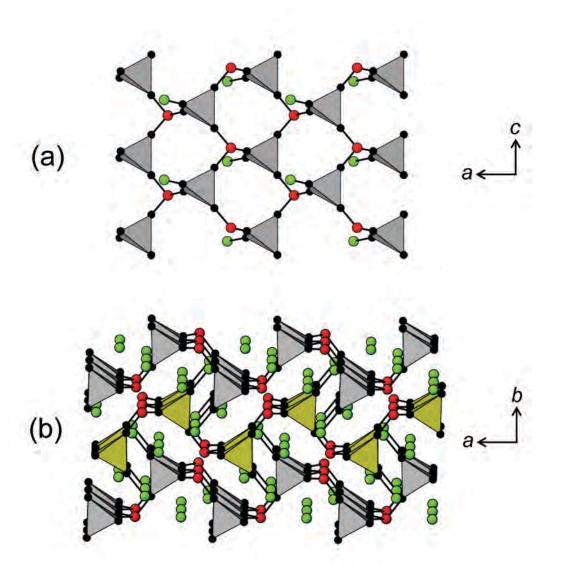
518 mikecoxite.


519		
	-	

C–Hg1	2.093(6)	Hg1–Cl1	2.3592(18)	C–Hg1–Cl1	179.7(4
C–Hg2	2.065(6)	Hg2–O	2.088(5)	C–Hg2–O	179.1(2
C–Hg3	2.054(13)	Hg3–O	2.080(8)	C–Hg3–O	177.1(3
C–Hg4	2.080(13)	Hg4–O	2.114(9)	C–Hg4–O	177.0(3
<c–hg></c–hg>	2.073				
Hg1–C–Hg2	104.1(3)	Hg2–O–Hg3	110.8(4)		
Hg1–C–Hg3	110.1(5)	Hg3–O–Hg4	100.8(2)		
Hg1–C–Hg4	110.3(5)	Hg2–O–Hg4	109.7(3)		
Hg2–C–Hg3	113.4(5)	<hg_o_hg></hg_o_hg>	107.1		
Hg2–C–Hg4	112.3(6)				
Hg3–C–Hg4	106.6(3)				
<hg_c_hg></hg_c_hg>	109.5				







> CI2 CI2 Hg1 Hg2 3.058 3.362 3.317 3.334 CI1 CII 2.359 2.093 C С CI 2.088 065 3.095 CI2 3.433 CI2 0 Hg3 3.147 Hg4 С 3.291 3.272 3.047 С 2.080 2.080 2.114 .054 С 0 C 3.512 (C12 3.291 3.448 3.296 3.653 3.643 CI

6

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld