1	Word Count: 8793
2	Revision 4
3	Microchemistry and magnesium isotope composition of the Purang
4	ophiolitic chromitites (SW Tibet): New genetic inferences
5 6 7	Fahui Xiong ^{1,2,*} , Basem Zoheir ^{3,4} , Paul T. Robinson ¹ , Richard Wirth ⁵ , Xiangzhen Xu ^{1,2} , Tian Qiu ^{1,2} , Yi Sun ⁶
9 10	¹ Center for Advanced Research on the Mantle (CARMA), Key Laboratory of Deep-Earth Dynamics of Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
11 12	² Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, China
13	³ Department of Geology, Faculty of Science, Benha University, 13518 Benha, Egypt
14	⁴ Institute of Geosciences, University of Kiel, Ludewig-Meyn Str. 10, 24118 Kiel, Germany
15 16	⁵ Helmholtz Centre Potsdam, GFZ (German Research Centre for Geosciences), 3.5 Surface Geochemistry, Germany
17 18	⁶ School of Geosciences and Resources, China University of Geoscience (Beijing), Beijing 100083, China
19	
20	
21	* Corresponding author: Dr. Fahui Xiong, 26 Baiwanzhuang Street, Beijing 100037, China;
22	Tel.: 86-15001105817; e-mail: <u>xiongfahui@126.com</u>

23

ABSTRACT

New petrographic and microanalytical studies of mineral inclusions in the Purang ophiolitic 24 chromitites (SW Tibet) are used to scrutinize the evolution of the associated Cretaceous 25 26 sub-oceanic lithospheric mantle section. Silicate inclusions in the chromite grains include composite and single-phase orthopyroxene, clinopyroxene, amphibole, and uvarovite. Most 27 inclusions are sub-rounded or globular, whereas a few inclusions exhibit cubic/octahedral 28 crystal morphologies. The latter are randomly distributed in the large chromite grains, though 29 discrete aggregates are consistently confined to the grain centers. Abundant micron-scale, 30 clinopyroxene inclusions are topotaxially aligned along crystallographic planes. Less 31 32 abundant sulfide, wüstite, apatite and uvarovite inclusions are observed in some samples.

The trace element geochemistry of the Purang chromitite evoke parental MORB- and 33 boninite-like melts, consistent with the supra-subduction zone setting. The δ^{26} Mg values of 34 35 the high-Cr and high-Al chromitites range from -0.25 to -0.29‰ and -0.05 to -0.32‰, respectively. The associated harzburgite has nearly overlapping δ^{26} Mg values of -0.13 to 36 -0.37‰, but pyroxenite sills show a rather wider range of the δ^{26} Mg values (-0.61 to -0.67‰). 37 38 The variable Mg isotope signatures, combined with abundant exotic, ultra-high pressure and super reduced (UHP-SuR) mineral inclusions in the chromite grains, suggest that recycling 39 and recrystallization under different mantle conditions played an important role in the genesis 40 41 and evolution of these rocks. Further, discrete silicate, sulfide, and metal alloy inclusions in the Purang chromitites are comparable to those reported in other Tethyan ophiolites, and 42 collectively suggest a common geodynamic evolution. 43

44

Key words: Purang ophiolite, SW Tibet, UHP-SuR mineral inclusions, high-Cr and high-Al
chromitites, deep mantle recycling, SSZ processes

47

48

INTRODUCTION

49 The occurrence of ultra-high pressure (UHP) minerals, such as diamond, coesite and lamellar exsolutions of clinopyroxene in chromitites from many ophiolitic belts has raised many 50 questions about processes operating in the formation of the oceanic lithosphere (e.g., Yang et 51 52 al. 2007, 2014; McGowan et al. 2015, Satsukawa et al. 2015, Su et al. 2015, Gong et al. 2016; Xiong et al. 2018, 2019, 2020a). Micro-diamond occur as inclusions in ophiolitic chromitites, 53 with morphologies and carbon isotopic signatures dissimilar to diamonds in kimberlites and 54 high-grade metamorphic rocks (e.g., Liou and Tsujimori 2013; Griffin et al. 2016). Unlike 55 diamonds in other geological matrices and environments, the ophiolite-hosted 56 micro-diamonds (and moissanite) are commonly surrounded by amorphous carbon (a hard 57 solid glass, occasionally contains small chromite grains; Yang et al. 2014). 58

The paragenetic relationships of most ultra-high pressure and super-reduced (UHP-SuR) mineral phases in ophiolites are largely unidentified. Results of numerous experimental investigations indicate that the formation of diamonds and other UHP-SuR minerals in ophiolites occurs at depths between 150 and 300 km (Yang et al. 2007; Yamamato et al. 2009; Xiong et al. 2015). Also, peridotites with SuR-UHP mineral inclusions could have been transported to the lithospheric mantle by passive upwelling (forced return flow), likely induced by downward penetration and roll-back of a subducting lithospheric slab (e.g., Arai

66 2013; McGowan et al. 2015; Griffin et al. 2016), or related to a super-plume event (e.g.,

67 Maruayama et al. 2007; Liou and Tsujimori 2013; Xiong et al. 2015).

Magnesium isotopes have unique systematics in mantle and crustal materials, offering a 68 69 new approach for tracing crustal versus mantle source components in the arc magmas. Most significant Mg isotope fractionation is related to low temperature geological processes, 70 71 whereas little fractionation occurs at high temperatures and pressures (Teng et al. 2007, 2010a,b). Consequently, large deviation from the well-constrained mantle Mg isotope 72 composition in a fresh (unweathered) mafic rock may be indicative of the nature and 73 magnitude of crustal input to the parental magma. Magnesium isotopic values in the arc 74 volcanic rocks ($\delta^{26}Mg = -0.26 \pm 0.07$) are generally heavier than those of mantle peridotites 75 $(\delta^{26}Mg = -0.25 \pm 0.07;$ Teng et al. 2010a). Such a deviation in the magnesium isotope 76 signature of these rocks has been attributed to contamination by isotopically heavy Mg in 77 subducting slabs in the mantle wedge (e.g., Li et al. 2017). 78

Studies of the Mg isotopic composition of mantle rocks can shed light on deep mantle 79 processes and in turn on the accretion history of the Earth (e.g., Wiechert and Halliday 2007). 80 81 Theoretical modeling indicates that the Mg isotope fractionation between spinel-group minerals and silicates is dependent on the octahedral ion composition (B_2^{3+}) of the spinel 82 minerals (Young et al. 2015, Schauble 2011). According to Schauble (2011), inter-mineral 83 Mg isotope fractionations at 727°C (= 1000 K) are 0.6‰ for spinel (MgAl₂O₄), 0.2‰ for 84 85 magnesiochromite (MgCr₂O₄), and 0.1‰ for magnesioferrite (MgFe₂O₄). The Mg isotope systematics can therefore be used to study the petrogenetic processes operating in the 86 formation of podiform chromitites (e.g., Dauphas et al. 2010; Teng et al. 2011; Su et al. 2015, 87 88 2021a; Xiao et al. 2016).

In the present study, the microtextural and compositional characteristics of the mineral inclusions in the Purang chromitites are integrated with new magnesium isotope data of these

91 chromitites and the associated peridotites. The data can place constraints on the mantle
92 processes involved in the formation of the studied ophiolite and analogous podiform
93 chromitites in accretionary belts.

94

GEOLOGICAL SETTING

The Purang ophiolite is the largest mafic-ultramafic massif ($\sim 600 \text{ km}^2$) along the western 95 Yarlung Zangbo Suture Zone (YZSZ) in the southern Tibet (Fig. 1). The ultramafic rocks 96 include lherzolite, harzburgite, and subordinate dunite (Su et al. 2019; Xiong et al. 2018, 2019, 97 98 2020b). Most of the dunite bodies contain irregular masses of deformed chromitites (Fig. 1b). 99 In places, chromitite lenses are 2 to 10 m long and 0.5 to 6 m wide, consistently aligned in a 100 NW-SE direction conformable to the penetrative shear foliation in the host rocks. These lenses are commonly associated with harzburgite, and are surrounded by 5 m thick dunite 101 102 envelopes (Fig. 2). These chromitite bodies have sharp contacts against dunite, whereas contacts between dunite and harzburgite are obscured or irregular. In the dunite blocks, 103 104 Cr-spinel grains occur discretely and as disseminations and as inclusions in olivine. The ultramafic section contains rare ophicalcite and is cut by dikes and sills of pyroxenite, dolerite, 105 106 gabbronorite and basalt (Fig. 1b). The Purang ophiolitic rocks are embedded in a Late Cretaceous mélange of carbonate, shales, and volcanic rocks (Xiong et al. 2013; Liu et al. 107 2011; Fig. 1b). 108

A sequence of basalt, limestone, silty shale and chert overlies the Purang ophiolite rocks (Liu et al. 2015). Fossil Radiolaria in the chert bands indicate an Upper Jurassic-Lower Cretaceous age for these rocks (Huang et al. 2006). In the Purang ophiolite, basalts with mixed enriched-MORB and OIB geochemical affinities were dated at ~137 Ma (Liu et al. 2015). Zircons from crosscutting doleritic and gabbroic dikes have U-Pb ages of 144 - 120

114 Ma (Xiong et al. 2020b; Liu et al. 2011), suggesting formation prior to the Early Cretaceous.

Peridotites from the Purang ophiolite yielded nearly constant $\varepsilon_{Nd(t)}$ values of +6.1 to +6.2, and (86 Sr/ 87 Sr)_t values of 0.70688–0.70710 (Xiong et al. 2020b).

117 The occurrence of UHP-SuR mineral inclusions in the Purang chromitites was first 118 reported by Yang et al. (2015). In another example of the Tibetan chromitites, Yamamoto et 119 al. (2009) suggested that acicular clinopyroxene inclusions in chromite grains from the 120 Luobusa chromitite were formed under ultra-high pressure (UHP) conditions. Also, the δ^{13} C 121 and δ^{15} N signatures of microdiamonds recovered from Luobusa chromitites and peridotites 122 suggest formation near the mantle transition zone (MTZ) (Xu et al. 2018).

123 ANALYTICAL METHODS

124 For the present study, 68 samples of the Purang chromitites were collected from ten separate ore bodies (Fig. 1b). The mineral chemistry of chromite grains and silicate inclusions 125 126 were obtained using a JEOL JXA-8100 electron probe micro-analyzer (EPMA) at the Key 127 Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (Beijing). This EPMA is equipped with three wavelength-dispersive spectrometers and an energy-dispersive Oxford 128 EDX spectrometer. The measuring conditions were 15 kV accelerating voltage, 20 nA beam 129 130 current, and 2 µm beam diameter. The EPMA data of the studied rocks are given in Tables 1-2. Routine quantification to 1% reproducibility was obtained over the many analysis 131 sessions, whereas accuracy remained $\sim 1-2$ % for the major elements. 132

133 The Raman spectra were collected by using a Horiba LabRAM HR Evolution134 spectrometer at the Institute of Geology, Chinese Academy of Geological Sciences. This

135 spectrometer is equipped with an Olympus BX41 optical microscope. The room temperature of 23 ± 1 °C was maintained during measurements, and a 532 nm air-cooled frequency double 136 Nd: YAG laser was employed under laser power of 80 mW. The scattered light was directed 137 to the spectrograph through a confocal 100 μ m pinhole and then was received by a 1800 138 gr/mm diffraction grating. A CCD camera (Syncerity) was consistently cooled to -60 °C 139 while collecting the scattered light. Raman signals were collected for the spectral interval of 140 100–600 cm⁻¹ with a spectral resolution of <0.6 cm⁻¹ and calibrated with a silicon wafer peak 141 at 520.7 cm^{-1} . The acquisition of the Raman spectra comprised 2 accumulations of 1 s each. 142 Raman shifts were further calibrated with a plane (0001)-parallel section of euhedral 143 pegmatitic α -quartz. The latter showed main Raman peaks at 128, 206, and 464 cm⁻¹ (average 144 of 85 standard measurements) during the measuring session. 145

Trace element compositions of chromite grains were obtained by using a laser ablation system with an Agilent 7700x ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, IGCAS. Laser sampling was performed using a GeoLas Pro 193 nm ArF excimer laser. Argon (900 mL/min) was the make-up gas mixed with the carrier gas, helium (580 mL/min), via a Y-connector before entering the ICP. The spot size was either 60 or 90 µm, depending on the size of the analyzed grains.

Transmission electron microscopy (TEM) micro-foils $(15 \times 10 \times 0.20 \ \mu\text{m})$ were prepared using the focused ion beam (FIB) technique (Wirth 2009). A single focused ion beam device (FEI-FIB 200 TEM) at the GFZ Potsdam was used for sample preparation. A Ga-ion beam was applied to protect the surface of the sample and to extract foils (see Wirth 2009). A

TECNAI F20 XTWIN model TEM equipped with a Gatan Tridiem[™] energy filter, an EDAX
Genesis[™] X-ray analyzer and a Fishione high angle annular dark field detector (HAADF)
were used to study the mineral inclusions. A field emission gun (FEG) was used as the
electron source and the applied measuring conditions were 200 kV (Wirth et al. 2009).

160 Fresh representative samples were used for whole-rock Mg isotope analyses. The selected rock samples were crushed in a corundum jaw crusher to 60 mesh, from which ~60 g of each 161 sample was pulverized in an agate ring mill to < 200 mesh. Sample preparation and chemical 162 digestion were carried out in a clean lab environment. Sample powders were weighted and 163 dissolved in a mixture of ultra-pure concentrated acids HF-HNO₃ (\sim 3:1) in Savillex screw-cap 164 beakers. Sealed beakers were placed on a hot plate to 160°C for 24 hrs. The solutions were 165 166 then evaporated to dryness, dissolved in aqua regia, and heated to 130°C overnight. On the following day, solutions in aqua regia were evaporated to dryness and refluxed with ultrapure 167 concentrated HNO₃ to ensure complete solution. The repeatedly evaporated concentrates 168 yielded a dried residue which was dissolved in 1 N HNO₃ for chromatographic separation. 169 Magnesium isotope compositions of the studied samples were measured by a Neptune 170 MC-ICP-MS at China University of Geosciences (Beijing), following the procedures 171 172 described in Teng et al. (2010b). The isotopic values were measured by the sample-standard bracketing method in the low-resolution mode. The in-run precision on the ²⁶Mg/²⁴Mg ratio 173 174 for a single block of 40 measurements was less than $\pm 0.02\%$ (2SD). The USGS standard BHVO-2 gave acceptable δ^{26} Mg values of $-0.27 \pm 0.04\%$ in the measurement session (e.g., 175 Huang et al. 2015). 176

177

178

RESULTS

179 Chromitite bodies and Cr-spinel grains in the Purang peridotites

Irregular chromitite lenses and less common amoeboid chromite patches characterize 180 peridotites of the Purang ophiolite (Xiong et al. 2018). In harzburgite, Cr-spinel grains have 181 variable Cr# and Mg# values of 26.1-44.7 and 54.1-66.6, respectively (Fig. 3). Disseminated 182 Cr-spinel grains in dunite samples have less variable and consistently higher Cr# (~45.9-69.9) 183 184 and Mg# (49.5-61.8) values (Table 1). In the chromitite masses, Cr-spinel grains have Cr# 185 values of 47.6 - 58.4 and Mg# values of 53.2 - 75.8, classifying them as high-Al chromite (e.g., Melcher et al. 1997; Zhou and Robinson 1997). Also present are Cr-spinel grains with 186 Cr# values of 63.8 to 88.5 and Mg# values of 45.9 - 74.8, typical of high-Cr chromite (Table 187 188 1).

189

190 Mineral inclusions in chromite

We identified distinct groups of inclusions in the chromite grains from the Purang chromitite. Discrete globular to anhedral inclusions are composed of pyroxene (Figs. 4, 5, 6). Submicroscopic (~1 µm-thick) acicular silicate inclusions (Fig. 4) seem to be controlled by specific crystallographic planes (e.g., Yamamoto et al. 2009). Although inclusions in the different thin sections are variable in abundance and relative proportions, the two chromite types, high-Cr and high-Al, show no distinct variations in the inclusion types (see Supplementary Material 1).

198	Also observed are euhedral orthopyroxene inclusions (5-20 µm diameter) that exhibit
199	octahedral habits (Figs. 5a - 5c). Other small subhedral to euhedral inclusions (5 - 15 μ m)
200	with triangular forms are mainly clinopyroxene (Figs. 5d - 5f). Most of the subhedral
201	inclusions show octahedral morphologies (Fig. 5), and are characterized by ubiquitous
202	interface angles of 54-68° (Figs. 4, 5). Sparse acicular silicate inclusions are arrayed
203	subparallel, though few of them appear to be randomly oriented. The X-ray elemental
204	mapping and EDX of some acicular inclusions show two main peaks, Si and Ca (Figs. 6d),
205	with no apparent Al, Cr and Fe spectra (Figs. 6d; Supplementary Material 2). The abundances
206	of Mg and O are very low (Supplementary Material 2) and some of these acicular inclusions
207	show chemical zoning as indicated by the EDS and WDS results. The Raman spectra
208	collected for these inclusions show scattered peaks superposed on a broad diffuse scattering
209	pattern (Supplementary Material 3). These mixed or composite spectra identify bands with
210	definite M-O stretching at ~322 cm ⁻¹ , Mg-O stretching at ~388 cm ⁻¹ , Si-O-Si bending at ~665
211	cm ⁻¹ , and Si-O stretching at ~1012 cm ⁻¹ (Supplementary Material 3, Huang et al. 2000).

Orientation along specific crystallographic planes and the topotaxial relationship are emphasized by the TEM images of some large chromite grains (Fig. 6). The average composition of many of these inclusions can be formulated as $En_{52.0}Fs_{1.5}Wo_{46.4}$ (Table 2). On the other hand, orthopyroxene inclusions are mainly enstatite with high Mg# values of ~ 96.4 to 96.8, and nearly constant Al₂O₃ contents (0.28-0.36 wt.%; Table 2). Moreover, scattered amphibole inclusions exhibit irregular morphologies along or adjacent to micro-fissures in the high-Al chromite grains (Supplementary Material 4). Amphibole inclusions form small

subhedral crystals (Figs. 7), commonly associated with phlogopite, apatite, orthopyroxene,
and clinopyroxene in composite inclusions.

Discrete base metal mineral inclusions, including sulfides and Fe±Co±Ni±As alloys, were observed in some chromite grains. These inclusions vary significantly in size (from few microns to several hundreds of microns) and exhibit irregular or globular morphologies (Fig. 8). Base metal sulfides are commonly associated with metal alloy inclusions. Small, blocky inclusions of pentlandite (Fig. 8f) and $a \sim 5 \mu$ m-long triangular inclusion of wüstite (FeO) were observed in a single sample (Supplementary Material 5).

227 Dispersed Ni–Cu-Fe (Co) sulfides in the Purang chromitite occur as discrete particles or as inclusions in the chromite grains. Uncommon metal alloys include Ni-Fe, Ni-Cu-Fe, Fe-Co, 228 and Ni-As grains, varying in size from 5 to 200 μ m. We observed more abundant Ni-Fe alloy 229 230 inclusions in the high-Cr chromite than in the high-Al chromite. A single inclusion of an 231 Fe-Co alloy was observed next to a microfracture in a large chromite grain (Fig. 8). Metal 232 alloy inclusions with variable compositions are associated with goethite along microfractures (Fig. 8). In addition, dispersed minute inclusions of Os-Ir-Fe-Ni alloys are intergrown with 233 silicate phases (Supplementary Material 6). 234

The TEM image of an acicular inclusion (50 μ m × 2 μ m, Fig. 9a) shows bright zones surrounded by a darker domain. Line mapping shows that these bright zones are rich in Si, Fe, O and poor in Al and Mg (Fig. 9b). Another unusual inclusion is the irregular mass of apatite that occupies interstices between chromite grains or perhaps microcracks (Fig. 7b). An irregular grain ~120 μ m × ~ 30 μ m consists of Ca phosphate and Ti (Fig. 10).

240	An inclusion of uvarovite (20 $\mu m \times 100 \ \mu m)$ has sharp but irregular contacts with the host
241	chromite grain (Fg. 7c), though its contact appears to be gradational in the TEM image (Fig.
242	10a). The EDX spectrum of this uvarovite inclusion shows prominent peaks for Ca, Si, Al, Cr
243	and O and minor peaks for Fe and Ti. The indexed diffraction pattern (Fast Fourier Transform,
244	FFT) of this inclusion (Fig. 10a) validates its isometric structure.

245 Minor and trace elements in chromite and Cr-spinel grains

In situ minor and trace element concentration of chromite grains are shown in Table 3. The 246 247 high-Al chromite grains have Ga contents of 37-61 ppm, 652-2272 ppm Ni, and 186-318 ppm 248 Co, whereas high-Cr chromite has lower Ga (30–41 ppm), Ni (871-1694 ppm) and Co 249 (187-243 ppm) contents. Both the high-Cr and high-Al chromite varieties have similar concentrations of Ti (457-1499 ppm vs 435-1161 ppm), V (777-995 ppm vs 661-1227 ppm), 250 Mn (1043-1348 ppm vs 900-1730 ppm), and Zn (371-571 ppm vs 400-776 ppm) (Table 3). 251 252 The high-Al and high-Cr chromite varieties show largely overlapping contents of Sc, V, Mn, Zn, and Zr. Within each group, there is a modest positive correlation between Cr# and Sc. The 253 overall data set shows negative correlation between Cr# and both Ga and Ni (Fig. 11). The 254 MORB-normalized trace element patterns of both chromite varieties are similar and show 255 256 variable depletions in Ga, Ti, and Ni, and relative enrichments in Zn, Co, Mn and V. Most 257 patterns are characterized by depletion in Sc, but some grains are mildly enriched in Sc (Fig. 258 12). Generally, chromite grains from the Purang chromitites show fractionated transition metal compositions, consistent with crystallization from a depleted mantle source. The trace 259 260 element patterns of the analyzed chromite varieties partially overlap the typical patterns of 261 Cr-spinel from boninites (BON) and high-Cr chromitites of the Ordovician Thetford Mines

262 Ophiolite (RMO; Pagé and Barnes 2009). The latter is interpreted as a fragment of fore-arc

263 oceanic lithosphere (Pagé and Barnes 2009).

Cr-spinel grains disseminated in the lherzolite and harzburgite members of the Purang ophiolite have similar trace element contents, with variable contents of Ga (16.1-40.2 ppm), Ni (233-1466 ppm), and Co (147-439 ppm) (Su et al. 2019). The Cr-spinel grains in the dunite samples have similar Cu, Zn, Ca, Rb and Ga contents, but relatively depleted Ti, Co, Nb and Zr.

269 Magnesium isotopic compositions of the Purang ophiolitic rocks

270 The Mg isotopic compositions of selected fresh samples from the Purang chromitites and peridotites are given in Table 4. The δ^{26} Mg values of five high-Al chromite-dominated 271 chromitites range between -0.32 to -0.05 $\% \pm 0.04$ %. Three high-Cr chromite-dominated 272 chromitite samples yield overlapping δ^{26} Mg values of -0.29 to -0.25 ‰ ±0.04‰. Three 273 harzburgite samples show variable δ^{26} Mg values of -0.37 ‰ ±0.04 ‰ to -0.13 ±0.02‰, and 274 two pyroxenite samples have noticeably light values of -0.67 and -0.61 $\% \pm 0.05 \%$ (Table 4, 275 Fig. 13). The Mg isotope values of the analyzed samples are distinctively variable for the 276 high-Al chromitite variety compared to the nearly constant values of the high-Cr chromitite 277 and peridotites. The Mg isotopic compositions of the host peridotites are much lighter than 278 279 those of high-Cr and high-Al chromitites.

281

DISCUSSION

282 Mineralogical and geochemical characteristics

Olivine, orthopyroxene, and clinopyroxene inclusions in ophiolitic chromite grains are 283 commonly interpreted as captive mineral phases (e.g., Zhou et al. 2014). In the chromite 284 grains from the Purang chromitites, silicate inclusions have Mg# values and Cr₂O₃ and TiO₂ 285 contents distinctive from those of olivine and pyroxene in the host peridotites (Fig. 3). The 286 287 morphology and distribution of these mineral inclusions clearly suggest an early paragenesis 288 (Fig. 5). According to González-Jiménez et al. (2014), island arc basaltic magmas can react 289 with other silicate melts or mantle peridotites, leading to an increase in the SiO_2 content to promote chromite grain crystallization. In the mantle peridotite-melt reaction, pyroxene 290 dissolves into the melt and causes variable enrichment in several incompatible elements, 291 292 including the rare earth elements (REE).

The plagioclase, zircon, rutile, amphibole, calcite, apatite and phlogopite inclusions show mostly sharp contact relationships with the host minerals (Figs. 7, 10). Crystallization of such inclusions may be triggered by late fluid circulation in the subduction zone (Zaeimnia et al. 2017; Johan et al. 2017; Xiong et al. 2018). The rutile and ilmenite inclusions in the chromite grains can be explained by post-formation high-grade metamorphism of their host rocks. In the subduction zone environment, basaltic melts may alter chromian spinel, and then rutile, ilmenite, and titanite are enclosed during the newly crystallized chromite (Qiu et al. 2021).

The trace compositions of the high-Al and high-Cr chromite varieties from the Purang ophiolite are comparable to the Luobusa chromitite (Su et al. 2019). The decreasing trends of compatible elements, such as Ni and Ga, in chromite with Cr# suggest that these elements were controlled by both partial melting and melt diffusion (Fig. 11; Su et al. 2019). The

correlation between Zr, V and Sc contents in chromite and Cr# values may suggest diffusion 304 of these elements into melts during melt-rock interaction (Fig. 11). The parental magmas of 305 the Purang dunites and chromitites are suggested to have been intermediate in composition 306 between boninitic and MORB-like melts (Fig. 3). Recycling of both oceanic and continental 307 crustal minerals has been considered as a model of formation of the Luobusa chromitites and 308 peridotites (Zhou et al. 2014; Shi et al. 2007; Yang et al. 2007, 2015; Yamamoto et al. 2009; 309 Wang et al. 2021). Such recycling process is compatible with the high contents of Nb, Zr and 310 Ti in chromitites, as these elements are enriched in the crustal materials. The Sc depletion in 311 the Purang chromitites may be explained by diffusion during melt-rock reaction (Spandler et 312 313 al. 2007; Pagé and Barnes 2009).

Base Metal Sulfide (BMS) and platinum-group element (PGE) mineral inclusions are 314 abundant in chromite grains from the Purang podiform chromitites (Fig. 8). These inclusions 315 are dominated by Ru-rich alloys (Supplementary Material 6; Xiong et al. 2018). According to 316 Prichard et al. (2008), saturation of the PGE is proportional to the extent of reaction between 317 PGE minerals and the melt during chromite formation. This results in PGE minerals 318 319 (including Ni–Cu–Fe sulfides and PGE alloys) forming micron- to millimeter-scale inclusions 320 in peridotites (e.g., Marchesi et al. 2011; Akmaz et al. 2014). A rise in sulfur fugacity during magma cooling, causes heazlewoodite to transform into millerite and the PGE alloys to 321 dissolve (González-Jiménez et al. 2012), and hence some PGE-rich inclusions could have 322 formed during the recrystallization of chromitites. 323

According to Brenan and Andrews (2001) and Andrews and Brenan (2002), the abundance of Os-bearing laurite indicates high sulfur fugacity values ($\log fS_2 = -2$ to -1.3) and temperatures not exceeding 1200°C during chromite crystallization. Microdiamond, moissanite, pseudomorphic octahedral silicates and crustal mineral inclusions (e.g., rutile,

328 monazite, zircon, etc.) have been reported in the Purang lherzolite (Xiong et al. 2019). Also,

329 Yang et al. (2015) described scarce UHP minerals in the Luobusa and Ray-Iz chromitites.

The lower-pressure isometric structure chromite phase forms as a consequence of 330 331 decompression and breakdown of an original high-pressure Ca-ferrite structure chromite phase (CF-type). Griffin et al. (2016) suggested that clinopyroxene and the HP silica 332 polymorph (coesite) develop due to the insoluble nature of Ca and Si in isometric chromite 333 (Figs. 4, 6). The clinopyroxene-chromite association indicates their common paragenesis (Su 334 et al. 2019; Liu et al. 2020). In the Purang lherzolites, Gong et al. (2016) interpreted the 335 clinopyroxene-chromite association to represent symplectites that developed by the 336 337 breakdown of garnet under the spinel peridotite stability field. Arai (2013) suggested that chromite will revert to the original isometric structure and olivine assemblage during 338 339 recycling of mantle UHP to low-pressure magmatic conditions. These inclusions may preserve partially obliterated orbicular textures (Fig. 4). The UHP Ca-ferrite type chromite 340 with diamond and other carbon-bearing UHP mineral inclusions can be derived from 341 342 methane-rich fluid species (Figs. 4 and 6; Yang et al. 2007; Arai 2013). Exsolution lamellae 343 of silica and clinopyroxene may also develop at depths above the mantle transition zone 344 (Yamamoto et al. 2009). The Purang lherzolitic peridotites are interpreted as residues of 10– 15% partial melting of a fertile mantle source in a seafloor spreading setting (Xiong et al. 345 2018). Both orthopyroxene and clinopyroxene porphyroclasts in these lherzolites form 346 exsolution lamellae, which can be explained by upwelling of these rocks into shallow mantle 347 depths and associated crystal-plastic deformation (Xiong et al. 2020c). In the Purang 348 chromite, olivine, clinopyroxene and orthopyroxene could have crystallized from anhydrous 349 350 melts, whereas amphiboles and phlogopite could have formed from water-rich melts (Fig. 7). 351 The conditions estimated for the formation of the Purang lherzolites are 700-1000°C and 1.3-2.3 GPa, which correspond to mantle depths of ~ 100 km (Xiong et al. 2020c). These 352

temperature-pressure estimates are thought to represent the lower limit of conditions underwhich decomposition of pyroxenes takes place.

355 Evolution of the Purang ophiolite

Pyroxenes in the Purang lherzolites have compositions typical of pyroxenes in abyssal 356 peridotites (e.g., Xiong et al. 2013, 2020c). The low Cr# values (~25-30) and TiO₂ contents (\leq 357 0.1 wt. %) in disseminated Cr-spinel from the Purang lherzolites suggest 10-15% melting of a 358 359 N-MORB-type mantle source (Hellebrand et al. 2001). The clinopyroxene inclusions and 360 blebs in orthopyroxene porphyroclasts in Purang lherzolite suggest direct crystallization from 361 infiltrating/stagnant melts or interaction of metasomatized melts with residual peridotites (e.g., Suhr et al. 1998; Seyler et al. 2007). For the Purang peridotites, measured ¹⁸⁷Os/¹⁸⁸Os 362 ratios (0.12289 - 0.13194; Gong et al. 2016) are within the range of those reported for other 363 mantle-hosted podiform chromitites (Xiong et al. 2018). In addition, the generally low γ Os 364 365 values (< 1) of chromitites indicate that their parental melts were sourced from a heterogeneously depleted mantle region above a downgoing lithospheric slab (e.g., Xiong et 366 al. 2018). 367

Water in the podiform chromitites hydrates surrounding silicate minerals in the chromitite and/or penetrates the surrounding wall rocks (Matveev and Ballhaus 2002; Boudreau et al. 2010; Su et al. 2020). Uvarovite (Fig. 11) could have crystallized from a metasomatized MORB-like melt that likely infiltrated deformed chromite grains (e.g., Su et al. 2019).

Partial melting occurred at the mid-ocean ridge stage and generated oceanic mafic crust with low δ^{26} Mg values, leaving refractory peridotites with isotopically heavy Mg behind (Su

et al. 2015, 2021a). The variations of Mg isotopic compositions of the Purang peridotites can be interpreted as a feature of multi-stage melting and metasomatism of the oceanic lithospheric mantle (Fig. 13: Su et al. 2015). Dolerite and gabbro complexes from the Purang ophiolite gave zircon U–Pb ages ranging from 144.2 ±2.1 Ma to 126.5 ±0.4 Ma and generally positive zircon $\varepsilon_{Hf(t)}$ values, suggesting a heterogenous juvenile mantle source (Liu et al. 2011; Xiong et al. 2020b).

Oceanic basalts and peridotites commonly show identical δ^{26} Mg values since 380 381 high-temperature mantle processes do not efficiently fractionate Mg isotopes (e.g., Bourdon et al. 2010; Pogge von Strandmann et al. 2011). In the Purang ophiolite, the average δ^{26} Mg of 382 peridotites $(-0.20 \pm 0.10 \text{ }\%)$ is slightly higher than both chondrites and oceanic basalts values 383 (Su et al. 2019). Also, the δ^{26} Mg values of the Purang ophiolitic rocks do not correlate with 384 common indices for partial melting and metasomatism (Supplementary Material 7; Su et al. 385 2019). In the Luobusa and Zedong harzburgites, the similar δ^{26} Mg values (-0.41 to -0.20‰) 386 387 for olivine, orthopyroxene and chromite concentrates have been interpreted to reflect an 388 equilibrium isotope fractionation (Xiao et al. 2016). In the Purang ophiolite, the high-Cr and 389 high-Al chromitites have Mg isotopic compositions slightly lighter than those of the associated peridotites (Fig. 13; Supplementary Material 7). In peridotite xenoliths, olivine 390 with negative Mg-Fe isotopic values has likely experienced Fe-Mg inter-diffusion with 391 metasomatic melts in sub-arc mantle environments (Huang et al. 2011; Sio et al. 2013; Zhou 392 393 et al. 2014). 394

395

IMPLICATIONS

The chemical characteristics of the Purang ophiolitic chromitites, including trace element 396 patterns and Mg isotope composition, are comparable to chromitites formed in a fore-arc SSZ 397 398 setting. Formation of the Purang ophiolites in a SSZ setting is corroborated by the occurrence of basaltic component with mixed enriched-MORB and OIB geochemical affinities. 399 Inclusions of uvarovite, apatite, lamellar clinopyroxene and wüstite in the Purang chromitite 400 may reflect fluid percolation in the lithospheric mantle. Considering the abundant UHP and 401 SuR mineral inclusions in the investigated chromitites, the Purang ophiolite likely 402 experienced a complex petrogenetic history encompassing deep mantle processes. Mantle 403 404 convection may have transported chromitites and the associated peridotites to shallow mantle levels, leading to partial melting of peridotites, recrystallization of chromitites and 405 encapsulation of crustal and exotic silicates, sulfides, and metal alloys as inclusions. 406

This study reports Mg isotope compositions of Purang ophiolite comparable to other Tethyan ophiolites, implying a common geodynamic evolution. As a part of the Neo-Tethyan ophiolites, the Purang podiform chromitites record superimposed deep mantle and subduction-related processes. Partial hydrous melting of the mantle wedge could have produced island arc tholeiitic and boninitic magmas that reacted with peridotites and endowed parts of this mantle section with chromite ores.

413

414

ACKNOWLEDGMENTS

We are indebted to Paul Tomascak (AE) and two anonymous reviewers for their constructive and detailed comments on the early version of this manuscript. Basem Zoheir acknowledges the Alexander von Humboldt Foundation for making his contribution to this work possible during his research stay at Kiel University.

419

Funding

This research was co-supported by the National Natural Science Foundation of China (NNSFC; Project No. 92062215, 42172069, 41720104009), the Second Tibetan Plateau Scientific Expedition and Research Program (No. 2019QZKK0801), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0201), the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources Fund (No. J1901-28), the China Geological Survey (CGS; Project No.DD20221817, DD20221630).

427

428 **REFERENCES**

- 429 Akmaz, R.M., Uysal, I., and Saka, S. (2014) Compositional variations of chromitite and solid
- 430 inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for431 chromitite genesis. Ore Geology Reviews, 58, 208-224.
- Arai, S. (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by
 deep recycling: a good inference. Earth & Planetary Science Letters, 379, 81-87.
- Arai., S. (1997). Control of wall-rock composition on the formation of podiform chromitites
 as a result of magma/peridotite interaction. Resource Geology, 47, 177-187.

436 Andrews, D.R.A. and Brenan, J.M. (2002) Phase-equilibrium constraints on the magmatic

437 origin of laurite + Ru-Os-Ir alloy. Canadian Mineralogist, 40, 1705–1716.

- Barnes, S.J., Naldrett, A.J., and Gorton, M.P. (1985) The origin of the fractionation of the
 platinum-group elements in terrestrial magmas. Chemical Geology, 53, 303–323.
- Brenan, J.M. and Andrews, D. (2001) High-temperature stability of laurite and Ru–Os–Ir
 alloy and their role in PGE fractionation in mafic magmas. Canadian Mineralogist, 39,
 341–360.
- Bourdon, B., Tipper, E.T., Fitoussi, C. and Stracke, A. (2010) Chondritic Mg isotope
 composition of the Earth. Geochimica Et Cosmochimica Acta, 74, 5069–5083.
- Dauphas, N., Teng, F.Z. and Arndt, N.T. (2010) Magnesium and iron isotopes in 2.7 Ga
 Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification
 of diffusive transport in zoned olivine. Geochimica Et Cosmochimica Acta, 74, 3274–
 3291.
- Dick, H.J. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and
 alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and
 Petrology, 86, 54–76.
- González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Proenza, J.A., O'Reilly, S.Y. and
 Pearson, N.J. (2014) Chromitites in ophiolites: how, where, when, why?, Part 1. A
 review and new ideas on the origin and significance of platinum-group minerals. Lithos,
 189, 127–139.
- González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Kerestedjian, T.N., O'Reilly, S.Y.,
 Proenza, J.A., Pearson, N.J. and Sergeeva, I. (2012) Metamorphism disturbs the Re-Os
 signatures of platinum-group minerals in ophiolite chromitites. Geology, 40, 659–662.
- Gong, X.H., Shi, R.D., Griffin, W.L., Huang, Q.S., Xiong, Q., Chen, S.S., Zhang, M., and
 O'Reilly, S.Y. (2016) Recycling of ancient subduction-modified mantle domains in the
 Purang ophiolite (southwestern Tibet). Lithos, 262, 11–26.
- 462 Griffin, W.L., Afonso, J.C., Belousova, E.A., Gain, S.E., Gong, X.-H., González-Jiménez,
- 463 J.M., Howell, D., Huang, J.-X., McGowan, N., Pearson, N.J., Satsukawa, T., Shi, R.,
- 464 Williams, P., Xiong, Q., Yang, J.-S., Zhang, M. and O'Reilly, S.Y. (2016) Mantle

- recycling: Transition Zone metamorphism of Tibetan ophiolitic peridotites and its
 tectonic implications. Journal of Petrology, 1–30.
- 467 Hébert, R., Huot, F., Wang, C.S. and Liu, Z.F. (2003) Yarlung Zangbo ophiolites (southern
- Tibet) revisited: geodynamic implication from the mineral record. In: Dilek, Y.,
 Robinson, P.T. (Eds.), Ophiolites in Earth History. Geological Society London Special
 Publications, 165–190.
- 471 Hellebrand, E., Snow, J.E., Dick, H.J.B. and Hofmann, A.W. (2001) Coupled major and trace
- 472 elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature,473 410, 677–681.
- Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R. (1992) Petrological studies of peridotites
 from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125
 Proceedings of the Ocean Drilling Program, Scientific Results, 125, 445–485.
- Huang, E., Chen, C.H., Huang, T., Lin, E.H. and Xu, J. (2000) Raman spectroscopic
 characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85,473–479.
- Huang, G.C., Mo, X.X., Xu, D.M., Lei, Y.J. and Li, L.J. (2006) Origination and evolution of
 Daba-Xiugugabu ophiolite belt in the Southwestern Tibet. Geology and Mineral
 Resources of South China, 3, 1–9 (in Chinese with English abstract).
- Huang, F., Zhang, Z.F., Lundstrom, C.C. and Zhi, X.C. (2011) Iron and magnesium isotope
 compositions of peridotite xenoliths from Eastern China. Geochimica Et Cosmochimica
 Acta, 75, 3318–3334
- Huang, J., Li, S.G., Xiao, Y.L., Ke, S., Li, W.Y. and Tian, Y. (2015) Origin of low δ^{26} Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochimica Et Cosmochimica Acta, 164, 298–317.
- Huang, M.X., Yang, J.J., Powell, R. and Mo, X.X. (2014) High-pressure metamorphism of
 serpentinizedChromitite at Luobusa (souther Tibet). American Journal of Science, 314:
 400–433.
- Johan, Z., Martin, R.F. and Ettler, V. (2017) Fluids are bound to be involved in the formation
 of ophiolitic chromite deposits. European Journal of Mineralogy, 29, 543–555

- 493 Li, S.-G., Yang, W., Ke, S., Meng, X.-N., Tian, H.-C., Xu, L.-J., He, Y.-S., Huang, J.,
- 494 Wang, X.-C., Xia, Q.-K., Sun, W.-D., Yang, X.-Y., Ren, Z.-Y., Wei, H.-Q., Liu, Y.-S.,
- 495 Meng, F.-C., and Yan, J. (2017) Deep carbon cycles constrained by a large-scale mantle
- 496 Mg isotope anomaly in eastern China. National Science Review, 4, 111-120
- Liou, J.G. and Tsujimori, T. (2013) The fate of subducted continental crust: Evidence from
 recycled UHP-UHT minerals. Elements, 9, 248–250.
- 499 Liu, F., Yang, J.S., Dilek, Y., Xu, Z.Q., Xu, X.Z., Liang, F.H., Chen, S.Y. and Liang, D.Y.
- (2015) Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang
 ophiolites of the Yarlung-Zangbo Suture zone: plume-influenced continental
 margin-type oceanic lithosphere in southern Tibet. Gondwana Research, 27, 701–718.
- Liu, Z., Li, Y., Xiong, F.H., Wu, D. and Liu, F. (2011) Petrology and geochronology of MOR
 gabbro in the Purang ophiolite of western Tibet, China. Acta Petrolica Sinica in Chinese,
 27, 3269–3279.
- Liu, X., Su, B. X., Bai, Y., Robinson, P. T., Tang, X., Xiao, Y., Xue, D. S. And Cui, M. M.
 (2020) Genesis of "silicate exsolution lamellae" in chromite of the Stillwater Complex:
 A challenge to the high-pressure crystallization of ophiolitic chromitite. Lithos, 378-379,
 105796.
- Maruyama, S., Santosh, M. and Zhao, D. (2007) Superplume, supercontinent, and
 post-perovskite: Mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary.
 Gondwana Research, 11, 7-37.
- Marchesi, C., González-Jiménez, J.M., Gervilla, F., Garrido, C.J., Griffin, W.L., O'Reilly,
 S.Y., Proenza, J.A. and Pearson, N.J. (2011) In situ Re-Os isotopic analysis of
 platinum-group minerals from the Mayarí–Cristal ophiolitic massif (Mayarí–Baracoa
 Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities
 in podiform chromitites. Contributions to Mineralogy and Petrology, 161, 977–990
- Matveev, S. and Ballhaus, C. (2002). Role of water in the origin of podiform chromitite
 deposits. Earth & Planetary Science Letters, 203(1), 235–243.
- 520 McGowan N M, Griffin W L, González-Jiménez J M, et al. (2015) Tibetan chromitites:
- 521 Excavating the slab graveyard. Geology, 43(2), 179–182.

- 522 Melcher, F., Grum, W. and Simon, G. (1997) Petrogenesis of the ophiolitic giant chromite
- deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite.
 Journal of Petrology, 38, 1419–1458.
- Pagé, P. and Barnes, S.J. (2009) Using trace elements in chromites to constrain the origin of
 podiform chromitites in the Thetford Mines ophiolite, Quebec, Canada. Economic
 Geology, 104, 997-1018.
- Pagé, P., Bédard, J.H., Schroetter, J.-M. and Tremblay, A. (2008) Mantle petrology and
 mineralogy of the Thetford Mines ophiolite complex. Lithos, 100, 255–292.
- Prichard, H.M., Neary, C.R., Fisher, F.C. and O'Hara, M.J. (2008) PGE-rich podiform
 chromitites in the Al'Ays ophiolite complex, Saudi Arabia: an example of critical mantle
 melting to extract and concentrate PGE. Economic Geology, 103, 1507–1529
- 533 Pogge von Strandmann, P.A.E., Strandmann, P.A.E., Elliott, E., Marschall, H.R., Coath, C.,
- Lai, Y.J., Jeffcoate, A.B., and Ionov, D.A. (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica Et Cosmochimica Acta, 75, 5247–
- 536 5268.
- Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J. and Leat, P.T. (2000) Geochemistry
 and tectonic significance of peridotites from the South Sandwich arc-basin system, South
 Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.

540 Qiu Tian, Yang Jingsui, Wu Weiwei, et al. (2021) Petrogensis of chromitites and its records

- of Ti metasomatism in crust-mantle transition zone, Bulqiza ophiolite massif, Albania.
 Sedimentary Geology and Tethyan Geology, 41, 485–504(in Chinese with English abstract).
- Satsukawa, T., Griffin, W.L., Piazolo, S. and O'Reilly, S.Y. (2015) Messengers from the
 deep: Fossil wadsleyite–chromite microstructures from the Mantle Transition Zone.
 Scientific Reports, 5, 16484.
- Schauble E. A. (2011) First-principles estimates of equilibrium magnesium isotope
 fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals.
 Geochimica Et Cosmochimica Acta, 75, 844-869.

- 550 Seyler, M., Lorand, J.P., Dick, H.J.B. and Drouin, M. (2007) Pervasive melt percolation
- reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20'N:
 ODP Hole 1274A. Contributions to Mineralogy and Petrology, 153, 303–319.
- Shi, R.D., Alard, O., Zhi, X.C., et al. (2007) Multiple events in the Neo-Tethyan oceanic
 upper mantle: evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic
 podiform chromitites, Tibet. Earth & Planetary Science Letters, 26, 33–48.
- 556 Spandler, C., O'Neill, H.S. and Kamenetsky, V.S. (2007) Survival times of anomalous melt
- inclusions from element diffusion in olivine and chromite. Nature, 447, 303–306.
- Suhr, G., Seck, H.A., Shimizu, N. and Gunther, D. (1998) Infiltration of refractory melts into
 the lowermost oceanic crust: Evidence from dunite- and gabbro-hosted clinopyroxenes in
 the Bay of Islands ophiolite. Contributions to Mineralogy Petrology, 131,136–154.
- 561 Su, B.X., Teng, F.Z., Hu, Y., Shi, R.D., Zhou, M.F., Zhu, B., Liu, F., Gong, X.H., Huang,
- Q.S., Xiao, Y., Chen, C. and He, Y.S. (2015) Iron and magnesium isotope fractionation
 in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth &
 Planetary Science Letters, 430, 523–532.
- Su, B.X., Hu, Y., Teng, F.Z., Xiao, Y., Zhang H.F., Sun, Y., Bai, Y., Zhu, B., Zhou, X. H. and
 Ying, J.F. (2019) Light Mg isotopes in mantle-derived lavas caused by chromite
 crystallization, instead of carbonatite metasomatism. Earth & Planetary Science Letters,
 522, 79–86.
- Su, B., Robinson, P.T., Chen, C., Xiao, Y., et al. (2020) The occurrence, origin and fate of
 water in chromitites in ophiolites. American Mineralogist, 105, 894–903.
- 571 Su, B., Chen, C., Xiao, Y., Robinson, P.T., Liu, X., Wang, J., Uysal, I., Bai, Y. and Sun, Y.
- 572 (2021a) The Critical Role of Fluid-Mediated Diffusion in Anomalous Fe-Mg-O Isotope
- 573 Fractionations in Ultramafic Rocks of Ophiolites. Journal of Geophysical Research:
- 574 Solid Earth, 126(4): e2020JB020632
- Su, B.X., Liu, X., Robinson, P.T., et al. (2021b) A new model for chromitie formation in
 ophiolite: Fluid immiscibility. Science China Earth Sciences, 64, 200

- 577 Sio, C.K.I., Dauphas, N., Teng, F.Z., Chaussidon, M., Helz, R.T. and Roskosz, M. (2013)
- 578 Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe 579 isotopic analyses. Geochimica Et Cosmochimica Acta, 123, 302–321
- Teng, F.Z., Wadhwa, M. And Helz, R.T. (2007) Investigation of magnesium isotope
 fractionation during basalt differentiation: implications for a chondritic composition of
 the terrestrial mantle. Earth & Planetary Science Letters, 261, 84–92
- 583 Teng, F.Z., Li, W.Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.Y. and Pourmand, A.
- (2010a) Magnesium isotopic composition of the Earth and chondrites. Geochimica Et
 Cosmochimica Acta, 74, 4150–4166.
- Teng, F.Z., Li, W.Y., Rudnick, R.L. and Gardner, L.R. (2010b) Contrasting lithium and
 magnesium isotope fractionation during continental weathering. Earth & Planetary
 Science Letters, 300, 63–71.
- Teng, F.Z., Dauphas, N., Helz, R.T., Gao, S. and Huang, S. (2011) Diffusion-driven
 magnesium and iron isotope fractionation in Hawaiian olivine. Earth & Planetary Science
 Letters, 308, 317–324.
- Wirth, R. (2009) Focused Ion Beam FIB: combined with SEM and TEM: Advanced analytical
 tools for studies of chemical composition, microstructure and crystal structure in
 geomaterials on a nanometre scale. Chemical Geology, 261, 217–229.
- Wang, J., Su, B.X., Robinson, P.T., Bai, Y., Liu, X., Sakyi, P.A., Jing, J.J., Chen, C., Liang,
 Z. And Bao, Z.A. (2021) Trace elements in olivine: Proxies for petrogenesis,
 mineralization and discrimination of mafic ultramafic rock. Lithos, 388-389: 106085.
- Xiao, Y., Teng, F.Z., Su, B.X., Hu, Y., Zhou, M.F., Zhu, B., Shi, R.D., Huang, Q.S., Gong,
 X.H. and He, Y.S. (2016) Iron and magnesium isotopic constraints on the origin of
 chemical heterogeneity in podiform chromitite from the Luobusa ophi- olite, Tibet.
 Geochemistry, Geophysics, Geosystems, 17, 940–953.
- 602 Xiong, F.H., Yang, J.S., Liu, Z., Guo, G.L., Chen, S.Y., Xu, X.Z., Li, Y. And Liu, F. (2013)
- High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet.
- Acta Petrologica Sinica, 29, 1878–1908. (in Chinese with English abstract).

- Kiong, F.H., Yang, J.S., Robinson, P.T., Xu, X.Z., Liu, Z., Li, Y., Li, J.Y. and Chen, S.Y.
- 606 (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite,
 607 Tibet. Gondwana Research, 27, 525–542.
- Xiong, F.H., Yang, J.S., Xu, X.Z., Kapsiotis, A., Hao, X.L. and Liu, Z. (2018) Compositional
 and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting
 Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China).
 Journal of Asian Earth Sciences, 159, 109–129
- Kiong, F.H., Liu, Z., Kapsiotis, A., Yang, J.S., Lenaz, D. and Robinson, P.T. (2019)
 Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo Suture Zone,
 Tibet: origin and significance of ultra-high pressure and other "unusual" minerals in the
 Neo-Tethyan lithospheric mantle. International Geology Review, 17, 2184-2210.
- Xiong, F.H., Xu, X.Z., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T. and
 Yang, J.S. (2020a) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi₂, from the
 Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for
 super-reduced mantle-derived fluid? European Journal of Mineralogy, 32, 557-574
- Xiong, F.H., Meng, Y.K., Yang, J.S., Liu, Z., Xu, X.Z., Eslami, A. and Zhang, R. (2020b)
 Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite:
 Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern
 Tibet. Geoscience Frontiers, 11, 277–292.
- Xiong, F.H., Dilek, Y., Xu, X.Z. and Yang, J.S. (2020c) Opx–Cpx exsolution textures in
 lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China), and the deep mantle
 origin of Neotethyan abyssal peridotites. International Geology Review, 62, 665-682.
- Xu, X.Z., Cartigny, P., Yang, J.S., Dilek, Y., Xiong, F.H. and Guo, G.L. (2018) Fourier
 transform infrared spectroscopy data and carbon isotope characteristics of the
 ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar
 Urals. Lithosphere, 10(1), 156–169.
- Yamamoto, S., Komiya, T., Hirose, K. and Maruyama, S. (2009) Coesite and clinopyroxene
 exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform
 chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314–322.

- 434 Yang, J., Meng, F., Xu, X., et al. (2015) Diamonds, native elements and metal alloys from
- chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27(2), 459–
 485
- 637 Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., Fang, Q.S., Robinson, P.T., Zhang, J. and Green,
- H.W. (2007) Diamond-and coesite-bearing chromitites from the Luobusa ophiolite,
 Tibet. Geology, 35, 875–878.
- Yang, J.S., Robinson, P.T. and Dilek, Y. (2014) Diamonds in Ophiolites: a little known
 diamond occurrence. Elements, 10, 123–126.
- Yang, J.S., Xu, X.Z., Li, Y., Li, J.Y., Rong, H., Ba, D.Z. and Zhang, Z.M. (2011) Diamonds
 recovered from peridotite of the Purang ophiolite in the Yarlung–Zangbo suture of Tibet:
 A proposal for a new type of diamond occurrence. Acta Petrologica Sinica, 27, 3207–
 3222. (in Chinese with English abstract).
- Yang, W., Teng, F.Z. and Zhang, H.F. (2009) Chondritic magnesium isotopic composition of
 the terrestrial mantle: a case study of peridotite xenoliths from the North China craton.
 Earth & Planetary Science Letters, 288, 475–482.
- Young, E.D., Tonui, E., Manning, C.E., Schauble, E.A. and Macris, C. (2009) Spinel-olivine
 magnesium isotope thermometry in the mantle and implications for the Mg isotopic
 composition of Earth. Earth & Planetary Science Letters, 288, 524–533.
- Young, E.D., Manning, C.E., Schauble, E.A., Shahar, A., Macris, C.A., Lazar, C. and Jordan,
 M. (2015) High-temperature equilibrium isotope fractionation of non-traditional stable
 isotopes: Experiments, theory, and applications. Chemical Geology, 395, 176–195.
- Zaeimnia, F., Arai, S. and Mirmohammadi, M. (2017) Na-rich character of
 metasomatic/metamorphic fluids inferred from preiswerkite in chromitite pods of the
 Khoy ophiolite in Iran: Role of chromitites as capsules of trapped fluids. Lithos, 268-271,
 351–363.
- Zhou, M.F., Robinson, P.T., Su, B.X., Gao, J.F., Li, J.W., Yang, J.S. and Malpas, J. (2014)
 Compositions of chromite, associated minerals, and parental magmas of podiform
 chromite deposits: The role of slab contamination of asthenospheric melts in
 suprasubduction zone envrionments. Gondwana Research, 26, 262-283.
- Zhou, M.F. and Robinson, P. (1997) Origin and tectonic environment of podiform chromite
 deposits. Economic Geology, 92, 259–262

665 Figure captions:

666	Figure 1. (a) Simplified tectonic map of the Tibetan Plateau, with several terranes separated
667	by well-defined sutures. The (Indus-)Yarlung-Zangbo Suture Zone [(I)YZSZ], the
668	southernmost one of these sutures, separates the Lhasa block to the north from the
669	Tibetan-Himalayan orogenic belt to the south. BNS = Bangong-Nujiang Suture; IYZS =
670	Indus-Yarlung-Zangbo Suture. (b) Geological map of the Purang ophiolite massif
671	(modified from Yang et al. 2011; Xiong et al. 2018, 2020b, c). Gab = gabbro, H-dun =
672	Cr_2O_3 -rich dunite, L-Dun = Cr_2O_3 -poor dunite, Harz = harzburgite, Lhz = lherzolite.
673	Figure 2. Field photographs showing the occurrence of chromitite in the Purang massif. (a)
674	High-Cr massive chromitite. (b) Dunite vein with high-Al massive chromitite laminae.
675	(c) Serpentinite with high-Cr massive chromitite. (d) High-Al nodular chromitite in a

676 dunitic host rock.

Figure 3. (a) Compositional variations of chromite grains from the Purang peridotites
revealed by the Cr# vs. TiO₂ (wt.%) plot (after Pearce et al. 2000). (b) Cr# vs. Mg#
diagram with data for chromite grains from peridotite samples of the Purang ophiolite.
Fields for abyssal and forearc peridotites are from Dick and Bullen (1984), Ishii et al.
(1992), Arai (1997), and Hébert et al. (2003). The degree of melt extraction is calculated
from the spinel composition using the empirical formula of Hellebrand et al. (2001).

Data of spinel grains from the Purang lherzolites are from Xiong et al. (2019).

684	Figure 4. (a-d) BSE images of acicular silicate micro-inclusions in chromite grains from the
685	Purang chromitites. (d) Plane-polarized light photomicrographs of acicular (Cpx)
686	inclusions in chromite grains from the high-Al chromitites.

- Figure 5. Backscattered (BSE) images of various pyroxene inclusions in chromite grains from
 the Purang ophiolite. (a-c) Octahedral orthopyroxene inclusions. (d-f) Subhedral and
 euhedral clinopyroxene inclusions. (g-i) Composite euhedal clinopyroxene and
 orthopyroxene inclusions in chromite. Cpx = clinopyroxene; Opx = orthopyroxene; Chr
 = chromite.
- Figure 6. (a) TEM image of a FIB foil showing a single clinopyroxene inclusion in a chromite grain. (b) A high-resolution TEM image showing sharp contacts of an acicular inclusion in a high-Al chromite grain. (c) EDX spectrum of a Cr-spinel grain. (d) EDX spectrum of the lamellar clinopyroxene inclusion. (e) EDX spectrum of a high-Cr chromite grain. Note the Ga peaks in the spectrum are due to Ga-ion implantation during the FIB milling and the Cu peaks are due to secondary fluorescence from the copper grid that supports the foil. Cpx = clinopyroxene, Chr = chromite.
- Figure 7. BSE images of mineral inclusions in chromite grains from the Purang chromitites.
 (a) an acicular inclusion about 50 μm long and <1 μm, which is interpreted as an
 Fe-Si-O-bearing fluid inclusion (see Fig. 9). (b) Apatite inclusion along cracks between
 chromite grains. (c) A uvarovite inclusion in chromite. (d) A composite
 serpentine-amphibole-phlogopite-millerite inclusion. (e) A composite amphibole-apatite
 inclusion. (f) A composite amphibole-apatite-pentlandite inclusion in chromite. (g) An

705	orthopyroxene-amphibole composite inclusion. (h) A clinopyroxene-amphibole
706	inclusion in the chromitite. (i) A uvarovite inclusion in chromite. $Cpx = clinopyroxener$
707	Ap = apatite; Amp = amphibole; Pn = pentlandite; Pg = phlogopite; Mil = millerite; Uva
708	= uvarovite; Chr = chromite.

709 Figure 8. BSE images of metal alloys and sulfide inclusions in the Purang chromitites. Mil=

710 millerite; Amp = amphibole; Cc = chalcocite; Gn = galena; Chr = chromite.

Figure 9 (a) FIB foil of the acicular inclusion shown in Fig. 7a with a vertical feature near the

center of the foil. (b) TEM image of an acicular clinopyroxene inclusion surrounded by
open spaces in a chromite grain. (c) EDX spectrum of the same inclusion showing peaks
of Fe, Si and O as well as Mg, Al and Cr. The black domains may have been filled with
fluids, (d) & (e) X-ray elemental maps along the orange line across the inclusion,
showing major Fe, Si and O peaks. The Cr, Al, and Mg are concentrated in the host
chrome spinel.

Figure 10. (a) TEM image of a uvarovite inclusion in the chromite grain shown in Figure 10b. (b) EDX spectrum of the uvarovite inclusion showing peaks for Si, O, and Ca and minor peaks for Cr and Fe. The indexed diffraction pattern (Fast Fourier Transform, FFT) showing the upper part of the TEM confirming the isometric structure. (c) EDX spectrum of the chromite grain with major Al and Cr peaks. The FFT pattern also shows the isometric structure of the same chromite grain.

Figure 11. Binary plots of Cr# vs trace element contents (ppm) in chromite grains from the
Purang high-Cr and high-Al chromitites.

- Figure 12. MORB-normalized trace element patterns of the Purang chromitites compared to
 patterns of boninite (BON) and Thetford Mines ophiolite (TMO) chromitites. Reference
 values are from Barnes et al. (1985) and Pagé et al. (2008).
- Figure 13. Histograms of the Mg isotope composition of peridotites from the Purang ophiolites and from other occurrences. (a) δ^{26} Mg signatures of MORB and OIB lavas. The dashed line represents the average δ^{26} Mg values of chondrites (-0.28‰, Teng et al. 2010a). (b) δ^{26} Mg values of ophiolitic chromitite, mafic and ultramafic rocks and peridotite xenoliths. (c) δ^{26} Mg compositions of the different lithological units of the Purang ophiolite.
- Magnesium isotope data sources: MORBs, Bourdon et al. (2010), Teng et al. (2010b);
 OIBs, Teng et al. (2007, 2010a), Bourdon et al. (2010); peridotite xenoliths, Yang et al.
 (2009), Young et al. (2009), Bourdon et al. (2010), Teng et al. (2010b), Huang et al.
 (2011), Pogge von Strandmann et al. (2011); mafic and ultramafic ophiolites, Su et al.
 (2015).

740

741 Table captions:

Table 1. Representative EPMA data of chromite grains from the Purang chromitites (wt.%).

- **Table 2.** Representative EPMA data of silicate inclusions in chromite grains from the Purang
 chromitites (wt.%).
- **Table 3.** Trace element composition, by LA-ICP-MS, of chromite grains from the Purangchromitites (ppm).

- **Table 4.** Mg isotopic compositions of selected samples from the Purang chromitites andassociated peridotites.
- 749
- 750 Supplementary Material 1. Lithological subdivision of chromitite-dunite associations in the
- 751 Purang ophiolite (South Tibet)
- 752 Supplementary Material 2. (a-h) X-ray elemental maps of the acicular inclusions in
 753 chromite grains from the Purang chromitites.
- 754 Supplementary Material 3. Raman spectra for an acicular inclusion (same as in Fig. 4), with
- 755 clinopyroxene and chromite peaks.
- 756 Supplementary Material 4. Back-scattered-electron (BSE) images of amphibole, phlogopite
- 757 inclusions from Purang chromitite.
- Supplementary Material 5. X-ray elemental maps of a Ru-Os-Ir-Fe-Ni inclusion in the a
 chromite grain from the Purang chromitite.
- 760 Supplementary Material 6. BSE images and X-ray elemental maps of a wüstite inclusion in
- 761 chromite with a major FeO component.
- 762 Supplementary Material 7. Mg isotopic signatures of olivine, orthopyroxene, and chromite
- concentrates as well as whole-rock data for the associated lithologies (Xiao et al. 2016
- and references therein).
- 765

Dunite

High-Cr chromitite

Table 1. Representative	EPMA data	a of chromite	grains fron	1 the Purang	chromitites.
			A		

Lithology	High-Al chromitite					High-Cr chromitite					Harzburgite					Dunite				
Sample	17x.1	17x.2	17x.3	17x.4	17x.5	11Y-P214- 2 1	11Y-P214-	11Y-401- 10.14	11Y-401- 10.26	11Y-401- 10.27	09y-636.1	09y-636.2	09y-636.3	09y-636.4	09y-636.5	1334c2-3	1334c2-7	1334c2-1	1334c2-1	1334c2-1
Cr ₂ O ₃	42.24	42.59	43.29	43.04	42.92	64.17	64.46	54.50	55.14	54.86	34.268	33.67	35.005	33.698	34.941	38.889	37.681	38.76	37.255	38.228
Na ₂ O	0.02	0.00	0.02	0.02	0.01	0.01	0	0	0	0	0	0	0	0	0	0.03	0.01	0.00	0.00	0.03
K ₂ O	0.00	0.00	0.01	0.00	0.02	0.01	0.01	0.01	0.01	0.01	0	0	0	0.01	0.00	0.01	0.01	0.02	0.00	0.00
MgO	16.59	15.76	16.05	16.31	16.35	10.36	10.27	12.00	12.63	12.46	13.58	13.69	13.83	13.45	14.34	13.55	13.62	13.31	14.01	13.87
MnO	0.22	0.22	0.25	0.28	0.21	0.39	0.38	0.37	0.33	0.33	0.30	0.26	0.22	0.24	0.25	0.22	0.21	0.21	0.28	0.27
CaO	0.00	0.00	0.01	0.00	0.00	0	0	0	0	0	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.04	0.01	0.01
Al ₂ O ₃	25.01	25.28	25.54	24.49	26.05	5.92	5.78	13.88	14.42	14.09	33.11	33.40	32.10	33.55	32.81	29.38	29.96	29.88	30.89	30.18
FeO	14.78	15.28	14.23	14.78	14.02	19.63	19.65	18.61	17.65	18.09	19.02	18.95	19.16	19.35	17.99	17.78	18.08	18.14	17.55	17.59
TiO ₂	0.22	0.20	0.30	0.26	0.25	0.06	0.10	0.07	0.08	0.08	0.10	0.09	0.13	0.09	0.09	0.04	0.04	0.07	0.04	0.00
SiO ₂	0.04	0.04	0.02	0.02	0.04	0	0	0	0	0	0.00	0.01	0.04	0.00	0.00	0.02	0.01	0.06	0.08	0.01
NiO	0.20	0.13	0.14	0.14	0.13	0.10	0.06	0.24	0.32	0.25	0.13	0.11	0.14	0.12	0.15	0.05	0.13	0.11	0.08	0.07
Total	99.32	99.49	99.84	99.33	99.99	100.63	100.69	99.68	100.58	100.16	100.50	100.18	100.61	100.55	100.57	99.97	99.75	100.59	100.20	100.25
Mg#	67.30	65.33	67.43	66.83	68.22	51.75	51.24	57.92	60.16	59.61	59.39	59.89	60.43	58.72	62.46	60.33	60.65	59.03	61.87	61.41
Cr#	53.12	53.06	53.21	54.11	52.50	87.91	88.20	72.47	71.94	72.30	40.97	40.34	42.24	40.25	41.66	47.02	45.76	46.52	44.71	45.93

 $\label{eq:cr} Cr\# = [100 \ x \ Cr^{3+}/(Cr+Al+Fe^{3+})]; \ Mg\# = [100 \ x \ Mg/(Mg+Fe^{2+})]$

Table 2. Representative EPMA data of silicate inclusions in chromite grains from the Purang chromitites (wt.%).

Minerals	Срх	Срх	Срх	Срх	Срх	Opx	Opx	Opx	Opx	Opx
Sample	706.1	706.4	706.7	706.8	706.9	706.1	706.1	706.1	706.2	706.2
SiO_2	54.36	55.21	54.22	55.34	55.24	57.54	57.75	57.58	57.29	57.59
Na ₂ O	0.15	0.18	0.16	0.13	0.17	0.08	0.02	0.03	0.02	0.02
Cr ₂ O ₃	1.03	0.83	0.84	0.95	0.99	0.92	0.86	0.87	0.79	0.91
K ₂ O	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00
MgO	18.53	18.96	18.57	18.78	18.62	38.72	38.54	38.19	38.85	38.76
Al_2O_3	0.66	0.65	0.69	0.72	0.82	0.29	0.32	0.35	0.28	0.36
MnO	0.04	0.06	0.04	0.05	0.02	0.06	0.07	0.05	0.06	0.07
CaO	23.53	23.72	23.32	22.36	23.14	0.35	0.29	0.27	0.33	0.37
FeO	1.02	1.05	0.86	0.98	1.01	2.59	2.45	2.27	2.52	2.39
TiO ₂	0.05	0.08	0.06	0.08	0.08	0.01	0.03	0.04	0.01	0.03
NiO	0.09	0.06	0.05	0.09	0.07	0.10	0.11	0.10	0.09	0.13
Total	99.46	100.81	98.82	99.48	100.17	100.66	100.46	99.76	100.24	100.63
En	51.5	51.8	51.9	53.1	52.0	95.8	96.1	96.3	95.9	96.0
Fs	1.6	1.6	1.3	1.6	1.6	3.6	3.4	3.2	3.5	3.3
Wo	47.0	46.6	46.8	45.4	46.4	0.6	0.5	0.5	0.6	0.7
Mg#	97.00	96.99	97.47	97.16	97.05	96.38	96.56	96.77	96.49	96.66

 $Mg\#=[100 \text{ x Mg}/(Mg + Fe^{2+})]$

Table 3 Trace element co	mnosition by LA-IC	P-MS of chrom	ite grains fre	om the Purang	chromitites ((maa														
Sample	Lithos	FeO	MgO ₂	Al ₂ O ₃	SiO ₂	TiO ₂	MnO ₂	Ga	Ti	Ni	Zn	Co	Mn	v	Sc	Cu	Zr	Nb	Cr	Cr#
662-16-1		11.87175196	185517	376065	4146	1407	1180	60	844	2260	531	191	914	689	1.7	3.8	0.14	0.11	208112	40
662-16-2		12.06163111 11.82373195	184904 186570	375313 377186	3/41 4377	1456 1478	1203	58 61	8/4 887	2264	547	197	932 910	686 681	1.4	2.7	0.08	0.10	20/638	40
662-16-4		11.73283143	184180	378867	4500	1395	1165	56	837	2199	472	190	903	671	1.3	2.6	0.10	0.10	208376	40
662-16-5		11.64341467	187147	378294	7693	1467	1164	58	880	2187	472	189	902	669	1.5	1.8	0.02	0.07	204982	40
692-6-1		12.28386142	183765	345077	1362	1403	1283	53	842	2020	416	196	994	705	1.2	0.1	0.05	0.06	209674	40
692-6-2		12.297554	184009	342277	2639	1404	1319	53	842	1957	415	194	1021	717	1.4	1.9	0.17	0.15	223616	40
692-6-3		12.20916705	185045 182415	346267	2408	1487 1486	1249	47	892 892	1895	412	188	968 991	709 698	0.9	1.7	0.09	0.16	224503	40
662-27-1		13.14496029	173853	310537	3129	1892	1458	49	1135	1751	549	208	1129	724	1.6	1.1	0.11	0.12	252128	47
662-27-2		13.22578374	171278	309658	3341	1897	1552	51	1138	1771	694	210	1203	728	1.8	11.4	0.26	0.16	253023	47
662-27-4		13.33597043	172077	306745 309402	3551 2021	1936 1861	1394	49 48	1161	1710	521 486	216	1080	734	1.6	0.0	0.23	0.11	234853 254928	47
662-27-6		13.17521911	173234	305668	2047	1892	1379	48	1135	1722	532	205	1068	731	1.8	0.6	0.06	0.16	254513	47
706-8-1		14.18433838	162602	315281	2915	1561	1520	51	937	1403	538	231	1178	909	2.9	1.2	0.07	0.16	257149	46
706-8-3		13.86847647	163429	315712	2533	1542	1495	49	925	1410	542	230	1158	908	3.0	1.8	0.20	0.14	251508	46
706-8-4		13.62209204	161450	309602	2430	1512	1434	50	907	1496	544	227	1111	905	2.8	1.8	0.23	0.14	258437	46
706-8-5		13.20825055	165671	312026	1912	1568	1382	47	941	1624	500	216	1070	923	1.4	1.8	0.19	0.16	257341	46 46
706-8-7		13.29751238	164898	314522	2418	1571	1419	48	942	1554	486	229	1099	925	2.4	1.5	0.17	0.15	255485	46
599-6-1-1		12.52587291	177158	291378	1746	856	1276	46	513	1754	504	196	988	893	3.2	2.5	0.12	0.21	268881	46.5
599-6-1-2		12.5112249	177041	290720 291879	2526	859	1313	44	516	1725	480	192	973	946 894	2.8	0.2	0.07	0.15	269298	46.5
599-6-1-4		12.61613136	176414	291077	3183	853	1282	45	512	1754	544	193	993	899	3.2	0.1	0.10	0.17	267816	46.5
599-6-1-5		12.62485704	174923	291642	2688	846	1287	46	507	1748	501	194	997	888	3.0	0.6	0.16	0.12	268915	46.5
599-6-1-6		12.68073527	173363	288006	2448	880	1324	42	528	1605	405	189	1020	910	3.4	0.0	0.18	0.14	272702	46.5
599-6-1-8		12.26943341	168950	286788	2323	860	1247	41	516	1652	450	186	966	894	3.4	1.9	0.11	0.16	279175	46.5
662-4-1		12.6/524986	169/98	304735	2844	1623	1358	45	974	1607	409	186	1052	710	1.6	1.9	0.09	0.10	263166	48
662-4-3		13.0321589	169767	307439	4892	1750	1438	48	1050	1678	491	195	1114	752	1.7	0.9	0.14	0.13	255579	48
662-4-4	117-b 41-b	12.75604852	172100	311654	2334	1714	1371	45	1028	1622	455	194	1062	738	1.0	1.7	0.18	0.13	256614	48
662-4-5	nign-Ai chromitite	12.92407457	172057	313387	2893	1620	1385	48 47	996	1708	472	193	1059	742	1.5	0.8	0.12	0.15	253346	40 48
662-4-7		13.04575884	173075	311212	2273	1652	1392	46	991	1715	487	193	1079	729	1.5	1.1	0.12	0.22	254286	48
662-15-1 662-15-2		13.14250613	174419 168471	289762 289202	3189 3917	1641 1626	1413	42	984 976	1473 1476	457	199	1094	743 755	1.8	0.2	0.14	0.12	266576	52.5 52.5
662-15-3		12.9922109	174750	307966	3844	1650	1473	48	990	1647	512	202	1141	752	1.4	1.9	0.16	0.14	254182	52.5
662-15-4		13.01864086	173910	313187	2070	1689	1396	47	1014	1633	481	201	1082	757	1.4	0.9	0.14	0.16	252793	52.5
662-15-5		13.27869982	166656	290352	2494 3310	1687	1493	44	1012	1530	506	195	1157	754	1.7	2.5	0.10	0.11	268248	52.5
599-5-1-1		12.49600684	178537	317624	2800	886	1231	48	531	1904	450	191	954	923	3.0	0.9	0.17	0.11	249871	56.5
599-5-1-2 599-5-1-3		12.28634768	179427	319179	2514	897 881	1227	49 46	538	1907	470	192	950 970	922	2.9	0.8	0.16	0.08	249575 253721	56.5
599-5-1-4		12.41842237	184569	309754	2533	887	1229	46	532	1849	442	190	952	925	2.6	1.8	0.14	0.16	251753	56.5
599-5-1-5		12.41031731	175938	314429	2625	913	1263	46	548	1869	466	189	979	928	2.6	2.8	0.11	0.11	253867	56.5
11YP-19-2-b1-Cr-1		17.11025849	178431 150856	232337	2643	1615	1300	48 39	969	1853	620	296	1533	924 1142	5.1	5.1	0.07	0.13	257805	58.5
11YP-19-2-b1-Cr-2		17.55184859	150650	229441	2133	1567	2038	39	940	884	619	294	1579	1163	6.5	1.5	0.25	0.14	292964	58
11YP-19-2-b1-Cr-3		17.57630239	147236	229938	1717	1582	2009	40	949	876	639	286	1557	1154	6.4	2.1	0.14	0.19	295242	58
11YP-19-2-b1-Cr-4 11YP-19-2-b1-Cr-5		17.8811418	1395644	233835	1725	1658	2123	40	995	823	655	293	1644	1161	6.6	2.0	0.11	0.17	295521	58
11YP-19-2-b1-Cr-6		17.57451136	142499	235619	3433	1602	2052	39	961	796	671	297	1589	1181	6.3	3.8	0.17	0.16	293403	58
11YP-19-2-b1-Cr-7 11YP-19-2-b1-Cr-8		17.63907244	138853 140796	232425 241529	1644	1577	2068	40	946 906	838 754	696 776	292 294	1602 1565	1146	6.6 5.4	6.4	0.21	0.16	298961 294242	58
11YP-19-2-b1-Cr-9		17.67636666	139247	239860	1541	1653	2125	40	992	788	696	303	1646	1194	6.6	1.4	0.30	0.22	293252	58
11YP-19-2-b1-Cr-10		17.35752045	139423	238432	2007	1659	2055	39	995	802	652	294	1592	1178	5.6	1.6	0.27	0.21	296122	58
11YP-19-2-a2-Cr-1 11YP-19-2-a2-Cr-2		17.01200230	144184	242280	2423	755	1955	41	465	903	689	287	1516	1222	7.1	1.6	0.19	0.10	292854	56
11YP-19-2-a2-Cr-3		16.97904728	147964	240252	2418	761	1933	39	457	901	656	259	1497	1224	7.2	2.4	0.37	0.22	291516	56
11YP-19-2-a2-Cr-4		17.8240375	154482	234820	2159	769 746	1894	37	461	829 784	661 702	253	1467	1203	6.9 5.6	2.2	0.24	0.17	285485	56
11YP-19-2-a2-Cr-6		18.98331062	141471	235333	2021	761	2128	38	456	730	702	308	1649	1207	6.1	1.1	0.32	0.16	285819	56
11YP-19-2-a2-Cr-7		17.60441253	154689	234785	2096	739	1940	38	444	882	727	270	1502	1187	6.0	2.3	0.18	0.16	286628	56
11YP-19-2-a2-Cr-8 11YP-19-2-a2-Cr-9		19.41557788	142093	226618	2106	745	2234	37 40	447	652	760	318	1688	1181	6.3	1.6	0.29	0.19	287980	56
11YP-19-2-a2-Cr-10		17.96530047	157013	231859	2067	757	1994	38	454	879	674	273	1545	1167	6.0	2.1	0.22	0.16	284567	56
599.7.1.1		14 22213954	165388	256089	3216	1094	1404	41	657	1636	495	196	1088	967	3.0	1.0	0.14	0.15	786383	60.5
599-2-1-2		13.21621033	163750	267413	2517	1049	1347	39	629	1600	452	194	1043	942	3.3	0.4	0.14	0.15	287614	60.5
599-2-1-3		13.31834166	167899	264447	2067	1063	1382	41	638	1694	458	196	1071	966	3.3	0.5	0.20	0.16	287108	60.5
599-2-1-4		13.6842958	162540	239873	2432	1088	1359	37	678	1537	475	201	1138	989	3.6	0.9	0.17	0.17	304568	60.5
599-2-1-6		13.72154	163586	246022	3387	1102	1492	42	661	1607	545	201	1156	994	4.0	0.4	0.53	0.16	298254	60.5
599-2-1-7		13.42007311	161182	244193	8271 3967	1144	1433	41	686 685	1616	571	199	1110	979	3.9	1.7	0.37	0.17	295924	60.5 60.5
567-4-1-2		14.11001881	154406	223120	2829	2402	1640	35	1441	996	459	240	1270	793	3.4	1.6	0.19	0.19	318726	61
567-4-1-3		14.65016041	155444	214480	3291	2357	1646	36	1414	1044	475	243	1275	800	3.3	1.9	0.17	0.14	319603	61
567-4-1-5		13.89802395	155461	223101 221632	1980	2352	1644	35	1411	914	505	243	1274	792	3.3	1.2	0.25	0.18	321060	61
567-4-1-6		13.91404475	159047	218781	1984	2307	1630	34	1384	1076	480	234	1263	806	3.3	0.2	0.30	0.15	320555	61
567-4-1-7 567-4-1-8		14.04127595 13.82870678	156501 154599	222666 219684	2156 6240	2386 2366	1641 1586	37	1432 1420	1240	506 511	234	1271	808 788	3.0	1.8	0.32	0.17	318157 317872	61 61
567-4-1-9		14.06408073	157452	224220	2208	2341	1613	37	1405	1255	488	232	1249	777	2.7	0.7	0.17	0.17	316236	61
567-3-Cr-1		13.60091825	160046	219964	2562	2262	1563	35	1357	1238	475	225	1211	798	2.6	0.7	0.26	0.20	321381	62
567-3-Cr-2		13.52884545	163220	219201 218770	2573	2343	1589	33	1386	1229	475	221	1231	794	3.0	1.3	0.27	0.20	316480 319932	62
567-3-Cr-4	under all and	13.812307	162274	217801	2225	2378	1616	37	1427	1257	534	228	1252	803	3.2	0.7	0.22	0.16	319928	62
567-3-Cr-5	High-Cr chromitite	13.99003037	161812 157798	220715	2015	2326	1596	36	1396	1247 871	529	232	1237	805	2.7	0.7	0.25	0.16	317286	62 62
567-3-Cr-8		13.67926873	164203	223288	1660	2345	1573	37	1407	1265	534	230	1219	807	2.2	0.5	0.15	0.12	318948	62
567-3-Cr-9		13.82523631	165607	222971	1621	2336	1598	39	1402	1276	531	230	1238	812	2.4	0.0	0.13	0.18	316302	62
567-3-2-1 567-3-2-2		13.45257666 13.80667921	158334 159848	221224 221344	411/ 2675	2388 2499	1595	37	1433 1499	1316	468	226	1241	782 802	3.1 3.6	0.5	0.13	0.18	314270	63
567-3-2-3		13.44110465	157979	219996	1661	2433	1558	35	1460	1312	497	220	1207	786	3.0	0.8	0.27	0.14	323880	63
567-3-2-4		13.69116196	161350	220895	3798	2400	1638	37	1440	1340	575	229	1269	785	3.2	1.0	0.16	0.14	317345	63 63
567-3-2-5		13.49186925	159921	214301	1768	2254	1590	34	1353	1202	541	229	1231	758	2.3	1.2	0.15	0.14	326839	63
567-3-2-7		13.87662006	160337	221572	2139	2404	1613	39	1443	1302	548	229	1250	792	2.9	0.0	0.21	0.19	318114	63
567-3-2-8 567-3-2-9		13./4428484	163342 159746	220784	1836 1745	2370 2345	1623 1615	36 37	1422 1407	1284 1284	552 539	229	1258 1251	786 786	3.0 3.3	U.6 2.0	0.14 0.24	0.19	318042 318361	63
L-43-2-1		13.61647586	159919	191418	3456	780	1527	30	468	1226	371	187	1183	953	5.1	1.9	0.13	0.23	342721	68
L-43-2-2		13.82824954	160583	195825	4979	810	1557	30	486	1240	387	190	1206	977	5.2	2.1	0.10	0.15	336741	68
L-43-2-3 L-43-2-4		13.95446439	160815	195119	3517	761	1588	30	4/4	1252	568 407	193	1230	975	5.5	5.1 0.8	0.13	0.11	339652	68
L-43-2-5		14.00547652	161969	191591	4447	799	1595	30	479	1181	403	199	1236	995	6.1	5.0	0.10	0.13	338100	68
L-43-2-6 L-43-2-7		13.7739476 13.87128015	161404 161016	197580 193176	3562 3799	793 778	1626 1591	30 31	476 467	1167 1267	391 407	198 193	1260 1232	989 976	5.4 5.4	1.1	0.25	0.14	336251 338646	68 68
L-43-2-8		13.88501446	161073	198480	2680	793	1586	32	476	1243	404	195	1229	997	5.9	4.1	0.13	0.18	335730	68

Table	4 Mg isotop	ic compositions	of selected	samples	from the	Purang o	chromitites and	associated	peridotites.
	0 1	1		1		0			1

Sample Standard	Rock type	$\delta^{25}Mg$	2SD	$\delta^{26}Mg$	2SD	Cr# in spinel
GSB		-1.03	0.04	-2.01	0.03	
GSB		-1.05	0.04	-2.04	0.03	
BCR-2		-0.12	0.04	-0.25	0.03	
BHVO-2		-0.13	0.05	-0.27	0.04	
11YP-19-b2	high-Al chromitite	-0.16	0.03	-0.31	0.05	58.4
11YP-19-b1	high-Al chromitite	-0.15	0.02	-0.32	0.04	56.2
10y-22-3	high-Al chromitite	-0.08	0.05	-0.13	0.02	53.5
10у-22-b	high-Al chromitite	-0.09	0.03	-0.17	0.04	55.5
11YP-19-1	high-Al chromitite	-0.02	0.02	-0.05	0.03	56.9
11Y-401-1a	high-Cr chromitite	-0.12	0.01	-0.25	0.04	75.2
11Y-401-2	high-Cr chromitite	-0.14	0.03	-0.29	0.03	65.6
11Y-401-1b	high-Cr chromitite	-0.12	0.04	-0.26	0.04	72.3
B3R30P1	harzburgite	-0.13	0.03	-0.26	0.02	40.3
B14R665P1c	harzburgite	-0.19	0.05	-0.37	0.04	48.4
B25R82P3b	harzburgite	-0.17	0.05	-0.35	0.03	46.8
11YP-19-a2	pyroxenite	-0.31	0.02	-0.61	0.04	51.6
11YP-19-a1	pyroxenite	-0.33	0.07	-0.67	0.06	51.2

.